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Abstract:

This chapter presents three examples of data-based machine learning on time series. The

common denominator of these case studies is the sparseness of data, making machine learning

results fragile and inaccurate. We show how human expertise can be effectively mobilized for

building useful systems, for instance useful decision support systems, able to better meet the

needs of the agri-food chain. The design and analysis of different features of machine learning

coupled with human knowledge enables us to sketch future human-centered machine learning

systems.

This approach is very relevant for the modeling of agri-food systems, because human

expertise, skills and know-how are rich and numerous, but often implicit, data are

heterogeneous -- big and sparse -- and processes are complex and deeply conditioned by

human needs and interactions.
1*corresponding author: nathalie.mejean@inrae.fr
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Introduction

Artificial Intelligence (AI) techniques are now commonly used in the agri-food domain

(Kavalenko (2020)) and are expected to be more and more used. From a recent study of

Accenture Research, AI has the potential to noticeably increase profitability of industries in

the next decades (Hunkefer, 2017). While improving productivity, AI is also and above all

described as a means to meet the urgent requirements of the agroecological transition: reduce

environmental impact, reduce wastage, increase traceability across the supply chain, provide

markets with safe, high quality products to meet consumer demands (Vilani, 2017).

Current machine learning (ML) techniques, in particular Deep Learning, have taken off

thanks to the availability of a huge amount of data (big data). This has been made possible in

the food chain thanks to IoT (Internet of things) (Misra, 2020) for instance. Challenges

associated with IoT have been highlighted in a recent review of the GODAN (Global Open

Data for Agriculture and Nutrition) to build actors' confidence in a sustainable food system

(Serazetdinova et al., 2018).

But when data is sparse, incomplete or inaccurate, solutions can still be found (Perrot et al.,

2016)(Perrot & Baudrit, 2012). Algorithms have to be adapted, regarding uncertainty

management in particular. Solutions based on the use of complex stochastic optimisation
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heuristics (Lutton et al., 2016) have been proposed. Another way to deal with this issue is to

rely on human knowledge and expertise (implicit as well as explicit) and build more and more

rich and adapted human-ML interactions (Boukhelifa et al., 2017).

This chapter is our attempt to deal with the Integration of human knowledge and

user-interactions into AI methods in the case of time dependent data sets. Through three

examples, we show how  human-centered approaches can be built to deal with sparse data:

● A complex model, based on a Long-Short-Term Memory Network, built from time

series data thanks to ML: it is shown that human-driven choices have a drastic

influence on the quality of the results.

● A tool to predict grape berries quality, thanks to a Dynamic Bayesian Network

coupled with expert rules. In this system, expert knowledge has been integrated into

the model thanks to an elicitation process, making it explicit into the structure of the

model through the determination of the variables dependencies and discretization.

● Finally the last example deals with implicit knowledge, such as the priorities experts

give to model objectives as they explore trade-offs. It has been shown that such

implicit knowledge is able to provide extremely useful information if mobilised thanks

to an appropriate data visualization. It describes an exploratory analysis that explicits

how experts used an interactive visualization system to explore time series datasets in

the food domain.

1 A Long-Short-Term Memory Network model for biscuit
baking

In this case study, we describe how machine learning can be used to model a dynamic

process, such as biscuit baking. Despite the efficiency of the technique, we show how an
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appropriate, human-curated choice of the training set can dramatically improve the final

results

Long-Short-Term Memory (LSTM) networks are specific to the field of Artificial Neural

Networks (ANNs). LSTM networks are specifically tailored for machine learning of time

series, where the outputs of a system are not just a function of their inputs, but also of an

internal state. The state itself can be seen as dependent on the historical series of all inputs

seen by the system up to that point in time. We present an application of LSTM networks to

the modeling of biscuit baking. Starting from 16 real-world time series of biscuit baking,

gathered by the United Biscuits company under different conditions, we show how the

proposed LSTM network can correctly predict unseen values. Remarkably, the network is also

able to reproduce a dynamic behavior up to variations that might be overlooked as noise.

The process of baking biscuits in industrial ovens involves a considerable number of different

biochemical and physical phenomena, such as denaturation of proteins, Maillard reactions,

and gelatinization of starch. Due to the complex interactions between these phenomena,

creating a physically accurate mathematical model of the biscuit baking process is a

challenging task. An alternative to a mechanistic model is to use a data-driven approach, a

machine learning technique, to derive a black-box model of the whole process from

experimental data. In order to assess generality, the model should then be tested on unseen

data. Such an approach could also potentially be effective at modeling outputs that are

traditionally harder to describe mathematically, such as the color of the biscuits. While most

machine learning techniques are ill-equipped to deal with time series, there is a sub-category

of algorithms specifically designed to tackle dynamic problems. LSTM networks are currently

among the state of the art in the field.

In this case study, we propose the use of a LSTM network to model the biscuit baking

process. Starting from a training dataset of real-world time series of biscuit baking, collected
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by the company United Biscuits, the proposed approach learns the dynamics of two output

variables of interest, color and weight loss, and it is then tested on an unseen test dataset.

In this section we provide minimal information on biscuit baking and LSTM networks, in

order to introduce the scope of this work.

1.1 Biscuit baking

During the process of biscuit baking, raw biological materials are transformed into a final

product that must satisfy multiple criteria. For example, the color of the product must be

pleasant enough to entice customers, or its thickness must be within given thresholds to not

create issues for packaging. The industrial transformation process from dough to biscuit is

usually performed resorting to tunnel ovens: interestingly, even if the process has been

thoroughly studied and can now be precisely controlled, there are complex coupled

biochemical and physical phenomena not completely understood and controlled (Savoye et al.

(1992)).

Phenomena involved in biscuit baking include gelatinization of starch, denaturation of

proteins, and Maillard reactions, that give browned food its distinctive flavor. Such

biochemical reactions are linked to water activity inside the biscuits, temperature, and

humidity (Wade (1988)). Depending on the structure of the industrial baking oven,

convection, radiation and conduction also contribute to baking, to different degrees.

Describing mathematically the global heat-mass transfer is not simple, because very little

information on the thermal properties of commercial dough is accessible, and the

characteristics of the product dynamically change during the process. Furthermore, even if the

control variables are known and it would be useful to represent the process, it is extremely

difficult to mathematically describe the evolution of sensory properties of biscuits, such as

formation of color, loss of moisture, and change in mass.
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Given this complexity, it is not surprising that several approaches have been proposed to

model and control the industrial baking process, ranging from fuzzy logic (Perrot et al., 2000;

Perrot et al., 2006), to heat-transport models (Sablani et al., 1998; Trystram et al., 1993), to

models tackling air properties in tunnel ovens (Mirade et al., 2004).

The company United Biscuits, Inc. collected 16 time series of biscuit cooking under different

conditions, in the scope of the DREAM FP7 European Project (2009-2013). The oven used

during the experiments features four different zones, with different temperatures. During the

cooking process, biscuits are slowly moved from one zone to the next on metal trays, while

the heat flux in the oven is manually regulated by an employee. The considered input

variables are: the heat flux measured in the top part of the oven (tf in W/m2), the heat flux

measured in the bottom part of the oven (bf in W/m2), the nominal heat flux in the current

zone of the oven (zc in, W/m2), and the nominal heat fluxes in the previous zones of the oven

that the biscuit tray has already passed (zp1...zp4 in W/m2). The considered output variables

are: the color of the biscuits based on the reflected light measured, L of the CIELAB system

(c), and the weight loss of the biscuits, measured (wl in g). Each variable is measured every 5

s, with each baking process lasting 350 s, with a total of 70 points per time-series. Color is

always measured on the same individual reference biscuit during the whole time series,

weight loss is taken as an average on the same 3 reference biscuits during the experiment.

Additionally, the initial conditions of variables c, and wl are used as inputs during the

experiments.

Out of the 16 time-series, several are repetitions of an experiment under the same conditions

(in groups of 3, 3, 2, 3, 2, 3 time series, respectively). Table 1 summarizes the features of the

dataset. Figure 1 shows an example of time series, highlighting the non-negligible differences

even between repetitions under the same conditions. Another notable feature is that output

variable wl presents a behavior that, at a first glance, seems extremely noisy.
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Table 1 about here.

Figure 1 about here.

1.2 Long-Short-Memory networks

LSTM networks (Hochreiter and Schmidhuber, 1997; Gers et al., 1999) are a category of

ANNs, belonging to the class of Recurrent Neural Networks (RNNs) (Hopfield,1987).

Classical ANNs (Rosenblatt, 1958) are machine learning approaches loosely inspired by

neural networks in the brain that can work as general function approximators. ANNs are

composed by a series of units called artificial neurons connected to each other, able to receive

and send signals. Usually, the signal at a connection between artificial neurons is a real

number, and the output of each artificial neuron is calculated by a non-linear function of the

weighted sum of its inputs. Like most machine-learning approaches, ANNs can approximate

an unknown function by learning the appropriate weights in the artificial neurons from a

training dataset featuring several combinations of inputs and outputs for a target phenomenon.

In order to evaluate the generalization ability of trained models, ANNs are then usually tested

on a dataset of unseen values, called test dataset or test set.

ANNs have success stories in applications ranging from games (Silver et al.,2016) to image

classification (Sermanet et al., 2013), they are designed to model processes for which the

outputs depend exclusively on the current inputs. In dynamic processes, however, the outputs

are also a function of an internal state that is itself dependent on the history of inputs until that

point. RNNs try to address this issue, by adding connections between units to form directed

cycles. Thanks to this feedback mechanism, RNNs exhibit dynamic temporal behavior and are

used in issues where the sequence of inputs is relevant for the outputs, such as speech

recognition or natural language processing.
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LSTM networks are one of the most successful paradigms of RNNs: in a LSTM network,

each unit is considerably more complex than a simple artificial neuron in an ANN (see Figure

2). A LSTM unit is composed of a cell, an input gate, an output gate and a forget gate. The

cell is responsible for storing values over an arbitrary time interval, while each gate regulates

the flow of values that goes through the connections of the LSTM: the input gate controls the

extent to which a new value flows into the cell, the forget gate controls the extent to which a

value remains in the cell and the output gate controls the extent to which the value in the cell

is used to compute the output activation of the LSTM unit. Thanks to the ability of storing

information over variable intervals of time, LSTM networks currently represent the state of

the art in several domains, such as speech recognition (Xiong et al., 2017).

Figure 2 about here.

1.3 Experiments

The 16 time-series are split into a training set (12 time series) and a test set (4 time series), the

latter of which will be unseen by the LSTM network during the training phase. The test set

has been selected among the repetitions of experiments in conditions already present in the

training set. All variables have been normalized by subtracting the mean and scaling to unit

variance, on the basis of the values contained in the training set. After a few tentative runs, the

parameters of the network are configured as follows: 8 inputs (all previously described input

variables plus the initial conditions for the 2 output variables), 50 units in a single hidden

layer, 2 outputs (all output variables); tanh activation function (hyperbolic tangent), 3000

training epochs (iterations of the optimization process for the weights), RMSprop gradient

descent optimizer (Hinton et al., 2014). All the code of the machine learning algorithm is
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implemented in the Keras (Chollet et al., 2015) and scikit-learn (Pedregosa et al., 2011)

Python libraries.

The final model has excellent fitting on the test set, with mean squared error MSE = 0.015

and R2 = 0.9863. An interesting result is that, visually, the model is able to reproduce trends

in unseen data that at a first glance might be mistaken for noise: for example, in Figure 3, the

model is able to closely predict the behavior of the weight loss showing that the

signal-to-noise ratio is better than what a human expert could have considered from a

superficial analysis of the data.

While the results are quality-wise satisfying, it is important to remark that the correct choice

of the training set can make a considerable difference in the final generalization capabilities of

the model. In a second set of experiments, the same model previously described is tested on a

leave-one-out cross-validation, being iteratively trained on all available time series except

one, and tested on the one being left out. From the results reported in Table 2, it is noticeable

how the performance on some of the time series is subpar, probably because the type of

information they contain cannot be extrapolated from the rest of the data, and thus represent a

unique contribution that the machine learning model needs in order to properly characterize

the phenomenon.

Table 2 about here.

Figure 3 about here.
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2 Prediction of grape berries quality for decision making

The grape berries maturation is a complex process relying on physicochemical and

biochemical reactions. These reactions depend on multiple factors of which the climate is the

most influential, especially in the last weeks preceding the harvest. Since berries maturity

plays a major role in determining wine potentialities, to anticipate the maturation process and

determine the right harvesting date is a significant challenge for the wine industry. Different

indicators to evaluate the maturation state can be considered, which might be chemical, and

thus exactly measurable as the content of sugar, or sensory characteristics, as the seeds color,

which requires an expert evaluation on a symbolic ordinated scale. Sensors have been

developed in last decade measuring some grape characteristics as color, sugar content or

aromatic potentialities, (Ben Ghozlen et al., 2010; Geraudie et al., 2010). Nevertheless, those

analysis are most of time realized in laboratory, time consuming and generally expensive for a

close monitoring of the grape berries maturity and never predictive.

For the grape maturity prediction, a model has been developed by (Baudrit et al., 2015; Perrot

et al., 2015) linking chemical indicators to weather conditions on Cabernet Franc grape

berries. The approach presented here is an extension of this work.

2.1 Grape berries maturation

Experimental data are generated from vineyard plots located in the Loire Valley region

followed by the IFV institute over several years with weekly sample collection. It covers

years from 1989 to 2017, with plots distributed between two geographical places: “Anjou”

and “Touraine” for a total of 30 parcels including between 2 to 5 points by kinetics for each

parcel according to the year of the experiment.
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As inputs, meteorological conditions over 7 days were supplied by Meteo France

meteorological stations located near and/or on the parcels. :

● Temperature (°C) labeled “t”,  { (tmin,i+tmax,i) 2)},
𝑖=1 𝑡𝑜 7𝑑𝑎𝑦𝑠

∑ ÷

● Rainfall (mm) labeled “pl”, { (pli)},
𝑖=1 𝑡𝑜 7𝑑𝑎𝑦𝑠

∑

● Relative humidity (%) labeled “hr” { (hrmin,i+hrmax,i) 2)}.
𝑖=1 𝑡𝑜 7𝑑𝑎𝑦𝑠

∑ ÷

The solar radiation (in hours) over 7 days, labeled “Ins”, { (Insi)}was only given by
𝑖=1 𝑡𝑜 7𝑑𝑎𝑦𝑠

∑

one meteorological station located at Montreuil-Bellay, in the center of the area of study.

As outputs, physicochemical and sensory measurements were achieved:

● Physicochemical measurements selected for this study are those defined by the

experts as essential: sugar(s) en g/l, total acidity (ac) in equivalent H2SO4 g/L and

malic acid (ac_m) in g/L, (Barbeau, 2003; Riou, 1994). Their variations during a

week (between two points) are also considered: Var_s; Var_ac; Var_ac_m. Each

week, a lot of two-hundred berries of Chenin, with pedicels, were randomly picked

up from each parcel at each ripening stage according to the method of Vine and

Wine French Institute (ITV-France) (Cayla et al., 2002) in order to limit the effects

of the grape heterogeneity. With the lot of two-hundred berries of each sampling, a

crushing was realized with a blender, then the must was filtered through a

Whatman paper filter. Reducing sugars concentration (g/l) was measured with a

refractometer; total acidity (g/l eq. H2SO4) by the titration method and malic acid

(g/l).
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● Sensory measurements were also achieved on the berries managed by the IFV

institute and the ESA institute. Several measurements were described on the grape

berries, the juice and the global flavor using an ordinated scale range from 0 to 5.

For the DBN model we have chosen to select an integrative flavor indicator: the

global aromatic intensity (IntGloAro) to complete the physicochemical

predictions.

2.2 Expert knowledge handling

3 scientists and 2 winegrowers experts working on the areas considered in this study were

asked. Each of them was interviewed during one or two sessions (2–3 h). Each of the

elicitation sessions was attended by one expert and one or two interviewers. To build the

interview, adapted methods proposed by (Sicard et al., 2011) were applied. The elicitation

process was based on a set of predetermined structured open-ended questions used to direct

the interviews. Questions were designed according to techniques based on survey methods

with the aim of optimizing the expression of expert knowledge. We paid particular attention to

context reinstatement. This involves having the expert think about and describe his feelings

during the episodes being recalled.

2.3 The Dynamic Bayesian Model (DBN)

The model used in our approach is a Dynamic Bayesian Network (DBN), a probabilistic

graphical model able to describe phenomena developing over time (Jensen & Nilsen, 2010;

Pearl, 1988). The structure of a DBN is an oriented graph, representing correlations between

variables that in our case was created by interacting with human experts. Once the structure of

a DBN is fixed, it is then possible to compute its parameters starting from a dataset: the

parameters are conditional probability tables, assessing the probability for variables taking a
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specific value, knowing the values of the variables they depend on. For our specific

application, the values of the variables need to be discretized. Differently from a classical

Bayesian Network, a DBN makes it possible to estimate variable values over several

subsequent time steps. In our case, each time step is equivalent to two weeks in the grape

ripening processes. DBNs have been successfully adopted for several agri-food applications

(Baudrit et al., 2015; Perrot et al., 2015).

More formally, a DBN is a graph-based model of a joint multivariate probability distribution,

capturing properties of conditional independence between variables. Like a BN, a DBN is a

directed acyclic graph (DAG) where the nodes represent variables, and the missing arcs

represent conditional independence between variables. In DBNs in particular, nodes

, represent discrete random variables, indexed by time ,𝑋 𝑡( ) = (𝑋
1

𝑡( ),  …,  𝑋
𝑛

𝑡( )) 𝑛 𝑡

providing a compact representation of joint probability distribution for a finite time interval𝑃

. In other words, the joint probability can be written as the product of the local[1, τ] 𝑃

probability distribution of each node and its parents, as follows:

𝑃 𝑋 1( ),  …,  𝑋 τ( )( ) =  
𝑖=1

𝑛

∏
𝑡=1

τ

∏ 𝑃(𝑋
𝑖
(𝑡)|𝑈

𝑖
𝑡( ))

Where denotes the set of all parents of node (.), and describes the𝑈
𝑖
(.) 𝑋

𝑖
𝑃(𝑋

𝑖
(.)|𝑈

𝑖
.( ))

conditional probability function associated with random variable given the values of𝑋
𝑖
(.)

. is termed “slices”, and it represents the set of all variables at time . This𝑈
𝑖
(.) 𝑋

𝑖
(𝑡) 𝑡

factorization of the joint probability distribution, based on information from the graph, makes

it possible to straightforwardly represent large models, and use them for practical

applications. In other words, DBNs represent the beliefs of possible trajectories of the

variables involved in a dynamic process.

12



In order to make the problem treatable, DBNs assume the first-order Markov property: the

parents of a variable in time slice must appear in either slice or . As a consequence,𝑡 𝑡 − 1 𝑡

for the first-order homogeneous Markov property, the conditional probabilities are

time-invariant, meaning that . In order to fully specify a𝑃 𝑈 𝑡( )( ) = 𝑃 𝑈 2( )( ) ∀ 𝑡 ∈(1,  τ)

DBN, we will then need to define the intra-slice topology (within a time slice), the inter-slice

topology (between two time slices), as well as the parameters (i.e. conditional probability

functions) just for the first two time slices. The structure of a model can be explicitly built on

the basis of knowledge available in the literature and parameters can be automatically learned

without a priori knowledge on the basis of a dataset, a processed termed parameter learning.

The techniques for learning DBNs are generally extensions of the techniques for learning

BNs. Specialized literature reports several methods to learn the structure or the parameters of

a DBN from substantial and/or incomplete data (Geiger & Heckerman, 1997; Heckerman,

1999). In this work, the topology of the graph is obtained from expert knowledge; for

parameter learning, we consider the simplest and most commonly adopted methodology,

simply evaluating the co-occurrence rate of values of variables in the training data.

One a DBN is fully specified, it can be used to estimate marginal probabilities for target

variables, through a process also known as Bayesian inference:

𝑃 𝑂 𝑡'( )( ) = 𝑜 𝑡'( ),  ∀ 𝑡'∈[1, τ] 

Where is a set of variables whose values we are interested in predicting, and is a set of𝑋 𝑂

variables whose values are known (for example, in food processing might be the variables𝑋

representing the physicochemical properties of a product and might be the variables𝑂

representing the observed environmental conditions). In general, given a way of calculating

from the knowledge of , inference in a DBN is performed using𝑃(𝑋 𝑡( )|𝑂 𝑡'( )) 𝑃(𝑋(𝑡')|𝑂 𝑡( ))

recursive operators and Bayes’ theorem, updating the belief state of the DBN as new

observations become (Murphy, 2002).
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The DBN previously introduced is evaluated with a leave-one-out cross-validation (LOOCV),

where the model is repeatedly trained on the whole dataset, minus one sample, and the

remaining sample is used for testing. The procedure is repeated until each sample has been

used for testing. Considering the mean and standard deviation on the results of a LOOCV

provides a better estimate of the model’s capabilities than just considering a random split of

the available data between a training set and a test set (Geisser, 1993).

For the choices made in this study, before training the model, it is necessary to discretize the

real-valued variables in the dataset (see subsection 3.1.1). However, in order to evaluate the

performance of the model’s predictions against the ground truth, the results of the model will

have to be converted back into real values. Recalling that the predictions of a DBN model for

variable will consist in a series of probabilities for each possible discrete class𝑥  𝑃
𝑖

associated with variable , the predicted outcome can be converted to a real𝑖 = 0,  1,  …,  𝑛
𝑥

𝑥 

value using the following equation:

𝑥𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =
𝑖=1

𝑛
𝑥

∑ 𝑥
𝑖
𝑃

𝑖

Where is the average value of all samples of variable that fall under class .𝑥
𝑖

𝑥 𝑖

The first metric used to evaluate the quality of the predictions against the ground truth is the

root mean squared error (RMSE):

𝑅𝑀𝑆𝐸 =  1
𝑁

𝑖=1

𝑁

∑ (𝑥
𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑥

𝑖
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)² 

Where is the number of predictions considered for target variable, and indicates its𝑁 𝑥𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

observed value. In this study, we will also use the relative RMSE (RRMSE) that expresses the

RMSE as a percentage of the range of observed values for the target variable, and it is thus

more informative as an error metric:
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𝑅𝑅𝑀𝑆𝐸 =  𝑅𝑀𝑆𝐸

𝑚𝑎𝑥 (𝑥𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)−𝑚𝑎𝑥 (𝑥𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)
×100

2.4 Experiments

Inspired by previous work on Cabernet-Franc and Gamay wines (Baudrit et al., 2015), the

network structure predicts physicochemical indicators starting from weather conditions

(Figure 4). Only the climatic variables having an influence on each physicochemical maturity

indicator are selected from expert knowledge and literature. In particular, relative humidity

only affects the two acidities, sunshine influences sugar content, while temperature and

rainfall have an impact on the four variables considered: sugar (s), total acidity (ac), acid

malic (ac_m) and the global aromatic intensity (IntGloAro).

Figure 4 about here

As the DBN needs to be able to capture dynamical variations of the values over time, to better

predict the four variables it is necessary to define new intermediate state variables. We

consider that a month before the harvest, only alterations in the weather can cause a

significant deviation from an established trajectory in time (see Figure 5).

More formally, considering each physicochemical variable at time and𝑥∈{𝑎𝑐, 𝑎𝑐
𝑚

, 𝑠 } 𝑡

:𝑡 + 1

𝑥 𝑡 + 1( ) =  𝑣𝑎𝑟_𝑥 𝑡 + 1( ) + 𝑥 𝑡( )

And consequently

𝑣𝑎𝑟_𝑥 𝑡( ) = 𝑥 𝑡( ) − 𝑥(𝑡 − 1)

As already anticipated, the (absolute) value of a variable can be used as an indicator of the

current stage of ripening, while the variation, as a function of the climatic variables, will

dictate the ripening trajectory.
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Figure 5 about here

At time = 0, the value of each variable is observed and known; for the next two-times steps,

only the climatic variables are observed and known, while the physicochemical quantities and

their variations are predicted by the model.

As previously described, to create the CPTs of our DBN model, it is necessary to define the

discretization of the continuous variables in the problem. In this context, discretizing variable

amounts to finding several intervals of continuous values𝑥 [𝑥
1
,  𝑥

2
),  [𝑥

2
, 𝑥

3
),  …,  [𝑥

𝑛−1,
𝑥

𝑛
){ }

such that , with each interval corresponding to a discrete class.𝑥
1

< 𝑥
2

< … < 𝑥
𝑛
 

For the climatic variables, the following intervals were defined:

● 𝐼𝑛𝑠 =  [[15, 30],  [30, 40],  [40, 55],  [55, 60],  [60, 75]]

● 𝑝𝑙 =  [[0, 10],  [10, 20],  [20, 30],  [30, 45],  [45, 70],  [70, 100]]

● 𝑡 =  [[0, 11],  [11, 15],  [15, 17],  [17, 19. 5],  [19. 5, 22]]

● ℎ𝑟 =  [[60, 70],  [70, 75],  [75, 80],  [80, 90],  [90, 100]]

For the grape sensory variable IntGloAro, the discretization is fixed to 1 inside the sensory

scale [1,5]. It is linked to the limit of sensitivity evaluated to be 0.5 by the experts.

For the physicochemical variables, an interactive semi-automated discretization approach was

developed, based on the notion of co-occurrence between variable values and their variations.

The methodology is based on a visualization software, EvoGraphDice, coupled with an

evolutionary optimization approach (Boukhelifa et al., 2017). For example, the variation of

the variable sugar var_S, is fixed on the basis of the expert description, more focused on the

variations of the value of the variable than on the variable itself. The optimal discretization of

the sugar is then calculated to ensure the most as possible a homogeneous repartition of the

var_S classes of interval for each sugar interval in the data basis.
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The results of the optimization and thus the discretization proposed for the physicochemical

variables are presented table 3.

Table 3 about here

After performing a LOOCV on the dataset, where at each iteration the network is trained on

the whole dataset minus one sample, and then tested on that sample, we obtained a mean

RRMSE for each predicted variable. For the sensory variable, the RMSE is also calculated but

also the percentage of points well classified in the five classes considered with a threshold at

0.25 or 0.5, 0.5 being considered as the classical sensory threshold of sensibility for those

measurements.

Table 4 about here

The results (table 4) show that it is possible to predict with good results the total acidity and

the sugar in a range that is satisfying for the experts (10% for the sugar, 6% for the total

acidity) and so anticipate the maturation two weeks before. For the malic acid it seems to be

more complex to have a good prediction with the only variables considered as inputs of the

DBN. Probably for this variable, for a better prediction, we would have to define the state by

including other parameters or variables.

For the sensory variable, results are also relevant with a variable that seems to be relatively

well predicted two weeks before with less good results for a shorter time step. As regards to

the integrative and more uncertain measurement represented by this sensory variable, it is

possible that the slope for two weeks indicates more the tendency of evolution than the one

for one time step, which could explain this result. Nevertheless results of sensory prediction

are quite good with 72.5% of good prediction at two time steps.
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3 Machine learning user interactions to understand how
agronomy experts explore model simulations

Machine Learning ML algorithms build models that are trained to recognize certain types of

patterns (Bishop, 2006). Domain experts and decision-makers often rely on these models to

reason over new data and to make informed decisions. Whereas it is generally possible to

determine what predictions the machine learning model is likely to make based on new input

data, how domain experts will use those model predictions for reasoning and to make

inferences is uncertain. Because domain experts may not fully understand ML models and

their domain knowledge may not be fully encoded in the model, conflicts may arise and they

themselves may not be consistent in interpreting and responding to ML results (Valdez et al.,

2017; Fernandes et al., 2018; Dimara et al., 2018).

In previous work Boukhelifa et al. (2019) have conducted an observational study to

understand how domain experts use ML models to explore agri-food processes. Multiple

interactive sessions were organized where experts from agronomy explored model simulation

datasets using an existing exploratory visualization tool (Elmqvist et al., 2008; Cancino et al.,

2012) (Figure 6). These exploration sessions were video-recorded and experts' interactions

with each other and with the tool were logged. The main exploration task was open-ended, but

experts’ primary goal was to explore alternative trade-offs, such as between the amount of

fertilizer supplied and the quantity of crop yield.

Figure 6 about here

These exploration sessions were helpful to the domain experts who, guided by the views

proposed by the ML model, found useful insights in the form of interesting correlations,

temporal trajectories and trade-offs that they have not considered before. As a group, they
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were able to guide the ML component to interesting views and to reason about their data.

However, the qualitative analysis of the video recordings shows that experts often lose track

of their analysis steps and therefore the many trade-off scenarios they were trying to compare,

as noted by one participant from the study: “What was the basis of the reflection here? In fact,

we seem to go faster than we have time to note down”. Domain experts also appear to

structure their investigation into mini-analysis scenarios, during which they explore different

hypotheses and research questions. But, when asked, they were not able to give a clear

overview of past exploration, or an accurate evaluation of whether their exploration strategy

was a robust or exhaustive one. 

Exploratory Data Analysis EDA tools (Grinstein, 1996), such as the visualization system used

in this study, provide different types of visual and statistical methods to analyze the data and

to examine them from different viewpoints. However, they offer limited support for viewing

the exploration history, for example, by visualizing past analysis steps or data queries (Heer et

al., 2008). Little support is typically provided to show high-level information to entice users

to reflect upon and make sense of their past exploration. This type of information, called

provenance (North et al., 2011; Bors et al., 2019; Madanagopal et al., 2019), could provide

opportunities to review and share insights, but importantly, it can potentially improve user

exploration practices and strategies (Carrasco et al., 2017). 

In what follows, ML is not only considered as a means to guide visual exploration, but also to

structure and help users revisit and reflect on past exploration sessions. This work describes

(a) the modelling of the user exploration history of the aforementioned exploration sessions,

and (b) the visualization of provenance information to the analysts as high-level views of their

past exploration (Barczewski et al., 2000). The main goal is to establish a methodology to

automatically detect key analysis stages of the exploration, which correspond to the change of

focus in the trade-off analysis space. To detect such changes, unsupervised learning and time
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series modelling (Hidden Markov Models HMM) are applied to two use cases from

agronomy. 

3.1 Characterizing exploratory data analysis

There is an established body of work from cognitive psychology that looks at how people

make sense of data during exploratory analysis. Prominent sensemaking theories such as by

Klein et al. (Klein et al., 2007) and Pirolli et al. (Pirolli et al., 2005) focused on the cognitive

processes involved. Their results show that analysts continuously re-frame their research

questions (Klein et al., 2007), and interleave new and refined hypotheses in a non-linear

fashion (Pirolli et al., 2004). This work builds on these theories and findings, and focuses on

different aspects of sensemaking such as uncertainty (Boukhelifa et al., 2017b), alternatives

(Liu et al., 2019) and structures within the so-called exploration scenarios (Boukhelifa et al.,

2019). These analysis scenarios correspond to shifts of user focus in the search space at

different stages of the exploration. Six types of scenarios are identified including instances

where analysts examine new and refined research questions and hypotheses, and others where

they attempt to recap and establish common ground (Boukhelifa et al., 2019; Goyal et al.,

2016). The approach thus far in studying sensemaking activities has been based on qualitative

research methods such as observational studies, walkthroughs and interviews (Creswell,

2002). Although this approach can yield deep insights, it is often time and resource intensive,

and findings may be hard to generalize. In a follow-up work (Barczewski et al., 2000), an

automatic procedure is implemented to detect scenarios from logs of user interactions, and

new visual designs to incite analysts to reflect on their progress and exploration strategies are

investigated.

Logging user interaction is common in interactive systems. User interaction logs are often

analyzed not only to evaluate how tools are operated by end-users, but also to help the

end-users themselves reflect and track their progress. For example, in the context of web
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browsing, Carrasco et al. (Carrasco et al., 2017) showed that when high level semantic

information is shown, users tend to reflect on their browsing habits and are able to infer areas

of improvement. Guo et al. (Guo, 2015) found that visualization of interaction logs improves

analysts’ performance in finding insights. Like in this study, they found that exploration is

composed of multiple chunks which have generic analysis patterns that lead to insight. 

Analyzing user interaction logs is also used in analytics provenance (North et al., 2011; Bors

et al., 2019; Madanagopal et al., 2019) to understand user’s reasoning processes, and to

support collaborative communication and replication (Ragan et al., 2015). Mining user

interactions also serves other purposes than making sense of user exploration, such as to

predict users personality traits (Brown et al., 2014), or to detect cognitive biases (Wall et al.,

2017). In the context of exploratory data analysis, this work is similar to Aboufoul et al.

(2018) and Dung et al. (2016) who used HMMs to model user’s search behavior. HMMs are

powerful techniques to generate sequences of observations and to learn about the hidden

states that produce those observations. In the present study, it is shown that analysis scenarios

can be retrieved when considered as hidden states of a Markov chain. Results from the HMM

are provided in pseudo real time, which can continuously give high-level semantic

information to the analyst.

3.2 Preliminary analysis of two use cases from agronomy 

We collected interaction log data from an observational study based on two real-world use

cases in agronomy, one for wheat fertilization and the other for wine fermentation. In each use

case, experts from different domains (such as oenology and microbiological engineering for

the wine use case) explored model simulation data using a scatterplot matrix (SPLOM)-based

tool (Cancino et al., 2012) projected on a large shared tactile display (84'' screen, Figure 6).

We recorded videos of two exploration sessions per use case, and followed the thematic
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analysis method (Braun, 2012) to analyze them. Findings from this analysis are reported in a

previous study (Boukhelifa et al., 2019). Figure 7 shows the different types of scenarios that

were identified. 

Figure 7 about here

The visualization tool domain experts used to explore their model simulations data had four

key functionalities: (a) visual query selection to help experts narrow down their search to

important dimensions and value ranges; (b) a history bookmark to keep track of previous

views (scatterplots) they visited; (c) Favorite views album to store interesting scatter plots and

findings; (d) and a dimension editor to manually specify new dimensions using a

mathematical formulae. Alternatively, combined dimensions can be generated automatically,

using an interactive evolutionary algorithm, which learns from user interactions and feedback.

Log data events were collected pertaining to user visits of scatterplots in the SPLOM, whether

this originates directly in the SPLOM through cell selection, or indirectly by retrieving views

from the favorites store or the bookmark history. 

A preliminary analysis of the scatterplot visits data shows that the manually identified

analysis scenarios often correspond to localized areas of the search space (Figure 8). For

instance, for the wine use case, scenario 1 focuses on changes in the amount of initial nitrogen

(N0) at five different stages of the wine fermentation process (shown as a vertical line of

colored blue dots for each stage: T0, T25, T50, T75 and T100). In scenario 2, experts

examined the relationship between N0 and a target aromatic combination that they entered

manually, also with regards to the different stages of fermentation (horizontal line of colored

green dots). These initial findings inspired the next analysis step where the scatterplot visits

data was used to cluster user interactions into different analysis scenarios.

Figure 8 about here
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In the following section, clustering and machine learning methods are used to detect those

scenarios automatically from a sequence of user events (scatterplot visits data). Two

unsupervised methods were implemented: a clustering method based on a spatiotemporal

similarity measure, and a Hidden Markov Model HMM to detect transitions between

scenarios. The ground truth in both cases is the manually labelled video dataset. To evaluate

the proposed methods, the existing notions of Type I and Type II classification errors were

used. However, since the scenarios are chronologically structured, changes of scenarios are

more important than knowing the exact identity of a class, say whether it is scenario ‘1’

instead of ‘3’.

3.3 Spatiotemporal distances to cluster user interaction events

To cluster the scatterplot visits events into different scenarios, there are three steps to follow:

(i) Data preparation: since the datasets the experts explored are trade-off datasets and

describe biological processes that are dynamic in nature (fermentation and fertilization

processes), the data dimensions are grouped into three generic types : objective dimensions

(quantities experts would like to optimize, such as through minimization or maximization),

parameters (model parameters experts can control or modify) and trajectories (a subset of

parameters whose values change over time).

(ii) Distance calculation: the distance is then calculated between area clicks on the SPLOM

(cells) using the Jaccard distance. The result of this step is a distance matrix; 

(iii) Clustering: finally, the DBSCAN algorithm is applied to the distance matrix from step ii.

The rationale behind this method is to group user interactions with the SPLOM that are close

both spatially (based on the location of cells in the SPLOM) and temporally (based on the

time elapsed between two selection events).
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Figure 9 (bottom timeline) shows the results of the clustering method for the wine use case.

The top timeline shows the ground truth data. Each dot represents a user event (a scatterplot

selection or visit) and color corresponds to scenarios S1-14 of this use case. The clustering

method detects more scenarios than there are in the labelled dataset. When considering

scenario transitions only, the method correctly detects 61% of scenario transitions for the wine

use case, and only 55% of transitions for the wheat use case. An example of a transition that is

correctly detected, is between scenarios 5 and 6 in Figure 9. Cases where the clustering

method does not perform well are typically the shorter scenarios where domain experts

quickly explore different areas of the search space, more likely to confirm previous

knowledge. Another limitation of the clustering method concerns step (i) for the data

preparation. In this step, data dimensions are grouped into three types that are identified as

pertinent for the different use cases, and more generally when exploring trade-off datasets for

dynamic systems. The clustering method is thus highly dependent on the order of dimensions

in the SPLOM, yet this order is arbitrary. Moreover, the adopted timescale is also arbitrary

and may have a big impact on the clustering performance.

Figure 9 about here

An alternative non-supervised clustering method that addresses these limitations is proposed

in the next section.

3.4 A Hidden Markov model to detect scenario transitions

Hidden Markov Models HMMs are used in many real-world applications to model sequences

of events where the probability of each event depends solely on the state of the previous event

(Baum et al., 1966). The basic assumption which underpins HMMs is that observations are

created by hidden states whose successions depend on transition probabilities. In
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unsupervised use cases, studying the observations helps to find the hidden states or patterns in

the data. For modelling purposes, it is assumed that the hidden states correspond to the

analysis scenarios, and the observations (i.e. scatterplot visits events) fall into a Markov

system. The number of hidden states in this study is the hyper parameter, which is set to two

as it corresponds, conceptually, to whether or not there is a “change” or “shift” in the

exploration strategy or search direction.

To build our HMM, two types of information are needed, which are extracted from the user

interaction logs: the time-delta between observations, and the row and column combination

for each scatterplot visited during the exploration. To summarize the performance of the

HMM, Figure 10 presents the confusion matrix. Since the goal is to detect transitions between

scenarios, rather than the scenario labels themselves, the shape of the path in Figure 10 is

more important than the inferred labels (the closer to the diagonal the better). Figure 10 shows

that change of scenarios are well detected for ground truth labels between 5 and 9. Overall, 

the obtained HMM model is able to detect scenario transitions in 91% of cases for the wine

use case, and 75% for the wheat use case.

Figure 10 about here

3.5 Visualizing the machine-learned storyline

Besides modelling user exploration into sequences of scenarios, a second goal of this work is

to visualize the results of the HMM method to analysts during or after the exploration. To

design this type of visualization, user-centered design methodologies are used (Norman and

Draper, 1986) to explore the design space and to gather user requirements. We organized three

brainstorming sessions with nine participants in total. Each session lasted roughly two hours.

The first two sessions had five participants with design, HCI, or visualization background,
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and the third session had four participants from an agronomy research centre in France.

Participants were either researchers or PhD students.  

These brainstorming sessions were organized into two parts. First, participants were trained to

use the SPLOM-tool, similar to what was proposed in previous work (Boukhelifa et al,

2017a). An ideation part followed in which participants brainstormed about new features they

would like to see implemented to support sensemaking of their exploration history. The

design ideas were collected and organized using affinity diagramming and thematic analysis.

The results are the following high-level user requirements which are ordered by how

frequently they were mentioned by the participants: (1) story-tell and author; (2) highlight

interesting views; (3) show trends; (4) preview and replay; (5) filter views; (6) compare

views; (7) group views; (8) show overview and summary; (9) annotate; (10) save and reuse;

(11) steer; (12) initialize; and (13) learn and update.

The most frequent user requirements mentioned during the brainstorming sessions

corresponds to the storytelling and authoring category. Here participants were interested in

tools to automatically create a storyboard of their past exploration, and to annotate it such as

by adding tags to places where the exploration branched out, or where they found an

important insight. Other participants suggested a git-like visualization that gives both an

overview of visited cells and possible branching paths. Inspired by those requirements and

findings from previous work (Boukhelifa et al., 2019), a timeline of past exploration, called a

“storyline”, has been implemented, where nodes are events linked through time. Figure 11

shows a preliminary result of this provenance visualization integrated into an existing

SPLOM-tool as a widget, which can be enabled on demand. Here, analysis scenarios are

automatically identified using the HMM method and are then visualized using color.

Figure 11 about here
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For the implementation of the storyline visualization, a client-server architecture provided by

Flask (a Python web framework) was used. The server side handles the logging and modelling

components described earlier. User interactions with the SPLOM were collected, as well as

the history bookmark and the favorites views album, which were stored in a text file. Using

those events (or observations), a HMM detects the hidden states (i.e. the scenarios). Since an

unsupervised approach is adopted, the model is applied each time a new set of events are

recorded to our log file. The update rate for the timeline widget was arbitrarily set to five

minutes, but the user can request an update at any time by pressing the update button. 

The visualization and rendering are handled on the client side, which implements a storyline

widget. To facilitate the sharing of the tool, this widget is integrated into a web-version of the

SPLOM-Tool. The storyline widget is composed of linked nodes, each node corresponds to a

scatterplot selection event, and its color corresponds to a detected scenario. Clicking on the

node renders the corresponding scatterplot in the zoomed in area of the user interface, and

highlights that cell in the SPLOM through brushing and linking. Since the storyline

visualization is not the primary task for domain experts, it is placed at the bottom of the user

interface, to avoid interfering with the main exploration tasks.

The storyline visualization provides an overview of how domain experts structure their

exploratory analysis, and can be helpful for self-reflection and tracking progress. However,

more work is needed to confirm whether indeed such history visualizations encourage

reflection and result in a change in exploration strategies. There are currently three main

limitations to this work. First, the log data comes from two case studies where domain experts

explored trade-offs between multiple dimensions (or objectives). The ML approach needs to

be tested with more use cases and different types of datasets. Second, the visualization tool

used in the previous case study relies on a SPLOM representation of the data. The way

domain experts structure their exploration may depend on how the tool's user interface is
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organized. However, the machine learning method can be generalized and applied to other

visualization types, since it only requires information about the data dimensions consulted

during the exploration and the time of viewing. Third, although cases of branching were

observed during exploration, where experts explored an alternative trade-off subset, the

automatic method does not currently detect multiple, parallel or branching storylines. The

machine-learned storyline visualization can be improved in future work by detecting

branching and different types of scenarios, and by allowing experts to augment these

storylines with their own annotations, thus integrating their expertise and the insights gained

during the exploration. 

4 Conclusions

This chapter offered several viewpoints and approaches for machine learning techniques,

learning from data, expert knowledge and interactions. It has been shown in the first chapter

that generalization capabilities of some ML models highly depend on the quality of the

dataset, the larger the better. However, even a simple expert’s choice for building a good

quality training set (representativeness, extrapolation ability) makes a considerable difference.

In the second chapter, it has been shown that expertise can be made explicit (in the form of a

graph model and variable discretization) and embedded into a complex model to build an

efficient decision-making system.

Going further, the implicit expertise, i.e. non conscious skills or knowledge difficult to explain

verbally, can be fed into a ML process thanks to interactive visualization. The analysis of the

system proposed in the third chapter, a SPLOM-based visualization tool, has led to the design

of a new tool, to assist exploratory data analysis. The proposed storyline visualization helps
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domain experts self-reflect and track their progress when analyzing complex model

simulations.

The key message of the work presented in this chapter is that human expertise can be

efficiently -- and finely -- nested into data-driven machine learning schemes, which is

particularly beneficial in the case of sparse or uncertain data. The three examples presented

above outline future components of such interactive systems. This approach is relevant for

food-related systems, where at the same time (i) some data still remain unusable, expensive

and time consuming to acquire, (ii) human expertise, skills and know-how are rich and

numerous, but often implicit, and (iii) there is a strong need for efficient predictive models,

decision support systems and knowledge preservation.
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Figures

Figure 1 : Three time series describing the change of color (c) and weight loss (wl) during
biscuit baking. It is noticeable how, even though the three datasets have been collected under

the same conditions, there are relevant differences in the values.
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Figure 2 : Log visualization widget prototype (integrated into the visualization tool) showing
a single machine-learned storyline. Nodes indicate scatterplot selections and colour indicates

scenarios.
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Figure 3: Models’ predictions versus measured values for test samples, unseen during the
training process. The model is able to remarkably fit the data, even for parts that might be
naively believed to be noisy. The scale is different from the previous plots, as all variables

have been normalized.
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Figure 4 : Network structure describing the interaction between the climatic variables and the
output variables: physicochemical and sensory variables quoted x in this figure.
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Figure 5: the dynamical representation of the DBN. It is represented in the form of two
generic slices that can be developed on several slices representing the different step times.

DBNs assume the first-order Markov property which means that the parents of a variable in
time slice t must occur in other slices and the conditional probabilities are time-invariant. The
slice representing the time t (t measurements) is concerned at the beginning of the iterations

by variables that are measured at time t0. The consecutive slice: time t+1 is dedicated to
predictions. If several slices are added, for example t, t+1 and t+2, it starts at t0 with an

initialization where variables are measured, followed by two slices predicted t+1 and t+2,
with t+2 predicted on the basis of the prediction of t+1.
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Figure 6 : The scatterplot matrix visualization tool used in our study (Boukhelifa et al, 2019).
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Figure 7 : User exploration scenario sequences and types for four sessions with domain
experts, as identified from manual video coding and qualitative analysis.
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Figure 8 : The first eight analysis scenarios of the wine use case S1-8 as identified from
manual video coding. Each  grid corresponds to one scenario, rows and columns are data

dimensions D1-n including any combined dimensions (created manually or automatically).
Circles indicate scatterplot visits, and their size the frequency of visits. Analysis scenarios are

usually focused on one area of the search space.
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Figure 9 : Results of clustering (bottom timeline), top timeline is the ground truth. Dots are
scatterplot selections, and color corresponds to scenarios S1-14.
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Figure 10 : Confusion matrix for the Hidden Markov Model, for the wine use case.
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Figure 11 : Log visualization widget prototype (integrated into the visualization tool) showing
a single machine-learned storyline. Nodes indicate scatterplot selections and colour indicates

scenarios.
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Tables

Table 1: Summary of the 16 time series on biscuit cooking gathered by United Biscuits.
During the experiments, the temperature in different zones of the oven is changed, in order to

explore several possible behaviors.

ID Training?
Heat flux (W/m2)

z1 z2 z3 z4 z5
std-1 yes 2500 3500 4000 4000 2000
std-2 yes 2500 3500 4000 4000 2000
stdval no 2500 3500 4000 4000 2000
T1-1 yes 4000 3500 4000 4000 2000
T1-2 yes 4000 3500 4000 4000 2000
T1val no 4000 3500 4000 4000 2000
T2-1 yes 2500 3500 4000 4000 3000
T2-2 yes 2500 3500 4000 4000 3000

ID Training?
Heat flux (W/m2)

z1 z2 z3 z4 z5
T3-1 yes 2500 3500 6000 4000 2000
T3-2 yes 2500 3500 6000 4000 2000
T3val no 2500 3500 6000 4000 2000
T4-1 yes 2500 3500 4000 6000 2000
T4-2 yes 2500 3500 4000 6000 2000
T5-1 yes 2500 5000 1000 5000 2000
T5-2 yes 2500 5000 1000 5000 2000
T5val no 2500 5000 1000 5000 2000
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Table 2: Results of the leave-one-out cross-validation.

ID R2 MSE ID R2 MSE
std-1 0.9557 0.0491 T3-1 0.6644 0.2535
std-2 0.9789 0.0251 T3-2 0.4579 0.3678
stdval 0.9785 0.0280 T3val 0.0810 1.1728
T1-1 0.9592 0.0279 T4-1 0.4740 0.5685
T1-2 0.5561 0.4572 T4-2 0.9718 0.0311
T1val 0.4674 0.5844 T5-1 0.9584 0.0497
T2-1 0.6942 0.2956 T5-2 0.9859 0.0186
T2-2 0.1237 0.8653 T5val 0.9645 0.0241
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Table 3: Discretization of the physico-chemical variables, fixed by experts for the variation
var_X and calculated by optimization for the variable X.

Discretization variable X Discretization Var_X
s (sugar) ● Class 0 = [[∞,156.9],

● Class 1 =
[156.9,182.86]

● Class 2 =
[182.86,201.8]

● Class 3 = [201.8,210]
● Class 5 = [210,220]
● Class 6 = [220,230]
● Class 7 = [230,240]
● Class 8 = [240,+∞]],

● Classe 0 = [0,  12],
● Classe 1 = [12,  20]
● Classe 2 =  [20,  35]
● Classe 3 = [35, + ∞]

ac (total acidity) ● Class 0 = − ∞,  5. 47[ ]
● Class 1 = 5. 47,  6. 33[ ]
● Class 2 = [ 33,  7. 94]
● Class 3 =

[7. 94,  + ∞]

● Class 0 =
[− ∞,  − 1. 5]

● Class 1 =
[− 1. 5,  − 1]

● Class 2 =
[− 1,  − 0. 6]

● Class 3 = [− 0. 6,  0]
ac_m (malic acid) ● Classe 0 =

[− ∞,  3. 66]
● Classe 1 = [3. 66,  4. 6]
● Classe 2 = [4. 6,  5. 68]
● Classe 3 =

[5. 68,  6. 88]
● Classe 4 =

[6. 88,  + ∞]

● Class 0 =
[− ∞,  − 2. 5]

● Class 1 =
[− 2. 5,  − 1. 5]

● Class 2 =
 [− 1. 5,  − 0. 75]

● Class 3 =
[− 0. 75,  − 0. 5]

● Class 4 =  [− 0. 5,  0]
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Table 4: Results of prediction for the four variables for two time steps of prediction
(anticipation of two weeks): 1 and 2, labeled X_1 and X_2. RMSE tolerance: for s: 12g/l; for

ac: 0.5 g/l; for ac_m: 0.5 g/l

Variable RMSE RRMSE %
ac = [3.4,12.5];   ac_m = [1.7,10] ;   s = [144,271.8]

ac_1 (g/l) 0.536 6

ac_2 (g/l) 0.648 7

ac_m_1 (g/l) 0.825 9

ac_m_2 (g/l) 0.867 10

s_1 (g /l) 11.37 8

s_2 (g/l) 12.87 10

Variable RMSE Abs(Pred-Obs)<0.5
%

Abs(Pred-Obs)<0.25
%

IntGloAro_1 0.73 47.5 30
IntGloAro_2 0.52 72.5 50
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