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Introduction

Let A ∞ be the set of infinite words on a finite alphabet A, equipped with a total order ≤ and the ultrametric d given by d(a

1 a 2 • • • , b 1 b 2 • • • ) = 2 -min{n≥1 : an =bn} for a 1 a 2 • • • = b 1 b 2 • • • .
We study properties of the set of sup-words

M ≤ := {s ≤ (a) : a ∈ A ∞ }, with s ≤ (a 1 a 2 • • • ) := sup n≥1 a n a n+1 • • • ,
for a large class of orders on A ∞ . In particular, we are interested in the smallest accumulation point m ≤ of M ≤ . For the lexicographic order ≤ lex , words in M ≤ lex occur as (quasi-greedy) β-expansions of 1 for real bases β > 1 (see [START_REF] Parry | On the β-expansions of real numbers[END_REF]), with m ≤ lex = 1000 • • • being the limit as β → 1. For the alternating lexicographic order ≤ alt , most elements of M ≤ alt are (-β)expansions of -β β+1 in the sense of [START_REF] Ito | Beta-expansions with negative bases[END_REF][START_REF] Steiner | Digital expansions with negative real bases[END_REF], with m ≤ alt being the limit as β → 1. An image of M ≤ alt occurs in a multiplicative version of the (Markoff-)Lagrange spectrum w.r.t. an integer base, which is defined in terms of well approximable numbers [START_REF] Dubickas | On the distance from a rational power to the nearest integer[END_REF][START_REF] Akiyama | Multiplicative analogue of Markoff-Lagrange spectrum and Pisot numbers[END_REF]; see Proposition 10. Below the image of m ≤ alt , which is the fixed point of a substitution [START_REF] Allouche | Théorie des nombres et automates[END_REF][START_REF] Allouche | Itérations de fonctions unimodales et suites engendrées par automates[END_REF][START_REF]On a sequence related to that of Thue-Morse and its applications[END_REF], we find the discrete part of this spectrum. The classical Markoff and Lagrange spectra are given by two-sided versions of M ≤ alt (and the Lagrange spectrum is defined by lim sup instead of sup). The unimodal order ≤ uni yields kneading sequences of unimodal maps [START_REF] Milnor | On iterated maps of the interval, Dynamical systems[END_REF], and m ≤ uni is the fixed point of the period-doubling (or Feigenbaum) substitution. Sup-words are also closely related to infinite Lyndon words, which are defined by a 1 a 2 • • • < a n a n+1 • • • for all n ≥ 2; see e.g. [START_REF] Postic | ω-Lyndon words[END_REF].

We consider orders satisfying that Here, the cylinder (of length n) given by a

1 • • • a n ∈ A n is [a 1 • • • a n ] := {a ′ 1 a ′ 2 • • • ∈ A ∞ : a ′ 1 • • • a ′ n = a 1 • • • a n },
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and we write [a

1 • • • a n ] < [b 1 • • • b n ] if (a 1 • • • a n ) ∞ < (b 1 • • • b n ) ∞ (or, equivalently, a < b for all a ∈ [a 1 • • • a n ], b ∈ [b 1 • • • b n ]
). Note that (1) is equivalent to the condition (*) of [START_REF] Postic | ω-Lyndon words[END_REF], and it includes generalized lexicographic orders as considered in [START_REF] Reutenauer | Mots de Lyndon généralisés[END_REF].

In Section 2, we give basic properties of M ≤ . Section 3 contains our main result, an algorithm for determing the smallest accumulation point m ≤ of M ≤ , for any cylinder order (A ∞ , ≤). We also give a complete description, in terms of S-adic sequences, of all words m ≤ obtained by cylinder orders and of the discrete part of M ≤ , i.e., all its elements below m ≤ . Since the words m ≤ have linear factor complexity, real numbers having such β-expansions are in Q(β) or transcendental, for all Pisot or Salem bases β ≥ 2. In Section 4, we determine m ≤ for some classical examples of cylinder orders and show that all maximal Sturmian sequences can occur. We consider cylinder orders on symmetric alphabets in Section 5 and apply our results to the multiplicative Lagrange spectrum and other problems in Section 6,

Markoff-Lagrange spectrum

We first show that the set of periodic words in M ≤ is dense, and that M ≤ is equal to

L ≤ := {ℓ ≤ (a) : a ∈ A ∞ }, with ℓ ≤ (a 1 a 2 • • • ) := lim sup n→∞ a n a n+1 • • • .
Note that M ≤ and L ≤ can be seen as generalizations of the Markoff and Lagrange spectrum respectively. In the classical case, these spectra are defined by two-sided sequences, and the Lagrange spectrum is a strict subset of the Markoff spectrum [START_REF] Freȋman | Non-coincidence of the spectra of Markov and of Lagrange[END_REF][START_REF] Cusick | The Markoff and Lagrange spectra[END_REF].

Theorem 1. Let ≤ be a cylinder order on A ∞ . Then

L ≤ = M ≤ = cl{s ≤ (a) : a ∈ A ∞ purely periodic}.
In particular, the set M ≤ is closed.

In the proof of the theorem, we use the following characterization of cylinder orders.

Lemma 2. An order ≤ on A ∞ is a cylinder order if and only if

(2) a ≤ b implies a ′ ≤ b ′ for all a, b, a ′ , b ′ ∈ A ∞ with max(d(a, a ′ ), d(b, b ′ )) < d(a, b).
Proof. Let ≤ be a cylinder order, and a, b, a Proof of Theorem 1. We show first that M ≤ is the closure of s ≤ (a ′ ) with purely periodic

′ , b ′ ∈ A ∞ such that a ≤ b, d(a, a ′ ) < d(a, b), d(b, b ′ ) < d(
a ′ ∈ A ∞ . Since s ≤ (s ≤ (a)) = s ≤ (a), it suffices to consider a ∈ A ∞ with s ≤ (a) = a. We have (a 1 • • • a n ) ∞ ∈ M ≤ whenever (3) 2 -n d(a, a n+1 a n+2 • • • ) < 2 -i d(a, a i+1 a i+2 • • • ) for all 1 ≤ i < n.
Indeed, we have, for all 1

≤ i < n, that a i+1 a i+2 • • • ≤ a (because s ≤ (a) = a) and d(a, a i+1 a i+2 • • • ) > 2 i-n d(a, a n+1 a n+2 • • • ) = 2 i-n d((a 1 • • • a n ) ∞ , a n+1 a n+2 • • • ) = 2 i d((a 1 • • • a n ) ∞ , a) = d(a i+1 • • • a n (a 1 • • • a n ) ∞ , a i+1 a i+2 • • • ), hence (2) gives that a i+1 • • • a n (a 1 • • • a n ) ∞ ≤ (a 1 • • • a n ) ∞ , thus (a 1 • • • a n ) ∞ ∈ M ≤ . Since lim n→∞ 2 -n d(a, a n+1 a n+2 • • • ) = 0, we have either d(a, a n+1 a n+2 • • • ) = 0 for some n ≥ 1, i.e.,
a is purely periodic, or infinitely many n such that (3) holds and thus (a

1 • • • a n ) ∞ ∈ M ≤ infinitely often. Therefore, M ≤ ⊆ cl{s ≤ (a) : a ∈ A ∞ purely periodic}. For the opposite inclusion, we have to show that M ≤ is closed. Consider a = lim k→∞ a (k) with a (k) ∈ M ≤ . If a n+1 a n+2 • • • > a for some n ≥ 1, then we also had a (k) n+1 a (k) n+2 • • • > a (k) for all large enough k, contradicting that a (k) ∈ M ≤ . This implies that s ≤ (a) = a, i.e., a ∈ M ≤ . Since s ≤ (ℓ ≤ (a)) = ℓ ≤ (a) for all a ∈ A ∞ , we have L ≤ ⊆ M ≤ .
For the opposite inclusion, let a = lim k→∞ a (k) for some purely periodic words a (k) ∈ M ≤ , let (p k ) be an increasing sequence satisfying a (k) = (a

(k) 1 • • • a (k) p k ) ∞ , and let b = a (1) 1 • • • a (1) p 1 a (2) 1 • • • a (2) p 2 • • • . Then ℓ ≤ (b) ≥ a. If a (k) i+1 • • • a (k) p k a (k+1) 1 • • • a (k+1) p k+1 • • • > a for some k ≥ 1, 0 ≤ i < p k , then (4) δ i,k := d(a (k) i+1 • • • a (k) p k a (k+1) 1 • • • a (k+1) p k+1 • • • , a) ≤ max(d(a (k) , a), d(a (k) , a (k+1) ), 2 -p k ). Indeed, for 1 ≤ j ≤ p k -i, we cannot have [a (k) i+1 • • • a (k) i+j ] > [a 1 • • • a j ] = [a (k) 1 • • • a (k) j ] because this contradicts a (k) ∈ M ≤ , thus δ i,k = 2 -j implies d(a (k) , a) ≥ 2 -j ; similarly, for p k -i < j ≤ 2p k -i, [a (k) i+1 • • • a (k) p k a (k) 1 • • • a (k) i+j-p k ] = [a (k) i+1 • • • a (k) p k a (k+1) 1 • • • a (k+1) i+j-p k ] > [a 1 • • • a j ] = [a (k) 1 • • • a (k) j ] is impossible, thus δ i,k = 2 -j implies d(a (k) , a (k+1) ) ≥ 2 p k -i-j or d(a (k) , a) ≥ 2 -j ; hence, we have δ i,k < 2 i-2p k or δ i,k ≤ 2 i-p k d(a (k) , a (k+1) ) or δ i,k ≤ d(a (k) , a), which implies (4). Since the right hand side of (4) tends to 0 as k → ∞, we have ℓ ≤ (b) ≤ a, thus a = ℓ ≤ (b) ∈ L ≤ .

Smallest accumulation point of M ≤

For determining the smallest accumulation point m ≤ of M ≤ for a cylinder order (A ∞ , ≤), we can restrict to two-letter alphabets, w.l.o.g.,

A = {0, 1}. Indeed, if {0, 1} ⊆ A, [0] < [1],
then M ≤ has the accumulation point 10 ∞ (because (10 n ) ∞ ∈ M ≤ for all n ≥ 1), and we clearly have

s ≤ (a) > 10 ∞ if a ∈ A ∞ contains a letter a n ∈ A with [a n ] > [1].
We use substitutions (also called word morphisms) and limit words (or S-adic sequences). Let A * be the monoid of finite words over the alphabet A, with concatenation as operation. A substitution σ : A * → A * satisfies σ(vw) = σ(v)σ(w) for all v, w ∈ A * and is extended naturally to A ∞ ; it suffices to give σ(a) for a ∈ A to define σ. For a sequence σ = (σ n ) n≥1 of substitutions on the alphabet A and an infinite word a ∈ A ∞ , the limit word is

σ(a) := lim n→∞ σ [1,n] (a), if this limit exists; we use the notation σ [1,n] := σ 1 • σ 2 • • • • • σ n for n ≥ 0, with σ [1,0]
being the identity map. For a set of substitutions S, we denote the monoid generated by the composition of substitutions in S by S * . We use the set of substitutions S = {τ j,k : 0 ≤ j < k}, with τ j,k : 0 → 10 j , 1 → 10 k .

Our main result is the following characterization of the smallest accumulation point m ≤ and the discrete part of M ≤ for cylinder orders ≤.

Theorem 3. Let m ∈ {0, 1} ∞ . Then m = m ≤ for some cylinder order ≤ on {0, 1} ∞ with 0 ∞ < 1 ∞ if and only if m = σ(10 ∞ ) for some σ ∈ S * or m = σ(1 ∞ ) for some σ ∈ S ∞ .
Let now σ = (σ n ) n≥1 = (τ jn,kn ) n≥1 ∈ S ∞ . By Proposition 4 and Lemma 5, we have σ(1 ∞ ) = m ≤ for all cylinder orders ≤ satisfying

(7) [σ [1,n] (10 i )w n 0] < [σ [1,n] (10 i )w n 1] for all even n ≥ 0, j n+1 = i < k n+1 ,
and for all odd

n ≥ 1, i ∈ {j n+1 , k n+1 }, [σ [1,n] (10 i )w n 1] < [σ [1,n] (10 i )w n 0] for all odd n ≥ 1, j n+1 = i < k n+1 ,
and for all even n ≥ 0, i ∈ {j n+1 , k n+1 }.

Such cylinder orders exist since σ [1,n+1] (1)w n+1 is longer than σ [1,n] (10 k n+1 )w n = σ [1,n+1]
(1)w n for all n ≥ 0. To obtain m ≤ = σ [1,h] (10 ∞ ), h ≥ 0, we use cylinder orders ≤ such that (7) holds only for n < h and such that, for all

i ≥ 0, [σ [1,h] (10 i )w h 0] < [σ [1,h] (10 i )w h 1] if h is even, [σ [1,h] (10 i )w h 1] < [σ [1,h] (10 i )w h 0] if h is odd.
The sequence m ≤ is thus either eventually periodic or an S-adic sequence. A word a = a 1 a 2 • • • is eventually periodic if and only if the factor complexity 3 are essentially equal to σ(1 ∞ ) with σ = (τ jn,kn ) n≥1 ∈ S ∞ (and k n ≤ 2j n +1 or (j n , k n ) = (0, 2)). Without conditions on j n , k n , we get the following upper bound for

p a 1 a 2 ••• (n) := #{a k+1 a k+2 • • • a k+n : k ≥ 0} is bounded; see e.
p σ(1 ∞ ) (n), which is optimal since p τ ∞ 0,k (1 ∞ ) (n) = 3n-2 for all k ≥ 2, 2 ≤ n ≤ k. Proposition 6.
Let ≤ be a cylinder order. Then p m ≤ (n) ≤ 3n-2 for all n ≥ 2.

Proof. The proof is similar to that of [START_REF] Balková | Complexity for infinite words associated with quadratic non-simple Parry numbers[END_REF]Theorem 17]; see also [CP23, Proposition 4.1]. Recall that the set of factors of a word a = a 1 a 2 • • • ∈ {0, 1} ∞ is {a k+1 a k+2 • • • a k+n : k, n ≥ 0}, a factor v of a is strong bispecial if all four words 0v0, 0v1, 1v0, 1v1 are factors of a, weak bispecial if 0v1, 1v0 are factors and 0v0, 1v1 are not factors of a. Then v is a strong/weak bispecial factor of σ(1

∞ ), σ = (σ n ) n≥1 = (τ jn,kn ) n≥1 ∈ S ∞ , if and only if v = 0 j 1 / 0 k 1 -1 , k 1 ≥ j 1 +2, or v = 0 j 1 σ 1 (v ′ 0), where v ′ is a strong/weak bispecial factor of lim n→∞ σ [2,n] (1 ∞ ).
By iterating, we obtain that all strong/weak bispecial factors of σ(1 ∞ ) are of the form

w ℓ,h = σ [1,0] (0 j 1 ) • • • σ [1,h-1] (0 j h )σ [1,h] (0 ℓ )σ [1,h] (0) • • • σ [1,1] (0), with h ≥ 0 such that k h+1 ≥ j h+1 +2
, where ℓ = j h+1 for a strong bispecial factor, ℓ = k h+1 -1 for a weak one; here, w ℓ,0 = 0 ℓ . For any recurrent word a ∈ {0, 1} ∞ , the difference of p a (n+2)p a (n+1) and p a (n+1)p a (n) equals the difference of the number of strong and weak bispecial factors of a of length n; see [Cas97, Proposition 3.2]. By telescoping and since p a (1)p a (0) = 1, p a (n+2)p a (n+1) -1 is equal to the difference of the number of strong and weak bispecial factors of a up to length n. Since

|w k h+1 -1,h | < |σ [1,h+1] (1)| ≤ |σ [1,h+2] (0)| < |w j h+3 ,h+2 | for all h ≥ 0, this difference for a = σ(1 ∞ ) is at most 2 for all n ≥ 0; note that σ(1 ∞ ) is recurrent since σ [n,n+1]
(1) starts with 10 kn 1 for all n ≥ 1. Since p a (2) ≤ 4, we have thus

p σ(1 ∞ ) ≤ 3n-2 for all n ≥ 2. Since p σ [1,h] (10 ∞ ) (n) ≤ p σ(1 ∞ ) (n) if k h+1 is
sufficiently large, we also have p σ [1,h] (10 ∞ ) (n) ≤ 3n-2 for all n ≥ 2, which proves the proposition by Theorem 3.

Since the factor complexity is bounded by a linear function, we can apply the results of [START_REF] Adamczewski | On the complexity of algebraic numbers. I. Expansions in integer bases[END_REF]. For β > 1, let

π β (a 1 a 2 • • • ) := ∞ n=1 a n β n .
Recall that Pisot and Salem numbers are algebraic integers β > 1 with all Galois conjugates (except β itself) having absolute value ≤ 1; β is a Salem number if a conjugate lies on the unit circle, a Pisot number otherwise. In particular, all integers β ≥ 2 are Pisot numbers.

Proposition 7. Let β ≥ 2 be a Pisot or Salem number, and let ≤ be a cylinder order on {0, 1} ∞ . Then

π β (m ≤ ) is in Q(β) or transcendental.
Proof. This is a direct consequence of Proposition 6 and [AB07, Theorem 1A].

Examples

4.1. Lexicographic order. The classical order on the set of infinite words A ∞ with an ordered alphabet (A, ≤) is the lexicographic order, defined by [wa] < lex [wb] for all w ∈ A * , a, b ∈ A with a < b.

For A = {0, 1}, we have m ≤ lex = 10 ∞ = min M ≤ lex \ {0 ∞ }.
By [Par60, §2], a sequence a ∈ {0, 1} ∞ is the greedy β-expansion of 1 for some β ∈ (1, 2) if and only if a ∈ M ≤ lex \{10 ∞ } and a is not purely periodic; it is the quasi-greedy β-expansion of 1 for some β ∈ (1, 2] if and only if a ∈ M ≤ lex and a does not end with 0 ∞ . Here, the greedy β-expansion of 1 is the lexicographically largest sequence a ∈ {0, 1} ∞ with π β (a) = 1, the quasi-greedy β-expansion of 1 is the largest such sequence that does not end with 0 ∞ . By [HS90, Theorem 1], we also have that (0 ∞ , a) is the pair of kneading sequences of a Lorenz map if and only if a ∈ M ≤ lex does not end with 0 ∞ . 4.2. Alternating lexicographic order. The alternating lexicographic order is defined by Since is equal to ≤ alt , we obtain that m ≤ alt is the fixed point of τ 0,2 , i.e.,

m ≤ alt = τ 0,2 (m ≤ alt ) = 100111001001001110011 • • • ;
see also [START_REF] Allouche | Théorie des nombres et automates[END_REF][START_REF] Allouche | Itérations de fonctions unimodales et suites engendrées par automates[END_REF][START_REF]On a sequence related to that of Thue-Morse and its applications[END_REF]. By Theorem 3, we have

(8) {a ∈ M ≤ alt : a < alt m ≤ alt } = {(τ n 0,2 (0)) ∞ : n ≥ 0} = {0 ∞ , 1 ∞ , (100) ∞ , (10011) ∞ , . . . }. According to [IS09], the (-β)-expansion of x ∈ -β β+1 , 1 β+1 , β > 1, is the sequence a 1 a 2 • • • with a n = β β+1 -βT n-1 -β (x) ,
given by the (-β)-transformation T -β (y) := -βy -β β+1 -βy , and the set of (-β)-expansions is characterized by that of -β β+1 . By [Ste13, Theorem 2], a sequence a is the (-β)-expansion of -β β+1 for some β ∈ (1, 2) if and only if a ∈ M ≤ alt \{(10) ∞ }, a > alt m ≤ alt , and a / ∈ {w1, w00} ∞ \ {(w1) ∞ } for all w ∈ {0, 1} * such that (w1) ∞ > alt m ≤ alt . Note that continued fractions are also ordered by the alternating lexicographic order on the sequences of partial quotients, and m ≤ alt occurs e.g. in [START_REF] Kraaikamp | Natural extensions and entropy of α-continued fractions[END_REF]Remark 11 

m ≤ uni = τ 0,1 (m ≤ alt ) = 10111010101110111011101010111010 • • • .
This is the fixed point of the period-doubling (or Feigenbaum) substitution 0 → 11, 1 → 10. The set M ≤ uni is the set of kneading sequences of unimodal maps [START_REF] Collet | Iterated maps on the interval as dynamical systems[END_REF][START_REF] Milnor | On iterated maps of the interval, Dynamical systems[END_REF].

We define the flipped unimodal order by [w0] 

< flip [w1] if |w| 0 is even, [w0] > flip [w1] if |w| 0 is odd,
m ≤ flip = τ 1,3 (m ≤ alt ) = 100010101000100010001010100010101000101010001000 • • • . Note that 0m ≤ flip = F (m ≤ uni ), where F (a 1 a 2 • • • ) := (1-a 1 )(1-a 2 ) • • • ,

and we have

M ≤ uni = 1F (M ≤ flip ) ∪ {0 ∞ }.

Sturmian sequences. The set of substitutions {θ

k : k ≥ 1} defined by θ k (0) = 0 k-1 1, θ k (1) = 0 k-1 10, generates the standard Sturmian words; see [Lot02, Corollary 2.2.22]. Since τ k-1,k is rotationally conjugate to θ k , more precisely θ k (w)0 k-1 = 0 k-1 τ k-1,k ( 
w) for all w ∈ {0, 1} * , the set of substitutions {τ k-1,k : k ≥ 1} generates the same shifts as {θ k : k ≥ 0}. Therefore, the limit words of sequences in {τ k-1,k : k ≥ 1} ∞ provide elements of all Sturmian shifts. For example, the limit word of the sequence (τ 0,1 ) ∞ is the Fibonacci word.

Symmetric alphabets

For a real number q > 1, the set (9) Lq := lim sup n→∞

xq n : x ∈ R ,
where . denotes the distance to the nearest integer, is a multiplicative version of the Lagrange spectrum and was studied in [START_REF] Dubickas | On the distance from a rational power to the nearest integer[END_REF][START_REF] Akiyama | Multiplicative analogue of Markoff-Lagrange spectrum and Pisot numbers[END_REF]. If q is an integer, then representing

x = ∞ k=-∞ a k q -k with a k ∈ Z, a k = 0 for finitely many k ≤ 0, | ∞ k=n+1 a k q n-k | ≤ 1/2, gives that xq n = | ∞
k=n+1 a k q n-k |; see also Proposition 10 below. This leads us to consider

M abs ≤ = {s abs ≤ (a) : a ∈ {0, ±1} ∞ } with s abs ≤ (a 1 a 2 • • • ) = sup n≥1 abs(a n a n+1 • • • ), where abs(a) = a if a ≥ lex 0 ∞ , -a if a ≤ lex 0 ∞ , , -(a 1 a 2 • • • ) = (-a 1 )(-a 2 ) • • • .
We denote the smallest accumulation point of M abs ≤ by m abs ≤ . The same proof as for Theorem 1 shows for all cylinder orders ≤ on {0, ±1} ∞ that

L abs ≤ = M abs ≤ = cl{s abs ≤ (a) : a ∈ {0, ±1} ∞ purely periodic}, where L abs ≤ := {lim sup n≥1 abs(a n a n+1 • • • ) : a 1 a 2 • • • ∈ {0, ±1} ∞ }.
In the following, we assume that a cylinder order on {0, ±1} ∞ is consistent (with the natural order on {0, ±1}), which means that, for each w ∈ {0, ±1} * , we have [w(-1)] < 

(m abs ≤ ) is in Q(β) or transcendental. Proof. Let G(a 1 a 2 • • • ) = |a 1 | |a 2 | • • • . Then G•̺ i = τ 0,1 for all i ∈ {0, 1, 2}, thus p G(m abs ≤ ) (n) ≤ 3n-
(M abs ≤ lex ) ∩ 0, 1 2 = π 2 (M abs ≤ lex ), L3 = π 3 (M abs ≤ lex ), (11) 
π q (M abs ≤ lex ) = Lq ∩ 0, 1 q-1 = Lq for all integers q ≥ 4. (12) For all integers q ≥ 2, we have mq = π q (m abs ≤ lex ) = π q (̺ 2 (m ≤ alt )) and Lq ∩ [0, mq ) = π q (M abs ≤ lex ) ∩ [0, mq ) = {0} ∪ {π q (̺ 2 (τ n 0,2 (0 ∞ ))) : n ≥ 0}. Proof. As mentioned at the beginning of Section 5, for integer q ≥ 2, xq n can be determined by a symmetric q-expansion of x. We can assume w.l.o.g. |x| ≤ 1 2 . Let

A q := a 1 a 2 • • • ∈ A ∞ q : |π q (a k a k+1 • • • )| ≤ 1 2 for all k ≥ 1 , with A q := {0, ±1, . . . , ±⌊q/2⌋}. For each x ∈ [-1 2 , 1 2 ], we obtain a sequence a = a 1 a 2 • • • ∈ A q satisfying x = π q (a) by taking a k = ⌊q T k-1 q (x) + 1 2 ⌋ where Tq (y) := qy -⌊qy + 1 2 ⌋. Then xq n = |π q (a n+1 a n+2 • • • )| = π q (abs(a n+1 a n+2 • • • )).
Note that a ≤ lex b implies π q (a) ≤ π q (b) for all a, b ∈ A q . Since L abs ≤ lex = M abs ≤ lex (and a similar relation holds for larger alphabets), we obtain that Lq = {π q (s abs ≤ lex (a)) : a ∈ A q }. For q ∈ {2, 3}, we have A q = {0, ±1}, thus Lq ⊆ π q (M abs ≤ lex ). For q ≥ 3, we have {0, ±1} ∞ ⊆ A q , thus π q (M abs

≤ lex ) ⊆ Lq . Since π 2 (M abs ≤ lex ) ∩ [0, 1 2 ] ⊆ L2 and 1 = π 2 (1 ∞ ) ∈ π 2 (M abs ≤ lex ) \ L2 , this proves (11). For q ≥ 4, we have π q (s abs ≤ lex (a)) ≥ π q ((22) ∞ ) = 2 q+1 > 1 q-1 for all a ∈ A ∞ q \
{0, ±1} ∞ , thus Lq ∩[0, 1 q-1 ] ⊆ π q (M abs ≤ lex ). Together with 2 q+1 ∈ Lq \π q (M abs ≤ lex ), we obtain (12). Since π q is order-preserving on A q , we obtain that mq = π q (m abs ≤ lex ) and that Lq and π q (M abs ≤ lex ) agree on [0, mq ). Since {a ∈ M abs ≤ lex : a < m abs ≤ lex } is equal to {0 ∞ } ∪ {̺ 2 (τ n 0,2 (0 ∞ )) : n ≥ 0} by Theorem 8 and (8), this completes the proof of the proposition. 6.2. Alternating lexicographic order. For the alternating lexicographic order on {0, ±1} ∞ (with -1 < 0 < 1), we have ) is also in Q(β) or transcendental for all Pisot or Salem numbers β. We do not know whether the same result holds when e is aperiodic.

  a ≤ b ≤ c implies d(a, b) ≤ d(a, c) for all a, b, c ∈ A ∞ (note that d(a, b) ≤ d(a, c) is equivalent to d(b, c) ≤ d(a, c) by the strong triangle inequality), and we call them cylinder orders because the elements of each cylinder of words are contiguous.

  a, b). Then both a ≤ b ≤ a ′ and b ′ ≤ a ′ ≤ b are impossible by (1), using that d(a ′ , b ′ ) = d(a, b) by the strong triangle inequality. This implies that b > a ′ and thus b ′ > a ′ , i.e., (2) holds. Let now ≤ be an order satisfying (2). Then a ≤ b and d(a, c) < d(a, b) imply that c < b, thus a ≤ b ≤ c with d(a, c) < d(a, b) is impossible, i.e., (1) holds.

  g. [Lot02, Theorem 1.3.13]. The smallest complexity for an aperiodic sequence is p a (n) = n+1, which is attained precisely by Sturmian sequences; see e.g. [Lot02, Theorem 2.1.5]. By [CP23, Proposition 2.1], all aperiodic words with lim sup pa(n) n < 4

  [wa] < alt [wb] if a < b and |w| is even, or a > b and |w| is odd, where |w| denotes the length of a word w ∈ A * . For A = {0, 1} with 0 < 1, we have [11] < alt [10], [101] > alt [100], [1001] < alt [1000], thus m ≤ alt = τ 0,2 (m ) by Proposition 4, with a b if τ 0,2 (a) ≤ alt τ 0,2 (b).

  where |w| 0 denotes the number of occurrences of 0 in w ∈ {0, 1} * . Then we have [11] > flip [10], [101] < flip [100], [1001] > flip [1000], [10001] > flip [10000], and

a

  ′ ≺ b ′ for some a ′ , b ′ ∈ {0, 1} ∞ with σ(a ′ ) ∈ [wa], σ(b ′ ) ∈ [wb]; by Lemma 2, this does not depend on the choice of a ′ , b ′ . Moreover, since σ(a) ∈ [w 1] and σ(b) ∈ [w1] is impossible, we have no obstruction to a consistent cylinder order. Since 0∞ ≺ 1 ∞ , we have [11] < [10] in case σ ∈ {̺ 0 , ̺ 2 }, [11] < [10] in case σ ∈ {̺ 1 , τ 0,1 }. We can set [10 1] < [100] in case σ ∈ {̺ 1 , ̺ 2 } because ([100] ∪ [101]) ∩ σ({0, 1}) ∞ = ∅, similarly we can set [101] < [100] in case σ ∈ {̺ 0 , τ 0,1 }.Then we have m abs ≤ = σ(m ≤ ). Proposition 9. Let β ≥ 3 be a Pisot or Salem number, and let ≤ be a consistent cylinder order on {0, ±1} ∞ . Then π β

  [11] < alt [10] and [10 1] < alt [100], m abs ≤ alt = ̺ 1 (m ≤ alt ) = 10 111 010 101110 111 01110 1010 111 010 • • • . 6.3. Bimodal order. Similarly to the unimodal order, we define the bimodal order on {0, ±1} ∞ by [wa] < bi [wb] if a < b (with -1 < 0 < 1) and |w| 1 + |w| -1 is even, or a > b and |w| 1 + |w| -1 is odd. Then m abs ≤ bi = τ 0,1 (m ≤ alt ) = m ≤ uni . We get the same result for the order defined by [wa] < [wb] if a < b and |w| 1 is even, or a > b and |w| 1 is odd. We also define the flipped bimodal order on {0, ±1} ∞ by [wa] < biflip [wb] if a < b and |w| 0 is even, or a > b and |w| 0 is odd. Then m abs ≤ biflip = ̺ 0 (m ≤ alt ) = 101 11010101 1101 1101 11010101 11010 • • • .. 6.4. Other orders. For e ∈ {±1} ∞ , we define a cylinder order ≤ e on {0, ±1} ∞ by a ≤ e b if e • a ≤ lex e • b,where (e1 e 2 • • • ) • (a 1 a 2 • • • ) = (e 1 a 1 )(e 2 a 2 ) • • • . We know from Proposition 7 that π β (m abs ≤e ) is in Q(β)or transcendental for all Pisot or Salem numbers β. However, here the value of π β (e • m abs ≤e ), which is the the smallest accumulation point of {lim sup n→∞ | ∞ k=n+1 e k a k β k-n | : a 1 a 2 • • • ∈ {0, ±1} ∞ } when e 1 = 1 and β ≥ 3, is more relevant. If e is periodic with period k, then p e•a (n) ≤ k p a (n), hence π β (e • m abs ≤e

  .1]. 4.3. Unimodal maps. Let A = {0, 1} and define the unimodal order by [w0] < uni [w1] if |w| 1 is even, [w0] > uni [w1] if |w| 1 is odd, where |w| 1 denotes the number of occurrences of 1 in w ∈ {0, 1} * . Then we have [11] < uni [10], [101] < uni [100], and

  2 by Proposition 6, Theorems 3 and 8. Moreover, the map G is 2-to-1 from the set of factors of m abs ≤ to the set of factors of G(m abs ≤ ), thus p m abs ≤ (n) ≤ 6n-4. By [AB07, Theorem 1A] and by adding 1 to each digit of m abs ≤ , we obtain that π β (m abs≤ ) + 1 β-1 is in Q(β) or transcendental, thus also π β (m abs ≤ ) is in Q(β) or transcendental. 6.Examples of orders on symmetric shift spaces 6.1. Lexicographic order. For the lexicographic order on {0, ±1} ∞ (with -1 < 0 < 1), we have [1 1] < [10], [10 1] < [100], and we obtain thatm abs ≤ lex = ̺ 2 (m ≤ alt ) =10 11 1010 101 110 11 101 110 1010 11 1010 • • • . The following proposition relates the Lagrange spectrum Lq , defined in (9), and its smallest accumulation point mq to M abs ≤ lex and m abs ≤ lex ; it slightly improves results of [Dub06, AK21].

	Proposition 10. We have
	L2 = π 2

If m ≤ = σ [1,h] (10 ∞ ), σ 1 , . . . , σ h ∈ S, h ≥ 0, then

and there is at most one j ≥ 0 such that σ [1,h] ((10 j ) ∞ ) < m ≤ .

The following proposition constitutes the core of the proof of Theorem 3 and provides an algorithm for calculating m ≤ .

Proposition 4. Let ≤ be a cylinder order on {0, 1} ∞ with [0] < [1].

If [10 j 1] < [10 j 0] holds for at most one j ≥ 0, then m ≤ = 10 ∞ , and a < m ≤ implies that a = 0 ∞ or a = (10 j ) ∞ (in case [10 j 1] < [10 j 0]).

Otherwise, we have m ≤ = τ j,k (m ) for the cylinder order on {0, 1} ∞ defined by a b if τ j,k (a) ≤ τ j,k (b), where j, k are minimal such that 0

is a concatenation of blocks 10 j and 10 k , thus

The following lemma is used in the construction of a cylinder order ≤ such that m ≤ = m for a given word m. Here, ε denotes the empty word.

For all even n ≥ 0, we have σ

is the identity, the statement is trivial for n = 0. Suppose that it is true for all σ ∈ S ∞ for some even n ≥ 0. Then

thus the statement is true for all σ ∈ S ∞ for n+1. The case of odd n is similar.

Proof of Theorem 3. Let first m ≤ be a cylinder order with [0] < [1]. By iterating Proposition 4, we obtain a finite sequence σ 1 , . . . ,

(1) and is longer than

Equations ( 5) and (6) respectively follow from Proposition 4.

[w0] < [w1] or [w(-1)] > [w0] > [w1]. In order to describe m abs ≤ , we define maps ̺ 0 , ̺ 1 , ̺ 2 from {0, 1} * to {0, ±1} * by ̺ 0 (ε) = ̺ 1 (ε) = ̺ 2 (ε) = ε for the empty word ε, and

for all w ∈ {0, 1} * , where |w| is the length of a word w and |w| i the number of occurrences of the letter i in w. As for substitutions, the maps ̺ i are extended naturally to {0, 1} ∞ . Theorem 8. Let m ∈ {0, ±1} ∞ . Then m = m abs ≤ for some consistent cylinder order ≤ on {0, ±1} ∞ with 0 ∞ < 1 ∞ if and only if m = σ(m ) for some σ ∈ {̺ 0 , ̺ 1 , ̺ 2 , τ 0,1 } and some cylinder order on {0, 1} ∞ with 0 ∞ ≺ 1 ∞ .

If m abs ≤ = σ(m ), then we can assume that a b if and only if σ(a) ≤ σ(b), and we have

Assume first that [1 1] < [10]; here and in the following, we use the notation 1 = -1.

then each 1 in a word in M abs ≤ ∩ [10 1] is followed by 1 or 0 1, and each 1 is followed by 1 or 01, i.e., M abs ≤ ∩ [10 1] ⊆ 10 ({ 1, 10}{1, 10}) ∞ = ̺ 2 ([1]). Therefore, m abs ≤ = ̺ 2 (m ) for the cylinder order defined by a b if ̺ 2 (a) ≤ ̺ 2 (b) . If [101] < [100], then each 1 in a word in M abs ≤ ∩ [101] is followed by 1 or 01, and each 1 is followed by 1 or 0 1, i.e.,

M abs

≤ ∩ [101] ⊆ 10((10) * 1( 10) * 1) ∞ ∪ 10((10) * 1( 10) * 1) * (10) ∞ ∪ 10((10) * 1( 10) * 1) * (10) * 1( 10

Therefore, we have m abs ≤ = ̺ 0 (m ) for the cylinder order defined by

Let now be a cylinder order on {0, 1} ∞ with 0 ∞ ≺ 1 ∞ and σ ∈ {̺ 0 , ̺ 1 , ̺ 2 , τ 0,1 }. Then there exists a consistent cylinder order ≤ on {0, ±1} ∞ satisfying σ(a) ≤ σ(b) if a b and 0 ∞ < 1 ∞ . Indeed, for w ∈ {0, ±1} * and distinct a, b ∈ {0, ±1}, we set [wa] < [wb] if Institute of Mathematics / Research Core for Mathematical Sciences, University of Tsukuba, Tsukuba, Japan Email address: kanekoha@math.tsukuba.ac.jp Université Paris Cité, CNRS, IRIF, F-75006 Paris, France Email address: steiner@irif.fr