
HAL Id: hal-04230174
https://hal.science/hal-04230174

Submitted on 5 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Visual content verification in blockchain environments
Alexandre C Moreaux, Mihai P Mitrea

To cite this version:
Alexandre C Moreaux, Mihai P Mitrea. Visual content verification in blockchain environments.
Blockchain and Cryptocurency, 2023, 1 (1), pp.44-55. �hal-04230174�

https://hal.science/hal-04230174
https://hal.archives-ouvertes.fr

Blockchain and Cryptocurrency, Vol. 1, Issue 1, September 2023, pp. 44-55

 44

Blockchain and Cryptocurrency

Published by IFSA Publishing, S. L., 2023

Visual Content Verification in Blockchain Environments

A. Moreaux and M. Mitrea
SAMOVAR Laboratory, Telecom SudParis – Institut Polytechnique de Paris, Palaiseau, France

E-mail: mihai.mitrea@telecom-sudparis.eu

Received: 29 April 2023 Accepted: 5 June 2023 Published: 11 September 2023

Abstract: We study the use of visual content tracking applications in conjunction with blockchain solutions. The
issue consists of multimedia technologies such as fingerprinting requiring the computing power of off-chain
machines to operate. We present a workflow using a load-balancing architecture that allows for such operations
to be computed off-chain yet benefitting from the level of integrity brought by blockchains. We thus enable the
creation of blockchain-backed data storages where multimedia inputs can be identified by their semantic content.
We also address the challenge of minimizing computing resources which occurs when on-chain processing is in
context, ensuring such an architecture can be deployed and used on state-of-the-art environments. We illustrate
our workflow on the Tezos and Ethereum platforms and provide two implementations, relying on an image filter
detection use case (featuring the International Standard Content Code), and a museum IPR use case (featuring a
robust video fingerprinting method), respectively. We thus demonstrate the mutually beneficial association of on-
chain and off-chain applications for multimedia content tracking as well as the blockchain-agnostic nature of the
advanced solution.

Keywords: Blockchain, Ethereum, Fingerprint, Interoperability, Load-balancing, Tezos, Verified token,
Visual content.

1. Introduction

This paper falls under the scope of the

relationship between blockchain and multimedia
technologies.

On the one hand, blockchains are peer-to-peer
anonymous networks of nodes producing a sequence
of cryptographically linked blocks, containing
information about the transactions that have occurred
in that network [1]. They mainly act as a trusted third
party in the exchange of assets and information
between untrustworthy actors. Since their inception,
blockchains have evolved to support a large area of
applicative domains thanks to automated pieces of
code called Smart Contracts. Smart Contracts are
written in different languages for different blockchains
(e.g., Solidity for Ethereum) and run exactly as they
are programmed, with no possibility of change or
influence from any central authority. Decentralized

applications use Smart Contracts as backends serving
frontend user interfaces to offer a wide array of
services, including but not restricted to, decentralized
finance (DeFi) or marketplaces. The digital assets that
are meant to be owned and exchanged are referred to
as tokens, and can be fungible (interchangeable and
splitable, as per legal tender) or non-fungible
(representing unique assets and being undividable).
Non-Fungible Tokens (NFTs) often serve as the
representation of digital art and constitute a 4 billion
USD market in 2021 [2]. Yet, the environment is
riddled with fraudulent content. The biggest NFT
selling platform in the world [3], Opensea, observed
that over 80% of the assets being flagged as
plagiarized works, fake collections, and spam were
created with their simplified “lazy minting” process,
accessible to all [4]. This serves as an example to
illustrate that NFT abuse is easy, accessible, and
rampant [5].

Blockchain and Cryptocurrency, Vol. 1, Issue 1, September 2023, pp. 44-55

 45

On the other hand, multimedia content represents
one of the highly valuable assets on the market today.
From video content for cinemas to audio analysis for
military applications, nearly every sector benefits
from advancements in multimedia content services.
Being an asset so valuable, its protection is naturally
at very high stakes, be it in academic or industrial
settings. Various approaches allow to control the flow
of data by hiding it (data encryption), identifying its
owners (digital signatures), or tracking the content
itself (digital watermarking and fingerprinting).
Specifically, near-duplicated content protection (also
referred to as visual fingerprinting) is a technology
able to identify slightly modified versions of visual
content (image or video).

Visual fingerprinting does not feature any intrinsic
trust property and blockchain is an appealing solution
to this problem. In fact, coupling blockchain to
multimedia content presents no conceptual
contradictions. Yet, the association between the two is
drastically limited by the lack of methodological
bridges, as multimedia content processing is a priori
prohibitively complex to be executed on-chain.

This paper constitutes an extension of our previous
study presented in [6]. It couples the above two
notions into an architecture enabling the creation of
data storages (e.g., databases) of semantically verified
content. The main contribution is a blockchain
agnostic, load-balancing workflow that combines the
trust and integrity of blockchain to the fingerprinting-
based precise content identification to produce
verified data that can be stored or minted into tokens.
According to this workflow, each time a piece of
multimedia content is candidate to be registered into a
blockchain-authenticated storage, its semantic content
is compared to the previously entries. The
authenticated storage can then be updated according to
the result of the comparison, and digital assets can be
created. Proof-of-concepts of this workflow are
provided for the Tezos and Ethereum blockchains.

The present paper is focused on providing the
governance mechanism allowing the accommodation
of fingerprinting operations in blockchain applicative
environments. As such, fingerprinting methods
themselves, database exploitation, and security
concerns are directly inherited from the state-of-the-
art and are out of our research scope.

This paper elaborates on the topic with the
following organization. We discuss the current state-
of-the-art of blockchain-assisted applications in
Section 2 before introducing our methodology in
Section 3. In Section 4, we implement the workflow
for various blockchain environments and use cases
before subsequently analyzing its performance in
Section 5. Finally, we conclude and discuss future
work in Section 6.

In a nutshell, the main contributions with respect
to our previous conference paper [6] are:
 Reconsidering and extending the architectural

basis to accommodate the specific needs of
different blockchain environments,

 Evaluating the advanced method and its
performances in a new blockchain
environment, namely Tezos,

 Demonstrating that the concepts brought
forward are blockchain agnostic, thus acting at
the level of a conceptual blockchain
interoperability tool.

2. State-of-the-art

We begin by presenting concise state-of-the-arts of

both Smart Contracts (Section 2.1) and visual
fingerprinting (Section 2.2) as they are the
fundamental notions we shall rely on for the rest of the
paper. We then go over their simultaneous uses in
current literature (Section 2.3). A lot of the cited
studies served as a base for the original source of this
extension, [6], as detailed hereafter.

2.1. Smart Contracts

Although theorized in 1994 [7], the concept of
Smart Contracts, or software-based automatic
contracts, gained popularity with Ethereum [8]. The
capacity to enforce agreements between parties
without the involvement of a trusted third-party
enabled Smart Contracts to gain massive traction in
the DeFi and notarization fields, as summarized in [9].
Although legal gray zones and security threats
undermined the boom, Smart Contracts quickly spread
to other use cases (healthcare, cloud computing,
energy, etc.) and the activity of scientific literature in
the field suggests that opportunities are still being
investigated for various industries [10]. Smart
Contracts are also often used as the backend to
decentralized applications (dApps e.g., exchanges,
marketplaces, etc.) in which case they interact with an
off-chain frontend User Interface. More specialized
approaches, limited by the computing capabilities of
blockchains, tended to use Smart Contracts as
complements to legacy applications such as wireless
systems [11].

2.2. Visual Content Tracking

While data encryption and identification are out of
the scope of this study, we shall focus on content
tracking. Specifically, we will need content to be
tracked via an easily manipulable invariant digest.
Although cryptographic hashing accomplishes the
above, it can only be used to check for strict
differences and not to express said differences. Indeed,
an image with a single pixel modified will have a
completely different cryptographic hash than its
original.

This is important because multimedia content
changes during its lifecycle. All common operations
(recording, uploading, broadcasting, sharing,
downloading, etc.) modify multimedia content in often

Blockchain and Cryptocurrency, Vol. 1, Issue 1, September 2023, pp. 44-55

 46

imperceptible ways (luminosity, format, compression,
etc.). This ties to the concept of near-duplicated
content, that covers content that is naturally of
maliciously modified. Specifically, [12] defines near-
duplicated content (videos in their context) as
“Identical or approximately identical videos close to
the exact duplicate of each other, but different in file
formats, encoding parameters, photometric variations,
editing operations, different lengths, and certain
modifications.”.

We can overcome this issue using fingerprint
techniques, which contrarily to cryptographic hashing
utilize the semantic content of their input to generate
digests that are invariant to near-duplicated
modifications. Consequently, inputs that are very
similar will generate fingerprints that are close (in
terms of a given similarity measure, like normalized
correlation or Hamming distance, for instance). This is
illustrated in Fig. 1.

Fig. 1. Invariant digest comparisons in cryptographic
hashing vs. similarity preserving visual fingerprinting.

This feature allows fingerprints to be used to find

semantic nearest neighbors of an input amongst a
given dataset. Their compromise with regards to
cryptographic hashing consists in their security
features and size. Fingerprinting and cryptographic
hashing are tools that simply do not solve the same
problem. In this paper, we will use fingerprinting to
identify near-copies of visual content and
cryptographic functions to shorten invariant digests
for easy storage.

2.3. Joint Usage of Multimedia Content
Tracking and Visual Fingerprints

When it comes to multimedia content being used

in blockchain contexts, Non-Fungible Tokens (NFTs)
are a re-occurring concept. NFTs are unique
blockchain digital assets that represent data and are
created, stored, and exchanged by users and Smart
Contracts. As such, digital art and other multimedia
asset representations are securely distributed in a
massive market projected to reach 200 billion USD by
2030 [2], featuring large and trusted actors [3]. Yet,
NFTs are vastly misunderstood in their capacity to
represent assets. They are also notoriously lenient with
Intellectual Property Right (IPR) ideas, the NFT copy

and stolen content market fueling debate and tainting
the reputation of the space [13].

Outside of NFTs, multimedia processing itself can
be enhanced via blockchain applicative technologies
as part of the process [14] or hand in hand with off-
chain technology [15]. The joint uses of content
protection techniques and blockchains are
summarized in [16]. This holistic survey cites
encryption, watermarking, and transaction tracking
fingerprinting, indicating that near copy detection
using visual fingerprinting techniques had not yet been
associated with blockchain before [6].

The notion of databases, or more generally data
storages, being used alongside blockchains is not
novel. For instance, databases and blockchains were
used in the IoT use case analyzed in [17] and the cloud
computing study in [18]. To the best of our knowledge,
the replicated hashed “shadow” on-chain database as
an integrity verifier brought forward in [6] was novel.
The idea of a load-balancing architecture for
blockchain-enhanced applications we used in this
paper was brought forth in [19].

3. Methodology

In this Section, we detail the processing workflow

we designed for serving the needs of coupling
blockchain to visual fingerprinting. We will start by
explaining our method in a general sense, before
detailing each of the methodological blocs constituting
the architecture.

3.1. General Architecture

The processing workflow we advance is supported
by a generic architecture illustrated in Fig. 1. It is
designed as to ensure the processing and exchange of
data amongst four logical entities: an off-chain
Database, an off-chain App, a Smart Contract, and a
Token Contract. The first three entities represent the
pillars of the solution while the Token Contract is
called upon the successful processing of an input and
is not involved in the inner workings of the solution.

The initial setup of the database and deployment of
the Smart Contract is done by a qualified blockchain
expert. Once setup, no more blockchain expertise is
required and an App operator can use the architecture.

The process starts with visual content being
fingerprinted, and these fingerprints being stored on a
database. They are then initialized on the blockchain
via the Smart Contract, which serves as a pseudo
database. This on-chain tamperproof, redundant
database allows the Smart Contract to serve as an
arbiter ensuring the database has not been tampered
with. It intervenes before the App compares an input
(be it a new piece of content or a suspected copy) to
each of the off-chain database entries. Three results are
possible, and are illustrated in the implementation
(Section 4, Fig. 12):

Blockchain and Cryptocurrency, Vol. 1, Issue 1, September 2023, pp. 44-55

 47

• The input is detected as a copy of existing
content (i.e., the fingerprint is identical to an
entry of the database) and the operator is
informed as such and the process stops.

• The input is detected as near-duplicated
content, or a near copy of one of the entries (cf.
Section 4) and the operator may decide to
consider the input as original or a copy.

• The content is not detected as the copy of
existing entry. The operator can add it to the
database by answering a prompt.

Upon its arrival into the on-chain database, the entry
is minted as a Non-Fungible Token and sent to the
wallet of the initiator of the transaction. This process
is illustrated in Figs. 2 and 3.

Fig. 2. Advanced architecture, bearing on-chain Smart and Token Contracts and an off-chain App and database.

Fig. 3. Step-by-step addition of a new entry in the database, operations related to the second blockchain architecture in red.

3.2. Off-chain Entities

This Section details the two off-chain entities
shown in Fig. 2, namely the Database and App.

The advanced architecture does not worry itself
with the exact technology managing the database. In
fact, it only has light lifting to do, as it only needs to

hold the fingerprints of the multimedia content and to
pass that information to the App when requested.
Although it would be possible to hold the content itself
in the database and to fingerprint it upon retrieval, a
lighter and more private database allows for faster
processing and less potential privacy concerns.

Blockchain and Cryptocurrency, Vol. 1, Issue 1, September 2023, pp. 44-55

 48

The App has a central role in the process. Not only
does it interact with both databases, but it also acts as
the only point of contact for the operator. As such, the
visual interface can be designed to make the process
intuitive and easy to operate. In the context of a proof-
of-concept, we did not develop any graphical interface
and we interacted with the App by using a command
prompt.

The App is given a visual content file (.jpg, .mp4,
.pdf, etc. depending on the use case) and an optional
threshold (that defaults to a recorded value) as input
parameters and begins by establishing a connection
with the Smart Contract, invoking a greenLight
function. This function returns True, allowing the
process to continue, if and only if the off-chain and on-
chain databases match. It does so by requesting the
size of the map of hashes from the Smart Contract and
using the compare function of the latter
(Subsection 3.3) for each one of the entries of the off-
chain database. This process is expedited by the fact
that the database contains fingerprints that need
not be systematically reprocessed. The greenLight
function returning False will interrupt the process and
inform the operator that the database has been
tampered with.

Once this important control passed, the App
computes the input file’s fingerprint and compares it
to all the entries in the off-chain database. As
explained in Subsection 3.1, three possible results are
presented to the operator: copy, near copy, or no copy.
In the latter two cases, the operator may prompt the
App to add the input to the database. The App then
transactions the Smart Contract via the deployer wallet
to add the hash of the new fingerprint to the on-chain
database, before adding the fingerprint (identified by
its hash) to the off-chain database. Note that the
fingerprint is hashed before being stored in the Smart
Contract because of size and format concerns (i.e.,
they cannot be defined in blockchain development). If
the fingerprint in context happens to output short
identifiers, the hashing step may be skipped as it is not
essential to the proper functioning of the code,
although it could still be used to add a layer of privacy
to the information.

Once the transaction that added the new entry to
the Smart Contract is validated, the App queries the
minting of a unique NFT (cf. Subsection 3.3). The
entire workflow is shown in Fig. 3.

Although the method used to identify content (i.e.,
the fingerprinting method) is the core of the
application, the general architecture is independent of
its specificities. The role of the fingerprinting method
is twofold. First, being the initial step of the process, it
defines the input format. Indeed, near copy detection
has use cases using a variety of data formats (images,
video, text, etc.) some of which might focus on
semantic content whilst others could include metadata
or instance data. Second, the detection can only be as
precise as the specific fingerprinting method permits.
As opposed to having a universal solution,
appropriately selecting a fingerprinting method on a
case-by-case basis will yield the best results. For

illustration purposes, we elected two complementary
methods to illustrate this point [22, 23].

The thresholds used to detect near copies also
depend on the use case. If the objective is only to
detect very close copies of the content in the database,
we would set our normalized correlation threshold
close to 1, or our maximum Hamming distance very
small (in the range of 0 – 3 bits for a 72-bit identifier).
If we are more generally looking to detect the same
semantic content after alteration, we would set our
normalized correlation threshold between .6 and .8, or
our maximum Hamming distance between 8 and 12
(for binary fingerprints of size for a 72-bit identifier).
For our Section 4 implementations, with a goal of
general detection in mind, we used a threshold of 0.7
for the normalized correlation and a maximum
Hamming distance of 10. Of course, these limits can
and should be tailored to a given set of circumstances
and objectives.

3.3. On-chain Entities

This section details the two on-chain entities

shown in Fig. 2, namely the Smart Contract and Token
Contract.

As explained in Subsection 3.2 and Fig. 2, the
Smart Contract is used on two occasions: to provide
information to the greenLight function and to process
a new entry. The former does not require input data
whilst the latter requires a hash and an optional string
of general information concerning the entry. It maps
these two entities into a structure containing a Boolean
to indicate the existence of the hash and an optional
string containing general information. In addition, it
implements five functions.

Three of these functions are of get type and allow
to communicate information about the on-chain
Database to the App. They return the size of the map,
the information associated with a hash, and the
Boolean associated with a hash, respectively. The
latter serves as the comparison function that is called
by the App during the greenLight function. The other
two functions manage database entries, respectively
providing the addition and deletion of entries. The
addition function verifies prior inexistence of the entry
in the database, indexes relevant information (if
present in the parameters), adjusts the size of the map
and returns a Boolean to indicate successful
processing. The deletion function checks for the
existence of the entry and adjusts the size of the map
if needed before returning a Boolean. The addition and
deletion functions can only be called by the address
that deployed the Smart Contract. If a use case requires
multiple addresses to call the Smart Contract, a
whitelist can replace the “only deployer” approach.

The Token Contract is called upon after the
successful addition of a new entry in both databases. It
generates tokens that contain a trace of this workflow
in their metadata. In our example, the token contains
the hash of the original fingerprint and is sent to the
deployer wallet as it is the central entity of the use

Blockchain and Cryptocurrency, Vol. 1, Issue 1, September 2023, pp. 44-55

 49

case. These tokens can then stay in this wallet or be
sent manually or automatically to addresses belonging
to the Intellectual Property Rights (IPR) holders, for
example. It would be simple enough for the operator
to indicate the address of the content provider for the
token to be distributed directly upon validation. This
NFT could be more complex, but its format largely
depends on the use case. If this architecture were used
to certify content before it is sold as original, one could
imagine additional information being present in the
token to ensure the good standing of the content the
token represents. Such additional information may
relate to the transaction number of the initial
admission of the entry in the database or the electronic
signature of the operator.

Our initial work being on Ethereum, we selected
the popular ERC721 standard [20] in which we put the
hashed fingerprint of the file. If dealing with Tezos,
the FA2 [21] standard can be used instead. Please note
that within this proof-of-concept, the burning (or
deletion) of the token that was created alongside the
inclusion of the entry in the database does not occur.

4. Experimental Illustration

In this Section, we walkthrough and discuss
illustrative implementations of the workflow and
architecture brought forth in Section 3. Access control
not being a central feature of this paper, we set out two
parties (1) creator, which initializes the Smart
Contract and has all access rights; and (2)
otherUser, which only has the basic view right
default to all blockchain users and cannot modify the
Smart Contract.

We start by going through a basic implementation
of the Smart Contract and its use through a scenario on
the Tezos infrastructure (in Section 4.1) before
moving on to two complete implementations of the
entire workflow using the Ethereum framework (in
Sections 4.2, 4.3 and 4.4). Of course, the Ethereum
Smart Contract will accomplish the same things as the
one detailed in Subsection 4.1., and the infrastructure
(presented in Sections 4.2, 4.3 and 4.4) logically
functions just as well with a Tezos Smart Contract.

4.1. Smart Contract Implementation

The Smart Contract implementation is explained
and illustrated for the Tezos platform using SmartPy
[24], an online IDE for Tezos Smart Contracts
available through a Python library. SmartPy provides
us with clear test scenario capabilities, allowing us to
illustrate the use of the Smart Contract to readers
unfamiliar with Smart Contract development. Tezos
development is based on meta-programming: as such,
the code we write is not directly run but serves to
construct the actual Smart Contract that will run on the
blockchain [25].

This Subsection will focus solely on the Smart
Contract, using a simple, nondescript, illustrative
scenario. Figs. 4 and 5 show the SmartPy functions,

which are lightweight and intuitive, as required by
blockchain development.

Fig. 4. The SmartPy Smart Contract entry point
functions which manage the on-chain database.

Fig. 5. The SmartPy Smart Contract view functions
which pass on information the Smarty App.

The two functions shown in Fig. 4 (excluding the

constructor __init__) will manipulate the map of
hashes sent by the app in a complete use case. The first
adds its hash parameter alongside some information
after verifying the request is sent by the creator and
that the hash is not recorded previously. This last
check can be removed if overriding were allowed. The
second function simply deletes an entry if requested
by the owner. These are the only two functions that
write information on the blockchain (hence the
@entry_point).

The three functions shown in Fig. 5 are the get
functions which pass on information to the App. They
only read data and are hence preceded by
@onchain_view. They send back the existence of a
given hash in the map, the size of the map, and the info
associated with a given hash, respectively. Now, we
build a test scenario that will use this Smart Contract.
Its initialization is shown in Fig. 6.

Fig. 6. The SmartPy test scenario initialization with
two users, having full rights and no rights, respectively.

Blockchain and Cryptocurrency, Vol. 1, Issue 1, September 2023, pp. 44-55

 50

We begin by setting up the scenario and the
accounts we will use (creator and otherUser) so
we can reference their addresses. We then attempt to
initialize the on-chain database as the App would do,
which is illustrated in Fig. 7.

Fig. 7. The SmartPy test scenario on-chain database
initialization, seen from the Smart Contract.

When creator requests the addition of a new,
properly formatted input the transactions are executed
without issues, as done in the first line of Fig. 7. On
the contrary, inputting a previously recorded entry
(line 2, Fig. 7) and otherUser’s attempts (line 3,
Fig. 7) are rightfully unallowed operations, and hence
reverted (denied by the blockchain). At the term of
these operations, the Smart Contract’s storage matches
what is shown in Fig. 8.

Fig. 8. SmartPy Smart Contract storage after the
addition of the three inputs shown in Fig. 7.

The addition of new inputs can be prone to errors,

which we illustrate in Fig. 9, where an unwanted entry
is added then deleted by creator, whilst
otherUser is shown to be unable to affect said
entry.

Fig. 9. The SmartPy test scenario showing an unwanted
entry being added and subsequently removed.

At the term of these transactions, the storage is
back to the state shown in Fig. 8. We consider this
storage to correspond to the initial storage of a given
use case. When the App executes the greenLight
function, the operations shown in Fig. 10 would be
requested.

The App would start by checking the number of
recorded hashes is indeed equal to the number of
entries it has in its local storage (3 in this case) and
would then use the compare function to check the

hashes of our recorded fingerprints appear on the
blockchain. If this test passes, the greenLight function
returns True thus ensuring that the off-chain and on-
chain databases match.

Fig. 10. The SmartPy test scenario greenLight
execution, seen from the Smart Contract side.

The Smart Contract used in the Subsection is

available on SmartPy via:
smartpy.io/ide?cid=QmZa8H7PPHDXtmEk5umZqFs
SS5R4wBmLcTr7WxDSvNqHwk&k=24deab4dc14c
cfda82ca. The test scenario can be ran using the “Run
Code” button at the top left of the screen.

The Smart Contract was also deployed to the
Ghostnet testnet at the following address:
KT1MSVoHdoYQpWPBXw4QbfvjSU1abizJbzM2.
Its functions, storage, deployment figures, etc. can be
searched for using a Tezos explorer, such as TzKT
[26].

4.2. Introduction to the use Cases

This paper studies two use cases relating to

ensuring IPR for a museum’s virtual visit (cf.
Subsection 4.3), and a filter based near-copy detection
of mirflickr25k [27] images (cf. Subsection 4.4),
respectively. These use cases follow the architecture
put forth in Fig. 2 and their implementations are
supported by the Ethereum framework.

We consider a 3-node, Hyperledger Besu EEA
(Enterprise Ethereum Alliance [28])-compliant Proof-
of-Authority private blockchain deployed on an
Amazon Web Services sever, as well as on the now
deprecated Rinkeby Ethereum testnet accessed
through the Infura node cluster. We interacted with the
Smart Contracts using the web3py library [29].

To test these implementations, we will compare
the entries in the database to artificially created (more
or less) near copies. We created modified versions of
the original inputs by subjecting them to standard
image processing attacks, namely: conversion to black
and white, brightness increases, cropping (50%),
JPEG compression at a quality factor of Q = 90,
resizing to 600x400, and combinations of these
alterations. Fig. 11 shows images appearing both use
cases before and after such modifications. In this
example, they were subjected to cropping and
brightness increase, and to resizing, respectively.

These modified versions are given to the
architecture as inputs. Naturally, some of them will be
semantically so close to one of the entries that it will
be categorically refused by the App, whilst others bear
so little resemblance to originals that they will be
considered as original inputs. The border between

Blockchain and Cryptocurrency, Vol. 1, Issue 1, September 2023, pp. 44-55

 51

these answers of course lies in the selection of the
threshold decided on for each situation.

Given that the detection performance solely relies
on the specific fingerprinting method in use, and that
the architecture put forward in this paper has no effect
on the performances of said method, we will not dwell
on them here. Extensive performance analysis for
these respective methods is available in [22] and [23]
and were corroborated by our tests.

Fig. 11. The before (top) and after (bottom) of images
from the use cases (museum IPR on the left, mirflickr25k
on the right) having been subjected to image processing

attacks.

4.3. Museum Virtual Visit use Case

The first use case we implemented is set up to

simulate a museum wary of multimedia content posted
online being copied. We used a database comprised of
sequences extracted from the virtual visit of six rooms
offered by the Louvre Museum in Paris during the
COVID-19 pandemic [30]. We used these images for
strictly academic and non-commercial purposes and
do not intend any infringement of the Louvre’s IPR.
Test videos were sampled to 1 frame per second, the
fingerprints were computed according to [22] and
were compared by using normalized correlation.

We find ourselves in the first scenario where six
image sequences are fingerprinted in the database and
the Smart Contract has previously been deployed on
the Rinkeby testnet alongside the Token Contract.
Fig. 12 shows the results of us giving one of the
original videos as an input, whose fingerprint appears
as is in the database, as well as a near-copy case. We
altered the sequence of another original video by
cropping the top and bottom 25% of each image and
increasing their luminosity (as illustrated in Fig. 11)
before feeding it to the App as a new input. Both
results can be seen in Fig. 12 and show appropriate
behavior, indicating the copy and detecting the near
copy, respectively.

We then compile a random modified sequence of
images from the different inputs to create a sequence
that has no significance to the original database. If we
run the App using this new sequence as an input, we
get a prompt, illustrated in Fig. 13, which indicates the
sequence is considered semantically new with respect

to the database. If the operator wishes to add this input
to the database, they may accept this prompt which
transactions the Smart Contract, and in turn the Token
Contract. The ensuing transactions hashes are shown
in Fig. 13 and may be cross checked using a Rinkeby
explorer such as [31]. The ERC721 token minted for
the occasion is sent to the wallet that deployed the
Smart Contracts.

Fig. 12. The App’s responses to being fed a copy of
one of the database entries (top) and a near-copy of one the

database entries (bottom).

Fig. 13. The successful addition of a new entry
(detected as original) in the database and its subsequent

tokenization.

If a malicious user were to gain access to the

database and delete an entry from the records for their
own entry to be perceived as semantically original, the
greenLight function would not permit the App to
function. We acted as such a user and the result is
shown in Fig. 14. The same modification cannot
happen with the verification database, as is appears on-
chain and is subsequently unalterable.

Fig. 14. The answer to the App being run after the database
has been tampered with i.e., a greenLight function failure.

The Smart Contract and Token Contract we used
for these tests can respectively be found at
0xA75f207314C85F4891657a2D4f73b19b88b21dc9
and
0xAAFFfFF06a971b57ca87953010135d771B91f965
(their information is available and browsable through
a Rinkeby explorer).

4.4. mirflickr25k use Case

This use case serves to illustrate the variety of

possible inputs and identification means compatible
with this workflow. It features a more generic database
identified using International Standard Content Codes
(ISCC) [23]. The ISCC is a full ISO/AWI 24138
standardization work item whose goal is to provide an

Blockchain and Cryptocurrency, Vol. 1, Issue 1, September 2023, pp. 44-55

 52

open-source, cross-sector, universal identifier of
different kinds of content. For our purposes, it is also
a lightweight and similarity preserving fingerprinting
method. ISCC codes are composed of 4 parts: their
Metadata code, Content code, Data code, and Instance
code. For this proof-of-concept implementation, we
focused on the Content code portion of the fingerprint,
although other use cases could very well take full
advantages of the different facets it offers. In fact, our
architecture can not only compare full ISCC codes, but
make decisions based on separate processing. For
instance, we could require a strict threshold of
differences between Content codes while enabling a
looser check for Metadata and Instance codes to
differentiate original content brought forth by other
users or with different encodings. The partial content
flagging feature of the ISCC could also be put forth to
identify copied content being used within other
content. This feature is illustrated in an infographic
available on the ISCC’s website [23] and shown
Fig. 15. Using this feature, near copy detection
becomes even more important as content inserted in
other content is naturally modified.

Fig. 15. Illustration of the content flagging feature of
the International Standard Content Code [23].

The inputs we used are represented by a collection
of JPG images of various sizes taken from the
mirflickr25k set [27].

An interesting feature of the ISCC is its capacity to
generate similarly formatted outputs from completely
different input formats. The media identifier is
somewhat universal, and could enable databases of
images, text, video, audio, etc. to be treated uniformly.
In fact, the ISCC was designed for blockchain-based
registration, it is as such short (between 13 and 55
characters), so we forego the hashing of the code and
store the code directly in the Smart Contract.

Just as in the first use case, we submitted three
types of content to the architecture: exact copies of
content it was already holding, modified versions of
said entries using the multimedia attacks presented in
Section 4.3, and completely unrelated semantic
content (in this example other mirflickr25k images).

When being run, the App acts the same as with the
first use case, and the responses shown in Figs. 12, 13,

and 14 can be observed. Only the inputs and detection
method are modified.

5. Discussions on Workflow Performances

In this Section, we account for the workflow
presented in Section 3 and the implementations
provided in Section 4 to discuss the specificities of the
workflow. We start by noting the genericity of the
architecture (Section 5.1) before taking a closer look
at resource consumption (Section 5.2) and
interoperability (Section 5.3).

5.1. Workflow Genericity

The workflow advanced in the paper provides a
robust structure catering to the needs of verifiable data
integrity. It does so by making the best of the mutually
beneficial association of on-chain and off-chain
technologies. It also enables the variable processing of
multiple forms of multimedia content. As
demonstrated in Section 4, the fingerprinting method
used in the workflow can easily be modified without
affected the other parts of the algorithm. As such, one
could use this methodology to track photography
being copied with filter modifications just as well as
tracking changes of metadata in audio files.

As stated in the introduction, this paper analyses
the governance mechanism of the proposed
architecture. As such, we will not provide detailed
reports on near-copy detection performance (as it is
purely determined by the fingerprinting methods
themselves) nor on security mechanisms. Briefly:
• The architecture does not impose supplementary

constraints to multimedia processing and as such
the analysis provided by the developers of the
specific methods stays relevant.

• We take advantage of the native security features
brought by the blockchain environment. As such,
the advanced workflow can only be as secure as
the link between app and blockchain.

5.2. Resources Usage

This section investigates the overall computational

load required by our workflow.
Although the App itself requires computation, it is

naturally substantially inferior to the computation of
the Smart Contract. The former is also largely
dependent on the fingerprinting method in question.
Hence, we focus on the blockchain computational
load.

Computation on the blockchain can be measured
with gas. The gas fee is defined by the cost (in local
cryptocurrency) users pay validators of the
blockchain. Each transaction costs a certain amount of
gas, and a given block has gas limits that restrict what
can be executed within a block. We also must keep in

Blockchain and Cryptocurrency, Vol. 1, Issue 1, September 2023, pp. 44-55

 53

mind that execution times and gas costs will vary
significantly depending on the blockchain in context
as well as the network traffic at the time of execution,
as these costs are dynamic. As such, the results we
provide here are linked to their context and execution
conditions.

First, the Smart Contracts are simple and hence
lightweight. The total storage of the Smart Contract is
decided upon deployment and can be estimate via
diverse tools such as Tezos’ client-server protocol
(RPC). This helps generate values for fees, gas limits,
and storage values. These automatically generated
amounts, as well as the deployment figures that can be
found on an explorer are shown in Fig. 16. They
confirm the design philosophy of the workflow is
respected by remaining small. Of course, practical
applications need to account for data they will store as
hashes in the Smart Contract and add that value to the
storage limit of their code. At the time of writing, tez
(the native Tezos token) is worth just around one USD,
making this deployment cost less than 22 cents.
Implementations accounting for storages would
indeed cost more, but stay very affordable, especially
on blockchains with low gas costs such as Tezos.

Fig. 16. Tezos Smart Contract RPC estimates for
deployment (left) and deployment fees (tight).

When it comes to our Ethereum implementations,
the detail of the initial deployment of the on-chain
programs can be found in Fig. 17 (the deployment of
the Smart Contract is the same for both use cases). It
shows single block deployments of the Smart and
Token Contract, respectively using 15.24% and
61.45% of gas limits (set by default at 4.5 million), for
a total of 0.03451321ETH (for a gas price of 10 Gwei,
or 10-8ETH). Use cases not needing the tokenization
of their assets can eliminate the latter an only use a
single lightweight Smart Contract.

For the museum IPR use case, populating the
Smart Contract with 6 entries cost us 0.000114ETH
per entry, whilst the tokenization cost 0.000226 ETH
per entry (for a gas price of 1.5 Gwei). Although this
step is the biggest resource sink in the entire process,
it stays in the scope of a blockchain application. The
gas and time spent scales linearly with the number of
entries, so even databases of a few hundred to a few
thousand entries could comfortably be processed in the
span of a couple of hours. This of course depends on
the block rate of the blockchain in context.

Fig. 17. Deployment figures of the Ethereum Smart
Contract (top) and Token Contract (bottom).

After the setup and for general use, the Smart
Contract is only invoked at two specific moments.
This leaves most of the processing up to the faster and
more efficient app. The first use is the greenLight
function. This instance does not constitute a
transaction as it does not write any information on the
blockchain. This call does not cost gas and is not
limited by slow block rates. In our experience and with
our testing setup, this step never added more than
2 seconds of execution to the processing of an input.
The second use is in case a new entry is to be added to
the database. This step is essentially the initial setup
brought to the scale of a single entry. In fact, the
transaction we executed to illustrate Subsection 4 cost
the same amount of 0.000114ETH. As was our aim,
this localized and minimal use of blockchain enables
us to avoid long processing times and excessive
gas fees.

5.3. Interoperability

The notion of interoperability appears in diverse

aspects in this workflow. Not only is the infrastructure
interchangeable, but the applicative components are
too. This enables the solution to be used together with
state-of-the-art components from different sectors.

In terms of hardware, the off-chain database can be
a simple one as a cloud computing data storage,
implementing no features or modern customization,
access management, and data integrity. The same
applies to the blockchain. Only minimal tools are used,
and as such these Smart Contracts can be transposed
to any modern application-oriented blockchain.
Although the language and specific performances in
gas and time will differ, they stay relatively uniform.
In fact, we notice that the code is formatted very
similarly in Solidity (Ethereum) and SmartPy (Tezos),
that processing times are in the order of seconds for
both (mostly affected by blockrates), and that gas costs
remain low given the simplicity of operations
required.

When it comes to the software, the only non-trivial
requirement for the programming language is the

Blockchain and Cryptocurrency, Vol. 1, Issue 1, September 2023, pp. 44-55

 54

existence of a library connecting to the desired
blockchain. For instance, web3py [29] allows one to
connect to the Ethereum blockchain via Python,
web3.js [32] is its JavaScript counterpart, and Taquito
[33] is a TypeScript Library that enables Tezos
interactions. The requirements on the fingerprinting
technology are even more lenient, as its input can be
formatted to the desired length via a cryptographic
hashing function. The output information can also be
formatted to suit any token standard, making the
Token Contract a flexible methodological brick as
well.

6. Conclusions and Future Work

In this paper, we detail a framework and workflow

enabling multimedia content tracking to be backboned
by blockchains. We not only use a load-balancing
architecture to enable the complex computation to
even be possible in such environments but provide a
mutually beneficial relationship between the
applicative bricks available on-chain and off-chain.
This method also makes the most of the flexibility of
its components to host state-of-the-art fingerprinting
techniques, never restricting their features and
performances. These advantages lead this architecture
to enable robust semantic data verifiability. As such,
this verified data can further be used in a large array of
contexts, including ones that require strong
Intellectual Property features. Additionally, the
methodology can seamlessly be exported to various
blockchain environments and use various database
technologies.

Further work could investigate and develop
compatible Smart Contracts in new environments,
examine and reinforce the innate security of the
system, or extend the Token Contract’s functionalities
to make the best out of the verification process brought
by the workflow.

Acknowledgement

We acknowledge Titusz Pan and Sebastian Posth

from the ISCC foundation for out fruitful exchange
leading to the integration of ISCC into this
methodology. We acknowledge Najah Naffah for his
insights in applicative blockchain environments.

References

[1]. S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash

System. https://bitcoin.org/bitcoin.pdf
[2]. Grand View Research portal

(https://www.grandviewresearch.com/industry-
analysis/non-fungible-token-market-report)

[3]. DappRadar Web portal
(https://dappradar.com/nft/marketplaces)

[4]. Opensea Twitter post
(https://twitter.com/opensea/status/148684320406223
6676)

[5]. D. Das, P. Bose, N. Ruaro, C. Kruegel, G. Vigna,
Understanding Security Issues in the NFT Ecosystem,
in Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS '22),
November: 2022, pp. 667–681.

[6]. A. Moreaux, M. Mitrea, Blockchain Assisted Near-
duplicated Content Detection, in Proceedings of the 1st
Blockchain and Cryptocurrency Conference (B2C'
2022), Barcelona, Spain, Nov 2022, pp. 98-103.

[7]. N. Szabo, Formalizing and Securing Relationships on
Public Networks, First Monday, Volume 2, Issue 9,
1997.

[8]. V. Buterin, Ethereum: A Next-Generation Smart
Contract and Decentralized Application Platform,
White Paper, 2014. https://ethereum.org/

[9]. V. Dhillon, D. Metcalf, M. Hooper, Blockchain
Enabled Applications, Apress, 2017.

[10]. T. Hewa, Y. Hu, M. Liyanage, S. Kanhare,
M. Ylianttila, Survey on Blockchain-Based Smart
Contracts: Technical Aspects and Future Research,
IEEE Access, 2021.

[11]. X. Li, P. Russell, C. Mladin, C. Wang, Blockchain-
Enabled Applications in Next-Generation Wireless
Systems: Challenges and Opportunities, IEEE
Wireless Communications, Vol. 28, No. 2, April 2021,
pp. 86-95.

[12]. Liu, J., Huang, Z., Cai, H., Shen, H. T., Ngo,
C. W., and Wang, W., Nearduplicate video retrieval:
Current research and future trends, ACM Comput.
Surv., 45, 4, 2013, Art. No. 44.

[13]. Last Week Tonight, Cryptocurrencies II.
(https://www.youtube.com/watch?v=o7zazuy_UfI)

[14]. R. Li, Fingerprint-related chaotic image encryption
scheme based on blockchain framework, Multimedia
Tools and Applications, Vol. 80, Issue 20, 2021,
pp. 30583–30603.

[15]. F. Frattolillo, A Watermarking Protocol Based on
Blockchain, Applied Sciences, Vol. 10, Issue 21, 2021,
7746.

[16]. A. Qureshi, D. Megías Jiménez, Blockchain-Based
Multimedia Content Protection: Review and Open
Challenges, Applied Sciences, Vol. 11, Issue 1, 2021.

[17]. L. Tseng, X. Yao, S. Otoum et al., Blockchain-based
database in an IoT environment: challenges,
opportunities, and analysis, Cluster Computing,
Vol. 25, 2020, pp. 2203-2221.

[18]. X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat,
L. Njilla, ProvChain: A Blockchain-Based Data
Provenance Architecture in Cloud Environment with
Enhanced Privacy and Availability, in Proceedings of
the 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID), 2017,
pp. 468-477.

[19]. M. Allouche, M. Ljubojevic, M. Mitrea, Visual
document tracking and blockchain technologies in
mobile world, in Proceedings of the Electronic
Imaging, International Conference on Imaging and
Multimedia Analytics in a Web and Mobile World (EI
2021), January 2021, Online, France, pp.279:1-279:7.

[20]. W. Entriken, D. Shirley, J. Evans, N. Sachs, EIP-721:
Non-Fungible Token Standard, Ethereum
Improvement Proposals, No. 721, January 2018.

[21]. FA2 A unified token contract interface, Tezos,
https://tezos.b9lab.com/fa2

[22]. A. Garboan, M. Mitrea, Live camera recording robust
video fingerprinting, Multimedia Systems, 22, 2016,
pp. 229–243.

[23]. International Standard Content Code Foundation
portal, https://iscc.foundation/iscc/

Blockchain and Cryptocurrency, Vol. 1, Issue 1, September 2023, pp. 44-55

 55

[24]. SmartPy Tezos IDE. (https://smartpy.io/)
[25]. SmartPy, ‘Meta-Programming’. https://smartpy.io/

releases/20220607-708da61f52c9d66c88f593ffc2915
c52545d6090/docs/introduction/meta_programming/

[26]. TzKT: Tezos blockchain explorer, https://tzkt.io/
[27]. Mirflickr25k dataset, https://www.kaggle.com/

datasets/paulrohan2020/mirflickr25k
[28]. Ethereum Entrprise Alliance Specification portal,

https://entethalliance.org/technical-specifications/

[29]. Web3py documentation, Web3Py, https://web3py.
readthedocs.io/en/v5/

[30]. Le Louvre online tour portal.
https://www.louvre.fr/en/online-tours

[31]. Rinkeby Testnet- Etherscan.
https://www.rinkeby.etherscan.io

[32]. Web3.js – Ethereum JavaScript API,
https://web3js.readthedocs.io/en/v1.8.2/

[33]. Taquito TypeScript library, https://tezostaquito.io/

Published by IFSA Publishing, S. L., 2023

