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Multi-Material Topology Optimization with
Continuous Magnetization Direction

for motors design
T. Gauthey, P. Gangl and M. Hage Hassan

Abstract—Permanent magnet-assisted synchronous reluc-
tance motors (PMSynRM) have a significantly higher average
torque than synchronous reluctance motors. Thus, determining
an optimal design results in a multi-material topology opti-
mization problem, where one seeks to distribute ferromagnetic
material, air and permanent magnets within the rotor in
an optimal manner. In this paper, we propose the use of
density-based distribution scheme, which allows for continuous
magnetization direction. A filter using K-mean clustering is
used to determine the magnetization angle final distribution
accounting for technical feasibility. As for the ferromagnetic
material interpolation, a novel interpolation scheme inspired
by the topological derivative is established. A comparison with
several interpolation schemes is proposed. Finally, the design of
the electrical motor is proposed to maximize the torque value.

Index Terms—Motors, Numerical models, Optimization, Per-
manent magnet machines

I. INTRODUCTION

Synchronous reluctance machines (SynRM) are standard
in households and industrial applications, thanks to their
cheap cost compared to permanent magnet motors and
advances in manufacturing techniques. Although the
deployment of these machines continues [1], permanent
magnet synchronous reluctance machines (PMSynRM) offer
an excellent alternative for both structures, solving for
SynRM, its poor power factor and, for permanent magnet
machines (PMM), its cost. The design of these machines
using parametric optimization often necessitates complex
analytical models relying heavily on experienced engineers
and known good designs [2].

Topology optimization based on Finite Element Analysis
(FEA) allows for bypassing such cumbersome frameworks.
Recently n-materials optimization of electromagnetic actuator
has allowed for new PMM and SynRM to emerge [3]–
[5]. In this paper, density based optimization is applied to
design a PMSynRM. We propose a simultaneous density-
based optimization scheme consisting of three materials
(air/iron/magnet). The magnetization direction can be fixed
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or limited to a set of a couple values [6]–[9]. In this paper a
continuous directions are considered during the optimization
process as proposed in [10], [11]. Instead of fixing the mean
value of the magnetization direction, the final directions are
filtered using an unbiased K-means heuristic.
In density based topology optimization, the quality of the
final solution is dependent on the choice of interpolation
functions. We propose a novel interpolation based on prop-
erties of the topological derivative. It also takes into account
the Marrocco BH-curve parameters. The proposition is ap-
plied to design the rotor of a distributed winding stator as
described in [12], [13] to maximize the mean torque under
constraints. Finally, to decrease computation time, torque for
the PMSynRM is computed through a four-point method.

II. PROBLEM DESCRIPTION

We chose to investigate a SynRM described in [12], [13],
of which the rotor design had proven to be a challenging
problem for topology optimization and use it for our PM-
SynRM optimization problem.

A. Geometry description

The electrical machine geometry and current density
distributions are given respectively in Figure 1 and 2. The
dimensions for the considered machine are given in Table I.

Fig. 1. Machine geometry

This machine differs from most conventional SynRM
by its large air gap which constrains the statoric winding
distribution to only one pair of poles (cf. Figure 2).
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TABLE I
GEOMETRIC PARAMETERS

Parameter Value
Slot number 24
Axial length 50.0 mm

Outer rotor radius 18.5 mm
Inner stator radius 26.5 mm
Outer stator radius 47.5 mm

Air gap length 8.0 mm

TABLE II
STATORIC WINDING PARAMETERS

Parameter Value
Number of turn Ns 64

Winding type Distributed
Connection type Star

Resistance (RS,20◦C ) 7.1 Ω
Voltage Ueff 230 V

Peak intensity Imax 12 A
Number of pole pairs npp 1

Fig. 2. Statoric winding distribution and current parameters

The computational domain Ω consists of iron Ωf , air
Ωair, permanent magnet Ωmag and coils Ωc,

Ω = Ωf ∪ Ωair ∪ Ωmag ∪ Ωc (1)

where we further subdivide the ferromagnetic and air subdo-
mains into their rotor Ωf,rot and stator parts Ωf,stat,

Ωf = Ωf,stat ∪Ωf,rot, Ωair = Ωair,stat ∪Ωair,rot. (2)

Moreover, we subdivide the coil subdomains according to the
distribution shown in Figure 2,

Ωc = ΩU+ ∪ ΩU− ∪ ΩV + ∪ ΩV − ∪ ΩW+ ∪ ΩW− . (3)

We present here after the properties of interest of the mate-
rials (air, ferromagnetic, magnet) used in the machine.

The maximum norm of the magnetization vector was
chosen as Mmax = 2.33 · 105A.m−2 to fit data from [14]
on ferrite magnets. The reluctivity of the magnets and of
the copper coils is assimilated to the one of air to simplify
further material interpolation and avoid complex schemes
like the ones found in [15]. The non-linear behaviour of the

TABLE III
MATERIAL PROPERTIES

Material Reluctivity [m.H−1] Magnetization [A.m−1]
Air ν0 0

Copper ν0 0
Ferromagnetic ν̂(|B⃗|) 0

Magnet ν0 Mmax

ferromagnetic material is modelled with a Marrocco’s BH
curve approximation [16],

ν̂(|B⃗|) =


ν0(ε+

(c−ε)|B⃗|2α

τ+|B⃗|2α
‘ if |B⃗| ≤ Bmax,

ν0

(
1− Ms

|B⃗|

)
else if |B⃗| > Bs,

exp

(
γ(|B⃗|−β)

|B⃗|

)
otherwise,

(4)

where Bs = β +
log( ν0

γ )
γ and Ms = Bs + 1

γ and the
coefficients of the Marrocco curve are defined in Table IV.

TABLE IV
MARROCCO CURVE COEFFICIENT FOR THE FERROMAGNETIC MATERIAL

Parameter Value
α 6.84
β -1.30·10−1

γ 4.86
ε 1.57 ·10−4

τ 4.14 ·103
c 1.90·10−2

Bmax 1.80 (T)

B. Torque computation method

For computing the torque, we chose a method based on
Maxwell’s stress tensor, Arkkio’s method [17]. The instanta-
neous is given such that :

T =
Lzν0
rs − rr

∫
S

√
x2 + y2BrBϕdS (5)

where Br and Bϕ denote the radial and tangential magnetic
induction, respectively, Lz denotes the length of the machine
in z-direction and S denotes the surface between radii rs and
rr in the air gap (with rs > rr).

Determining the average torque by means of its instanta-
neous values can be very expensive. It is shown in [18] that a
good torque approximation for PMSM can be obtained when
evaluating its value for suitably chosen rotor positions θ:

T̄ =
1

4

(
T0 + T π

12
+ Tπ

6
+ Tπ

4

)
. (6)

We compared the average torque obtained by evaluation at
500 equally distributed rotor positions between 0 and 2π with
the value obtained by the four-point formula (6). When the
torque value is not equal to zero, the error found was to be
lower than 1% as expected and described in literature [19].
For the design given in Fig. 14, torque calculated on 500
points is equal to 1.9 [N.m] and through 4point 1.88 [N.m]
with an error of 0.5%
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III. OPTIMIZATION PROBLEM

In this section, we define our optimization problem and
reformulate the forward problem to fit the density-based
topology optimization approach. Our goal is to maximize
the average torque computed via (6) by distributing iron and
permanent magnets. The iron is represented by the variable
ρν , and the permanent magnets by two variables ρMx and
ρMy

to take into account the magnets direction.

(P1) :


maximize T̄

Under constraints :
Volume(ρν) ≤ fv,iron

Volume(ρMx , ρMy ) ≤ fv,mag

(7)

fv,iron, fv,mag are respectively the volume fractions of iron
and magnet. Lancelot method a gradient based optimization
algorithm [20] is used to solve the reformulated problem,
considering the augmented Lagrangian merit function.
The gradient of the Lagrangian is determined by means
of adjoint method [21], [22]. The objective function is
determined by solving the magnetostatics problem (8) on
NGSolve.

Find u ∈ H1
0 (Ω) :

∫
Ω

ν(x, |∇u|)∇u · ∇v dx =∫
Ωc

j v dx+

∫
Ωmag

[
−My

Mx

]
· ∇v dx, ∀v

(8)

A. Density based topology optimization

The basis of topology optimization is to distribute matter.
In order, to solve it by means of gradient based algorithms,
variables must be defined as continuous. Thus, the three den-
sity variables defined earlier, ρν , ρMx , ρMy are interpolated
by means of fν and fM . The equation (8), is then rewritten
such that :∫

Ω

ν(ρν , |∇u|)∇u · ∇v

−
∫
Ωrot

fν(1− ρν)
MmaxfM (|M⃗)

|M⃗ |

[
−My

Mx

]
· ∇v

=

∫
Ωc

j v dx,

(9)

with the reluctivity function

ν(ρν , |∇u|) =


ν̂(|∇u|) in Ωf,stat

ν0 in Ωc ∪ Ωair,stat

ν0 + fν(ρν)(ν̂(|∇u|)− ν0) in Ωrot

(10)
Here, the components of the magnetization vector M⃗ =

(Mx,My) are given in dependence of the two rotated density
variables ρMx , ρMy , for a mapping f̃sd,

(Mx,My) = f̃sd(ρMx
, ρMy

), (11)

which will be defined in (17).

B. Material interpolation schemes

In density based topology optimization, the quality of
the final solution is dependant on the choice of interpolation
functions. We present here two existing schemes and a novel
one based on properties of the topological derivative.
The polynomial interpolation scheme :

fn(ρ) = ρn n > 0, (12)

also referred to as SIMP (Solid Isotropic Material with
Penalization), is the most used material interpolation scheme
for topology optimization and allows for easy penalization of
intermediate materials. However, it presents some symmetry
issues and favors low ρ associated material in the final design.
In [23], the authors compared this scheme to other schemes
and concluded that the final design was not as good as many
other proposed ones.

Fig. 3. SIMP Polynomial interpolation scheme

To solve symmetry issues introduced by the classical
polynomial interpolation, D. Lukàš introduced a new scheme
in [24]:

fλ(ρ) =
1

2

(
1 +

1

arctan(λ)
arctan(λ(2ρ− 1))

)
, λ > 0.

(13)
In this equation the particular invariant point ρ = 0.5 does
not promote intermediate materials, grey material depends
on λ values (cf. Figure 4).

High λ values permit to penalize intermediate materials
but can lead to a poor convergence of the algorithm. A pa-
rameter study for λ led us to choose λ = 5. This interpolation
method is chosen for the norm of the magnetization vector
(fM in (9)). Finally, we propose a new interpolation scheme
as given in Figure 5, which is inspired by the topological
derivative as done in [25], see also the the SIMP-All method
for linear elasticity [26]. Here, we seek to design a material
interpolation function whose derivative with respect to the
density variable ρ coincides with the topological derivative
of the problem at ρ = 0 and ρ = 1. When interpolating
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Fig. 4. D. Lukàš’s interpolation scheme

Fig. 5. Topological derivative inspired interpolation scheme

between two linear materials with reluctivity values ν0 and
ν1, the conditions for the material interpolation function f
according to [25] would read

f(0) = 0,

f(1) = 1,

f ′(0) = 2ν0

ν0+ν1
,

f ′(1) = 2ν1

ν0+ν1
.

(14)

Due to the involved formula of the topological deriva-
tive for nonlinear magnetostatics [27], a mathematically
rigorous extension of this method to the nonlinear setting
is not straightforward. However, inspired by the particular
behaviour of the Marrocco BH-curve where the magnetic
reluctivity is almost constant for low flux density values,
we simply use this idea for that constant reluctivity value
ν1 := ν0ε ≈ 124.94. Using cubic Hermite interpolation for
the conditions (14), we obtain the polynomial

f(ρ) =
2ν0

ν0 + ν1
ρ− ν0 − ν1

ν0 + ν1
ρ2. (15)

Note that the term of order 3 happens to vanish. This
interpolation is not equivalent to a penalization of n = −1

Fig. 6. Interpolated BH curve for ρ = 0.25

Fig. 7. Interpolated BH curve for ρ = 0.75

in (12), that may lead to convergence issues. The behaviour
of the BH curve is compared for two ρ values of 0.25 and
0.75, when n = 1, n = 3 and the proposed method in
Figures 6 and 7 .

We deal with two magnetization density variables
ρMx

, ρMy
: Ω → [0, 1] in order to represent the magnetization

direction (Mx,My). One way of relating these quantities
to each other would be to have ρMx

represent the first and
ρMy the second coordinate, resulting in a representation
in Cartesian coordinates, which was also considered in
[10]. In this case, however, some magnetization directions
exhibit higher maximum magnetization than others, e.g.
ρMx

= ρMy
= 1 would correspond to |(Mx,My)

⊤| =
√
2

whereas for the magnetization direction pointing to the
right ρMx

= 1, ρMy
= 0.5 would yield a maximum

magnetization of |(Mx,My)
⊤| = 1, thus making the

maximum magnetization angle dependent.

To maintain the Cartesian coordinates, several mapping
methods permit to realize a square-to-disk transformation,
avoiding an angle dependent maximum magnetization value.
The elliptic grid mapping was chosen as a good compromise
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regarding computational time [28].

fsd(x, y) =

x
√
1− y2

2

y
√
1− x2

2

with (x, y) ∈ [−1, 1]2. (16)

The mapping between the magnetization density variables
ρMx

, ρMy
and the magnetization vector M⃗ = (Mx,My) (11)

is then given by

f̃sd(ρMx
, ρMy

) = fsd(2(ρMx
− 0.5), 2(ρMy

− 0.5)) (17)

Fig. 8. Square to disk transform for the Magnetization vector coordinates

C. Filtering and Post-processing

In density-based topology optimization, checkerboard pat-
terns and small isolated elements of one material are avoided
using filtering methods at each step of gradient descent.
While this filtering has a regularizing effect on the density
variables, it may introduce more gray areas. In our approach,
in the first step we perform density filtering using Helmholtz
filter [29]. Some final designs can still present fuzzy bound-
aries and intermediate material, especially if the optimization
starting point is near a local minimum. To help overcome
this issue, we propose to penalize the intermediate materials
directly as done in the phase-field topology optimization
method [30] and add to the cost function the following term
with a weight γ > 0:

Iγ(ρ) =
4γ

VΩrot

∫
Ωrot

ρ(x)(1− ρ(x))dx. (18)

The penalization is only applied on iron density ρν and
the magnetization norm |M⃗ |. In our optimization problem
we look for permanent magnetization directions which
may change continuously in space. In order to obtain
designs which comply with feasibility constraints, we here
propose a post-processing step. A K-mean heuristic [31]
clustering method is applied. We suggest adapting it to
create clusters of elements of similar magnetization direction.

IV. APPLICATION TO DESIGN THE MOTOR

All computations were conducted using the NGSolve
[32], [33] framework with its python interface. SIMP method
is based on gradient algorithm, thus the result depends on the
starting point. Here, Two starting points are presented. The

first starting point considers homogeneous material density
in the design domain Ωf,rot. ρν is fixed at 0.5, as given in
Fig.9. As expected, magnets given in blue are distributed on
the air barriers domain Fig.10. In topology optimization, tra-

Fig. 9. Homogeneous starting point , ρν = 0.5

ditionally this kind of method is initialized with an unbiased
homogeneous distribution, but when considering synchro-
reluctant machine design, flux barriers improve torque den-
sity. In [34] authors found low iron losses when considering
five segments. Thus we proposed to initialize our geometry
with the density distribution given in Fig. 11.

Fig. 10. Multimaterial, fv,iron = 40%, fv,mag = 30%, T̄ = 1.42N.m

The results for the material distribution are given for
20% and 40% of volume fractions fv,iron. These results
are coherent with the literature of synchro-reluctant actua-
tors with distributed winding [34]. For the multi-material
topology optimization including magnets, the design obtained
at 40% (Fig.13) of ferromagnetic material is used as a
starting point. Magnets are distributed in flux barriers as the
first result Fig.10. We have a better torque that is probably
due to high magnets volume, but this optimal result takes
into consideration design requirements of synchro-reluctant
motors.

V. CONCLUSION AND OUTLOOKS

In this study we proposed a novel multi-material inter-
polation method to determine the optimal distribution of
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Fig. 11. Starting design

Fig. 12. Design Iron-Air, fv,iron = 20%, T̄ = 0.833N.m

air, iron, and magnets for PMSynRM. A novel interpolation
method is proposed to take into consideration the material’s
BH curve. The interpolation takes into account magnetization
amplitudes and direction, and a post-processing clustering
method is also suggested to homogenize magnets direction
for feasibility constraints.
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