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Abstract

The impact of election closeness on the likelihood of monotonicity paradox has
recently been studied by some authors (e.g., Lepelley et al., 2018; Miller, 2017). It was
shown that the frequency of such a paradox significantly increases as elections become
more closely contested. This paper aims to analyze how the closeness of an election
affects other well-known paradoxes of voting. Based on the Impartial Anonymous
Culture (IAC) assumption, our preliminary results show that closeness has also a
significant effect on the likelihood of observing the studied voting paradoxes in the
class of scoring rules and scoring elimination rules.
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L’impact des élections serrées sur la probabilité de paradoxes de

vote : Autres résultats dans le cas des élections à trois candidats

Résumé

L’impact des élections serrées sur la probabilité de paradoxe de monotonie a été
récemment étudié par certains auteurs (ex., Lepelley et al., 2018; Miller, 2017). Il a
été démontré que la fréquence d’un tel paradoxe augmente considérablement à mesure
que les élections deviennent plus disputées. Le présent papier vise à analyser l’impact
des élections serrées sur d’autres paradoxes de vote bien connus. En se basant sur
l’hypothèse de la culture neutre et anonyme (IAC), nos résultats montrent que des
élections serrées ont un effet significatif sur la probabilité d’observer les paradoxes de
vote étudiés dans la classe des règles de scores et des règles de scores avec éliminations.

Mots-clés : Paradoxes de vote · Elections serrées · Règles de scores · Règles de scores
avec éliminations · Probabilité.

1 Introduction

An election stands as a pivotal moment in the democratic life of any institution, country, or
group of people. During this crucial event, voters express their views on various alternatives
such as manifestos, platforms, or propositions. They do so through an electoral process
that aims to select or designate the individuals or laws that will govern collective affairs.
In the best-case scenarios, the election result is a clear victory for a candidate or party.
However, this is not always the case. Complications can arise when election results are
closely contested. A narrow or marginal vote gap between the contenders can lead to intense
disputes that may undermine the electoral process.

According to historical records, the 1960 presidential election between J.F. Kennedy and
R. Nixon was the closest in terms of the popular vote since 1916. Kennedy won 49.72% of the
vote, while Nixon received 49.55%. It is worth noting that there have been other elections
in which a candidate won the electoral college while losing the popular vote, often by a very
narrow margin. In 2000, for example, G.W. Bush won 271 electoral votes compared to 266 for
Al Gore. The 2020 presidential election can also be taken as an example, with several disputes
raised by candidate D. Trump and his supporters. The actions that followed, including the
attack on the Capitol, dealt a significant blow to the electoral process and democracy. These
historical facts illustrate that when an election does not produce a clear-cut victory for a
candidate, it can sometimes lead to undesirable situations.

Recently, Miller (2017) highlighted that close elections can create opportunities for
strategic behavior under certain voting rules. In his study on the conditions under which
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Instant Runoff Voting1 could lead to the monotonicity paradox,2 Miller (2017) conducted
numerical simulations and concluded that the frequency of the monotonicity paradox
increases as elections become even more closely contested.3 This finding is further supported
by Lepelley et al. (2018) who examined other voting rules in addition to the Plurality
Elimination Rule such as the Negative Plurality Elimination Rule and the Borda Elimination
Rule. All of these voting rules will be defined later.

In both Miller (2017) and Lepelley et al. (2018), the closeness of an election is quantified
by the ratio between the total number of points (score) of the candidate ranked last (i.e., the
candidate who receives the lowest total score) and the sum of the scores of all the candidates
in contention. A higher value of this ratio indicates a more closely contested election.4

Diss et al. (2021) concluded that increased election closeness has a negative impact on the
Condorcet efficiency5 of the five voting rules they analyzed, which are the Plurality Rule, the
Borda Rule, the Negative Plurality Rule, the Plurality Elimination Rule, and the Negative
Plurality Elimination Rule. Their results suggest that Condorcet efficiency tends to decrease
as an election becomes more closely contested.

In this paper, we aim to provide further results to show that the effect of close election is
not limited to the electoral events mentioned in Diss et al. (2021), Lepelley et al. (2018), and
Miller (2017). We focus on three-candidate elections and we consider a wide range of voting
events (defined in Section 2.3) and six well-known voting rules (Plurality Rule, Borda Rule,
Negative Plurality Rule, Plurality Elimination Rule, Negative Plurality Elimination Rule
and the Borda Elimination Rule). For each of the considered voting rules, we derive limiting
probability representations for all the voting paradoxes considered, taking into account the
factor of closeness. For our analysis, we consider large electorates, as in Diss et al. (2021)
and Lepelley et al. (2018), and we assume that voters’ preferences are distributed according

1Also known as Alternative Vote or Plurality Elimination Rule.
2The monotonicity paradox occurs whenever some voters raise (resp. lower) the ranking of a candidate in

their individual preferences, all else unchanged, and the position of this candidate deteriorates (or improves)
in the overall social ranking.

3In a recent paper, Miller (2023) noted that the incidence of spoiler effects (which may or may not be
deemed paradoxical) under Plurality Rule and Plurality Elimination Rule, and perhaps Negative Plurality
Elimination (Coombs) Rule, also appears to increase with closeness (as measured by the percent of first
preferences for the third-place candidate). Spoiler effects imply that who wins an election depends in an
unreasonable way on the slate of candidates appearing on the ballot.

4It follows that a close election may accentuate the occurrence of certain electoral phenomena or
paradoxes. This suggests that the dynamics and intricacies of the electoral process become more pronounced
when the margin of victory is narrow. It should be noted that the elimination rules do not follow the
same methodology in Miller (2017) and in Lepelley et al. (2018), particularly in the case of three-candidate
elections addressed in both studies by these authors. While in Miller (2017), it is checked in the first round of
voting whether a candidate obtains more than half of the votes to consider a second round between the top 2
candidates, Lepelley et al. (2018) dispense with this constraint (of majority of votes) by simply eliminating
the candidate with the lowest score. It is in the same approach as Lepelley et al. (2018) that we frame our
analysis.

5The Condorcet efficiency of a voting rule is its propensity to elect the Condorcet winner when she exists.
A Condorcet winner, when she exists, is a candidate who defeats each of the other candidates in pairwise
comparisons.
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to a version of the well-studied Impartial Anonymous Culture (IAC) hypothesis. This is one
of the well-known assumptions under which probability calculations are often driven in the
literature of social choice theory. We will say more about this assumption later.

The rest of the paper is organized as follows: In Section 2, we introduce the basic
notation and definitions; we also define all the voting rules and voting paradoxes we focus
on. In Section 3, we derive from our computations the impact of elections closeness on the
likelihood of the voting paradoxes for large electorates. Section 4 concludes. The probability
representations obtained from our calculations are presented in Appendix 1, while Appendix
2 provides an example of the proof techniques utilized. The remaining proofs employ the
same methodology.

2 Definitions and notation

2.1 Preferences

Consider a group of n ≥ 2 individuals (voters, decision-makers, judges, etc.) and a set of
three alternatives or candidates A, B, and C. The individuals rank the candidates from
the most desirable candidate to the least desirable one. Each ranking is then assumed to
be a linear order, i.e., a transitive, antisymmetric, and total relation. In three-candidate
elections, there are six possible strict rankings, which are displayed in Table 1. In this table,
it is indicated that n1 voters have the ranking ABC, which means that they rank candidate A
at the top followed by candidate B and candidate C is the least preferred. In this framework,
a voting situation in defined by the vector ñ = (n1, . . . , n6) which indicates the number of

voters endowed with each linear order such that
6∑

i=1

ni = n.

Table 1: The six possible strict rankings in three-candidate elections

n1 : ABC n2 : ACB n3 : BAC n4 : BCA n5 : CAB n6 : CBA

Given two candidates A and B, we will write AMB to say that candidate A is majority
preferred over candidate B, which means that there are more than half of the voters who
prefer A to B; we can also say that candidate B is majority dominated by candidate A. If a
candidate is majority preferred over each of the candidates, she is said to be the Condorcet
winner. If a candidate is majority dominated by each of the other candidates, she is said
to be the Condorcet loser. Note that the Condorcet winner (or the Condorcet loser) does
not always exist since the majority relation M can be cyclic; in such a case we can get a
first possible cycle where AMB, BMC, and CMA or a second possible cycle where BMA,
AMC, and CMB.
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2.2 Voting rules

A scoring rule is a voting system that assigns points to candidates based on their position
in voters’ preferences, thereby generating a social ranking of the candidates according to
their scores (the total number of points received), and the candidate with the highest score
is declared the winner. In this paper, we focus on three well-known scoring rules (Plurality
Rule, Negative Plurality Rule and Borda Rule).

Under the Plurality Rule (henceforth PR), each voter gives one point to the candidate
ranked in the first position; the winner is the candidate with the highest total number of first
positions in the voters’ preferences. Under the Negative Plurality Rule (henceforth NPR),
each voter gives one point to every candidate except the candidate ranked last, who receives
zero points. The aggregated score of each candidate is the sum of all points received, and the
winner is the candidate with the highest aggregated score. In three-candidate elections, the
Borda Rule (henceforth BR) considers that a candidate receives two points each time she is
ranked first, one point for each second place, and zero point for each last place; the winner
is the candidate with the highest total score. Under BR, the winner can also be described
as the candidate with the highest average rank on the ballots. For a given voting rule, we
simply denote by S(A) the score of candidate A. Using the labels from Table 1, the scores
of the candidates under each of the three voting rules are given in Table 2.

Table 2: The scores of the candidates according to Table 1

Voting rules

PR BR NPR

S
co
re
s S(A) n1 + n2 2n1+2n2+n3+n5 n1 + n2 + n3 + n5

S(B) n3 + n4 n1+2n3+2n4+n6 n1 + n3 + n4 + n6

S(C) n5 + n6 n2+n4+2n5+2n6 n2 + n4 + n5 + n6

We also focus on three well-known scoring elimination rules (Plurality Elimination Rule,
Negative Plurality Elimination Rule and Borda Elimination Rule). In a three-candidate
election, a scoring elimination rule operates in two steps or rounds. In the first round, the
candidate with the lowest score is eliminated and the two remaining candidates go into
a second round where the winner is the one who obtains the majority of votes.6 Thus,
under the Plurality Elimination Rule (henceforth PER), the eliminated candidate is the one
with the lowest Plurality score; under the Negative Plurality Elimination Rule (henceforth
NPER), the eliminated candidate is the one with the lowest Negative Plurality score; under
the Borda Elimination Rule (henceforth BER), the eliminated candidate is the one with the
lowest Borda score.

6Notice that we do not assume ties since the probability of a tie vanishes in the limit of large electorates.
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2.3 Voting paradoxes

A voting paradox is an outcome that can be observed under a given voting rule and that may
be considered surprising, counterintuitive, or undesirable. Since the seminal works of Arrow
(1951), Gibbard (1973), and Satterthwaite (1975), it is known that there is no reasonable
voting rule that is free from any voting paradox. The social choice literature defines and
describes a large number of voting paradoxes; for a non exhaustive review of these paradoxes,
the reader may refer to the works of Diss and Merlin (2021), Felsenthal (2012), Felsenthal
and Nurmi (2018), Gehrlein and Lepelley (2011, 2017), Nurmi (1987, 1999), and Saari (1994,
2001, 2008). In this paper, we deal with the following voting events, which are widely studied
in the literature of social choice theory:

Strong Borda Paradox: This paradox describes a situation where the Condorcet loser
exists and is elected. It is known from Fishburn and Gehrlein (1976) that BR is the
only scoring rule that cannot elect the Condorcet loser when one exists.7

Strict Borda Paradox: This paradox is related to situations where the Condorcet loser is
elected and, at the same time, the Condorcet winner is ranked last. Daunou (1803)
showed that BR never ranks the Condorcet winner in the last position in an election
(see also Gärdenfors, 1973; Smith, 1973), which means that this paradox never occurs
with BR.

Absolute Majority Winner Paradox: This paradox occurs when a candidate is not
elected despite being ranked first by more than half of the voters. It is obvious that a
candidate ranked first by more than half of the voters is the Plurality winner; so, the
Absolute Majority Winner Paradox never appears under PR.

Absolute Majority Loser Paradox: This paradox is a special case of the Strong Borda
Paradox. It occurs when a candidate is elected despite being ranked last by more than
half of the voters. Since a candidate ranked last by more than half of the voters is also
a Condorcet loser, it follows that BR never exhibits this paradox.

Reversal Bias Paradox: This paradox, also known as the Preference Inversion Paradox,
occurs when the election winner is unchanged after reversing the preferences of all the
voters. According to Saari and Barney (2003), BR is the only scoring rule that is not
vulnerable to this paradox.

Sincere Truncation: This paradox appears if there are some configurations of ballots such
that there is at least one voter who prefers the outcome obtained by submitting a

7In contrast, the Weak Borda Paradox occurs when the Condorcet loser exists and is not ranked last by
plurality rule.
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sincere but incomplete ranking8 to the outcome obtained by submitting a complete
sincere ranking (Brams, 1982; Fishburn and Brams, 1983, 1984). Among the family of
scoring rules, only PR is immune to this paradox.

Positive Abstention Paradox: This paradox occurs when some of the voters who rank a
losing candidate first abstain, and this candidate becomes the winner.

Negative Abstention Paradox: This paradox occurs when some of the voters who rank
the winning candidate last abstain, and this candidate becomes a loser.

Positive Participation Paradox: This paradox occurs when the winning candidate is
made a loser by the addition of some voters who rank this candidate first.

Negative Participation Paradox: This paradox occurs when some voters who rank a
losing candidate last are added, and this candidate becomes the winner.

Table 3 gives us a glimpse of whether or not the above voting rules are vulnerable to the
paradoxes just mentioned. In this table, a “yes” indicates that the voting rule is vulnerable
to the corresponding paradox and a “no” means the opposite.

Table 3: Voting rules and their (non)vulnerability to the discussed paradoxes

Voting rules

Voting Paradoxes PR BR NPR PER BER NPER

Strong Borda yes no yes no no no

Strict Borda yes no yes no no no

Absolute Majority Winner no yes yes no no yes

Absolute Majority Loser yes no no no no no

Reversal Bias yes no yes yes yes yes

Sincere Truncation no yes yes no yes yes

Negative Abstention no no no yes yes no

Positive Abstention no no no no yes yes

Negative Participation no no no yes yes no

Positive Participation no no no no yes yes

8In this paper, when dealing with truncated rankings, we assume the pessimistic model as in Kamwa
(2022) or Kamwa and Moyouwou (2021); this means that for a given voting (scoring) rule, only the candidates
mentioned on a ballot receive points according to the logic of the voting rule, while the other truncated
candidates receive no points. For the other approaches for dealing with truncated ballots, the reader may
refer to Kamwa (2022) and the works cited therein.
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The probabilistic approach applied to voting rules is often seen as complementary to the
normative approach, which evaluates voting rules based on a set of criteria they either meet
or fail to satisfy. The probabilistic approach quantifies the frequency with which a voting
rule violates each of the considered criterion that it fails to satisfy. The probabilities of the
occurring voting paradoxes can be used as criteria in order to evaluate voting rules. For this
reason, the social choice literature, rooted in the probabilistic approach to voting rules, is
replete with results on the likelihood of electoral events. The sheer volume of these results
makes it impossible to provide a comprehensive summary in this paper. It is important to
note that the majority of these findings are based on two primary assumptions: the Impartial
Anonymous Culture (IAC) and the Impartial Culture (IC). In this paper, we will solely focus
on the IAC assumption. For further details on the Impartial Culture and other assumptions,
interested readers can refer to the books by Gehrlein and Lepelley (2011, 2017); Diss and
Merlin (2021) and Regenwetter et al. (2006). Under IAC, it is assumed that each voting
situation ñ = (n1, . . . , n6) is equally likely to occur. This hypothesis was introduced by
Kuga and Hiroaki (1974) and later developed by Gehrlein and Fishburn (1976). According
to this assumption, the likelihood of a given event X is calculated according to the following
ratio:

Number of voting situations in which event X occurs

Total number of possible voting situations
(1)

Based on the results found in the literature, Table 4 recalls for three-candidate elections,
the limiting probability (in the sense that n to infinity) of each voting paradox considered
here, specifically under the voting rules we have focused on.
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Table 4: Limiting probabilities of the discussed paradoxes under IAC in three-candidate
elections

Voting rules

Voting Paradoxes PR BR NPR PER BER NPER

Strong Borda 0.0296a 0 0.0315a 0 0 0

Strict Borda 0.0111b 0 0.0111b 0 0 0

Absolute Majority Winner 0 0.0370c 0.3919c 0 0 0.0247d

Absolute Majority Loser 0.0247c 0 0 0 0 0

Reversal Bias 0.0926e 0 0.2037e 0.0284f 0.0417f 0.0127f

Sincere Truncation 0 0.3664g 0.7222g 0 0.0682g 0.1597g

Negative Abstention 0 0 0 0.0408h 0.0139i 0

Positive Abstention 0 0 0 0 0.0104i 0.0425h

Negative Participation 0 0 0 0.0729h 0.0208i 0

Positive Participation 0 0 0 0 0.0139i 0.0382h

Sources: a. Gehrlein (2002); b. Gehrlein and Lepelley (2010); c. Diss et al. (2018); d. author’s calculations;

e. Bubboloni et al. (2020); f. Belayadi and Mbih (2021); g. Kamwa and Moyouwou (2021), Kamwa (2022);

h. Lepelley and Merlin (2001); i. Wilson and Pritchard (2007), Kamwa et al. (2023).

Table 4 highlights the varying susceptibility of different paradoxes depending on the
choice of voting rules. It should be noted, however, that these probabilities are far from
being negligible. It is also important to remember that these probabilities do not take into
account whether the election results are close or not. It is therefore interesting to consider
what would happen to these probabilities if the closeness of the election results were taken
into account. An increase in these probabilities would confirm the observations made in the
literature that closeness tends to favour the occurrence of voting paradoxes.

2.4 An index to reflect closeness in elections

As a reminder, the main focus of our paper is to assess how the closeness of election outcomes
affects the likelihood of the voting paradoxes we have defined earlier. To do so, we adopt a
closeness index, following the methodology of Diss et al. (2021), Lepelley et al. (2018), and
Miller (2017). Within a given voting rule, this index is calculated as the ratio between the
score received by the candidate ranked last and the sum of the scores received by all the
competing candidates.

For scenarios involving three candidates A, B, and C, suppose without loss of generality
that candidate C receives the lowest score according to a given voting rule. In this case, the
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closeness index is computed as follows:

I =
S(C)

S(A) + S(B) + S(C)
(2)

Let α, γ, and β denote the closeness indices under PR, NPR, and BR, respectively. Given
the rankings in Table 1 and the scores in Table 2, if candidate C has the worst score, we
derive the closeness index under each of the three scoring rules as follows:

� under PR: α = n5+n6

n
with 0 ≤ α ≤ 1

3
;

� under BR: β = n2+n4+2(n5+n6)
3n

with 0 ≤ β ≤ 1
3
;

� under NPR: γ = n2+n4+n5+n6

2n
with 0 ≤ γ ≤ 1

3
.

When it comes to the elimination rules, remember that we mentioned earlier that the
candidate eliminated in the first round is considered to be the candidate with the lowest
score. Therefore, it is from this candidate’s score that the closeness indices will be built, just
as it would have been the case if the election had been a single round. Thus, α will apply to
PER, γ to NPER, and β to BER; this is also consistent with the approach taken by Lepelley
et al. (2018).

3 Impact of closeness on the limiting probability of

voting paradoxes

In order to assess the influence of closeness on the probabilities of paradox occurrence, it
is essential to represent these probabilities as functions of the closeness index. This task
requires a revision of the IAC assumption for the specific purpose under consideration.
Recall that we assume without loss of generality that candidate C receives the lowest score
under a given voting rule. Given the closeness indices α, β, and γ that have been defined
in Section 2.4, the I-IAC assumption (for I = α, β, γ) is defined as follows: all voting
scenarios in which candidate C is ranked last are considered equiprobable. To derive our
probabilities, we use the parameterized Barvinok’s algorithm developed by Verdoolaege et
al. (2004). This algorithm is encoded to compute the number of lattice points in a rational
convex polytope and the output is given in the form of Ehrhart polynomials (Ehrhart, 1962,
1967). For more details on this algorithm and the related subjects, the reader may refer
to the works of Barvinok and Pommersheim (1999), Bruynooghe et al. (2005), Clauss and
Loechner (1998), Lepelley et al. (2008), and Wilson and Pritchard (2007). We report in the
Appendix all of the limiting probabilities that we obtain from our calculations. We have
chosen to skip the computation details; nonetheless, they are available upon simple request.
We concentrate here on commenting on our results regarding the impact of closeness on the
limiting probability of the voting paradoxes under consideration. In order to present our
results, we separately address the case of each of the voting rules covered by our analysis.
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It should be emphasized that the observations we will make regarding the evolution of
each probability in relation to the closeness parameter are derived from the study of the
functions (theoretical results) presented in the appendices.

3.1 Closeness and the Plurality Rule

Among the paradoxes presented in Table 3, it was noted that PR was found to be susceptible
to the Strong Borda Paradox, the Strict Borda Paradox, the Absolute Majority Loser
Paradox, and the Reversal Bias Paradox. Figure 1 provides a comprehensive view of how
closeness, measured by the index α, affects the limiting probabilities of these paradoxes.
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0

0.1

0.2
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Strict Borda Paradox
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Absolute Majority Winner Paradox
Reversal Biais

Figure 1: Closeness and voting paradoxes afflicting PR

When α = 0 (i.e., candidate C gets no points), only the Reversal Bias Paradox remains
viable, while the other paradoxes disappear. In particular, as elections become closer (where
α increases from 0 to 1

3
), PR becomes more likely to lead to each of the four paradoxes. It

is interesting to note that the limiting probabilities of the Strong Borda Paradox and the
Absolute Majority Loser Paradox become quite similar when closeness is taken into account.
For reference, Table 4 shows that the limiting probability of the Strong Borda Paradox is
2.96%, the Absolute Majority Loser Paradox is 2.47%, the Strict Borda Paradox is 1.11%,
and the Reversal Bias Paradox is 9.26% without considering closeness. However, these
probabilities can be significantly exceeded and amplified depending on the precise values of
the closeness index α. It appears that paradoxes do not occur when closeness falls below
certain thresholds, which are approximately 0.1552 for the Strong Borda Paradox, 0.2149 for
the Strict Borda Paradox, 0.2016 for the Absolute Majority Loser Paradox, and 0.1913 for
the Reversal Bias Paradox. Beyond these values, closeness contributes significantly to the
likelihood of each paradox occurring.
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We can now highlight the comparative effect of including the closeness index in the
calculation of probabilities associated with the considered voting paradoxes. The impact of
closeness on the probability of voting paradoxes under PR is summarized in Table 5. In this
table, and all subsequent ones, we denote P(·) < PIAC (resp. P(·) > PIAC) to indicate that
within the specified interval, P(·), the probability adjusted for closeness index, is smaller
(resp. larger) than PIAC, the probability without considering the closeness index.

Table 5: P(α) vs. PIAC under PR

Voting Paradoxes P(α) < PIAC P(α) > PIAC

Strong Borda [0, 0.1552[
]
0.1552, 1

3

]
Strict Borda [0, 0.2149[

]
0.2149, 1

3

]
Absolute Majority Loser [0, 0.2016[

]
0.2016, 1

3

]
Reversal Bias [0, 0.1913[

]
0.1913, 1

3

]

3.2 Closeness and the Borda Rule

For the two paradoxes involving BR, Figure 2 shows the evolution of the probabilities as a
function of the closeness index β.
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Figure 2: Closeness and voting paradoxes afflicting BR

As the value of β increases, the probabilities of the Absolute Majority Winner Paradox
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exhibit an interesting pattern. Initially, there is an increasing phase for β < 0.1738, followed
by a decreasing phase for β > 0.1738. When β = 0, it means that S(C) = 0 and the election
amounts to a Plurality vote between A and B; hence, AMWP cannot occur. This explains
the probability equal to 0. When β = 1

3
, no candidate can be an absolute majority winner

and we get S(A) = S(B) = S(C); hence AMWP cannot occur, so the probability is 0 also.
Since we know that AMWP can occur with BR, the two considerations above help to grasp
why the curve is not monotonous. In particular, for 0.1241 ≤ β < 0.2184, the probabilities
of the Absolute Majority Winner Paradox significantly exceed 3.70%, which is the limiting
probability of this paradox without considering closeness. Outside this range, the impact of
closeness tends to attenuate the occurrence of the Absolute Majority Winner Paradox, as
the probabilities do not exceed 3.70%.

It is observed with the Sincere Truncation Paradox that when β is lower than
approximately 0.2716, the probabilities remain below 36.64%, which is the known limit
value of this paradox without taking closeness into account. However, when β exceeds about
0.2716, the probabilities increase rapidly, reaching a peak of 100% as β approaches 1

3
. This

phenomenon implies that BR becomes more susceptible to manipulation by truncation as
the closeness of the election increases. Consequently, closeness increases the likelihood of
each of the two paradoxes affecting BR that we examine.

In Table 6, we provide a comparison between the probabilities of paradoxes with and
without considering closeness.

Table 6: P(β) vs. PIAC under BR

Voting Paradoxes P(β) < PIAC P(β) > PIAC

Absolute Majority Winner [0, 0.1241[ ∪
]
0.2184, 1

3

]
[0.1241, 0.2184[

Sincere Truncation ]0, 0.2716[
]
0.2716, 1

3

]

3.3 Closeness and the Negative Plurality Rule

Figure 3 provides an overview of how closeness, represented by γ, affects the probability of
voting events under NPR.

We observed that when the candidate ranked last receives less than a quarter of the votes
cast (0 ≤ γ < 1

4
), the Strong Borda Paradox and the Strict Borda Paradox are no longer

observed under NPR; this is also true for the Reversal Bias Paradox when γ = 0. However,
beyond these values of γ, each of these paradoxes reappears and increase in frequency as γ
increases.

In the case of the Sincere Truncation Paradox, its behavior evolves in two distinct phases
while maintaining probabilities above 50%: a phase of decrease for values of γ < 0.2586,
followed by a phase of increase for γ > 0.2586. As γ approaches 1

3
, the vulnerability of

the Sincere Truncation Paradox reaches 100%. In other words, when the candidate ranked
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Figure 3: Closeness and voting paradoxes afflicting NPR

last under NPR obtains close to a third of the votes cast, it becomes certain that a group of
voters can manipulate the outcome of the vote through truncation of their preferences. When
γ = 0 (respectively, γ = 1

3
), we have S(A) = S(B) (respectively, S(A) = S(B) = S(C)).

Assuming that one candidate is the winner, it is sufficient for a single voter who ranks
the other candidate first to truncate in order for the paradox to occur. Thus, for γ = 0
(respectively, γ = 1

3
), the paradox always occurs, leading to a probability of 1. However,

since the probability of the paradox is not always 1, there exist values of closeness for which
the probability is less than 1. These observations elucidate why the curve depicting the
probabilities of the Sincere Truncation Paradox exhibits non-monotonic behavior.

With respect to the Absolute Majority Winner Paradox, the probabilities exhibit a
tendency to decrease for values of γ < 0.26 and then to increase as γ varies. When there
is an Absolute Majority Winner and that γ = 0 (resp. γ = 1

3
), we get S(A) = S(B) (resp.

S(A) = S(B) = S(C)). Given that , there is a 1 chance in 2 (resp. 2 chances in 3) of not
choosing the AMW in this case; hence the probability of 1

2
(resp. 2

3
). As γ = 0 and γ = 1

3

are the only instances where scores equality occurs among the candidates, it follows that the
highest values for the paradox probabilities are attained at these bounds. Consequently, for
other closeness values, the probabilities of the Absolute Majority Winner Paradox remain
significantly lower compared to those at the boundaries, hence the non-monotonic nature of
the curve.

Table 7 provides a comparison between the probabilities of paradoxes with and without
considering closeness.
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Table 7: P(γ) vs. PIAC under NPR

Voting Paradoxes P(γ) < PIAC P(γ) > PIAC

Strong Borda [0, 0.2651[
[
0.2651, 1

3

]
Strict Borda [0, 0.2726[

[
0.2726, 1

3

]
Absolute Majority Winner ]0.2112, 0.2919[ [0, 0.2112[ ∪

]
0.2919, 1

3

]
Reversal Bias [0, 0.2304[

[
0.2304, 1

3

]
Sincere Truncation ]0.2368, 0.2940[ [0, 0.2368[ ∪

]
0.2940, 1

3

]

Before we look at the scoring elimination rules, it is worth highlighting an observation
about our three scoring rules. For each of these scoring rules, the introduction of closeness
as a parameter never changes the relative frequency that the paradoxes occurs – that is, the
graphed frequency lines never cross one another. To illustrate this point, let us consider the
example of BR. Under this rule, the Truncation Paradox is more likely to occur than the
Absolute Majority Winner Paradox in the absence of the closeness parameter as shown in
Table 4. Importantly, this order of events remains consistent even when closeness is taken
into account. However, this is not always the case with our three scoring elimination rules,
as we will see later.

3.4 Closeness and the Plurality Elimination Rule

From Table 4, we can see that the limiting probabilities of the three voting paradoxes
associated with PER in the absence of any closeness index are as follows: 4.08% for the
Negative Abstention Paradox, 7.29% for the Negative Participation Paradox, and only
0.0039% for the Reversal Bias Paradox. Figure 4 gives us a comparative view, taking into
account different levels of closeness, and illustrates its impact on the occurrence of each of
these three paradoxes.

We can see that the limiting probability of the Reversal Bias Paradox remains low
for closeness levels up to α ≤ 0.1882 and it does exceed the probability value obtained
when closeness is not considered. However, for 0.1882 ≤ α < 1

3
, the introduction of

proximity tends to significantly amplify the occurrence of the paradox, almost doubling
its probability compared to the case without closeness. With respect to the Negative
Abstention Paradox and the Negative Participation Paradox, we observe an increase in
the probabilities of occurrence for values of α above about 0.2428 and 0.2437, respectively.
Below these thresholds, the probabilities of these voting paradoxes remain below their values
obtained when closeness is not taken into account. Table 8 provides a comparison between
the probabilities of paradoxes with and without considering closeness.
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Figure 4: Closeness and voting paradoxes afflicting PER

Table 8: P(α) vs. PIAC under PER

Voting Paradoxes P(α) < PIAC P(α) > PIAC

Negative Abstention [0, 0.2428[
[
0.2428, 1

3

]
Negative Participation [0, 0.2437[

[
0.2437, 1

3

]
Reversal Bias [0, 0.1882[

[
0.1882, 1

3

]

As shown in Table 4, of the three paradoxes considered, the one most likely to occur
under PER is the Negative Participation Paradox, while the Reversal Bias Paradox is least
likely. However, our results show that this hierarchy does not hold across all values of α.
While this hierarchy remains intact for α > 1

4
, it undergoes a shift for α < 1

4
, where the

Negative Participation Paradox becomes the least vulnerable of the three paradoxes.

3.5 Closeness and the Borda Elimination Rule

Let us recall that, without taking into account the closeness criterion, the limiting
probabilities of the four voting paradoxes associated with BER are as follows: 6.82% for the
Truncation Paradox, 1.39% for the Negative Abstention Paradox, 2.08% for the Negative
Participation Paradox, and 1.04% for the Positive Abstention Paradox. However, when we
introduce the closeness index β into the equation, some interesting observations emerge.
Firstly, it is worth noting that the Reversal Bias Paradox is possible to occur under BER
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only when 1
6
≤ β < 1

3
. In addition, we found that both the Negative Abstention Paradox and

the Positive Participation Paradox result in approximately the same probabilities, whether
closeness is considered (our results) or not (Table 4). A visual representation of these results
is displayed in Figure 5.
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Figure 5: Closeness and voting paradoxes afflicting BER

An interesting observation is that when the score of the candidate ranked last represents
less than 25% of the votes cast (0 ≤ β < 1

4
), the Positive Abstention Paradox no longer

occurs under BER. Similar trends are observed for other paradoxes, where the presence of
closeness significantly reduces the probability of their occurrence: the Negative Abstention
Paradox, the Negative Participation Paradox, and the Truncation Paradox disappear when
β < 5

18
, β < 1

6
, and β < 2

9
, respectively.

Table 9 provides a comparison between the probabilities of paradoxes with and without
considering closeness. It is clear that over a substantial part of the β range, the introduction
of closeness greatly reduces the occurrence of these paradoxes, and in some cases eliminates
them altogether.
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Table 9: P(β) vs. PIAC under BER

Voting Paradoxes P(β) < PIAC P(β) > PIAC

Sincere Truncation [0, 0.2904[
[
0.2904, 1

3

]
Reversal Bias [0, 0.2815[

[
0.2815, 1

3

]
Negative Abstention [0, 0.3010[

[
0.3010, 1

3

]
Negative Participation [0, 0.2843[

[
0.2843, 1

3

]
Positive Abstention [0, 0.2911[

[
0.2911, 1

3

]

Comparing our results with those presented in Table 4, it is clear that the Sincere
Truncation Paradox consistently retains its position as the most likely to occur given that
β > 11185

39332
. However, the hierarchy in terms of occurrence probabilities is not always

maintained for the other paradoxes. In particular, for certain values of the index β, the
order of paradox occurrence probabilities varies when closeness is taken into account.

3.6 Closeness and the Negative Plurality Elimination Rule

Our calculations have revealed a remarkable phenomenon under NPER: when the candidate
eliminated in the first round receives less than a quarter of the votes cast, none of
the five considered paradoxes can be observed. However, as γ exceeds the threshold of
0.25, the probabilities of occurrence increase dramatically, reaching 62.50% for the Sincere
Truncation Paradox, 33.33% for the Absolute Majority Winner Paradox, 25% for the Positive
Participation Paradox, 12.50% for the Positive Abstention Paradox, and 8.33% for the
Reversal Bias Paradox. This striking trend is illustrated in Figure 6 as a function of the
closeness index γ.
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Figure 6: Closeness and voting paradoxes afflicting NPER

The comparison between the probabilities of paradoxes with and without considering
closeness is summarized in Table 10. This table provides an insight into the values of γ
for which considering the closeness of the election results in either increased or decreased
probabilities compared to scenarios without closeness (as shown in Table 4).

Table 10: P(γ) vs. PIAC under NPER

Voting Paradoxes P(γ) < PIAC P(γ) > PIAC

Absolute Majority Winner [0, 0.2680[
[
0.2680, 1

3

]
Reversal Bias [0, 0.2649[

[
0.2649, 1

3

]
Positive Abstention [0, 0.2768[

[
0.2768, 1

3

]
Positive Participation [0, 0.2879[

[
0.2879, 1

3

]
Sincere Truncation [0, 0.2771[

[
0.2771, 1

3

]

Comparing our results with those in Table 4, we see that the Sincere Truncation Paradox
consistently remains the most likely to occur, whether or not election closeness is taken into
account. However, for the other paradoxes, especially when γ is less than about 0.29, the
hierarchy in terms of probability of occurrence does not always follow the same pattern.
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4 Conclusion

The aim of this paper was to provide further insights into the impact of closely contested
elections on the likelihood of different voting paradoxes in three-candidate elections in the
case of large electorates. Our analysis focused on assessing the likelihood of ten well-
known voting paradoxes and covered both scoring rules and scoring elimination rules. Our
methodology in this study was inspired by previous research, such as Miller (2017), Lepelley
et al. (2018), and Diss et al. (2021), where we use the same index to measure the degree of
closeness of elections. This index is calculated as the proportion of scores received by the
candidate with the fewest scores.

In order to achieve our goal, we computed the limiting probability representations for
each paradox that could occur under different voting rules, taking into account different
degrees of election closeness. These representations served as a basis for examining how the
closeness of the election affects the likelihood of these paradoxes occurring. We identified
scenarios in which the introduction of the closeness index either increased or decreased the
likelihood of paradoxes, depending on particular values of election closeness.

Our analysis also revealed an interesting insight. When we examined one of the three
scoring rules in conjunction with the corresponding voting paradoxes, we noticed that
regardless of the degree of election closeness, accounting for closeness preserved the hierarchy
among these paradoxes in terms of their likelihood of occurrence compared to situations
without election closeness. It is worth noting, however, that this observation did not hold
universally for all scoring elimination rules, especially at certain levels of election closeness.

Appendix 1: Probability representations

A- Plurality Rule

Given a three-candidate election with large electorates and α the average number of points
obtained by the last ranked candidate under PR,

� the probability of the Strong Borda Paradox (SgBP) under PR is:

P
∞
SgBP (α) =


α2(4− 3α)

16 (11α3 − 4α2 − 3α + 1)
for 0 ≤ α <

1

4

255α3 − 255α2 + 75α− 7

8 (18α3 − 18α2 + 6α− 1)
for

1

4
≤ α ≤ 1

3

� the probability of the Strict Borda Paradox (StBP) under PR is:

P
∞
StBP (α) =


5α3

176α3 − 64α2 − 48α + 16
for 0 ≤ α <

1

4

87α3 − 99α2 + 31α− 3

8 (18α3 − 18α2 + 6α− 1)
for

1

4
≤ α ≤ 1

3
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� the probability of the Absolute Majority Loser Paradox (AMLP) under PR is:

P
∞
AMLP (α) =


α2 (4− 3α)

8 (54α3 − 12α + 3− 8α2)
for 0 ≤ α <

1

4

255α3 − 255α2 + 75α− 7

8 (18α3 − 18α2 + 6α− 1)
for

1

4
≤ α ≤ 1

3

� the probability of the Reversal Bias Paradox (RBP) under PR is:

P
∞
RBP (α) =



−9α3 + 9α2 + 1

36 (3α− 1) (3α2 − 1)
for 0 ≤ α <

1

6

−2619α4 + 1755α3 − 432α2 + 51α− 2

108α (3α− 1) (3α2 − 1)
for

1

6
≤ α <

1

4

1431α3 − 1242α2 + 306α− 25

108α (3α2 − 1)
for

1

4
≤ α <

1

3

B- Borda Rule

Consider a three-candidate election with large electorates and β the average number of points
obtained by the last ranked candidate under BR,

� the probability of the Absolute Majority Winner Paradox (AMWP) under BR is:

P
∞
AMWP (β) =



−3β

16(3β − 1)
for 0 ≤ β <

1

9

6075β4 − 2916β3 + 486β2 − 36β + 1

2592β3(3β − 1)
for

1

9
≤ β <

1

6

9477β4 − 7452β3 + 2106β2 − 252β + 11

9(432β4 − 576β3 + 216β2 − 24β + 1)
for

1

6
≤ β <

2

9

−1215β4 + 1404β3 − 594β2 + 108β − 7

3(432β4 − 576β3 + 216β2 − 24β + 1)
for

2

9
≤ β <

1

3

� the probability of the Sincere Truncation Paradox (STP) under BR is:
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P
∞
STP (β) =



1

3
for 0 ≤ β <

1

9

9477 β4 − 4212 β3 + 486 β2 − 36 β + 1

972 β3 (9 β − 4)
for

1

9
≤ β <

1

6

−165969 β4 + 184356 β3 − 65934 β2 + 7956 β − 349

3572100 β4 − 2313360 β3 + 544320 β2 − 60480 β + 2520
for

1

6
≤ β <

2

7

165969 β4 − 184356 β3 + 65934 β2 − 7956 β + 349

(7560 β − 2520) (621 β3 − 459 β2 + 99 β − 7)
for

2

7
≤ β <

8

27

−19570491 β4 + 22367340 β3 − 9588618 β2 + 1827324 β − 130567

(1512 β − 504) (621 β3 − 459 β2 + 99 β − 7)
for

8

27
≤ β <

1

3

C- Negative Plurality Rule

Consider a three-candidate election with large electorates and γ the average number of points
obtained by the last ranked candidate under NPR,

� the probability of the Strong Borda Paradox under NPR is:

P
∞
SgBP (γ) =


0 for 0 ≤ γ <

1

4

(4γ − 1)(24γ2 − 9γ + 1)

2(144γ3 − 144γ2 + 48γ − 5)
for

1

4
≤ γ ≤ 1

3

� the probability of the Strict Borda Paradox under NPR is:

P
∞
StBP (γ) =


0 for 0 ≤ γ <

1

4

3γ(4γ − 1)2

2(144γ3 − 144γ2 + 48γ − 5)
for

1

4
≤ γ ≤ 1

3

� the probability of the Absolute Majority Winner Paradox under NPR is:

P
∞
AMWP (γ) =


27γ − 8

16(3γ − 1)
for 0 ≤ γ <

1

4

−222γ3 + 222γ2 − 69γ + 7

2(144γ3 − 144γ2 + 48γ − 5)
for

1

4
≤ γ ≤ 1

3

� the probability of the Reversal Bias Paradox (RBP) under NPR is:
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P
∞
RBP (γ) =



−17 γ

32 (2 γ − 1)
for 0 ≤ γ <

1

6

837 γ4 − 432 γ3 + 12 γ − 1

864 γ3 (2 γ − 1)
for

1

6
≤ γ <

1

4

−2025 γ3 + 1485 γ2 − 225 γ + 1

432 (2 γ − 1) (6 γ2 − 6 γ + 1)
for

1

4
≤ γ <

1

3

� the probability of the Sincere Truncation Paradox (STP) under NPR is:

P
∞
STP (γ) =


11 γ − 4

4 (2 γ − 1)
for 0 ≤ γ <

1

4

−39 γ3 + 39 γ2 − 11 γ + 1

2 (2 γ − 1) (6 γ2 − 6 γ + 1)
for

1

4
≤ γ <

1

3

D- Plurality Elimination Rule

Consider a three-candidate election with large electorates and α the average number of points
obtained by the last ranked candidate under PR,

� the probability of the Reversal Bias Paradox (RBP) under PER is:

P
∞
RBP (α) =



−α2 (2α− 1)

2 (3α− 1) (3α2 − 1)
for 0 ≤ α <

1

6

−2160α4 + 864α3 − 12α + 1

864α (3α− 1) (3α2 − 1)
for

1

6
≤ α <

1

4

−810α3 + 918α2 − 333α + 37

108α (3α2 − 1)
for

1

4
≤ α <

1

3

� the probability of the Negative Abstention Paradox (NAP) under PER is:

P
∞
NAP (α) =



0 for 0 ≤ α <
1

6

(2α + 1) (6α− 1)3

64α (3α− 1) (3α2 − 1)
for

1

6
≤ α <

1

4

−15α3 + 15α2 − 7α + 1

4α (3α2 − 1)
for

1

4
≤ α <

1

3

� the probability of the Negative Participation Paradox (NPP) under PER is:
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P
∞
NPP (α) =


α (3α2 − 8α + 6)

(192α− 64) (3α2 − 1)
for 0 ≤ α <

1

4

−255α3 + 339α2 − 141α + 17

64α (3α2 − 1)
for

1

4
≤ α <

1

3

E- Borda Elimination Rule

Consider a three-candidate election with large electorates and β the average number of points
obtained by the last ranked candidate under BR,

� the probability of the Sincere Truncation Paradox (STP) of BER is:

P
∞
STP (β) =



0 for 0 ≤ β <
2

9

(9 β − 2)4

8 (3 β − 1) (621 β3 − 459 β2 + 99 β − 7)
for

2

9
≤ β <

1

4

−7614 β4 + 9072 β3 − 3888 β2 + 720 β − 49

16 (3 β − 1) (621 β3 − 459 β2 + 99 β − 7)
for

1

4
≤ β <

5

18

−1328238 β4 + 1574640 β3 − 695952 β2 + 136080 β − 9941

144 (3 β − 1) (621 β3 − 459 β2 + 99 β − 7)
for

5

18
≤ β <

7

24

−5143095 β4 + 6012792 β3 − 2634120 β2 + 512568 β − 37384

72 (3 β − 1) (621 β3 − 459 β2 + 99 β − 7)
for

7

24
≤ β <

8

27

−6588 β3 + 5229 β2 − 1380 β + 121

621 β3 − 459 β2 + 99 β − 7
for

8

27
≤ β <

11

36

−6588 β3 + 5229 β2 − 1380 β + 121

621 β3 − 459 β2 + 99 β − 7
for

11

36
≤ β <

1

3

� the probability of the Reversal Bias Paradox (RBP) of BER is:
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P
∞
RBP (β) =



0 for 0 ≤ β <
1

6

− (6 β − 1)4

22680 β4 − 14688 β3 + 3456 β2 − 384 β + 16
for

1

6
≤ β <

2

9

−9234 β4 − 9072 β3 + 3240 β2 − 504 β + 29

(144 β − 48) (621 β3 − 459 β2 + 99 β − 7)
for

2

9
≤ β <

5

18

−6345 β3 − 4869 β2 + 1257 β − 109

4968 β3 − 3672 β2 + 792 β − 56
for

5

18
≤ β <

1

3

� the probability of the Negative Abstention Paradox (NAP) and Positive Participation
Paradox (PPP) of BER is:

P
∞
NAP (β) = P

∞
PPP (β) =



0 for 0 ≤ β <
5

18

(18 β − 5)4

12 (3 β − 1) (621 β3 − 459 β2 + 99 β − 7)
for

5

18
≤ β <

8

27

(−45 β + 13) (1053 β2 − 612 β + 89)

4 (621 β3 − 459 β2 + 99 β − 7)
for

8

27
≤ β <

1

3

� the probability of the Negative Participation Paradox (NPP) of BER is:

P
∞
NPP (β) =



0 for 0 ≤ β <
1

6

− (6 β − 1)4

24 (2835 β4 − 1836 β3 + 432 β2 − 48 β + 2)
for

1

6
≤ β <

2

9

(6 β − 1)4

48 (3 β − 1) (621 β3 − 459 β2 + 99 β − 7)
for

2

9
≤ β <

5

18

− (4 β − 1) (180 β2 − 96 β + 13)

621 β3 − 459 β2 + 99 β − 7
for

5

18
≤ β <

1

3

� the probability of the Positive Abstention Paradox (PAP) of BER is:
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P
∞
PAP (β) =



0 for 0 ≤ β <
1

4

27 (4 β − 1)4

(24 β − 8) (621 β3 − 459 β2 + 99 β − 7)
for

1

4
≤ β <

5

18

− (15 β − 4) (234 β2 − 126 β + 17)

3 (621 β3 − 459 β2 + 99 β − 7)
for

5

18
≤ β <

1

3

F- Negative Plurality Elimination Rule

Consider a three-candidate election with large electorates and γ the average number of points
obtained by the last ranked candidate under NPR,

� the probability of the Absolute Majority Winner Paradox (AMWP) under NPER is:

P
∞
AMWP (γ) =


0 for 0 ≤ γ <

1

4

−3 (2 γ − 1) (−1 + 4 γ)2

144 γ3 − 144 γ2 + 48 γ − 5
for

1

4
≤ γ <

1

3

� the probability of the Reversal Bias Paradox (RBP) under NPER is:

P
∞
RBP (γ) =



0 for 0 ≤ γ <
1

4

(4 γ − 1) (8640 γ3 − 6480 γ2 + 1620 γ − 139)

1152 (3 γ − 1) (2 γ − 1) (6 γ2 − 6 γ + 1)
for

1

4
≤ γ <

7

24

−2376 γ3 + 2160 γ2 − 639 γ + 62

108 (2 γ − 1) (6 γ2 − 6 γ + 1)
for

7

24
≤ γ <

1

3

� the probability of the Sincere Truncation Paradox (STP) under NPER is:

P
∞
STP (γ) =


0 for 0 ≤ γ <

1

4

− (4 γ − 1) (120 γ2 + 84 γ − 13)

8 (2 γ − 1) (6 γ2 − 6 γ + 1)
for

1

4
≤ γ <

1

3

� the probability of the Positive Abstention Paradox (PAP) under NPER is:

P
∞
PAP (γ) =


0 for 0 ≤ γ <

1

4

−3 (4 γ − 1) (11 γ2 − 7 γ + 1)

8 (2 γ − 1) (6 γ2 − 6 γ + 1)
for

1

4
≤ γ <

1

3
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� the probability of the Positive Participation Paradox (PPP) under NPER is:

P
∞
PPP (γ) =



0 for 0 ≤ γ <
1

4

(44 γ − 15) (4 γ − 1)3

16 (3 γ − 1) (2 γ − 1) (6 γ2 − 6 γ + 1)
for

1

4
≤ γ <

3

10

−132 γ3 + 120 γ2 − 34 γ + 3

4 (2 γ − 1) (6 γ2 − 6 γ + 1)
for

3

10
≤ γ <

1

3

Appendix 2: Detailed proof of the Strong Borda Paradox

probability representation under α-IAC

As the proofs of all our propositions almost follow the same pattern, we will only provide
the proof of the Strong Borda Paradox probability representation under the Plurality Rule
(PR) and α-IAC. This will enable the reader to grasp the steps taken to derive all the other
probability representations. Complete proofs are available upon simple request from the
authors.

In our context, the Strong Borda Paradox emerges when the Condorcet Loser (CL), if
one exists, is ranked last according to PR. Let us assume, without loss of generality, that
candidate C is the last ranked one under PR. In such a case, the closeness index is given
by α = n5+n6

n
= k

n
, where k is the score of candidate C under PR. In order to compute the

Strong Borda Paradox, we first need to count the number of voting situations for which the
CL exists under the α-IAC assumption when candidate C is the last ranked one under PR.
In order to accomplish this goal, we need to consider the three following disjoint events:

X1 = “A is the CL and C is ranked last by PR”.

X2 = “B is the CL and C is ranked last by PR”.

X3 = “C is the CL and C is ranked last by PR”.

Recall that a voting situation can be defined by the 6-tuple ñ = (n1, n2, . . . , n6), where
ni denotes the number of voters endowed with the associated ith preference ranking, such
that

∑6
i=1 ni = n. Moreover, under the α-IAC assumption all possible voting situations

ñ = (n1, n2, . . . , n6) having a concrete value of α are equally likely to be observed. Let us
denote by NXj

(k, n) the number of voting situations for which event Xj is observed under
the α-IAC assumption, i.e., when α takes a given value. The number NXj

(k, n) depends on
the number of voters n and the value of k. Using those notations, the number of voting
situations for which the CL exists under the α-IAC assumption when candidate C is the last
ranked one under PR can be written as follows:

NX1(k, n) +NX2(k, n) +NX3(k, n). (3)
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Due to the symmetry of IAC-like assumptions with respect to candidates, we can easily
show that NX1(k, n) = NX2(k, n). This means that the number of voting situations in (3)
can also be written as follows:

2NX1(k, n) +NX3(k, n). (4)

Thus, all that we have to do is to calculate NX1(k, n) and NX3(k, n). Notice first that
NX1(k, n) corresponds to the number of voting situations satisfying the following system of
(in)equalities: 

−n1 − n2 − n3 + n4 + n5 + n6 > 0
−n1 − n2 + n3 + n4 − n5 + n6 > 0
n1 + n2 − n5 − n6 > 0
n3 + n4 − n5 − n6 > 0
n1 + n2 + n3 + n4 + n5 + n6 = n
n5 + n6 = k
ni ≥ 0 for i ∈ {1, . . . , 6}
k ≤ n

3
k ≥ 0

(5)

We compute the number of voting situations that fulfill these conditions using the
Parametrized Barvinok’s algorithm developed by Verdoolaege et al. (2004). This algorithm
allows us to quantify the number of integer solutions for systems of (in)equalities with
parameters and the output is a given in the form of Ehrhart polynomials (Ehrhart, 1962,
1967). For more details on this algorithm, the reader may refer to the works of Barvinok
and Pommersheim (1999); Bruynooghe et al. (2005); Clauss and Loechner (1998); Diss and
Mahajne (2020); Lepelley et al. (2008); Verdoolaege et al. (2004). This method, along with
related methods, has been widely used recently in research focusing on the probability of
voting events under IAC-like assumptions. For instance, we can cite the works of Bubboloni
et al. (2020); Diss and Mahajne (2020); Diss and Merlin (2021); Diss et al. (2023, 2020,
2012); Kamwa (2023, 2022); Kamwa and Moyouwou (2021); Kamwa and Valognes (2017);
Kamwa et al. (2023), among others.

In our study, given the two parameters n and k, the number of voting situations for a
system is given by bivariate quasi polynomials in n and k with 2-periodic coefficients meaning
that such coefficients depend on the parity of the parameters n and k. Following the notation
introduced in Lepelley et al. (2008), we represent these coefficients by a list of 2 rational
numbers in square brackets. To illustrate, assume the bracketed list

[
[a, b]n , [c, d]n

]
k
. In the

case of even k, the relevant list corresponds to [a, b]n. The coefficient will be either a when
n is even or b when n is odd. Similarly, in the case of odd k, the relevant list is [c, d]n and
therefore, the coefficient will be either c when n is even or d when n is odd. The program
indicates that the corresponding quasi-polynomial for System (5) is given as follows:

1. If 0 ≤ k ≤ n−4
4
:
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NX1(k, n) =
5

12
k4 + f1 k

3 + f2 k
2 + f3 k + f4,

where

f1 = −1

3
n+

[
3

2
,
7

6

]
n

f2 = −5

4
n+

[
19

12
,
1

3

]
n

f3 =
1

48
n3 +

[
1

8
,
3

16

]
n

n2 +

[
−5

4
,−15

16

]
n

n+

[
1

2
,−29

48

]
n

f4 =
1

48
n3 +

[
1

8
,
3

16

]
n

n2 +

[
−1

3
,− 1

48

]
n

n+

[
0,− 3

16

]
n

2. If n
4
≤ k ≤ n−2

3
:

NX1(k, n) =
15

4
k4 + g1 k

3 + g2 k
2 + g3 k + g4,

where

g1 = −5n+

[
1

2
,
7

2

]
n

g2 =
19

8
n2 +

[
−1,−17

4

]
n

n+

[
−7

4
,−3

8

]
n

g3 = −1

2
n3 +

[
3

8
,
11

8

]
n

n2 +

[
1,−3

4

]
n

n+

[
−1

2
,−9

8

]
n

g4 =
1

24
n4 +

[
− 1

24
,−1

8

]
n

n3 +

[
−1

6
,
5

24

]
n

n2 +

[
1

6
,
1

8

]
n

n+

[
0,−1

4

]
n

3. Otherwise, NX1(k, n) = 0.

Now, NX3(k, n) corresponds to the number of voting situations satisfying the following
system of (in)equalities: 

n1 + n2 + n3 − n4 − n5 − n6 > 0
n1 − n2 + n3 + n4 − n5 − n6 > 0
n1 + n2 − n5 − n6 > 0
n3 + n4 − n5 − n6 > 0
n1 + n2 + n3 + n4 + n5 + n6 = n
n5 + n6 = k
ni ≥ 0 for i ∈ {1, . . . , 6}
k ≤ n

3

k ≥ 0

(6)

Using again the Parametrized Barvinok’s algorithm, the program indicates that the
corresponding quasi-polynomial for System (6) is given as follows:
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1. If 0 ≤ k ≤ n−4
4
:

NX3(k, n) = k4 + h1 k
3 + h2 k

2 + h3 k + h4,

where

h1 = [6, 5]n

h2 = −1

2
n2 − 7

2
n+ [7, 3]n

h3 =
1

8
n3 +

[
0,

1

8

]
n

n2 +

[
−9

2
,−29

8

]
n

n+

[
2,−13

8

]
n

h4 =
1

8
n3 +

[
1

2
,
5

8

]
n

n2 +

[
−1,−1

8

]
n

n+

[
0,−5

8

]
n

2. If n−3
4

≤ k ≤ n−2
3
:

NX3(k, n) = −3 k4 + i1 k
3 + i2 k

2 + i3 k + i4,

where

i1 = 4n+ [−4,−1]n

i2 = −7

4
n2 +

[
5,

5

2

]
n

n+

[
−1,

9

4

]
n

i3 =
1

4
n3 +

[
−2,−3

2

]
n

n2 +

[
1,−7

4

]
n

n

i4 =
1

4
n3 +

[
−1

4
,
1

4

]
n

n2 +

[
0,−1

4

]
n

n+

[
0,−1

4

]
n

3. Otherwise, NX3(k, n) = 0.

In order to calculate the Strong Borda Paradox probability under the α-IAC assumption,
the three following disjoint events have to be taken into consideration:

X4 = “A is the CL and the winner under PR. Additionally, C is ranked last by PR”.

X5 = “B is the CL and the winner under PR. Additionally, C is ranked last by PR”.

X6 = “C is the CL and the winner under PR. Additionally, C is ranked last by PR”.

It follows that the Strong Borda Paradox Probability under the α-IAC assumption is
given in general by the following function in n and k:

NX4(k, n) +NX5(k, n) +NX6(k, n)

2NX1(k, n) +NX3(k, n)
. (7)

We can show that NX6(k, n) = 0 since when candidate C is chosen under PR it cannot
be ranked last by this voting rule. Again, due to the symmetry of IAC-like assumptions
with respect to candidates, we can also show that NX4(k, n) = NX5(k, n). It follows that the
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Strong Borda Paradox probability under the α-IAC assumption in (7) can also be calculated
as follows:

2NX4(k, n)

2NX1(k, n) +NX3(k, n)
. (8)

NX4(k, n) corresponds to the number of voting situations satisfying the following system
of (in)equalities: 

−n1 − n2 − n3 + n4 + n5 + n6 > 0
−n1 − n2 + n3 + n4 − n5 + n6 > 0
n1 + n2 − n3 − n4 > 0
n1 + n2 − n5 − n6 > 0
n3 + n4 − n5 − n6 > 0
n1 + n2 + n3 + n4 + n5 + n6 = n
n5 + n6 = k
ni ≥ 0 for i ∈ {1, . . . , 6}
k ≤ n

3
k ≥ 0

(9)

The program indicates that the corresponding quasi-polynomial of System (9) is given
as follows:

1. If 2 ≤ k ≤ n−2
4
, NX4(k, n) = − 1

64
k4 + a1(n, k) k

3 + a2(n, k) k
2 + a3(n, k) k + a4(n, k),

where

a1(n, k) =
1

48
n+

[[
5

48
, 0

]
n

,

[
1

24
,
1

16

]
n

]
k

a2(n, k) =

[[
− 1

16
,
1

16

]
n

, [0, 0]n

]
k

n+

[[
− 3

16
,
1

8

]
n

,

[
1

32
,
1

32

]
n

]
k

a3(n, k) =

[[
1

24
,
1

24

]
n

,

[
− 1

48
,− 1

48

]
n

]
k

n+

[[
1

12
,
1

8

]
n

,

[
− 1

24
,− 1

16

]
n

]
k

a4(n, k) =

[
[0, 0]n ,

[
− 1

64
,− 1

64

]
n

]
k

2. If n−1
4

≤ k ≤ n−3
3
, NX4(k, n) =

255

64
k4 + b1(n, k) k

3 + b2(n, k) k
2 + b3(n, k) k + b4(n, k),
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where

b1(n, k) = −85

16
n+

[[
23

16
, 4

]
n

,

[
11

8
,
65

16

]
n

]
k

b2(n, k) =
5

2
n2 +

[[
−33

16
,−79

16

]
n

, [−2,−5]n

]
k

n+

[[
−19

16
,−3

8

]
n

,

[
−31

32
,−15

32

]
n

]
k

b3(n, k) = −1

2
n3 +

[
3

4
,
7

4

]
n

n2 +

[[
3

8
,−5

8

]
n

,

[
5

16
,−11

16

]
n

]
k

n+

[[
−1

4
,−9

8

]
n

,

[
−3

8
,−21

16

]
n

]
k

b4(n, k) =
7

192
n4 +

[
− 1

12
,− 3

16

]
n

n3 +

[
− 1

48
,−19

96

]
n

n2 +

[
1

12
,
3

16

]
n

n+

[[
0,−15

64

]
n

,

[
− 1

64
,−1

4

]
n

]
k

3. Otherwise, NX4(k, n) = 0.

Notice that it is possible to represent the above results as functions of the closeness index
α. If we assume large electorates as it is the case in our paper and replace k by αn in the
above results, we obtain functions in α by only considering the terms of higher degree in each
function. Let us then denote by N∞

Xj
(α) the number of voting situations for which event Xj

is observed under the α-IAC assumption with large electorates. It follows that:

N
∞
X1
(α) =


α (20α3 − 16α2 + 1) n4

48
for 0 ≤ α ≤ 1

4

(3α− 1) (30α3 − 30α2 + 9α− 1) n4

24
for

1

4
≤ α ≤ 1

3

(10)

and

N
∞
X3
(α) =


α (2α− 1) (4α2 + 2α− 1) n4

8
for 0 ≤ α ≤ 1

4

− (3α− 1) (2α− 1)2 n4

4
for

1

4
≤ α ≤ 1

3

(11)

and

N
∞
X4
(α) =


−α3 (3α− 4) n4

192
for 0 ≤ α ≤ 1

4

(3α− 1) (255α3 − 255α2 + 75α− 7) n4

192
for

1

4
≤ α ≤ 1

3

(12)

We then determine the desired probability, concluding the proof:

P
∞
SgBP (α) =


α2(4− 3α)

16 (11α3 − 4α2 − 3α + 1)
for 0 ≤ α <

1

4

255α3 − 255α2 + 75α− 7

8 (18α3 − 18α2 + 6α− 1)
for

1

4
≤ α ≤ 1

3
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