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Abstract. Given a graph G and an integer k, the objective of the Π-
Contraction problem is to check whether there exists at most k edges
in G such that contracting them in G results in a graph satisfying the
property Π. We investigate the problem where Π is ‘H-free’ (without
any induced copies of H). It is trivial that H-free Contraction is
polynomial-time solvable ifH is a complete graph of at most two vertices.
We prove that, in all other cases, the problem is NP-complete. We then
investigate the fixed-parameter tractability of these problems. We prove
that whenever H is a tree, except for seven trees, H-free Contraction
is W[2]-hard. This result along with the known results leaves behind only
three unknown cases among trees.

Keywords: Edge contraction problem · H-free · NP-completeness · W[2]-
hardness · Trees

1 Introduction

Let Π be any graph property. Given a graph G and an integer k, the objec-
tive of the Π-Contraction problem is to check whether G contains at most
k edges so that contracting them results in a graph with property Π. This is
a vertex partitioning problem in disguise: Find whether there is a partition P
of the vertices of G such that each set in P induces a connected subgraph of
G, G/P (the graph obtained by contracting each set in P into a vertex) has
property Π, and n − |P| ≤ k. These problems, for various graph properties
Π, have been studied for the last four decades. Asano and Hirata [2] proved
that the problem is NP-complete if Π is any of the following classes - planar,
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series-parallel, outerplanar, chordal. When Π is a singleton set {H}, then the
problem is known as H-Contraction. Brouwer and Veldman [5] proved that
H-Contraction is polynomial-time solvable if H is a star, and NP-complete
if H is a connected triangle-free graph other than a star graph. Belmonte, Heg-
gernes, and van ’t Hof [3] proved that it is polynomial-time solvable when H
is a split graph. Golovach, Kaminski, Paulusma, and Thilikos [13] studied the
problem when Π is ‘minimum degree at least d’ and proved that the prob-
lem is NP-complete even for d = 14 and W[1]-hard when parameterized by k.
Heggernes, van ’t Hof, Lokshtanov, and Paul [16] proved that the problem is
fixed parameter tractable when Π is the class of bipartite graphs. Guillemot
and Marx [14] obtained a faster FPT algorithm for the problem. Cai, Guo [8],
and Lokshtanov, Misra, and Saurabh [20] proved that the problem is W[2]-hard
when Π is the class of chordal graphs. Garey and Johnson [11] mentioned that,
given two graphs G and H, the problem of checking whether H can be obtained
from G by edge contractions is NP-complete. Edge contraction has applications
in Graph minor theory (see [21]), Hamiltonian graph theory [17], and geometric
model simplification [12].

We consider theH-free Contraction problem: Given a graphG and an in-
teger k, find whether G can be transformed, by at most k edge contractions, into
a graph without any induced copies of H. The parameter we consider is k. Unlike
graph contraction problems, other major graph modification problems are well-
understood for these target graph classes. In particular, P versus NP-complete
dichotomies are known for H-free Edge Editing, H-free Edge Deletion,
H-free Edge Completion [1], and H-free Vertex Deletion [19] (here,
the allowed operations are edge editing, edge deletion, edge completion, and ver-
tex deletion respectively). It is also known that all these problems are in FPT for
every graph H [6]. The picture is far from complete for H-free Contraction.
See Table 1. It is trivial to note that H-free Contraction is polynomial-time
solvable if H is a complete graph of at most 2 vertices. Cai, Guo [8, 15], and
Lokshtanov, Misra, and Saurabh [20] proved the following results for H-free
Contraction.

– FPT when H is a complete graph
– If H is a path or a cycle, then the problem is FPT when H has at most 3

edges, and W[2]-hard otherwise.
– W[2]-hard when H is 3-connected but not complete, or a star graph on at

least 5 vertices, or a diamond.

The W[2]-hardness results mentioned above also imply NP-completeness of the
problems. Guo [15] proved that the problem is NP-complete when H is a com-
plete graph on t vertices, for every t ≥ 3. Eppstein [10] proved that the Hadwiger
number problem (find whether the size of a largest clique minor of a graph is at
least k) is NP-complete. This problem is essentially 2K1-free Contraction,
if we ignore the parameter. This result implies that the problem is NP-complete
when H is a P3. We build on these results and prove the following.

– H-free Contraction is NP-complete if H is not a complete graph on at
most 2 vertices.
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– H-free Contraction is W[2]-hard if H is a tree which is neither a star

on at most 4 vertices ( , , , ) nor a bistar in { , , }.

Our W[2]-hardness results, along with known positive results, leaves behind only

three open cases among trees - , , . Due to space constraints,

Problem P NPC FPT W-hard

Edge Editing n ≤ 2 [trivial] otherwise [1] For all H [6]

Edge Deletion m ≤ 1 [trivial] otherwise [1] For all H [6]

Edge Completion m′ ≤ 1 [trivial] otherwise [1] For all H [6]

Vertex Deletion n ≤ 1 [trivial] otherwise [19] For all H [6]

Edge Contraction K1,K2 [trivial]
otherwise
[Theorem
1]

Kt (t ≥ 3) [15,
20], P3, P4,K2 +
K1( [8,20], MSO1

expressibility)

W[2]-hard for 3-
connected non-
complete graphs,
diamond [8, 15],
Ct (t ≥ 4) [8, 20],
all trees except 7
trees [Theorem 2]

Table 1: Complexities of various graph modification problems where the target
property is H-free. The number of vertices, the number of edges, and the number
of nonedges in H are denoted by n,m,m′ respectively.

many proofs are moved to a full version of the paper.

2 Preliminaries

Graphs. All graphs considered in this paper are simple and undirected. A
complete graph and a path on t vertices are denoted by Kt and Pt respectively.
A universal vertex of a graph is a vertex adjacent to every other vertex of the
graph. An isolated vertex is a vertex with degree 0. For an integer t ≥ 0, a
star on t + 1 vertices, denoted by K1,t, is a tree with a single universal vertex
and t degree-1 vertices. The universal vertex in K1,t is also called the center of
the star. For integers t, t′ such that t ≥ t′ ≥ 0, a bistar on t + t′ + 2 vertices,
denoted by Tt,t′ , is a tree with two adjacent vertices v and v′, where t degree-1
vertices are attached to v and t′ degree-1 vertices are attached to v′. The bistar
Tt,0 is the star K1,t+1 and the bistar T1,1 is P4. We say that vv′ is the central
edge of the bistar. By G1 + G2 we denote the disjoint union of the graphs G1

and G2. A graph is H-free if it does not contain any induced copies of H. In a
graph G, replacing a vertex v with a graph H is the graph obtained from G by
removing v, introducing a copy of H, and adding edges between every vertex of
the H and every neighbor of v in G. A separator S of a connected graph G is a
subset of its vertices such that G− S (the graph obtained from G by removing
the vertices in S) is disconnected. A separator is universal if every vertex of the



4 D. Chakraborty and R. B. Sandeep

separator is adjacent to every vertex outside the separator. We will be using the
term ‘universal K1 (resp. K2) separator’ to denote a universal separator which
induces a K1 (resp. K2). Let V

′ be a subset of vertices of a graph H. By H[V ′]
we denote the graph induced by V ′ in H. For a graph G and two subsets A and
B of vertices of G, by E[A,B] we denote the set of edges in G, where each edge
in the set is having one end point in A and the other end point in B.

Contraction. Contracting an edge uv in a graph G is the operation in which
the vertices u and v are identified to be a new vertex w such that w is adjacent
to every vertex adjacent to either u or v. Given a graph G and a subset F of
edges of G, the graph G/F obtained by contracting the edges in F does not
depend on the order in which the edges are contracted. Every vertex w in G/F
represents a subset W of vertices (which are contracted to w) of G such that
W induces a connected graph in G. Let GF be the subgraph of G containing all
vertices of G and the edges in F . There is a partition P of vertices of G implied
by F : Every set in P corresponds to the vertices of a connected component in
GF . We note that many subsets of edges may imply the same partition - it
does not matter which all edges of a connected subgraph are contracted to get
a single vertex. The graph G/F is nothing but the graph in which there is a
vertex corresponding to every set in P and two vertices in G/F are adjacent if
and only if there is at least one edge in G between the corresponding sets in P.
The graph G/F is equivalently denoted by G/P. Assume that P ′ is a partition
of a subset of vertices of G. Then by G/P ′ we denote the graph obtained from
G by contracting each set in P ′ into a single vertex. The cost of a set P in P is
the number |P | − 1, which is equal to the minimum number of edges required to
form the set P . The cost of P, denoted by cost(P), is the sum of costs of the sets
in P. We observe that |P|+cost(P) = n, where n is the number of vertices of G.
We say that F touches a subset W of vertices of G, if there is at least one edge
uv in F such that either u or v is in W . Let u, v be two non-adjacent vertices of
G. Identifying u and v in G is the operation of removing u and v, adding a new
vertex w, and making w adjacent to every vertex adjacent to either u or v.

Fixed parameter (in)tractability. A parameterized problem is fixed-parameter
tractable (FPT) if it can be solved in time f(k)|I|O(1)-time, where f is a com-
putable function and (I, k) is the input. Parameterized problems fall into differ-
ent levels of complexities which are captured by the W-hierarchy. A parameter-
ized reduction from a parameterized problem Q′ to a parameterized problem Q
is an algorithm which takes as input an instance (I ′, k′) of Q′ and outputs an
instance (I, k) of Q such that the algorithm runs in time f(k′)|I ′|O(1) (where
f is a computable function), and (I ′, k′) is a yes-instance of Q′ if and only if
(I, k) is a yes-instance of Q, and k ≤ g(k′) (for a computable function g). We
use parameterized reductions to transfer fixed-parameter intractability. For more
details on these topics, we refer to the textbook [9]. The problem that we deal
with in this paper is defined as follows.
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H-free Contraction: Given a graph G and an integer k, can G be mod-
ified into an H-free graph by at most k edge contractions?

3 NP-completeness

In this section we prove that H-free Contraction is NP-complete whenever
H is not a complete graph of at most two vertices. First we obtain reductions
for the cases when H is connected but does not have any universal K1 separator
and universal K2 separator. Then we deal with non-star graphs with universal
K1 separator or universal K2 separator. Next we resolve the case of stars. Then
the cases when H is a 2K2 or a K2 +K1 are handled. These come as base cases
in the inductive proof of the main result of the section. We crucially use the
following results.

Proposition 1 ( [10,15]). H-free Contraction is NP-complete when H is
a 2K1, or a P3, or a Kt, for any t ≥ 3.

3.1 A general reduction

Inspired by a reduction by Asano and Hirata [2], we introduce the following
reduction from Vertex Cover which handles connected graphs H without any
universal K1 separator and universal K2 separator.

Construction 1 Let G′ be a graph without any isolated vertices, and H be a
connected non-complete graph. We obtain a graph G from G′ and H as follows.

– Subdivide each edge of G′ once, i.e., for every edge uv, introduce a new vertex
and make it adjacent to both u and v, and delete the edge uv.

– Replace each new vertex by a copy H.
– Let w be a non-universal vertex of H (the existence of w is guaranteed as H

is not a complete graph). Identify w of every copy of H (introduced in the
previous step) to be a single vertex named w.

Let the resultant graph be G. The vertices in G copied from G′ form the set
V ′, which forms an independent set in G. For each edge uv in G′, the vertices,
except w, of the copy of H is denoted by Wuv. By W we denote any such set. We
note that w is adjacent to every vertex in V ′, as G′ does not have any isolated
vertices. This completes the construction. An example is shown in Figure 1.

Let H be a connected non-complete graph with h vertices and without any
universal K1 or K2 separator. Let G′ be a graph without any isolated vertices.
Let G be obtained from (G′, H) by Construction 1. Assume that (G′, k) is a
yes-instance of Vertex Cover and let T be any vertex cover of size at most
k of G′. Let F = {wu : u ∈ T}. Let w itself denote the vertex obtained by
contracting the edges in F . It can be seen that w is a universal vertex in G/F .
If we remove w from G/F , then the resultant graph is a disjoint union of W ’s
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w

z

x y

Wxz Wyz

Wxy

Fig. 1: Construction of G from (G′, H) by Construction 1, where G′ is a triangle
and H is a P4. The vertices of G′ in G are darkened.

and graphs obtained by adding universal vertices to W . This helps us to prove
that G/F is H-free. Let F be a solution of (G, k). Then we can create a vertex
cover T of G′ as follows: If F touches u for some vertex u ∈ V ′, then add u to
T . If F touches an edge in the graph induced by Wuv ∪ {w}, then arbitrarily
add either u or v in T . Since H is induced by Wuv ∪ {w} for every uv in G′, the
graph induced by Wuv ∪ {u, v, w} is touched by F . Therefore, T contains either
u or v. Thus we obtain Lemma 1.

Lemma 1. Let H be a connected non-complete graph with neither a universal
K1 separator nor a universal K2 separator. Then H-free Contraction is
NP-complete.

3.2 Graphs with universal clique separators

Now we handle the graphs H with either a universal K1 separator (except stars)
or with a universal K2 separator. We note that H cannot have both a universal
K1 separator and a universal K2 separator. Further H cannot have more than
one such separator.

Construction 2 Let G′, H be any graphs and let V ′ be any subset of vertices of
H. Let b, c, k be positive integers. We obtain a graph G from (G′, H, V ′, b, c, k) as
follows. For every set S of vertices of G′, where S induces a clique on b vertices
in G′, do the following: Introduce k+c copies of H[V ′] and make every vertex of
the copies adjacent to every vertex of S. Let WS denote the set of new vertices
introduced for S, and let W be the set of all new vertices.

Let H be a graph with a universal K1 separator or a universal K2 separator.
Let the set of vertices of the separator be denoted byK. Assume that there exists
at least two non-isomorphic components in H − K (therefore, H cannot be a
star). Let J be a component in H −K with minimum number of vertices. Let c
be the number of times J appears (as a component) in H−K. Let V ′ be the set
of vertices of a copy of J . Let H ′ be the graph obtained from H by removing the
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Fig. 2: Construction of G from (G′, H, V ′, b, c, k) by Construction 2, where G′ is
a triangle and H is a paw. Since paw has a universal K1 separator (denote it
by K), b = |K| = 1. Since we get a K1 and a K2 after removing the universal
K1 separator from paw, the smallest component is K1. Therefore V ′ contains a
single vertex. Since there are only one copy of K1 (as a component) in H −K,
c = 1. Assume that k = 1. The vertices of G′ in G are darkened.

vertices of every component isomorphic to J in H−K. Let (G′, k) be an instance
of H ′-free Contraction. Let G be obtained from (G′, H, V ′, b = |K|, c, k) by
Construction 2. An example of the construction is shown in Figure 2.

Let F ′ be a solution of (G′, k). If there is an induced H in G/F ′ then every
vertex in W can only act as a vertex in J in the induced H. Therefore, there will
be an induced H ′ in G′/F ′, which is a contradiction. Unmanageable number of
copies of J attached to the cliques of size b in G′ ensures that one has to kill all
H ′s in G′ to kill all H in G. This gives us Lemma 2.

Lemma 2. Let H be a graph with a universal K1 separator or a universal K2

separator, denoted by K. Assume that H−K has at least two components which
are not isomorphic. Let J be a component in H − K with minimum number
of vertices. Let H ′ be obtained from H by removing all components of H −
K isomorphic to J . Then there is a polynomial-time reduction from H ′-free
Contraction to H-free Contraction.

What remains to handle is the case when H has a universal K1 separator or
a universal K2 separator K such that H −K is a disjoint union of a graph J .
The diamond graph is an example. For this we need the concept of an enforcer
- a structure to forbid contraction of certain edges. Enforcers are used widely
in connection with proving hardness results for edge modification problems (see
[7,15,22]). We use enforces to come up with a reduction which gives us Lemma 3.

Lemma 3. Let H be a graph with a universal K1 separator or a universal K2

separator, denoted by K. Assume that H − K is a disjoint union of t copies
of a graph J , for some t ≥ 2. Let H be not a star and let H ′ be tJ . Then
there is a polynomial-time reduction from H ′-free Contraction to H-free
Contraction.

3.3 Stars and small graphs

Here, we resolve the cases of 2K2, K2 + K1, and star graphs. We start with a
reduction for 2K2.



8 D. Chakraborty and R. B. Sandeep

Construction 3 Let G′ be a graph and k be an integer. We obtain a graph G
by attaching k + 1 pendant vertices, denoted by a set Zu, to every vertex u in
G′. Let Z denote the set of all newly added vertices.

Let (G′, k) be an instance of 2K1-free Contraction. We obtain an in-
stance (G, k) of 2K2-free Contraction by applying Construction 3 on (G′, k).

Lemma 4. Let (G′, k) be a yes-instance of 2K1-free Contraction. Then
(G, k) is a yes-instance of 2K2-free Contraction.

Proof. Let P ′ be a partition of vertices of G′ such that cost(P ′)≤ k and G′/P ′

is H-free. We obtain a partition P of vertices of G from P ′ by introducing
singleton sets corresponding to the vertices in Z. Clearly, cost(P)=cost(P ′)≤ k.
Since there is no edge induced by the sets corresponds to vertices in Z, we obtain
that if G/P is not 2K2-free, then there is an induced 2K1 in G′/P ′, which is a
contradiction.

Lemma 5. Let (G, k) be a yes-instance of 2K2-free Contraction. Then
(G′, k) is a yes-instance of 2K1-free Contraction.

Proof. Let P be a partition of vertices of G such that G/P is 2K2-free and
cost(P)≤ k. We obtain a partition P ′ of vertices of G′ as follows: For every set
P ∈ P, include P \Z in P ′. Since P induces a connected graph in G, P \Z induces
a connected graph in G′. Assume that there is a 2K1 induced by P ′

u, P
′
v ∈ P ′.

Let u ∈ P ′
u and v ∈ P ′

v. Since there is a set Zu of k+1 pendant vertices attached
to u and a set Zv of k+1 pendant vertices attached to v, at least one vertex from
Zu and at least one vertex from Zv form singleton sets in P. Then, those two
sets along with the sets containing P ′

u and the set containing P ′
v in P induces a

2K2 in G/P, which is a contradiction.

Now, the NP-completeness of 2K2-free Contraction follows from that of
2K1-free Contraction (Proposition 1) and Lemmas 4 and 5.

Lemma 6. 2K2-free Contraction is NP-complete.

The hardness of K2 + K1-free Contraction can be proved by a reduction
fromDomatic Number. Domatic number of a graph is the size of a largest set of
disjoint dominating sets of the graph, which partitions the vertices of the graph.
For example, the domatic number of a complete graph is the number of vertices
of it, and that of a star graph is 2. The Domatic Number problem is to find
whether the domatic number of the input graph is at least k or not. It is known
thatDomatic Number is NP-complete [11] even for various classes of graphs [4,
18]. Recall thatK2+K1-free graphs are exactly the class of complete multipartite
graphs. The reduction that we use is exactly the same as the reduction for the
NP-completeness of Hadwiger number problem (which is equivalent to 2K1-free
Contraction) described by Eppstein [10]. The proof requires some adaptation.

Lemma 7. K2 +K1-free Contraction is NP-complete.

A reduction from 2K1-free Contraction resolves the case of star graph of at
least 4 vertices.

Lemma 8. For t ≥ 3, K1,t-free Contraction is NP-complete.
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3.4 Putting them together

Recall that the reduction from Vertex Cover does not handle disconnected
graph. This is the main ingredient that remains to be added to obtain the main
result of the section. This turns out to be easy. Guo [15] has a reduction for
transferring the hardness of H ′-free Contraction toH-free Contraction,
where H ′ is any component of H.

Proposition 2 ( [15]). Let H be a disconnected graph. Let H ′ be any component
of it. Then there is a polynomial-time reduction from H ′-free Contraction
to H-free Contraction.

Proposition 2 does not help us to prove the hardness when every component
of H is either a K1 or a K2. But there are simple reductions to handle them.

Lemma 9. Let H be a disconnected graph with an isolated vertex v. There is a
polynomial-time reduction from (H − v)-free Contraction to H-free Con-
traction.

Repeated application of Lemma 9 implies that there is a polynomial-time re-
duction from 2K1-free Contraction to tK1-free Contraction, for every
t ≥ 3. Then the NP-Completeness of 2K1-free Contraction (Proposition 1)
implies Lemma 10.

Lemma 10. For every t ≥ 3, tK1-free Contraction is NP-complete.

Now, we handle the case when H is a disjoint union of t copies of K2.

Lemma 11. Let H = tK2, for any integer t ≥ 3 and let H ′ be (t − 1)K2.
There is a polynomial-time reduction from H ′-free Contraction to H-free
Contraction.

Repeated application of Lemma 11 and the NP-completeness of 2K2-free Con-
traction (Lemma 6) give us the following Lemma.

Lemma 12. For every t ≥ 3, tK2-free Contraction is NP-complete.

Now we are ready to prove the main result of this section.

Theorem 1. Let H be any graph other than K1 and K2. Then H-free Con-
traction is NP-complete.

Proof. We prove this by induction on n, the number of vertices of H. The base
cases are when n = 2 and n = 3, i.e., when H is 2K1 or P3 or triangle (Propo-
sition 1), or 3K1 (Lemma 10), or K2 +K1 (Lemma 7). Assume that n ≥ 4.

Let H be a disconnected graph. Assume that H has a component H ′ with
at least three vertices. By Proposition 2, there is a polynomial-time reduction
from H ′-free Contraction to H-free Contraction. Then we are done by
induction hypothesis. Assume that every component of H is either a K2 or a
K1. If H has an isolated vertex, then we are done by Lemma 9. If there are no
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isolated vertex in H, then H is isomorphic to tK2, for t ≥ 2. Then we are done
by Lemma 12.

LetH be a connected graph. IfH is complete, then Proposition 1 is sufficient.
Assume that H is non-complete. Therefore, there is a non-universal vertex in
H. Assume that H has neither a universal K1 separator nor a universal K2

separator. Then we are done by Lemma 1. Assume that H has either a universal
K1 separator or a universal K2 separator, denoted by K. Further assume that H
is not a star. Let H −K has at least two non-isomorphic components. Let J be
any component in H−K with least number of vertices. Let H ′ be obtained from
H by removing all copies of J inH−K. Then by Lemma 2, there is a polynomial-
time reduction from H ′-free Contraction to H-free Contraction, and
we are done. Assume that H −K is disjoint union of t copies of a graph J , for
some t ≥ 2. Then Lemma 3 gives us a polynomial-time reduction from tJ-free
Contraction to H-free Contraction. For the last case, assume that H is
a star graph. Then we are done by Lemma 8.

4 W[2]-hardness

In this section, we prove that H-free Contraction is W[2]-hard whenever
H is a tree, except for 7 trees. All our reductions are from Dominating Set,
which is well-known to be a W[2]-hard problem. First we obtain a reduction for
all trees which are neither stars nor bistars. Then we come up with a reduction
for a subset of bistars, a corner case of the same proves the case of stars. Then
we come up with a reduction which handles the remaining bistars.

Recall that a dominating set D of a graph G is a subset of vertices of G such
that every vertex of G is either in D or adjacent to a vertex in D. The objective
of the Dominating Set problem is to check whether a graph has a dominating
set of size at most k or not.

4.1 A general reduction for trees

Here we handle all trees which are neither stars nor bistars. The reduction that
we use is an adapted version of a reduction used in [8] (to handle 3-connected
graphs) and a reduction used in [20] (to handle cycles).

Construction 4 Let G′, H be graphs and k be an integer. Let {v1, v2, . . . , vn}
be the set of vertices of G′. We construct a graph G from (G′, H, k) as follows.

– Introduce a clique X = {x1, x2, . . . , xn}.
– Introduce n copies of H denoted by H1, H2, . . . ,Hn. Let Vi denote the set of

vertices of Hi, for 1 ≤ i ≤ n.
– Let w be any vertex in H. Identify w’s of all copies of H. Let the vertex

obtained so be denoted by w. Let the remaining vertices in each copy Hi be
denoted by Wi, i.e., Wi ∪ {w} induces H, for 1 ≤ i ≤ n.

– Make w adjacent to every vertex in X.
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– Make xi adjacent to every vertex in Wj if and only if i = j or vi is adjacent
to vj in G′.

This completes the construction. An example is shown in Figure 3.

w

(a) H

w

x2x1 x3

W1 W3

W2

(b) G

Fig. 3: Construction of G from (G′ = P3, H) by Construction 4

Let (G′, k) be an instance of Dominating Set. Let H be a tree which is
neither a star nor a bistar. We obtain a graph G from (G′, H, k) by applying
Construction 4.

Lemma 13. Let (G′, k) be a yes-instance of Dominating Set. Then (G, k) is
a yes-instance of H-free Contraction.

Proof. Let D be a dominating set of size at most k of G′. Let F = {wxi|vi ∈ D}.
Clearly, |F | = |D| ≤ k. We claim that G/F is H-free. Let w itself denote the
vertex obtained by contracting the edges in F . To get a contradiction, assume
that there is an H induced by a set U of vertices of G/F . We observe that
w is a universal vertex in G/F , due to the fact that D is a dominating set of
G′. Since H does not contain a universal vertex (a tree has a universal vertex
if and only if it is a star), w cannot be in U . Since H is triangle-free, U can
have at most two vertices from X. Assume that U has no vertex in X. Then U
must be a subset of Wi, which is a contradiction (observe that Wi and Wj are
nonadjacent in G/F for i ̸= j). Assume that U has exactly one vertex, say xi,
from X. Then the rest of the vertices are from Wjs adjacent to xi. Recall that
xi is adjacent to either all or none of vertices in Wj . Since H is triangle-free,
the vertices in U from Wjs adjacent to xi form an independent set. Then H is a
star, which is a contradiction. If U has exactly two vertices from X, then with
similar arguments, we obtain that H is a bistar, which is a contradiction.

Lemma 14. Let (G, k) be a yes-instance of H-free Contraction. Then
(G′, k) is a yes-instance of Dominating Set.
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Proof. Let F ′ be a subset of edges of G such that G/F ′ is H-free and |F ′| ≤ k.
We construct a new solution F from F ′ as follows. If F ′ contains an edge touching
Wj , then we replace that edge with the edge wxj in F . Clearly |F | ≤ |F ′| ≤ k.
Since an edge touching Wj kills only the H induced by Wj ∪{w}, which is killed
by wxj , we obtain that G/F is H-free. Let P be the partition of vertices of G
corresponds to F . Let Pw be the set in P containing w. Let D = Pw∩X. Clearly,
|D| ≤ |cost(P)| ≤ k. We claim that D′ = {vi|xi ∈ D} is a dominating set of G′.
Assume that there is a vertex vj in G′ not dominated by D′. Then Wj ∪ {w}
induces an H in G/F , which is a contradiction.

Lemmas 14 and 13 imply that there is a parameterized reduction from Dom-
inating Set to H-free Contraction.

Lemma 15. Let H be a tree which is neither a star nor a bistar. Then H-free
Contraction is W[2]-hard.

4.2 Stars and Bistars

First we generalize a reduction given in [15] for K1,4-free Contraction. This
generalized reduction covers all bistars Tt,t′ such that t ≥ 3 and t > t′ ≥ 0. As
a boundary case (when t′ = 0) we obtain hardness result for all stars of at least
5 vertices.

Construction 5 Let G′ be a graph with a vertex set V ′ = {v1, v2, . . . , vn} and
let k, t, t′ be integers. We construct a graph G from (G′, k, t, t′) as follows.

– Create two cliques X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn}.
– Make xi adjacent to yj if and only if i = j or vivj is an edge in G′.
– Create a vertex w and two cliques A and B of k + 1 vertices each.
– Make w adjacent to all vertices of X ∪A ∪B. Make A ∪B ∪ Y a clique.
– Introduce t − 1 cliques with k + 1 vertices each and make them adjacent to

A. Let A′ denote the set of these vertices.
– Introduce t − 1 cliques with k + 1 vertices each and make them adjacent to

B. Let B′ denote the set of these vertices..
– Introduce t − 1 cliques with k + 1 vertices each and make them adjacent to

X. Let X ′ denote the set of these vertices.
– Introduce a clique of k+1 vertices and make it adjacent to Y . Let Y ′ denote

the set of these vertices.
– For every vertex in A′ ∪B′ ∪X ′ ∪ Y ′, attach t′ degree-1 vertices.

Let H be Tt,t′ for t > t′ ≥ 0 and t ≥ 3. Let (G′, k) be an instance of
Dominating Set. We obtain G from (G′, t, t′, k) by Construction 5. An example
is shown in Figure 4. Let D be a dominating set of size at most k of G′. Let
F = {wxi|vi ∈ D}. We can prove that G/F is H-free. For the other direction,
let F be a minimal subset of edges of G such that G/F is H-free and |F | ≤ k.
We can prove that F does not contain any edges of G other than those from
E[w,X]∪E[X,X]∪E[Y, Y ]. Then we can come up with a dominating set of size
at most k for G′.
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w

A

A′ B′

Y ′

X ′

B

XY

Fig. 4: Construction of G from (G′ = P3, k = 1, t = 3, t′ = 1) by Construction 5.
Dashed circles denote cliques. This corresponds to the reduction for T3,1-free
Contraction.

Lemma 16. Let t > t′ ≥ 0 and t ≥ 3. Then Tt,t′-free Contraction is W[2]-
hard.

Now, we are left with the bistars Tt,t′ where t = t′. For this, we come up with
a reduction that handles more than this case and obtain the following Lemma.

Lemma 17. Let t ≥ t′ ≥ 3. Then Tt,t′-free Contraction is W[2]-hard.

Now, Lemmas 15, 16, and 17 imply the main result of this section.

Theorem 2. Let T be a tree which is neither a star of at most 4 vertices
({K1,K2, P3,K1,3}) nor a bistar in {T1,1, T2,1, T2,2}. Then Tt,t′-free Con-
traction is W[2]-hard.

We believe that our W[2]-hardness result on trees will be a stepping stone for
an eventual parameterized complexity classification of H-free Contraction.
The most challenging hurdle for such a complete classification can be the graphs
H where each component is of at most 2 vertices, and the case of claw, the usual
trouble-maker for other graph modification problems to H-free graphs.

We conclude with some folklore observations. As noted in a version of [20],
the property that “there exists at most k edges contracting which results in
an H-free graph” can be expressed in MSO1. The length of the corresponding
MSO1 formula will be a function of k. Then, there exists FPT algorithms for
H-free Contraction, whenever H-free graphs have bounded rankwidth (See
Chapter 7 of the textbook [9]). This, in particular, implies that K2 +K1-free
Contraction can be solved in FPT time. It is known that every component
of a paw-free graph is either triangle-free or complete multipartite [23], where

where paw is the graph . Then the existance of FPT algorithms for K3-
free Contraction and K2+K1-free Contraction imply that there exists
an FPT algorithm for paw-free Contraction.
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