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Despite several anomalies documented in the literature, the CAPM is still widely used in practice to estimate discount rates for the valuation of firms and projects.

. Although the presence of EIV is statistically not detectable in some cases, we argue that the differences in the output from the two estimation techniques can lead to considerable gaps when it comes to use the results in any discounted cash-flow analysis.

Introduction

The Sharpe-Lintner-Mossin Capital Asset Pricing Model (CAPM) stands at the center of the finance theory (Sharpe, 1964;[START_REF] Lintner | The valuation of risky assets and the selection of risky investments in stock portfolios and capital budgets[END_REF][START_REF] Mossin | Equilibrium in a capital asset market[END_REF]. The CAPM's basic yet essential premise is that expected excess returns on securities are a linear function of a single systematic risk factor. More than a half century after its inception, the debate surrounding the theoretical and empirical success of the CAPM remains inconclusive. However, this does not obscure the popularity of the model among not only academics but also, and particularly, practitioners who still widely employ the model for various purposes. In fact, to paraphrase the prominent British statistician G.E.P. Box, although the CAPM is, or may, not be the true model of the expected returns, it is widely acknowledged not only by academics but also practitioners as a useful model.

In this paper, we analyze the effect of measurement error on the estimation of discount rates using factor models as an econometric issue that is relatively less discussed in the empirical literature, taking the CAPM as a (very) popular tool to estimate the cost of equity capital. While considering the CAPM as the baseline model of the determination of discount factors may seem a narrow choice, it is worthwhile to study its empirical properties in light of its persistent popularity. It is not surprising to note that the CAPM is indeed still an integral component of leading investment decision support tools such as Bloomberg, Thomson Reuters or FactSet. Additionally, we emphasize that our goal in this work is not to give a discussion of the existing methods developed so far for estimating the cost of equity capital. For a selection of recent discussions of the topic see, among others, [START_REF] Lutzenberger | Industry cost of equity capital: European evidence for multifactor models[END_REF], [START_REF] Breuer | Estimating cost of capital in firm valuations with arithmetic or geometric mean -or better use the cooper estimator[END_REF], [START_REF] Da | Capm for estimating the cost of equity capital: Interpreting the empirical evidence[END_REF] or [START_REF] Artmann | Determinants of Expected Stock Returns: Large Sample Evidence from the German Market[END_REF].

As underlined by [START_REF] Graham | The theory and practice of corporate finance[END_REF], [START_REF] Graham | How do cfos make capital budgeting and capital structure decisions[END_REF], [START_REF] Anand | Corporate finance practices in india: A survey[END_REF], [START_REF] Rosenbaum | Investment Banking[END_REF], or [START_REF] Da | Capm for estimating the cost of equity capital: Interpreting the empirical evidence[END_REF], among many others, the traditional, and widely employed, practice consists in calculating the cost of equity capital as the sum of a certain rate of return plus a compensation for bearing systematic risk proportional to the project's or corporation's beta β. While the risk-free rate of return is generally set as the yield on a basket of public debt instruments, institutions and practitioners concentrate their efforts mostly on the determination of the systematic risk premia and their respective risk loadings, i.e. β's. As far as the CAPM-based formula is concerned, the appropriate systematic risk premium is the return on the market portfolio of risky assets in excess of the risk-free rate. The factor loading on the market risk premium is then called the market beta, or simply the beta, and is defined as the ratio of the covariance between the returns on the test asset and the market risk factor to the variance of the latter. As discussed by Rosenbaum and Pearl (2009, p. 128), there is no a consensus, just like the risk-free rate, in the industry regarding the determination of these two inputs but practitioners have so far come up with several guidelines as to the proper implementation of the CAPM formula.

1 These rules-of-thumb collectively guarantee that the CAPM still remains the industry standard to estimate the discount rates necessary in valuing companies using discounted cash-flow analysis. In a frequently cited paper, [START_REF] Graham | The theory and practice of corporate finance[END_REF] report that the CAPM is by far the most popular method of estimating the cost of equity capital: 73.5% of respondents always or almost always use the CAPM (Graham and Harvey, 2001, p. 201). 1 In line with [START_REF] Graham | The theory and practice of corporate finance[END_REF], [START_REF] Bruner | Best practices in estimating the cost of capital: Survey and synthesis[END_REF] also note survey-based evidence data that the CAPM is the dominant model for estimating the cost of equity and no firms cited specifications of the CAPM to adjust for any empirical shortcomings of the model (Bruner et al., 1998, p. 15-16). 2 In this paper, we conduct a simple empirical exercise to highlight the potential effects of measurement error in predictor variables on the economic significance of model estimates. Specifically, we focus on estimating the cost of equity capital for an array of industry-level portfolios using the CAPM approach and provide a short and comparative discussion of two sets of output. One set is obtained from the widely used OLS estimation method, while the other set considers the potential measurement errors in the observed risk factor premium. To do this, we employ an instrumental variables estimation method developed by [START_REF] Dagenais | Higher moment estimators for linear regression models with errors in the variables[END_REF] that uses the higher-moments of the data as valid instruments to mitigate the EIV bias. As noted by Carmichael and Coen (2008, p. 780), financial models offer a natural laboratory for Dagenais-Dagenais higher-moment estimator (DDHME), particularly if asset returns exhibit systematic non-Gaussianity. As a matter of fact, the DDHME estimator has been used in several studies like [START_REF] Coen | Capital asset pricing models revisited: Evidence from errors in variables[END_REF], [START_REF] Coen | Risk and performance estimation in hedge funds revisited: Evidence from errors in variables[END_REF], [START_REF] Coen | Hedge fund return specification with errors-in-variables[END_REF], and was later extended to a GMM setting by [START_REF] Racicot | Optimally weighting higher-moment instruments to deal with measurement errors in financial returns models[END_REF].

We run time-series regressions of monthly excess returns on 44 Fama-French industry portfolios to a set of Fama-French research factors representing estimates of systematic risk premiums from March 2003 to February 2022. We consider two data generating processes, namely the one factor model, i.e. the CAPM and the Fama-French three factor model, a straightforward choice given the large scale popularity of the threefactor model. The former holds that expected returns are a linear function of a market risk premium while the latter includes two additional factors as source of systematic risk determining expected returns. We present the results for two models and two competing estimation methods. Our results suggest that, as pointed out by Cragg (1994, p. 794), overlooking the potential errors-in-variables bias in the explanatory variables tends to distort seriously the interpretation that should be given to standard econometric 1 The authors also published a compressed version of their original paper, see [START_REF] Graham | How do cfos make capital budgeting and capital structure decisions[END_REF].

2 In passing, we would like to mark a side-note on the joint popularity of CAPM-based calculation of the cost of equity and the implementation of the model using OLS among practitioners. The reason would arguably be the availability of OLS as the unique regression estimator openly available within the world's most popular spreadsheet tool, that is MS Excel. In fact, the default installation of the Microsoft Office comes with several tools and functions that collectively make the OLS estimation the default, and easily accessible, choice for calculating regression parameters.

estimates. Out of the 44 industries, the OLS estimates of the market risk premium coefficient are lower than the DDHME estimates for 30 cases with the one-factor model and 28 cases with the 3-factor model. Although the test results for the presence of EIV do not suggest a systematic rejection of the null of no measurement error in the data, estimates of the industry-level (annualized) cost of equity of capital are significantly lower with OLS relative to DDHME. Broadly speaking, ignoring the downward bias in the risk factor loadings due to measurement error would have substantial impact on any corporate decision-making process using discounted cash-flows analysis.

The paper is organized as follows: In the next section, there is a brief discussion of the relationship between factor models of asset returns and the measurement error. Section 3 introduces the econometric methodology and provides an overview of the higher-moment estimation approach developed by [START_REF] Dagenais | Higher moment estimators for linear regression models with errors in the variables[END_REF].

Section 4 presents the data. We discuss our results in section 5. Finally, section 6 concludes.

Factor models with measurement error

Our goal is to estimate the equity cost of capital k j of an industry portfolio j. The baseline model for k j consists in breaking it down as,

k j = E (R j ) -R f = K j=1 β jk E Fk (1)
for j = 1, . . . , n and where R f is a risk-free rate of interest, E (•) the expectation operator, Fk a systematic risk factor and β jk the sensitivity coefficient associated with kth factor, k = 1, ...K. 3 The empirical version of the model can be expressed as,

R jt -R f t = α j + K k=1 β jk F tk + ϵ jt (2) 
Setting K = 1 and defining F as the market risk premium, we obtain the well-known CAPM formula that can written as the following straight-line equation,

r jt = α j + β j f t + ϵ jt (3) 
where α j , β j and σ 2 (ϵ j ) are unknown parameters that must be estimated using data.

In this formulation, smallcase letters r and f denote the dependent and independent variables in excess of the risk-free rate as

r j = R j -R f and f t = R M ⋆ -R f respectively.
In CAPM's vocabulary, the appropriate systematic risk factor M ⋆ corresponds to the market portfolio of risky assets, which includes all risky assets in proportion to their relative total market capitalization.

When it comes to put the model into action, however, the very definition of M ⋆ is a little tricky. In fact, because the true M ⋆ is, by definition, unobservable, which has long been acknowledged in the literature since Roll's famous paper [START_REF] Roll | A critique of the asset pricing theory's tests, part i: On past and potential testability of the theory[END_REF], one would rightfully suspect from possible endogeneity in estimations due to measurement error in M ⋆ . As long as M ⋆ cannot be identified but observed with error as M = M ⋆ + δ, this drives one to a strand of empirical literature in which attempts have so far been made to mitigate the errors-in-variables problem (EIV) in the estimation of CAPM parameters. Carmichael and Coen (2008, p. 779) argue that Roll's critique is a reminder that EIV should be endemic in linear regression models of asset returns and that applies not only to CAPM but also to more general models such as [START_REF] Fama | The cross-section of expected stock returns[END_REF], [START_REF] Fama | Common risk factors in the returns on stocks and bonds[END_REF] or [START_REF] Carhart | On persistence in mutual fund performance[END_REF].

Meanwhile, as noted by Coen and Racicot (2007, p. 444), the errors-in-variables problem has so far been at the center of relatively fewer theoretical and applied efforts in the literature. [START_REF] Carmichael | Asset pricing models with errors-in-variables[END_REF] enumerate a number of reasons for this observation. First, the typical textbook treatment of EIV models are mostly limited to the single variable case where it is possible to derive exact relationships to illustrate the impact of measurement error in the right-hand-side variable on parameter estimates. Once the setup includes two or more predictors, this is no longer possible even if there is only one variable measured with error while the observations on other variables correspond to their true values. 4 Second, that the EIV bias in the single predictor regression, which [START_REF] Hausman | Mismeasured variables in econometric analysis: Problems from the right and problems from the left[END_REF] called the attenuation bias, does not change the sign of the estimate can also be one reason of the disregard against it. In fact, at first sight, the presence of badly measured variables yields at worst to conservative estimates and, consequently, EIV would be seen as a much ado about nothing.

We do not agree with this view. From the outset, the objective of bringing into play any theoretical model of asset returns is to come up with reasonable estimates of a parameter of interest and

In this word, we consider here the cost of capital as an important by-product of CAPM as the most popular factor model of asset returns, which, despite ample criticisms, is still widely used in practice and can provide reasonable cost of capital estimates (Da et al., 2012, p. 217-218). Consequently, any systematic bias in the key parameter of the model should not be overlooked for it automatically generates poor estimates of the cost of equity. Such an effect should even be taken more seriously as long as the bias is downwards so that the implies an underestimation of the risks associated with the future cash-flows on the project's or firm's equity.

Higher-moments estimation of EIV models

Following the short discussion on how endemic EIV is in factor models of asset returns in general and in CAPM specifically, we outline in this section the higher-moments estimation of the EIV models. Our discussion follow closely [START_REF] Dagenais | Higher moment estimators for linear regression models with errors in the variables[END_REF], [START_REF] Davidson | Econometric Theory and Methods[END_REF], and [START_REF] Racicot | Optimally weighting higher-moment instruments to deal with measurement errors in financial returns models[END_REF].

Suppose the model is,

Y = α α α1 T + X ⋆ β β β + ϵ ϵ ϵ (4)
where X ⋆ is a T × K matrix of exogenous variables, 1 T a T × 1 vector of ones, and Y a T × 1 vector of dependent variables. The objective is to estimate the K × 1 vectors α α α, β β β and ϵ ϵ ϵ. Assuming the matrix X ⋆ is not directly observable but only available as

X = X ⋆ + ∆
where ∆ is a T × K matrix of measurement errors assumed to be uncorrelated with the regression errors ϵ ϵ ϵ, the model can be rewritten as,

Y = α α α1 T + Xβ β β + ω ω ω (5) 
where ω ω ω = ϵ ϵ ϵ-∆β β β. The direct consequence of the error in the right-hand-side variables is that the least-squares estimators β β βLS will be biased and inconsistent. To overcome this problem, [START_REF] Dagenais | Higher moment estimators for linear regression models with errors in the variables[END_REF] suggested an instrumental variables estimation approach based on sample moments of order higher than two. Specifically, the HM estimator of the model parameters (α α α, β β β ⊤ ) ⊤ is derived using,

E T →∞ Z ⊤ ω ω ω √ T = 0 (6) 
where the matrix

Z = [z 0 , z 1 , z 2 , z 3 , z 4 , z 5 , z 6 , z 7 ] has the columns, -z 0 = 1 T -z 1 = x ⊗ x -z 2 = x ⊗ y -z 3 = y ⊗ y -z 4 = x ⊗ x ⊗ x -3x E x ⊤ x /T ⊗ 1 K -z 5 = x ⊗ x ⊗ y -2x E x ⊤ y /T ⊗ 1 K -y 1 ⊤ K E x ⊤ x /T ⊗ 1 K -z 6 = x ⊗ y ⊗ y -x E y ⊤ y /T ⊗ 1 K -2y E y ⊤ x /T ⊗ 1 K -z 7 = y ⊗ y ⊗ y -3y E y ⊤ y /T ⊗ 1 K
where small-case letters x and y denote the matrices X and Y in deviations from the mean form and the symbol ⊗ is the element-by-element (i.e. Hadamard) matrix product. Following Davidson and MacKinnon (2004, p. 60-62), the HM estimator of (α α α, β β β ⊤ ) ⊤ can be obtained by applying OLS to the following augmented model,

Y = α α α1 T + Xβ β β + w w wψ ψ ψ + ϵ ϵ ϵ (7) 
where w w w = X -P Z X and P Z = Z Z ⊤ Z -1 Z ⊤ the orthogonal projection matrix onto the subspace spanned by the column of instrument set Z.

Following the discussion in [START_REF] Carmichael | Asset pricing models with errors-in-variables[END_REF], we consider below a subset of Z that includes z 0 , z 1 and z 4 . As noted by the authors, the selection of instruments involves two conflicting objectives. While asymptotic efficiency advocates the use of all of the seven instruments listed above on one hand, increasing the number of instruments would induce finite-sample bias in the IV estimates on the other hand. In addition, [START_REF] Dagenais | Higher moment estimators for linear regression models with errors in the variables[END_REF] reported that the root mean square errors of parameter estimates are smaller with this subset of Z. We therefore follow the advice of these studies and select z 0 , z 1 and z 4 as the instruments for the explanatory variables of our regressions. Doing so, we first start by constructing estimates of the possibly mismeasured right-hand-side variables in equation ( 2) using artificial regressions where the risk factor premiums F k are modeled as a linear response variable to our instrument set Z = (z 0 , z 1 , z 4 ). The residuals from these regressions ω are in the second step plugged back into the original model and the estimating model becomes,

R jt -R f t = α j + K k=1 β jk F tk + K k=1 ψ jk ω tk + ϵ it (8)
To paraphrase Carmichael and Coen (2008, p. 781), it is worth to emphasize that equation ( 8) is not an alternative to (2) because the variables ω k are not additional risk factors, nor ψ jk new risk factor loadings but estimates of the measurement errors on predictor variables.

Data and estimations

We consider a dataset of monthly excess returns on industry-level portfolios from March 2002 to February 2022 obtained from Kenneth French's data library. 5 Our selection includes 240 observations. The original list includes 48 industry portfolios but following the tradition in empirical studies of asset pricing and as advocated by, among others, Fama and French (1992, p. 429) or [START_REF] Foerster | Valuation of financial versus non-financial firms: a global perspective[END_REF], we drop four financials, namely "Banks", "Insurance", "Real Estate" and "Financials" from our set of test assets. [START_REF] Foerster | Valuation of financial versus non-financial firms: a global perspective[END_REF] suggest that the exclusion of financial services does not influence the inferences from various asset pricing models. Fama and French (1992, p. 429) justify their choices by stating that financial firms exhibit high leverage, which is normal for these firms but probably does not have the same meaning as for non-financial firms, where high leverage more likely indicates distress. A complete list of the industry definitions with the SIC codes is given in the appendix.

Because higher-moments estimation of the EIV model requires non-normality in the data, a first step naturally consists in controlling for the statistical significance of the higher-moments of the data. This is given in Table 1. Aside from the usual descriptive values like the sample average or the standard deviation, we also provide the sample skewness and the sample (excess) kurtosis for each variable. The t-statistics of the estimates are given in the columns next to the estimates. Finally, to assess the extent of non-normality, we implement a Jarque-Bera test [START_REF] Jarque | A test for normality of observations and regression residuals[END_REF] and give the p-value of the test statistic in the last column. 6 Looking at the last column of the table, we notice that the null of normality is, as expected, rejected for nearly all of the series under consideration except three industries with p-values larger 10%.

In addition, we also observe negative skewness to a large extent, albeit not always statistically significant. Therefore, Dagenais & Dagenais higher-moment estimation (DDHME) appears to be suitable for our purpose.

We fit time-series regressions of industry portfolios excess returns considering two common data generating process for expected returns, namely the CAPM and the Fama-French 3-factor model. Therefore, we consider expected excess returns as proportional to the market risk premium for CAPM regressions,

r jt = α j + β j r M t + ϵ jt (9) 
augmented by two additional systematic factors for the Fama-French 3-factor regressions as,

r jt = α j + β j r M t + s j SM B t + h j HM L t + ϵ jt ( 10 
)
where SM B and HM L are Fama-French factors capturing the size premium and the value premium, respectively. Then, each model is fitted to the data first by OLS and then using the DDHME methods The latter yields the following set of estimates:

r jt = α j + β j r M t + ψ M w M t + ϵ jt (11) 
r jt = α j + β j r M t + s j SM B t + h j HM L t + ψ M 1 w M t + ψ H 2 w Ht + ψ S 3 w St + ϵ jt ( 12 
)
6 Given a random sample of size T , the Jarque-Bera test statistic is calculated as

JB = Sk 2 6/T + ( K-3) 2 24/T
and is distributed as a χ 2 random variable at 2 degrees of freedom.
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Tables 2 to 4 present the output. We report the coefficient estimates and the t-statistics next to each estimate for our test assets. The t-statistics are obtained using White's heteroskedasticity and autocorrelation consistent covariance matrix estimates (White, 1980). The column F (ψ = 0) in table 2 shows the value of the squared t-statistic of the fitted ψ coefficient in equation [START_REF] Davidson | Econometric Theory and Methods[END_REF]. The column DWH in tables 3 and 4 shows the Durbin-Wu-Hausman test to check the null that there is no EIV in the data. For the three-variable case, DWH statistic follows a χ 2 distribution at 3 degrees of freedom. 7We turn to the discussion of the results. Overall, these are quite different whether we use OLS or the higher-moment estimation. According to table 2, for 16 industries the market β is estimated more than 20% lower with OLS relative to HM. For the one-factor model, the fitted risk factor loading using OLS are lower than those obtained from DDHME for 30 industries out of 44 as suggested in table 2. The average β OLS is 1.05 and the average β HM is 1.18. For some portfolios, the difference is substantial.

Although the downward bias in market betas appears to attenuate with the 3-factor model, we still observe that the β's are lower than their DDHME counterparts in 28 cases. This in turn spills over to the estimates of cost of equity. To highlight the extent to which a conservative estimate in the market β can distort the output, we consider the difference between the (annualized) CAPM-based industry cost of equity estimates between the OLS vs. DDHME methods. Table 5 shows the calculation results where the numbers are given in annual terms. In addition, we also visualize the same output in figures 1 and 2.

For ease of exposition, we divide the forty-four industries into two groups. In this figure each bar shows the difference between CAPM-based estimate of the industry cost of equity obtained using OLS vs. DDHME estimations. A bar above the zero line indicates an underestimation of the cost equity, which we calculate as the sum of average risk-free rate of return over the entire period plus the fitted market beta times the average systematic risk premium, k j = Rf + β j RM -Rf . A quick look to the figure suggest that OLS estimates of the equity cost of capital that does not take into account potential measurement error in the systematic risk factor can be seriously flawed. The difference between OLS vs. HM estimations can diverge by up to nearly 6% on an annual basis. From this perspective, it is clear that overlooking EIV as a minor issue in formulating expected excess returns on industry portfolios would have important consequences for valuation of projects based on discounted cash-flow analysis.

Finally, we should also put our results into perspective in light of the general lack of statistical evidence suggested by the EIV tests. Specifically, in tables 2 to 4, the Durbin-Wu-Hausman specification test does not systematically point out to the pres-ence of measurement error. In table 2, the F -test of no EIV is rejected for only one fourth of the test assets. The evidence against the null of no EIV is not heavily emphasized neither in the three factor model where nearly half of the cases suggest that the data exhibit EIV while the remaining half the opposite given the DWH statistics.8 

Therefore, although the final output of interest derived from our factor models differ depending on whether one takes into account the EIV or not, the estimation results remain inconclusive regarding the presence of EIV in the model variables. This casts doubt on our choice of instruments Z = (z 0 , z 1 , z 4 ) as it is a well-known fact that poor instruments tend to do more harm than good on the statistical properties of the estimates.

Conclusion

Despite the flourishing literature on alternative data generating processes of expected returns, the CAPM still remains at the center of most practical work in corporate financial decision-making. The model sits on sound theoretical grounds, but it is long known that empirical implementation of CAPM comes with several conceptual and empirical difficulties. Errors-in-variables (EIV) is one such issue endemic in the implementation of CAPM. In this paper, using a sample of monthly returns on Fama-French industry portfolios over a twenty-years long period, we have presented empirical evidence that EIV can lead to conservative estimates of the cost of equity capital. We compare two sets of estimations, one that overlooks the EIV, i.e. the OLS, and another one based on [START_REF] Dagenais | Higher moment estimators for linear regression models with errors in the variables[END_REF] higher-moments method (DDHME). We find that OLS time-series regressions of CAPM-based formula to estimate the cost of equity capital is in most cases likely to give misleading discount rates for project evaluation. Running the estimations using DDHME pulls the results upward numerically. Switching from CAPM to Fama-French 3-factor model seems to attenuate the difference in the outputs from OLS vs. DDHME, but the differences in the annualized cost of equity capital estimates remain non-neutral from the perspective of corporate financial decision-making.

Our empirical exercise is simple and can certainly be extended in several grounds.

One key limitation to our work is that it is not possible to claim that one should definitely drop OLS in favor of DDHME due to the presence of EIV in the data. It is simply impossible to know with certainty the CAPM, or any other factor model presentation, is the best description of the population model for the data under consideration. A second path that needs further investigation is about the selection of higher-moments of the data used as instruments. In line with the recommendations of previous studies like [START_REF] Carmichael | Asset pricing models with errors-in-variables[END_REF] or [START_REF] Racicot | Optimally weighting higher-moment instruments to deal with measurement errors in financial returns models[END_REF], we have selected a subset from the full list proposed by [START_REF] Dagenais | Higher moment estimators for linear regression models with errors in the variables[END_REF] as our instruments instruments is a crucial step in instrumental variables estimations, we believe additional efforts must be done to study other possible sets of higher-moments or cross-moments of the data as possible instruments to correct the EIV bias. In fact, if it turns out that instruments involving higher cross-moments of the data, i.e. z 5 or z 6 , are not weakly correlated with the instrumented risk premiums, it may also be interesting to check the results by combining with these additional instruments. We consider this question as a departure point for a future simulation-based and/or empirical study in which it would be interesting to study the behavior of DDHME method with other approaches like Satman and Diyarbakirlioglu ( 2015), [START_REF] Andersson | A simple improvement of the IV-estimator for the classical errors-in-variables problem[END_REF] 
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 12 Figure 1: Differences in CAPM-based cost of equity estimatesThe numbers shows the difference between CAPM-based estimate of the industry cost of equity obtained using OLS vs. DDHME methods as k j = Rf + β j RM -Rf . A bar above the zero line indicates an underestimation of the cost of equity capital.

  

  

Table 1 :

 1 or Racicot et al. Descriptive StatisticsThe table shows the descriptive statistics for the industry portfolio monthly excess returns from 2002-03 to 2022-02 (240 observations). t-statistics for sample skewness and sample (excess) kurtosis are calculate using the asymptotic variance of the sample estimates. JB stands for the Jarque-Bera χ 2 statistic[START_REF] Jarque | A test for normality of observations and regression residuals[END_REF] to test the null that the data is normal. The p-value of the JB test is given in the last column.

	(2019) recently developed in the literature addressing the EIV.

Table 2 :

 2 CAPM time-series regressionsThe table shows OLS vs. DDHME estimation results from CAPM time-series regressions of industry portfolios excess returns on market risk premium Rjt -R f t = αj + βj (RMt -R f t ) + ϵjt. RM -R f is the market risk premium. Monthly data cover the period from 2002-03 to 2022-02. t-statistics based on White (1980) HCCME standard errors are shown next to coefficient estimates.

			OLS				DDHME		
		α	t-stat	β	t-stat	α	t-stat	β	t-stat	ψ	F (ψ = 0)
	Agric	0.0032	0.93	0.7998	9.13	0.0041	1.14	0.6779	5.83	0.1397	0.83
	Food	0.0022	1.21	0.5509 12.65	0.0017	0.90	0.6125	6.77	-0.0706	0.61
	Soda	0.0039	1.24	0.7716	8.62	0.0008	0.26	1.1690	9.93	-0.4555	9.30
	Beer	0.0034	1.69	0.5365	9.70	0.0014	0.70	0.7965 11.67 -0.2981	12.09
	Smoke	0.0062	1.68	0.6340	6.75	0.0064	1.54	0.6160	2.89	0.0206	0.01
	Toys	-0.0026 -0.82 1.1781 17.25	-0.0040 -1.31 1.3593 15.04 -0.2077	2.72
	Fun	-0.0009 -0.29 1.4750 15.53	-0.0018 -0.48 1.5839	8.16	-0.1248	0.34
	Books	-0.0055 -2.35 1.1524 15.15	-0.0068 -2.49 1.3259 10.04 -0.1989	1.64
	Hshld	0.0021	1.19	0.6113 14.06	0.0011	0.59	0.7422	9.78	-0.1500	3.32
	Clths	0.0026	1.07	1.0777 17.12	0.0019	0.74	1.1640	9.90	-0.0989	0.55
	Hlth	0.0000	-0.01 0.8853 10.66	-0.0023 -0.72 1.1809	8.27	-0.3389	3.83
	MedEq	0.0028	1.37	0.8638 15.54	0.0014	0.63	1.0500 11.55 -0.2135	5.69
	Drugs	0.0013	0.70	0.6855 14.02	0.0026	1.32	0.5176	5.37	0.1924	3.16
	Chems	-0.0003 -0.17 1.2149 23.13	-0.0003 -0.17 1.2171 16.16 -0.0026	0.00
	Rubbr	0.0011	0.51	1.1356 15.75	0.0012	0.45	1.1296	9.09	0.0069	0.00
	Txtls	-0.0041 -1.00 1.5527 10.54	-0.0065 -1.21 1.8709	6.24	-0.3648	1.16
	BldMt	-0.0011 -0.46 1.3555 16.73	-0.0039 -1.54 1.7207 15.71 -0.4185	8.88
	Cnstr	-0.0014 -0.47 1.3292 16.51	-0.0033 -0.95 1.5769	7.26	-0.2839	1.69
	Steel	-0.0041 -1.11 1.6373 20.14	-0.0060 -1.68 1.8907 15.79 -0.2904	3.90
	FabPr	-0.0011 -0.25 1.2712 11.69	-0.0037 -0.78 1.6172	5.92	-0.3965	1.82
	Mach	0.0004	0.20	1.3583 22.21	-0.0009 -0.36 1.5277 11.51 -0.1942	1.87
	ElcEq	-0.0012 -0.61 1.3132 25.95	-0.0019 -0.90 1.3958 17.71 -0.0947	1.00
	Autos	-0.0015 -0.43 1.6906 13.19	-0.0011 -0.23 1.6453	5.60	0.0519	0.02
	Aero	0.0012	0.42	1.1496 11.40	-0.0007 -0.14 1.3932	3.11	-0.2792	0.40
	Ships	0.0020	0.61	1.3562 13.24	0.0017	0.44	1.3972	7.11	-0.0470	0.05
	Guns	0.0060	1.81	0.6599	6.87	0.0017	0.50	1.2095	7.90	-0.6299	15.10
	Gold	0.0056	0.82	0.3894	2.10	0.0008	0.10	1.0187	1.84	-0.7212	1.57
	Mines	0.0028	0.62	1.3941 12.67	0.0005	0.12	1.6799	6.88	-0.3276	1.60
	Coal	-0.0039 -0.49 1.4187	7.49	-0.0063 -0.75 1.7207	4.24	-0.3461	0.68
	Oil	-0.0002 -0.05 1.0576	8.89	-0.0026 -0.51 1.3690	3.42	-0.3569	0.80
	Util	0.0031	1.41	0.5288	9.08	0.0004	0.13	0.8871	4.91	-0.4107	5.06
	Telcm	-0.0015 -0.84 0.9447 19.72	-0.0013 -0.69 0.9209 16.36	0.0273	0.12
	PerSv	-0.0025 -0.85 0.9299 10.40	-0.0012 -0.30 0.7696	2.42	0.1837	0.33
	BusSv	-0.0003 -0.23 1.1105 30.41	-0.0016 -1.20 1.2824 17.20 -0.1971	6.41
	Hardw	0.0003	0.13	1.2197 17.21	0.0025	0.89	0.9434	6.68	0.3168	4.21
	Softw	0.0017	0.91	1.0915 21.60	0.0033	1.49	0.8881	6.48	0.2332	2.67
	Chips	0.0012	0.46	1.3105 18.79	0.0039	1.38	0.9695	7.21	0.3908	7.82
	LabEq	0.0023	1.19	1.1316 21.72	0.0024	0.98	1.1139	6.18	0.0203	0.01
	Paper	-0.0019 -1.06 0.9627 19.64	-0.0018 -0.91 0.9565 10.15	0.0071	0.00
	Boxes	0.0022	1.01	0.9877 17.11	0.0015	0.64	1.0790	9.46	-0.1047	0.82
	Trans	0.0008	0.38	1.0356 19.11	0.0021	0.93	0.8667	7.00	0.1936	2.32
	Whlsl	0.0002	0.10	1.0096 24.58	-0.0012 -0.74 1.1794 16.94 -0.1946	6.42
	Rtail	0.0020	1.12	0.8791 18.01	0.0032	1.51	0.7129	4.91	0.1905	1.73
	Meals	0.0039	2.02	0.8576 15.55	0.0026	0.89	1.0354	4.31	-0.2038	0.73

Table 3 :

 3 Fama-French 3-factor time-series regressions -IThe table shows OLS vs. DDHME estimation results from Fama-French 3-factor model time-series regressions of industry portfolios excess returns on market risk premium Rjt-R f t = αj +βj (RMt -R f t )+ sjSM Bt + hjHM Lt + ϵjt. RM -R f is the market risk premium. SM B is the size premium. HM L is the value premium. Monthly data cover the period from 2002-03 to 2022-02. t-statistics based on White (1980) HCCME standard errors are shown next to coefficient estimates.

			OLS					DDHME			
	Industry	α	β	s	h	α	b	s	h	ψ1	ψ2	ψ3	DWH
	Agric	0.0032	0.7579	0.1959	-0.0015	0.0035	0.8389 -0.3875	0.0688	-0.0449	0.6204	-0.0625	1.48
		(0.94)	(7.95)	(1.35)	(-0.01)	(1.04)	(5.38)	(-0.6)	(0.31)				
	Food	0.0024	0.5790 -0.2111	0.1557	0.0022	0.6983 -0.6733	0.1069	-0.1193	0.4828	0.0997	3.22
		(1.34)	(13.11) (-2.83)	(2.09)	(1.25)	(6.99)	(-1.79)	(0.86)				
	Soda	0.0042	0.7960 -0.2366	0.2388	0.0033	0.7908	0.3148	0.2665	-0.0892 -0.5882 -0.0909	5.74
		(1.33)	(9.38)	(-1.6)	(2.22)	(1.06)	(3.31)	(0.36)	(2.34)				
	Beer	0.0035	0.6085 -0.3569	0.0415	0.0024	0.7726 -0.4697	0.1003	-0.2671	0.1099	-0.0987 21.41
		(1.75)	(9.9)	(-3.5)	(0.54)	(1.25)	(6.32)	(-0.93)	(1.03)				
	Smoke	0.0066	0.7184 -0.5603	0.3244	0.0074	0.5613 -0.3105	0.3289	0.2251	-0.2544 -0.0092	2.31
		(1.89)	(7.51)	(-3.26)	(2.9)	(2.08)	(3.1)	(-0.45)	(1.61)				
	Toys	-0.0028 1.0746	0.5657	-0.1627	-0.0041 1.0344	1.5026	-0.3600 -0.0732 -1.0071	0.2152	13.39
		(-0.91) (16.03)	(4.39)	(-1.35)	(-1.37)	(9.43)	(3.17)	(-3.08)				
	Fun	-0.0011 1.3925	0.4491	-0.1259	-0.0019 1.4021	0.8647	-0.4191 -0.0589 -0.4574	0.3996	4.84
		(-0.35) (15.14)	(2.8)	(-1.02)	(-0.62)	(6.21)	(0.88)	(-2.6)				
	Books	-0.0052 1.0273	0.4283	0.2996	-0.0058 0.9418	1.2110	0.1998	0.0209	-0.8344	0.0892	4.81
		(-2.41) (16.84)	(3.85)	(4.04)	(-2.68)	(5.86)	(1.87)	(1.81)				
	Hshld	0.0022	0.6499 -0.2259	0.0900	0.0015	0.7216 -0.1750 -0.0357 -0.1189 -0.0654	0.1742	5.72
		(1.26)	(13.43) (-2.87)	(1.21)	(0.89)	(7.82)	(-0.49)	(-0.39)				
	Clths	0.0026	1.0072	0.3432	-0.0289	0.0017	1.1094	0.3653	-0.1046 -0.1711 -0.0350	0.0982	4.56
		(1.08)	(15.89)	(3.39)	(-0.32)	(0.73)	(8.47)	(0.73)	(-0.93)				
	Hlth	0.0000	0.7562	0.5916	0.0182	-0.0013 0.7568	1.2823	-0.3160 -0.0868 -0.7527	0.4371	18.99
		(-0.02)	(8.65)	(4.28)	(0.19)	(-0.51)	(6.36)	(3.03)	(-2.69)				
	MedEq	0.0025	0.8439	0.2120	-0.2322	0.0018	1.0484 -0.3170 -0.2742 -0.2542	0.5476	0.0847	10.34
		(1.3)	(14.99)	(2.52)	(-2.84)	(0.97)	(13.29) (-1.07)	(-2.72)				
	Drugs	0.0010	0.7468 -0.1490 -0.2642	0.0015	0.7635 -0.4778 -0.2272	0.0244	0.3519	-0.0276	3.93
		(0.59)	(16.93)	(-1.8)	(-4.57)	(0.86)	(7.87)	(-1.2)	(-3.72)				
	Chems	-0.0002 1.1748	0.1092	0.1500	-0.0006 1.3026 -0.2343	0.0702	-0.1513	0.3538	0.1343	5.56
		(-0.09) (20.91)	(1.37)	(1.94)	(-0.31) (14.25) (-0.67)	(0.99)				
	Rubbr	0.0013	1.0571	0.2970	0.1324	0.0010	1.0573	0.3851	-0.1412	0.0119	-0.1056	0.4013	7.12
		(0.59)	(16.53)	(2.6)	(1.32)	(0.51)	(7.93)	(0.53)	(-1.07)				
	Txtls	-0.0035 1.3142	0.8391	0.5253	-0.0047 1.2325	1.8745	0.4128	-0.0278 -1.1055	0.0847	6.31
		(-0.98) (12.15)	(4.31)	(3.44)	(-1.27)	(4.43)	(1.46)	(1.87)				
	BldMt	-0.0008 1.2216	0.4941	0.2505	-0.0020 1.2905	0.8886	0.1526	-0.1761 -0.4316	0.1019	6.76
		(-0.38) (18.73)	(5.2)	(3.09)	(-1.03)	(8.24)	(1.35)	(1.15)				
	Cnstr	-0.0013 1.1754	0.6437	0.1404	-0.0022 1.3461	0.4152	0.1522	-0.2537	0.2311	-0.0187	5.17
		(-0.47) (16.67)	(5.23)	(1.21)	(-0.81) (11.48)	(0.73)	(0.61)				
	Steel	-0.0037 1.4737	0.5589	0.3938	-0.0036 1.4408	0.6616	0.2875	0.0492	-0.1116	0.1539	0.51
		(-1.02) (15.52)	(3.75)	(2.58)	(-0.98)	(6.46)	(0.92)	(1.29)				
	FabPr	-0.0010 1.0111	1.1663	0.0864	-0.0020 1.0414	1.6130	-0.1494 -0.1054 -0.4899	0.3083	3.85
		(-0.27) (10.04)	(6.75)	(0.62)	(-0.55)	(6.35)	(2.44)	(-0.6)				
	Mach	0.0005	1.2559	0.4448	0.0616	0.0003	1.2880	0.4420	0.0898	-0.0571	0.0016	-0.0460	0.26
		(0.24)	(20.14)	(5.95)	(0.79)	(0.12)	(7.58)	(1.23)	(0.64)				
	ElcEq	-0.0013 1.2121	0.5101	-0.0766	-0.0018 1.1611	0.9965	-0.1534	0.0109	-0.5194	0.0773	4.73
		(-0.71) (26.52)	(6.87)	(-1.18)	(-0.98) (14.92)	(3.23)	(-1.92)				

Table 4 :

 4 Fama-French 3-factor time-series regressions -IIThe table shows OLS vs. DDHME estimation results from Fama-French 3-factor model time-series regressions of industry portfolios excess returns on market risk premium Rjt-R f t = αj +βj (RMt -R f t )+ sjSM Bt + hjHM Lt + ϵjt. RM -R f is the market risk premium. SM B is the size premium. HM L is the value premium. Monthly data cover the period from 2002-03 to 2022-02. t-statistics based on White (1980) HCCME standard errors are shown next to coefficient estimates.

			OLS					DDHME			
	Industry	α	β	s	h	α	b	s	h	ψ1	ψ2	ψ3	DWH
	Auto	-0.0016 1.5919	0.4832	-0.0460	-0.0034 1.4581	2.1167	-0.3845 -0.0194 -1.7505	0.3751	13.48
		(-0.45) (11.77)	(2.42)	(-0.33)	(-0.94)	(7.3)	(2.01)	(-1.11)				
	Aero	0.0016	1.0901	0.0797	0.3819	0.0017	0.9699	0.6161	0.7035	0.0808	-0.5508 -0.5145	6.13
		(0.61)	(12.85)	(0.62)	(2.95)	(0.62)	(4.61)	(0.76)	(2.94)				
	Ships	0.0024	1.1866	0.5967	0.3742	0.0028	1.1050	0.7656	0.2522	0.1226	-0.1792	0.1776	2.02
		(0.8)	(12.05)	(4.2)	(3.27)	(0.92)	(6.53)	(1.3)	(1.53)				
	Guns	0.0063	0.6428 -0.0622	0.2752	0.0051	0.8224 -0.1602	0.3373	-0.2966	0.0929	-0.1071	4.39
		(1.93)	(5.98)	(-0.38)	(2.39)	(1.56)	(4.46)	(-0.25)	(1.46)				
	Gold	0.0057	0.3925 -0.0325	0.0349	0.0012	1.4624 -2.2973 -0.1797 -1.4175	2.3276	0.3899	19.10
		(0.83)	(2.01)	(-0.12)	(0.16)	(0.18)	(4.92)	(-2.21)	(-0.67)				
	Mines	0.0030	1.2906	0.3806	0.1967	0.0020	1.5393 -0.1710	0.1596	-0.3266	0.5685	0.0738	1.49
		(0.67)	(10.58)	(2.21)	(1.3)	(0.44)	(6.51)	(-0.25)	(0.94)				
	Coal	-0.0035 1.1830	0.8686	0.4442	-0.0040 1.3934	0.2613	0.5886	-0.2696	0.6386	-0.1878	0.92
		(-0.45)	(5.72)	(2.62)	(1.46)	(-0.53)	(5.38)	(0.23)	(1.49)				
	Oil	0.0005	0.9298	0.2691	0.6314	-0.0004 1.1462 -0.1519	1.0677	-0.3412	0.4510	-0.6422	5.87
		(0.14)	(8.65)	(1.72)	(3.17)	(-0.1)	(3.64)	(-0.17)	(2.96)				
	Util	0.0032	0.5550 -0.1617	0.0766	0.0026	0.6340 -0.1330	0.1088	-0.1432 -0.0357 -0.0609	3.97
		(1.46)	(9.29)	(-1.64)	(0.84)	(1.17)	(6.04)	(-0.32)	(0.85)				
	Telcm	-0.0014 0.9844 -0.2129	0.0540	-0.0011 0.8991	0.0270	0.1322	0.0967	-0.2465 -0.1278	3.84
		(-0.82) (16.89) (-2.22)	(0.92)	(-0.67)	(9.85)	(0.08)	(1.92)				
	PerSv	-0.0024 0.8236	0.4611	0.0659	-0.0016 0.8515 -0.1478	0.1848	0.0455	0.6539	-0.1261	2.26
		(-0.9)	(10.58)	(3.93)	(0.59)	(-0.55)	(4.38)	(-0.21)	(0.55)				
	BusSv	-0.0005 1.0819	0.2300	-0.1876	-0.0012 1.2557 -0.1429 -0.0196 -0.2499	0.3919	-0.2396 45.90
		(-0.42) (28.46)	(4.2)	(-3.99)	(-1.08) (24.11) (-0.66)	(-0.3)				
	Hardw	0.0001	1.2268	0.0753	-0.2102	0.0013	1.0325	0.2711	-0.2741	0.3051	-0.1965	0.1027	6.69
		(0.04)	(17.21)	(0.79)	(-2.21)	(0.52)	(8.05)	(0.68)	(-2.45)				
	Softw	0.0012	1.1663 -0.1211 -0.4400	0.0018	1.1678 -0.4741 -0.2328	0.0376	0.3859	-0.2781 12.62
		(0.76)	(22.51) (-1.41)	(-7.22)	(1.19)	(13.64) (-1.43)	(-4.51)				
	Chips	0.0007	1.3452	0.0721	-0.4531	0.0025	1.1741 -0.1559 -0.1932	0.3060	0.2684	-0.3462 17.89
		(0.29)	(19.48)	(0.64)	(-4.75)	(1.04)	(11.78) (-0.48)	(-1.64)				
	LabEq	0.0018	1.0977	0.3737	-0.4188	0.0020	1.2691 -0.4803 -0.3631 -0.1513	0.9020	-0.0277	8.51
		(1.1)	(23.65)	(4.73)	(-7.05)	(1.15)	(10.85) (-1.29)	(-5.75)				
	Paper	-0.0017 0.9290	0.0822	0.1450	-0.0016 0.9181	0.0483	0.1068	0.0283	0.0355	0.0616	0.45
		(-0.98) (19.35)	(0.9)	(2.12)	(-0.88)	(7.56)	(0.09)	(1)				
	Boxes	0.0023	0.9520	0.1348	0.0609	0.0027	1.0864 -0.6649	0.2225	-0.1081	0.8512	-0.1863	4.16
		(1.04)	(15.02)	(1.34)	(0.6)	(1.17)	(8.21)	(-1.48)	(1.11)				
	Trans	0.0010	0.9681	0.2178	0.1871	0.0017	0.8157	0.5122	0.2045	0.2081	-0.3019 -0.0332	3.86
		(0.5)	(17.7)	(2.45)	(2.59)	(0.87)	(7.3)	(1.27)	(1.8)				
	Whlsl	0.0002	0.9271	0.3389	0.0881	-0.0001 1.0516 -0.0242	0.1542	-0.1569	0.3811	-0.0817	5.17
		(0.18)	(26.88)	(5.57)	(1.3)	(-0.07) (13.54) (-0.08)	(1.84)				
	Rtail	0.0018	0.8930	0.0293	-0.1826	0.0017	0.9689 -0.2834 -0.2740 -0.0666	0.3246	0.1553	4.93
		(1.04)	(18.8)	(0.41)	(-2.7)	(1.01)	(11.66) (-1.05)	(-3.5)				
	Meals	0.0040	0.8262	0.1256	0.0405	0.0034	0.7774	0.6842	0.1187	-0.0210 -0.5903 -0.1616	6.27
		(2.08)	(15.07)	(1.39)	(0.46)	(1.69)	(5.02)	(1.53)	(0.61)				

In financial regressions, this is commonly called as factor loading.

[START_REF] Cragg | Making good inferences from bad data[END_REF] labeled this phenomenon as the contamination effect.

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

For simplicity, we do not report other regression statistics like the R 2 . The full set of results as spreadsheet or R.data files are available upon request.

With the 3-factor model, we can compare the DWH statistic to the

90th quantile of a χ 2 random variable at 3 degrees of freedom. This is equal to 6.25.

Table 5: Cost of equity capital estimates

The table shows the industry equity cost of capital estimates from CAPM-and Fama-French 3-factor models using OLS vs. DDHME methods. The (annualized) estimations are calculated as kj = Rf + K k=1 β jk Fk where a bar over the parameter indicates the time-series average.