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Abstract: We study the use of visual content tracking applications in conjunction with blockchain solutions. The 
issue consists of multimedia technologies such as fingerprinting requiring the computing power of off-chain 
machines to operate. We present a workflow using a load-balancing architecture that allows for such operations 
to be computed off-chain yet benefitting from the level of integrity brought by blockchains. We thus enable the 
creation of blockchain-backed data storages where multimedia inputs can be identified by their semantic content. 
We also address the challenge of minimizing computing resources which occurs when on-chain processing is in 
context, ensuring such an architecture can be deployed and used on state-of-the-art environments. We illustrate 
our workflow on the Tezos and Ethereum platforms and provide two implementations, relying on an image filter 
detection use case (featuring the International Standard Content Code), and a museum IPR use case (featuring a 
robust video fingerprinting method), respectively. We thus demonstrate the mutually beneficial association of on-
chain and off-chain applications for multimedia content tracking as well as the blockchain-agnostic nature of the 
advanced solution. 
 
Keywords: Blockchain, Ethereum, Fingerprint, Interoperability, Load-balancing, Tezos, Verified token,  
Visual content. 
 

 
 

1. Introduction 
 
This paper falls under the scope of the  

relationship between blockchain and multimedia 
technologies.  

On the one hand, blockchains are peer-to-peer 
anonymous networks of nodes producing a sequence 
of cryptographically linked blocks, containing 
information about the transactions that have occurred 
in that network [1]. They mainly act as a trusted third 
party in the exchange of assets and information 
between untrustworthy actors. Since their inception, 
blockchains have evolved to support a large area of 
applicative domains thanks to automated pieces of 
code called Smart Contracts. Smart Contracts are 
written in different languages for different blockchains 
(e.g., Solidity for Ethereum) and run exactly as they 
are programmed, with no possibility of change or 
influence from any central authority. Decentralized 

applications use Smart Contracts as backends serving 
frontend user interfaces to offer a wide array of 
services, including but not restricted to, decentralized 
finance (DeFi) or marketplaces. The digital assets that 
are meant to be owned and exchanged are referred to 
as tokens, and can be fungible (interchangeable and 
splitable, as per legal tender) or non-fungible 
(representing unique assets and being undividable). 
Non-Fungible Tokens (NFTs) often serve as the 
representation of digital art and constitute a 4 billion 
USD market in 2021 [2]. Yet, the environment is 
riddled with fraudulent content. The biggest NFT 
selling platform in the world [3], Opensea, observed 
that over 80% of the assets being flagged as 
plagiarized works, fake collections, and spam were 
created with their simplified “lazy minting” process, 
accessible to all [4]. This serves as an example to 
illustrate that NFT abuse is easy, accessible, and 
rampant [5]. 
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On the other hand, multimedia content represents 
one of the highly valuable assets on the market today. 
From video content for cinemas to audio analysis for 
military applications, nearly every sector benefits 
from advancements in multimedia content services. 
Being an asset so valuable, its protection is naturally 
at very high stakes, be it in academic or industrial 
settings. Various approaches allow to control the flow 
of data by hiding it (data encryption), identifying its 
owners (digital signatures), or tracking the content 
itself (digital watermarking and fingerprinting). 
Specifically, near-duplicated content protection (also 
referred to as visual fingerprinting) is a technology 
able to identify slightly modified versions of visual 
content (image or video).  

Visual fingerprinting does not feature any intrinsic 
trust property and blockchain is an appealing solution 
to this problem. In fact, coupling blockchain to 
multimedia content presents no conceptual 
contradictions. Yet, the association between the two is 
drastically limited by the lack of methodological 
bridges, as multimedia content processing is a priori 
prohibitively complex to be executed on-chain. 

This paper constitutes an extension of our previous 
study presented in [6]. It couples the above two 
notions into an architecture enabling the creation of 
data storages (e.g., databases) of semantically verified 
content. The main contribution is a blockchain 
agnostic, load-balancing workflow that combines the 
trust and integrity of blockchain to the fingerprinting-
based precise content identification to produce 
verified data that can be stored or minted into tokens. 
According to this workflow, each time a piece of 
multimedia content is candidate to be registered into a 
blockchain-authenticated storage, its semantic content 
is compared to the previously entries. The 
authenticated storage can then be updated according to 
the result of the comparison, and digital assets can be 
created. Proof-of-concepts of this workflow are 
provided for the Tezos and Ethereum blockchains. 

The present paper is focused on providing the 
governance mechanism allowing the accommodation 
of fingerprinting operations in blockchain applicative 
environments. As such, fingerprinting methods 
themselves, database exploitation, and security 
concerns are directly inherited from the state-of-the-
art and are out of our research scope.  

This paper elaborates on the topic with the 
following organization. We discuss the current state-
of-the-art of blockchain-assisted applications in 
Section 2 before introducing our methodology in 
Section 3. In Section 4, we implement the workflow 
for various blockchain environments and use cases 
before subsequently analyzing its performance in 
Section 5. Finally, we conclude and discuss future 
work in Section 6. 

In a nutshell, the main contributions with respect 
to our previous conference paper [6] are: 
 Reconsidering and extending the architectural 

basis to accommodate the specific needs of 
different blockchain environments, 

 Evaluating the advanced method and its 
performances in a new blockchain 
environment, namely Tezos, 

 Demonstrating that the concepts brought 
forward are blockchain agnostic, thus acting at 
the level of a conceptual blockchain 
interoperability tool.  

 
 

2. State-of-the-art 
 
We begin by presenting concise state-of-the-arts of 

both Smart Contracts (Section 2.1) and visual 
fingerprinting (Section 2.2) as they are the 
fundamental notions we shall rely on for the rest of the 
paper. We then go over their simultaneous uses in 
current literature (Section 2.3). A lot of the cited 
studies served as a base for the original source of this 
extension, [6], as detailed hereafter. 

 
 

2.1. Smart Contracts 
 

Although theorized in 1994 [7], the concept of 
Smart Contracts, or software-based automatic 
contracts, gained popularity with Ethereum [8]. The 
capacity to enforce agreements between parties 
without the involvement of a trusted third-party 
enabled Smart Contracts to gain massive traction in 
the DeFi and notarization fields, as summarized in [9]. 
Although legal gray zones and security threats 
undermined the boom, Smart Contracts quickly spread 
to other use cases (healthcare, cloud computing, 
energy, etc.) and the activity of scientific literature in 
the field suggests that opportunities are still being 
investigated for various industries [10]. Smart 
Contracts are also often used as the backend to 
decentralized applications (dApps e.g., exchanges, 
marketplaces, etc.) in which case they interact with an 
off-chain frontend User Interface. More specialized 
approaches, limited by the computing capabilities of 
blockchains, tended to use Smart Contracts as 
complements to legacy applications such as wireless 
systems [11]. 

 
 

2.2. Visual Content Tracking 
 

While data encryption and identification are out of 
the scope of this study, we shall focus on content 
tracking. Specifically, we will need content to be 
tracked via an easily manipulable invariant digest. 
Although cryptographic hashing accomplishes the 
above, it can only be used to check for strict 
differences and not to express said differences. Indeed, 
an image with a single pixel modified will have a 
completely different cryptographic hash than its 
original.  

This is important because multimedia content 
changes during its lifecycle. All common operations 
(recording, uploading, broadcasting, sharing, 
downloading, etc.) modify multimedia content in often 
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imperceptible ways (luminosity, format, compression, 
etc.). This ties to the concept of near-duplicated 
content, that covers content that is naturally of 
maliciously modified. Specifically, [12] defines near-
duplicated content (videos in their context) as 
“Identical or approximately identical videos close to 
the exact duplicate of each other, but different in file 
formats, encoding parameters, photometric variations, 
editing operations, different lengths, and certain 
modifications.”. 

We can overcome this issue using fingerprint 
techniques, which contrarily to cryptographic hashing 
utilize the semantic content of their input to generate 
digests that are invariant to near-duplicated 
modifications. Consequently, inputs that are very 
similar will generate fingerprints that are close (in 
terms of a given similarity measure, like normalized 
correlation or Hamming distance, for instance). This is 
illustrated in Fig. 1. 

 
 

 
 

Fig. 1. Invariant digest comparisons in cryptographic 
hashing vs. similarity preserving visual fingerprinting. 
 
 
This feature allows fingerprints to be used to find 

semantic nearest neighbors of an input amongst a 
given dataset. Their compromise with regards to 
cryptographic hashing consists in their security 
features and size. Fingerprinting and cryptographic 
hashing are tools that simply do not solve the same 
problem. In this paper, we will use fingerprinting to 
identify near-copies of visual content and 
cryptographic functions to shorten invariant digests 
for easy storage. 

 
 

2.3. Joint Usage of Multimedia Content 
Tracking and Visual Fingerprints  

 
When it comes to multimedia content being used 

in blockchain contexts, Non-Fungible Tokens (NFTs) 
are a re-occurring concept. NFTs are unique 
blockchain digital assets that represent data and are 
created, stored, and exchanged by users and Smart 
Contracts. As such, digital art and other multimedia 
asset representations are securely distributed in a 
massive market projected to reach 200 billion USD by 
2030 [2], featuring large and trusted actors [3]. Yet, 
NFTs are vastly misunderstood in their capacity to 
represent assets. They are also notoriously lenient with 
Intellectual Property Right (IPR) ideas, the NFT copy 

and stolen content market fueling debate and tainting 
the reputation of the space [13]. 

Outside of NFTs, multimedia processing itself can 
be enhanced via blockchain applicative technologies 
as part of the process [14] or hand in hand with off-
chain technology [15]. The joint uses of content 
protection techniques and blockchains are 
summarized in [16]. This holistic survey cites 
encryption, watermarking, and transaction tracking 
fingerprinting, indicating that near copy detection 
using visual fingerprinting techniques had not yet been 
associated with blockchain before [6]. 

The notion of databases, or more generally data 
storages, being used alongside blockchains is not 
novel. For instance, databases and blockchains were 
used in the IoT use case analyzed in [17] and the cloud 
computing study in [18]. To the best of our knowledge, 
the replicated hashed “shadow” on-chain database as 
an integrity verifier brought forward in [6] was novel. 
The idea of a load-balancing architecture for 
blockchain-enhanced applications we used in this 
paper was brought forth in [19]. 

 
 

3. Methodology 
 
In this Section, we detail the processing workflow 

we designed for serving the needs of coupling 
blockchain to visual fingerprinting. We will start by 
explaining our method in a general sense, before 
detailing each of the methodological blocs constituting 
the architecture. 

 
 

3.1. General Architecture 
 

The processing workflow we advance is supported 
by a generic architecture illustrated in Fig. 1. It is 
designed as to ensure the processing and exchange of 
data amongst four logical entities: an off-chain 
Database, an off-chain App, a Smart Contract, and a 
Token Contract. The first three entities represent the 
pillars of the solution while the Token Contract is 
called upon the successful processing of an input and 
is not involved in the inner workings of the solution.  

The initial setup of the database and deployment of 
the Smart Contract is done by a qualified blockchain 
expert. Once setup, no more blockchain expertise is 
required and an App operator can use the architecture. 

The process starts with visual content being 
fingerprinted, and these fingerprints being stored on a 
database. They are then initialized on the blockchain 
via the Smart Contract, which serves as a pseudo 
database. This on-chain tamperproof, redundant 
database allows the Smart Contract to serve as an 
arbiter ensuring the database has not been tampered 
with. It intervenes before the App compares an input 
(be it a new piece of content or a suspected copy) to 
each of the off-chain database entries. Three results are 
possible, and are illustrated in the implementation 
(Section 4, Fig. 12): 
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• The input is detected as a copy of existing 
content (i.e., the fingerprint is identical to an 
entry of the database) and the operator is 
informed as such and the process stops.  

• The input is detected as near-duplicated 
content, or a near copy of one of the entries (cf. 
Section 4) and the operator may decide to 
consider the input as original or a copy. 

• The content is not detected as the copy of 
existing entry. The operator can add it to the 
database by answering a prompt.  

Upon its arrival into the on-chain database, the entry 
is minted as a Non-Fungible Token and sent to the 
wallet of the initiator of the transaction. This process 
is illustrated in Figs. 2 and 3. 

  
 
 

 
 

Fig. 2. Advanced architecture, bearing on-chain Smart and Token Contracts and an off-chain App and database. 
 
 

 
 

Fig. 3. Step-by-step addition of a new entry in the database, operations related to the second blockchain architecture in red. 
 
 

3.2. Off-chain Entities 
 

This Section details the two off-chain entities 
shown in Fig. 2, namely the Database and App. 

The advanced architecture does not worry itself 
with the exact technology managing the database. In 
fact, it only has light lifting to do, as it only needs to 

hold the fingerprints of the multimedia content and to 
pass that information to the App when requested. 
Although it would be possible to hold the content itself 
in the database and to fingerprint it upon retrieval, a 
lighter and more private database allows for faster 
processing and less potential privacy concerns.  
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The App has a central role in the process. Not only 
does it interact with both databases, but it also acts as 
the only point of contact for the operator. As such, the 
visual interface can be designed to make the process 
intuitive and easy to operate. In the context of a proof-
of-concept, we did not develop any graphical interface 
and we interacted with the App by using a command 
prompt.  

The App is given a visual content file (.jpg, .mp4, 
.pdf, etc. depending on the use case) and an optional 
threshold (that defaults to a recorded value) as input 
parameters and begins by establishing a connection 
with the Smart Contract, invoking a greenLight 
function. This function returns True, allowing the 
process to continue, if and only if the off-chain and on-
chain databases match. It does so by requesting the 
size of the map of hashes from the Smart Contract and 
using the compare function of the latter  
(Subsection 3.3) for each one of the entries of the off-
chain database. This process is expedited by the fact 
that the database contains fingerprints that need  
not be systematically reprocessed. The greenLight 
function returning False will interrupt the process and 
inform the operator that the database has been 
tampered with. 

Once this important control passed, the App 
computes the input file’s fingerprint and compares it 
to all the entries in the off-chain database. As 
explained in Subsection 3.1, three possible results are 
presented to the operator: copy, near copy, or no copy. 
In the latter two cases, the operator may prompt the 
App to add the input to the database. The App then 
transactions the Smart Contract via the deployer wallet 
to add the hash of the new fingerprint to the on-chain 
database, before adding the fingerprint (identified by 
its hash) to the off-chain database. Note that the 
fingerprint is hashed before being stored in the Smart 
Contract because of size and format concerns (i.e., 
they cannot be defined in blockchain development). If 
the fingerprint in context happens to output short 
identifiers, the hashing step may be skipped as it is not 
essential to the proper functioning of the code, 
although it could still be used to add a layer of privacy 
to the information. 

Once the transaction that added the new entry to 
the Smart Contract is validated, the App queries the 
minting of a unique NFT (cf. Subsection 3.3). The 
entire workflow is shown in Fig. 3. 

Although the method used to identify content (i.e., 
the fingerprinting method) is the core of the 
application, the general architecture is independent of 
its specificities. The role of the fingerprinting method 
is twofold. First, being the initial step of the process, it 
defines the input format. Indeed, near copy detection 
has use cases using a variety of data formats (images, 
video, text, etc.) some of which might focus on 
semantic content whilst others could include metadata 
or instance data. Second, the detection can only be as 
precise as the specific fingerprinting method permits. 
As opposed to having a universal solution, 
appropriately selecting a fingerprinting method on a 
case-by-case basis will yield the best results. For 

illustration purposes, we elected two complementary 
methods to illustrate this point [22, 23]. 

The thresholds used to detect near copies also 
depend on the use case. If the objective is only to 
detect very close copies of the content in the database, 
we would set our normalized correlation threshold 
close to 1, or our maximum Hamming distance very 
small (in the range of 0 – 3 bits for a 72-bit identifier). 
If we are more generally looking to detect the same 
semantic content after alteration, we would set our 
normalized correlation threshold between .6 and .8, or 
our maximum Hamming distance between 8 and 12 
(for binary fingerprints of size for a 72-bit identifier). 
For our Section 4 implementations, with a goal of 
general detection in mind, we used a threshold of 0.7 
for the normalized correlation and a maximum 
Hamming distance of 10. Of course, these limits can 
and should be tailored to a given set of circumstances 
and objectives. 
 
 
3.3. On-chain Entities 

 
This section details the two on-chain entities 

shown in Fig. 2, namely the Smart Contract and Token 
Contract. 

As explained in Subsection 3.2 and Fig. 2, the 
Smart Contract is used on two occasions: to provide 
information to the greenLight function and to process 
a new entry. The former does not require input data 
whilst the latter requires a hash and an optional string 
of general information concerning the entry. It maps 
these two entities into a structure containing a Boolean 
to indicate the existence of the hash and an optional 
string containing general information. In addition, it 
implements five functions. 

Three of these functions are of get type and allow 
to communicate information about the on-chain 
Database to the App. They return the size of the map, 
the information associated with a hash, and the 
Boolean associated with a hash, respectively. The 
latter serves as the comparison function that is called 
by the App during the greenLight function. The other 
two functions manage database entries, respectively 
providing the addition and deletion of entries. The 
addition function verifies prior inexistence of the entry 
in the database, indexes relevant information (if 
present in the parameters), adjusts the size of the map 
and returns a Boolean to indicate successful 
processing. The deletion function checks for the 
existence of the entry and adjusts the size of the map 
if needed before returning a Boolean. The addition and 
deletion functions can only be called by the address 
that deployed the Smart Contract. If a use case requires 
multiple addresses to call the Smart Contract, a 
whitelist can replace the “only deployer” approach. 

The Token Contract is called upon after the 
successful addition of a new entry in both databases. It 
generates tokens that contain a trace of this workflow 
in their metadata. In our example, the token contains 
the hash of the original fingerprint and is sent to the 
deployer wallet as it is the central entity of the use 
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case. These tokens can then stay in this wallet or be 
sent manually or automatically to addresses belonging 
to the Intellectual Property Rights (IPR) holders, for 
example. It would be simple enough for the operator 
to indicate the address of the content provider for the 
token to be distributed directly upon validation. This 
NFT could be more complex, but its format largely 
depends on the use case. If this architecture were used 
to certify content before it is sold as original, one could 
imagine additional information being present in the 
token to ensure the good standing of the content the 
token represents. Such additional information may 
relate to the transaction number of the initial 
admission of the entry in the database or the electronic 
signature of the operator. 

Our initial work being on Ethereum, we selected 
the popular ERC721 standard [20] in which we put the 
hashed fingerprint of the file. If dealing with Tezos, 
the FA2 [21] standard can be used instead. Please note 
that within this proof-of-concept, the burning (or 
deletion) of the token that was created alongside the 
inclusion of the entry in the database does not occur.  

 
 

4. Experimental Illustration 
 

In this Section, we walkthrough and discuss 
illustrative implementations of the workflow and 
architecture brought forth in Section 3. Access control 
not being a central feature of this paper, we set out two 
parties (1) creator, which initializes the Smart 
Contract and has all access rights; and (2) 
otherUser, which only has the basic view right 
default to all blockchain users and cannot modify the 
Smart Contract.  

We start by going through a basic implementation 
of the Smart Contract and its use through a scenario on 
the Tezos infrastructure (in Section 4.1) before 
moving on to two complete implementations of the 
entire workflow using the Ethereum framework (in 
Sections 4.2, 4.3 and 4.4). Of course, the Ethereum 
Smart Contract will accomplish the same things as the 
one detailed in Subsection 4.1., and the infrastructure 
(presented in Sections 4.2, 4.3 and 4.4) logically 
functions just as well with a Tezos Smart Contract. 
 
 

4.1. Smart Contract Implementation 
 

The Smart Contract implementation is explained 
and illustrated for the Tezos platform using SmartPy 
[24], an online IDE for Tezos Smart Contracts 
available through a Python library. SmartPy provides 
us with clear test scenario capabilities, allowing us to 
illustrate the use of the Smart Contract to readers 
unfamiliar with Smart Contract development. Tezos 
development is based on meta-programming: as such, 
the code we write is not directly run but serves to 
construct the actual Smart Contract that will run on the 
blockchain [25]. 

This Subsection will focus solely on the Smart 
Contract, using a simple, nondescript, illustrative 
scenario. Figs. 4 and 5 show the SmartPy functions, 

which are lightweight and intuitive, as required by 
blockchain development. 
 
 

 
 

Fig. 4. The SmartPy Smart Contract entry point 
functions which manage the on-chain database. 

 
 

 
 

Fig. 5. The SmartPy Smart Contract view functions 
which pass on information the Smarty App. 

 
 
The two functions shown in Fig. 4 (excluding the 

constructor __init__) will manipulate the map of 
hashes sent by the app in a complete use case. The first 
adds its hash parameter alongside some information 
after verifying the request is sent by the creator and 
that the hash is not recorded previously. This last 
check can be removed if overriding were allowed. The 
second function simply deletes an entry if requested 
by the owner. These are the only two functions that 
write information on the blockchain (hence the 
@entry_point).  

The three functions shown in Fig. 5 are the get 
functions which pass on information to the App. They 
only read data and are hence preceded by 
@onchain_view. They send back the existence of a 
given hash in the map, the size of the map, and the info 
associated with a given hash, respectively. Now, we 
build a test scenario that will use this Smart Contract. 
Its initialization is shown in Fig. 6. 
 
 

 
 

Fig. 6. The SmartPy test scenario initialization with 
two users, having full rights and no rights, respectively. 
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We begin by setting up the scenario and the 
accounts we will use (creator and otherUser) so 
we can reference their addresses.  We then attempt to 
initialize the on-chain database as the App would do, 
which is illustrated in Fig. 7. 

 
 

 
 

Fig. 7. The SmartPy test scenario on-chain database 
initialization, seen from the Smart Contract. 

 
 

When creator requests the addition of a new, 
properly formatted input the transactions are executed 
without issues, as done in the first line of Fig. 7. On 
the contrary, inputting a previously recorded entry 
(line 2, Fig. 7) and otherUser’s attempts (line 3, 
Fig. 7) are rightfully unallowed operations, and hence 
reverted (denied by the blockchain). At the term of 
these operations, the Smart Contract’s storage matches 
what is shown in Fig. 8. 
 
 

 
 

Fig. 8. SmartPy Smart Contract storage after the 
addition of the three inputs shown in Fig. 7. 

 
 
The addition of new inputs can be prone to errors, 

which we illustrate in Fig. 9, where an unwanted entry 
is added then deleted by creator, whilst 
otherUser is shown to be unable to affect said 
entry. 

 
 

 
 

Fig. 9. The SmartPy test scenario showing an unwanted 
entry being added and subsequently removed. 

 
 

At the term of these transactions, the storage is 
back to the state shown in Fig. 8. We consider this 
storage to correspond to the initial storage of a given 
use case. When the App executes the greenLight 
function, the operations shown in Fig. 10 would be 
requested. 

The App would start by checking the number of 
recorded hashes is indeed equal to the number of 
entries it has in its local storage (3 in this case) and 
would then use the compare function to check the 

hashes of our recorded fingerprints appear on the 
blockchain. If this test passes, the greenLight function 
returns True thus ensuring that the off-chain and on-
chain databases match.  

 
 

 
 

Fig. 10. The SmartPy test scenario greenLight 
execution, seen from the Smart Contract side. 

 
 
The Smart Contract used in the Subsection is 

available on SmartPy via: 
smartpy.io/ide?cid=QmZa8H7PPHDXtmEk5umZqFs
SS5R4wBmLcTr7WxDSvNqHwk&k=24deab4dc14c
cfda82ca. The test scenario can be ran using the “Run 
Code” button at the top left of the screen.  

The Smart Contract was also deployed to the 
Ghostnet testnet at the following address: 
KT1MSVoHdoYQpWPBXw4QbfvjSU1abizJbzM2. 
Its functions, storage, deployment figures, etc. can be 
searched for using a Tezos explorer, such as TzKT 
[26]. 

 
 

4.2. Introduction to the use Cases 
 
This paper studies two use cases relating to 

ensuring IPR for a museum’s virtual visit (cf. 
Subsection 4.3), and a filter based near-copy detection 
of mirflickr25k [27] images (cf. Subsection 4.4), 
respectively. These use cases follow the architecture 
put forth in Fig. 2 and their implementations are 
supported by the Ethereum framework. 

We consider a 3-node, Hyperledger Besu EEA 
(Enterprise Ethereum Alliance [28])-compliant Proof-
of-Authority private blockchain deployed on an 
Amazon Web Services sever, as well as on the now 
deprecated Rinkeby Ethereum testnet accessed 
through the Infura node cluster. We interacted with the 
Smart Contracts using the web3py library [29].  

To test these implementations, we will compare 
the entries in the database to artificially created (more 
or less) near copies. We created modified versions of 
the original inputs by subjecting them to standard 
image processing attacks, namely: conversion to black 
and white, brightness increases, cropping (50%), 
JPEG compression at a quality factor of Q = 90, 
resizing to 600x400, and combinations of these 
alterations. Fig. 11 shows images appearing both use 
cases before and after such modifications. In this 
example, they were subjected to cropping and 
brightness increase, and to resizing, respectively. 

These modified versions are given to the 
architecture as inputs. Naturally, some of them will be 
semantically so close to one of the entries that it will 
be categorically refused by the App, whilst others bear 
so little resemblance to originals that they will be 
considered as original inputs. The border between 
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these answers of course lies in the selection of the 
threshold decided on for each situation.  

Given that the detection performance solely relies 
on the specific fingerprinting method in use, and that 
the architecture put forward in this paper has no effect 
on the performances of said method, we will not dwell 
on them here. Extensive performance analysis for 
these respective methods is available in [22] and [23] 
and were corroborated by our tests. 
 
 

 

 
 

Fig. 11. The before (top) and after (bottom) of images 
from the use cases (museum IPR on the left, mirflickr25k 
on the right) having been subjected to image processing 

attacks. 
 
 
4.3. Museum Virtual Visit use Case 

 
The first use case we implemented is set up to 

simulate a museum wary of multimedia content posted 
online being copied. We used a database comprised of 
sequences extracted from the virtual visit of six rooms 
offered by the Louvre Museum in Paris during the 
COVID-19 pandemic [30]. We used these images for 
strictly academic and non-commercial purposes and 
do not intend any infringement of the Louvre’s IPR. 
Test videos were sampled to 1 frame per second, the 
fingerprints were computed according to [22] and 
were compared by using normalized correlation.  

We find ourselves in the first scenario where six 
image sequences are fingerprinted in the database and 
the Smart Contract has previously been deployed on 
the Rinkeby testnet alongside the Token Contract.  
Fig. 12 shows the results of us giving one of the 
original videos as an input, whose fingerprint appears 
as is in the database, as well as a near-copy case. We 
altered the sequence of another original video by 
cropping the top and bottom 25% of each image and 
increasing their luminosity (as illustrated in Fig. 11) 
before feeding it to the App as a new input. Both 
results can be seen in Fig. 12 and show appropriate 
behavior, indicating the copy and detecting the near 
copy, respectively. 

We then compile a random modified sequence of 
images from the different inputs to create a sequence 
that has no significance to the original database. If we 
run the App using this new sequence as an input, we 
get a prompt, illustrated in Fig. 13, which indicates the 
sequence is considered semantically new with respect 

to the database. If the operator wishes to add this input 
to the database, they may accept this prompt which 
transactions the Smart Contract, and in turn the Token 
Contract. The ensuing transactions hashes are shown 
in Fig. 13 and may be cross checked using a Rinkeby 
explorer such as [31]. The ERC721 token minted for 
the occasion is sent to the wallet that deployed the 
Smart Contracts. 
 
 

 
 

 
 

Fig. 12. The App’s responses to being fed a copy of 
one of the database entries (top) and a near-copy of one the 

database entries (bottom). 
 
 

 
 

Fig. 13. The successful addition of a new entry 
(detected as original) in the database and its subsequent 

tokenization. 
 
 
If a malicious user were to gain access to the 

database and delete an entry from the records for their 
own entry to be perceived as semantically original, the 
greenLight function would not permit the App to 
function. We acted as such a user and the result is 
shown in Fig. 14. The same modification cannot 
happen with the verification database, as is appears on-
chain and is subsequently unalterable.  

 
 

 
 
Fig. 14. The answer to the App being run after the database 
has been tampered with i.e., a greenLight function failure. 

 
 

The Smart Contract and Token Contract we used 
for these tests can respectively be found at 
0xA75f207314C85F4891657a2D4f73b19b88b21dc9 
and 
0xAAFFfFF06a971b57ca87953010135d771B91f965 
(their information is available and browsable through 
a Rinkeby explorer). 

 
 

4.4. mirflickr25k use Case 
 
This use case serves to illustrate the variety of 

possible inputs and identification means compatible 
with this workflow. It features a more generic database 
identified using International Standard Content Codes 
(ISCC) [23]. The ISCC is a full ISO/AWI 24138 
standardization work item whose goal is to provide an 
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open-source, cross-sector, universal identifier of 
different kinds of content. For our purposes, it is also 
a lightweight and similarity preserving fingerprinting 
method. ISCC codes are composed of 4 parts: their 
Metadata code, Content code, Data code, and Instance 
code. For this proof-of-concept implementation, we 
focused on the Content code portion of the fingerprint, 
although other use cases could very well take full 
advantages of the different facets it offers. In fact, our 
architecture can not only compare full ISCC codes, but 
make decisions based on separate processing. For 
instance, we could require a strict threshold of 
differences between Content codes while enabling a 
looser check for Metadata and Instance codes to 
differentiate original content brought forth by other 
users or with different encodings. The partial content 
flagging feature of the ISCC could also be put forth to 
identify copied content being used within other 
content. This feature is illustrated in an infographic 
available on the ISCC’s website [23] and shown  
Fig. 15. Using this feature, near copy detection 
becomes even more important as content inserted in 
other content is naturally modified. 
 
 

 
 

Fig. 15. Illustration of the content flagging feature of 
the International Standard Content Code [23]. 

 
 

The inputs we used are represented by a collection 
of JPG images of various sizes taken from the 
mirflickr25k set [27].  

An interesting feature of the ISCC is its capacity to 
generate similarly formatted outputs from completely 
different input formats. The media identifier is 
somewhat universal, and could enable databases of 
images, text, video, audio, etc. to be treated uniformly. 
In fact, the ISCC was designed for blockchain-based 
registration, it is as such short (between 13 and 55 
characters), so we forego the hashing of the code and 
store the code directly in the Smart Contract.  

Just as in the first use case, we submitted three 
types of content to the architecture: exact copies of 
content it was already holding, modified versions of 
said entries using the multimedia attacks presented in 
Section 4.3, and completely unrelated semantic 
content (in this example other mirflickr25k images).  

When being run, the App acts the same as with the 
first use case, and the responses shown in Figs. 12, 13, 

and 14 can be observed. Only the inputs and detection 
method are modified.  
 
 
5. Discussions on Workflow Performances 
 

In this Section, we account for the workflow 
presented in Section 3 and the implementations 
provided in Section 4 to discuss the specificities of the 
workflow. We start by noting the genericity of the 
architecture (Section 5.1) before taking a closer look 
at resource consumption (Section 5.2) and 
interoperability (Section 5.3). 
 
 
5.1. Workflow Genericity  
 

The workflow advanced in the paper provides a 
robust structure catering to the needs of verifiable data 
integrity. It does so by making the best of the mutually 
beneficial association of on-chain and off-chain 
technologies. It also enables the variable processing of 
multiple forms of multimedia content. As 
demonstrated in Section 4, the fingerprinting method 
used in the workflow can easily be modified without 
affected the other parts of the algorithm. As such, one 
could use this methodology to track photography 
being copied with filter modifications just as well as 
tracking changes of metadata in audio files. 

As stated in the introduction, this paper analyses 
the governance mechanism of the proposed 
architecture. As such, we will not provide detailed 
reports on near-copy detection performance (as it is 
purely determined by the fingerprinting methods 
themselves) nor on security mechanisms. Briefly: 
• The architecture does not impose supplementary 

constraints to multimedia processing and as such 
the analysis provided by the developers of the 
specific methods stays relevant. 

• We take advantage of the native security features 
brought by the blockchain environment. As such, 
the advanced workflow can only be as secure as 
the link between app and blockchain. 

 
 
5.2. Resources Usage 

 
This section investigates the overall computational 

load required by our workflow. 
Although the App itself requires computation, it is 

naturally substantially inferior to the computation of 
the Smart Contract. The former is also largely 
dependent on the fingerprinting method in question. 
Hence, we focus on the blockchain computational 
load.  

Computation on the blockchain can be measured 
with gas. The gas fee is defined by the cost (in local 
cryptocurrency) users pay validators of the 
blockchain. Each transaction costs a certain amount of 
gas, and a given block has gas limits that restrict what 
can be executed within a block. We also must keep in 
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mind that execution times and gas costs will vary 
significantly depending on the blockchain in context 
as well as the network traffic at the time of execution, 
as these costs are dynamic. As such, the results we 
provide here are linked to their context and execution 
conditions. 

First, the Smart Contracts are simple and hence 
lightweight. The total storage of the Smart Contract is 
decided upon deployment and can be estimate via 
diverse tools such as Tezos’ client-server protocol 
(RPC). This helps generate values for fees, gas limits, 
and storage values. These automatically generated 
amounts, as well as the deployment figures that can be 
found on an explorer are shown in Fig. 16. They 
confirm the design philosophy of the workflow is 
respected by remaining small. Of course, practical 
applications need to account for data they will store as 
hashes in the Smart Contract and add that value to the 
storage limit of their code. At the time of writing, tez 
(the native Tezos token) is worth just around one USD, 
making this deployment cost less than 22 cents. 
Implementations accounting for storages would 
indeed cost more, but stay very affordable, especially 
on blockchains with low gas costs such as Tezos. 
 
 

 
 

Fig. 16. Tezos Smart Contract RPC estimates for 
deployment (left) and deployment fees (tight). 

 
 

When it comes to our Ethereum implementations, 
the detail of the initial deployment of the on-chain 
programs can be found in Fig. 17 (the deployment of 
the Smart Contract is the same for both use cases). It 
shows single block deployments of the Smart and 
Token Contract, respectively using 15.24% and 
61.45% of gas limits (set by default at 4.5 million), for 
a total of 0.03451321ETH (for a gas price of 10 Gwei, 
or 10-8ETH). Use cases not needing the tokenization 
of their assets can eliminate the latter an only use a 
single lightweight Smart Contract. 

For the museum IPR use case, populating the 
Smart Contract with 6 entries cost us 0.000114ETH 
per entry, whilst the tokenization cost 0.000226 ETH 
per entry (for a gas price of 1.5 Gwei). Although this 
step is the biggest resource sink in the entire process, 
it stays in the scope of a blockchain application. The 
gas and time spent scales linearly with the number of 
entries, so even databases of a few hundred to a few 
thousand entries could comfortably be processed in the 
span of a couple of hours. This of course depends on 
the block rate of the blockchain in context. 
 

 
 

 
 

Fig. 17. Deployment figures of the Ethereum Smart 
Contract (top) and Token Contract (bottom). 

 
 

After the setup and for general use, the Smart 
Contract is only invoked at two specific moments. 
This leaves most of the processing up to the faster and 
more efficient app. The first use is the greenLight 
function. This instance does not constitute a 
transaction as it does not write any information on the 
blockchain. This call does not cost gas and is not 
limited by slow block rates. In our experience and with 
our testing setup, this step never added more than  
2 seconds of execution to the processing of an input. 
The second use is in case a new entry is to be added to 
the database. This step is essentially the initial setup 
brought to the scale of a single entry. In fact, the 
transaction we executed to illustrate Subsection 4 cost 
the same amount of 0.000114ETH. As was our aim, 
this localized and minimal use of blockchain enables 
us to avoid long processing times and excessive  
gas fees. 

 
 

5.3. Interoperability 
 
The notion of interoperability appears in diverse 

aspects in this workflow. Not only is the infrastructure 
interchangeable, but the applicative components are 
too. This enables the solution to be used together with 
state-of-the-art components from different sectors. 

In terms of hardware, the off-chain database can be 
a simple one as a cloud computing data storage, 
implementing no features or modern customization, 
access management, and data integrity. The same 
applies to the blockchain. Only minimal tools are used, 
and as such these Smart Contracts can be transposed 
to any modern application-oriented blockchain. 
Although the language and specific performances in 
gas and time will differ, they stay relatively uniform. 
In fact, we notice that the code is formatted very 
similarly in Solidity (Ethereum) and SmartPy (Tezos), 
that processing times are in the order of seconds for 
both (mostly affected by blockrates), and that gas costs 
remain low given the simplicity of operations 
required. 

When it comes to the software, the only non-trivial 
requirement for the programming language is the 
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existence of a library connecting to the desired 
blockchain. For instance, web3py [29] allows one to 
connect to the Ethereum blockchain via Python, 
web3.js [32] is its JavaScript counterpart, and Taquito 
[33] is a TypeScript Library that enables Tezos 
interactions. The requirements on the fingerprinting 
technology are even more lenient, as its input can be 
formatted to the desired length via a cryptographic 
hashing function. The output information can also be 
formatted to suit any token standard, making the 
Token Contract a flexible methodological brick as 
well. 
 
 

6. Conclusions and Future Work 
 
In this paper, we detail a framework and workflow 

enabling multimedia content tracking to be backboned 
by blockchains. We not only use a load-balancing 
architecture to enable the complex computation to 
even be possible in such environments but provide a 
mutually beneficial relationship between the 
applicative bricks available on-chain and off-chain. 
This method also makes the most of the flexibility of 
its components to host state-of-the-art fingerprinting 
techniques, never restricting their features and 
performances. These advantages lead this architecture 
to enable robust semantic data verifiability. As such, 
this verified data can further be used in a large array of 
contexts, including ones that require strong 
Intellectual Property features. Additionally, the 
methodology can seamlessly be exported to various 
blockchain environments and use various database 
technologies. 

Further work could investigate and develop 
compatible Smart Contracts in new environments, 
examine and reinforce the innate security of the 
system, or extend the Token Contract’s functionalities 
to make the best out of the verification process brought 
by the workflow. 
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