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ABSTRACT
The mathematical theory of viability, developed to formalize prob-

lems related to natural and social phenomena, investigates the evo-

lution of dynamical systems under constraints. A main objective of

this theory is to design control laws to keep systems inside viable

domains. Control laws are traditionally defined as rules, based on

the current position in the state space with respect to the bound-

aries of the viability kernel. However, finding these boundaries is

a computationally expensive procedure, feasible only for trivial

systems. We propose an approach based on Genetic Programming

(GP) to discover control laws for viability problems in analytic form.

Such laws could keep a system viable without the need of comput-

ing its viability kernel, facilitate communication with stakeholders,

and improve explainability. A candidate set of control rules is en-

coded as GP trees describing equations. Evaluation is noisy, due to

stochastic sampling: initial conditions are randomly drawn from

the state space of the problem, and for each, a system of differential

equations describing the system is solved, creating a trajectory.

Candidate control laws are rewarded for keeping viable as many

trajectories as possible, for as long as possible. The proposed ap-

proach is evaluated on established benchmarks for viability and

delivers promising results.

CCS CONCEPTS
• Computing methodologies → Continuous space search; • The-
ory of computation→ Genetic programming.
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1 INTRODUCTION
The viability approach is a theory that describes the properties

of a dynamical system as a map on its state space. Each state can

be characterized according to the dynamics of the system with

respect to a set of constraints. Important notions such as resilience

have been proposed [27], that allowed revisiting multi-criteria prob-

lems, in particular in the field of ecology, economy and sustainable

development (for a review, see [34]), planetary boundaries [29],

chemistry [41], and other fields. The main idea is to provide a dif-

ferent way to consider optimality: instead of searching an “optimal”

solution, a set of solutions satisfying some constraints is searched.

These constraints can reflect complex issues, like for instance con-

ciliation between stakeholders [2].

A major concern in this field is related to the computational costs

of the algorithms, they are often very high. Once a viability problem

is formulated, a standard approach is to identify the viability kernel

that gathers all the states from which it is possible to maintain at

least one trajectory in the constraint set. Exact analytic solutions

are very rare: for examples in 2D see [5], Chapter 7; and for an

example in 3D, see [7]. Computation of approximations is difficult

and time-consuming since general algorithms are exponential with

the dimension [37]. And more computation is generally necessary

to obtain the map of viable controls. Only a few general control

laws are available, for instance the slow or quasi-slow selections of

viable controls which select the viable controls with minimal norm
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[11], or heavy strategy which selects viable controls whose veloc-

ity has at each instant the minimal norm [6]. Unfortunately these

strategies often lead trajectories to the boundary of the viability

kernel, which is not desirable, since outside the viability kernel tra-

jectories are doomed to leave the constraint set. Heuristic prudent

trajectories [1] can be considered to stay far from the boundary,

but the computation of trajectories robust to perturbation is very

time consuming [28].

The original idea of this paper is to use genetic programming

(GP) to compute directly a viable control map in analytic form.

The idea of using evolutionary computation for finding a viable

trajectory once the viability kernel has been computed is not new:

[30] proposed an approach applied to a complex agrifood process.

The novel idea proposed in this work is to employ the GP engine

to automatically discover a control law in analytic form, a set of

equations encoded as GP trees, removing the need of exactly com-

puting the boundaries of the viability kernel. The analytic control

law to be discovered is tasked with keeping as many trajectories

as possible inside the problem constraints: a candidate control law

is considered to be better than another if it is able to keep a larger

number of trajectories viable for longer. An experimental evalua-

tion on two known viability benchmarks show that the approach

is able to deliver encouraging results.

The paper is organized as follows: in section 2 we briefly present

the viability theory, and, as the evaluation of a control relies on

a stochastic sampling of the state space, we recall some issues

related to noise management in evolutionary computation and

genetic programming. Section 3 describes the proposed approach

and details the structure of an individual, the evolutionary operators

and the fitness evaluation procedure based on a stochastic sampling.

An experimental analysis is performed on two classical use cases of

the domain in 2 and 3 dimensions (section 4), showing promising

results. We finally draw some conclusions in section 5 and discuss

about future extensions of this work.

2 BACKGROUND
In the following we outline the basic concepts of viability theory

and genetic programming, necessary to introduce the scope of our

work.

2.1 Viability theory
Mathematical viability theory, as defined by [3], is a mathematical

framework designed to study the compatibility between evolutions

of dynamical systems and constraints in the state space. A viability

problem is generally defined with a controlled dynamical system 𝑆 ,

which may be subject to uncertainties, called "tyches" in the formal

definition below
1
, a set of admissible controls𝑈 , which may depend

on the state of the system, and a set of constraints, 𝐾 , which is a

subset of the state space. The viability kernel 𝑉𝑖𝑎𝑏𝑆 (𝐾) is a subset
of the constraints set 𝐾 that gathers all the states from which it is

possible to maintain at least one trajectory within 𝐾 . In practice,

most viability problems can be defined as a system of Ordinary

Differential Equations (ODE).

1
"Tyche was the presiding tutelary deity who governed the fortune and prosperity of

a city, its destiny." from https://en.wikipedia.org/wiki/Tyche

For example, for a problem of lake eutrophication (detailed in

Section 4.1), when human activities can lead to water pollution, the

hysteresis dynamics of the lake is well described by the evolution

of variables 𝐿, the input of phosphorus, and 𝑃 , the concentration

of phosphorus in the lake [27]. The constraint set defines an upper

limit for 𝑃 to prevent eutrophication, and a lower limit for 𝐿 to

support human activities. Figure 1 shows the viability kernel for

this case study, using the same parameters described in Section 4.1.

Figure 1: Viability kernel of the lake eutrophication case
study (Eq. 10) in gray color. The dotted line shows the equi-
libria of the dynamics (𝑑𝑃

𝑑𝑡
= 0). State 𝐴 is in the viability

kernel, we can see a trajectory starting at 𝐴 and staying in
the constraint set forever, with control 𝑢1 = −0.09 from 𝐴 to
𝐵, then control 𝑢2 = +0.09 from 𝐵 to 𝐶, and then alternatively
control switch from 𝑢2 to 𝑢1 at state 𝐶 and from 𝑢1 to 𝑢2 at
state 𝐵. State 𝑆 is in the constraint set but outside the viability
kernel: All trajectories starting at 𝑆 leave the constraint set
in finite time, no matter the value of 𝑢.

Formally, a viability problem is defined as follows. Consider the

set of variables that govern the behaviour of a system, a classical

guaranteed viability kernel mathematical formulation [3, 4] is:

• Let 𝑥 ∈ 𝑅𝑛 be the state vector, that describes the current

state of the system.

• Let𝑢 ∈ 𝑅𝑝 be the control vector, that represents the variables

that can be changed for controlling the system.

• Let 𝑣 ∈ 𝑅𝑞 be the so-called tyche vector, that represents all

variables that vary but cannot be controlled.

The map

𝑈 : 𝑅𝑛 { 𝑅𝑝 (1)

defines the set of admissible controls, the map

𝑉 : 𝑅𝑛 { 𝑅𝑞 (2)

defines the set of anticipated tyches and the function

𝑓 : 𝑅𝑛 × 𝑅𝑝 × 𝑅𝑞 → 𝑅𝑛 (3)

describes the evolution of 𝑥 over time
𝑥 (𝑡 + 1) = 𝑓 (𝑥 (𝑡), 𝑢 (𝑡), 𝑣 (𝑡)) state variables

𝑢 (𝑡) ∈ 𝑈 (𝑥 (𝑡)) controls

𝑣 (𝑡) ∈ 𝑉 (𝑥 (𝑡)) tyches

(4)
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Finally, the constraints set on the system are described by a set

𝐾 ⊂ 𝑅𝑛 (5)

The answer to the viability problem between 𝑓 ,𝑈 and 𝐾 is a map

�̃� : 𝑅𝑛 { 𝑅𝑝 (6)

such that all evolutions starting in𝐷𝑜𝑚(�̃�) and governed by 𝑓 , �̃�,𝑉
remains in 𝐾 forever. The biggest map for the inclusion of its graph

is called the regulation map and its domain𝑉𝑖𝑎𝑏𝑆 (𝐾) = 𝐷𝑜𝑚(�̃�) is
called the guaranteed viability kernel, or simply the viability kernel

when tyches are not considered. Finding the viability kernel is com-

putationally expensive, as current techniques require a recursive

elimination of non-viable states, for which no viable controls can

be found; and for most real-world practical applications, the exact

computation is impossible.

In this work, rather than approximating the viability kernel from

the constraint state, we propose to address viability problems by

searching directly for a control law encoded as an analytic function

𝑈 (𝑥) of the current state 𝑥 . Search for an analytic function𝑈 (𝑥) can
be performed through an approach based on Genetic Programming.

Figure 2: Example of viable and non-viable trajectories, given
the viability problem described by Eq. 10 and an analytic con-
trol law. The state variables of the problem are 𝐿 and 𝑃 , and
the control law 𝑢 (𝐿, 𝑃) = − sin(𝑃) + sin(sin(𝑃)) is able to suc-
cessfully keep some of the trajectories (in green) inside the
viable area of the given constraints, while other trajectories
(red, dotted lines) eventually escape the viable area.

2.2 Genetic programming with noisy fitness
Genetic Programming (GP) [21] is an established evolutionary op-

timization technique, able to optimize trees describing programs

or functions. GP can boast several successful applications [13, 19],

especially for symbolic regression [39], where GP trees encode

equations.

Using GP for viability problems puts us in a context where the

behaviour of a dynamical system has to be assessed over a whole

continuous domain. This evaluation is usually accessible through

stochastic sampling, spatially (for the domain) as well as within a

finite temporal horizon (simulations with a finite number of steps).

As a consequence, the associated fitness function to be optimized

is often very noisy.

Since a long time, evolutionary computation has been proved to

be able to deal rather smoothly with noisy landscapes due to their

intrinsic stochastic nature [12, 14, 15, 20]. Theoretical analyses [10,

36] have shown that noise has no impact on the limit distribution

(i.e. the position of the global optimum of the fitness function),

but on the way it is reached, evidencing the importance of finite

population effects. Noisy fitness functions may necessitate longer

computations to reach a reliable optimum. Other analyses have

provided recommendations on population sizing [14], selection

methods [32] or sampling strategies [8]. The efficiency of sam-

pling strategies (i.e. using repeated fitness evaluations to reduce the

noise) remains however an issue: it has been shown that in some

conditions, a “classical” strategy (simply ignoring noise) is able

to outperform repetition-based algorithms [22]. Repeated fitness

computations have a non negligible computational cost, that must

be finely balanced with the other computations of the evolutionary

search process. Adaptive [8] or memory-based [38] strategies have

been proposed in order to reduce the computation time in terms of

function evaluations.

The impact of noise in GP has been less studied. Recent works [18,

26] have however shown that it has also a noticeable impact on the

performances of the algorithms, such as GP-based applications for

machine-learning (generalization capabilities) [33], classification

[40] or symbolic regression [17].

Surrogates, or approximate fitness functions (usually considered

when the full computation is expensive), proposed at the end of the

last century [35] may provide another interesting viewpoint on the

question. They have been lately used in GP [18], but seem inter-

esting to accelerate computations and improve quality of results.

In this context very rough approximations of the fitness functions

can be used – often computed by means of statistical or machine

learning from samples of previous evaluations – then progressively

refined with respect to the state of the evolution and/or the value of

the estimated fitness. These algorithms based on surrogates share

common features with algorithms dealing with noisy fitness. They

actually highlight an interesting characteristic of progressive ap-

proximations of fitness calculations: besides the straightforward

computational advantage of shorter unnecessary calculations, it

seems that such strategies provide smoother landscapes to the

evolutionary process, thus facilitate its convergence. This feature

has been theoretically investigated in canonical EAs, see for in-

stance [23, 24, 25] for studies on the influence of fitness regularity;

the extension of this analysis to GP landscapes is an open and

challenging question.

3 PROPOSED APPROACH
In this work, we propose a novel approach for tackling viability

problems, based on the idea of directly searching for analytic control

laws 𝑈 , represented as a set of GP-trees, where functions can be

min-max bounded to fit the limits of the domain of control values.

Each control is evaluated thanks to an estimation of its ability to
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generate trajectories that do not escape from the set 𝐾 . As we are

dealing with a continuous region, the estimation is performed via a

random sampling of initial conditions inside𝐾 . We thus have to deal

with a noisy fitness, corresponding to a stochastic approximation

of the real fitness value. To limit overfitting, 𝑛𝑖𝑐 initial conditions

are randomly chosen at each generation, and all individuals of the

same generation are compared on the same set of initial conditions.

3.1 Structure of a candidate solution
Each viability problem has a given number of control laws, which

make it possible to influence the values of its state variables, and

possibly keep them within constraints, in a viable state. We propose

to model a candidate set of control laws for a given viability problem

as a set of equations:

𝑢 (𝑥1, ..., 𝑥𝑛)


𝑢1 = 𝐺1 (𝑥1, ..., 𝑥𝑛)
𝑢2 = 𝐺2 (𝑥1, ..., 𝑥𝑛)
...

𝑢𝑛 = 𝐺𝑛 (𝑥1, ..., 𝑥𝑛)

(7)

where𝑢 = (𝑢1, ..., 𝑢𝑛) is the control law for a given viability prob-

lem, 𝑥 = (𝑥1, ..., 𝑥𝑛) is the vector of state variables of the viability
problem, and 𝐺1, ...,𝐺𝑛 are different GP trees representing equa-

tions, with function set and terminals typical of classical symbolic

regression approaches [21, 39].

3.2 Evolutionary operators
Every time an individual is selected for reproduction, for each con-

trol law inside the individual, an evolutionary operator is randomly

chosen to create a new law. The considered operators are classical

for GP applications: one-point crossover, applied with probabil-

ity 𝑝𝑐 ; hoist mutation, with probability 𝑝ℎ ; point mutation, with

probability 𝑝𝑝 ; subtree mutation, with probability 𝑝𝑠 ; and a final

replication operator that simply copies the parent’s GP tree, applied

with probability 𝑝𝑟 = 1.0 − (𝑝𝑐 + 𝑝ℎ + 𝑝𝑝 + 𝑝𝑠 ). If the one-point
crossover is chosen, a second individual is selected and the crossover

is performed with the corresponding control law of the second in-

dividual. If a child individual is left identical to the parent, due to

the replication operator being selected for each control law, the

child individual is discarded and the process is iterated until a child

individual with at least one different law is eventually produced.

3.3 Fitness evaluation using stochastic
approximation

Evaluating the goodness of a candidate set of control laws for a

given viability problem seems straightforward: given random initial

conditions for the ODE system describing the problem, solve the

system using the candidate control laws for an integration step Δ𝑡
and maximum time max𝑡 , and finally check whether the resulting

trajectory stays inside the boundaries of the given constraints until

the end. This evaluation, however, is not appropriate for a fitness

function, as (i) it only provides a yes/no (viable/non-viable) answer,

which is too coarse for evolutionary optimization methods and (ii)

it neglects the consideration that some initial conditions may be

non-viable, no matter what set of control laws is applied.

In order to smoothen the fitness function, we thus proceed to: (i)

draw a user-defined number of random initial conditions 𝑛𝑖𝑐 from

the state space uniformly within the constraints at each generation,

and evaluate all individuals of the same generation on the same

set of initial conditions; (ii) assign a reward to the candidate solu-

tion equal to the number of viable trajectories that stay inside the

boundaries defined by the constraints for the whole max𝑡/Δ𝑡 time

steps; and (iii) even for non-viable trajectories, we assign a partial

reward proportional to the number of time steps for which the

trajectory managed to stay within the boundaries. Using another

formulation, the fitness function for candidate solution 𝐼 , given 𝑛𝑖𝑐
initial conditions is:

𝐹 (𝐼 ) =
∑𝑛𝑖𝑐
𝑖=1

𝑟 (𝑖)
𝑛𝑖𝑐

(8)

with reward function 𝑟 (𝑖) being:

𝑟 (𝑖) =
{
1.0 if trajectory for initial conditions 𝑖 is viable

𝑣𝑖
max𝑡 /Δ𝑡

otherwise

(9)

where 𝑣𝑖 is the number of time steps for which trajectory 𝑖

remained viable, and max𝑡/Δ𝑡 gives the total number of time steps.

In otherwords, a non-viable trajectory 𝑗 that violates the constraints

on the first time step (out of 100) will have a reward 𝑟 ( 𝑗) = 0.01,

while a non-viable trajectory 𝑘 that stays inside the boundaries for

99 steps will have a reward 𝑟 (𝑘) = 0.99. This could provide enough

information to the evolutionary algorithm to be able to separate the

performance of different candidate solutions. Taking for example

the candidate solution for the viability problem depicted in Figure 2,

the individual will receive a full reward for the viable trajectories

in green, and partial rewards for the ones in red, with the biggest

partial reward for the trajectory starting from the bottom right part

of the state space, as it stays inside the constraints for longer.

Fitness function 𝐹 will thus range between 0 and 1, and is to

be maximized. It is interesting to notice that, depending on a via-

bility problem’s characteristics, the fitness function might never

reach its theoretical maximum value, as trajectories for some initial

conditions will never be viable, independently from the control

selected: only trajectories starting inside the viability kernel (that

is in principle unknown and expensive to compute) have a chance

of staying inside the constraints, given the right control. It is also

relevant to remark that, as the initial conditions for each generation

are randomly generated, the fitness function can be characterized

as noisy.

4 EXPERIMENTAL EVALUATION
To validate the proposed approach, we select two known bench-

marks in viability theory, an ODE system with two equations, de-

scribing lake eutrophication, with one control law; and a ODE

system with three equations, describing a sphere, featuring three

control laws. For all considered benchmarks, we do not add tyches,

to simplify the problems for an initial assessment of our approach,

and to reduce possible sources of stochasticity that would increase

the noise in the fitness evaluation.

The proposed approach is implemented in Python 3.9, employ-

ing libraries sympy [31] for symbolic computation, scipy [42] for
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integration of ODE systems, and classes from gplearn2 for the

GP engine at the core of the proposed approach. All the necessary

code to reproduce the experiments and figures can be found on the

GitHub repository: https://github.com/albertotonda/evolutionary-

viability-theory.

After preliminary experiments, the parameters of the employed

algorithms are set as follows, for all the considered case studies.

The function set for the GP-evolved control laws consists of:

{+,−, ∗, /, log,√, sin, cos}

and the terminals include all experiment-specific state variables,

plus constant floating point values 𝑐 ∈ (−1.0, 1.0). The initialization
method for the starting population is half and half, with 50% of the

trees grown choosing at random functions or terminals for each

node, and the remaining 50% grown choosing random functions

from the function set until the maximum allowed depth is reached,

and then choosing random terminals. The GP trees in the initial

population will have a depth 2 ≤ 𝑑 ≤ 4. The activation probabilities

of the genetic operators are set as: 𝑝𝑐 = 0.4, 𝑝ℎ = 0.1, 𝑝𝑠 = 0.1, 𝑝𝑝 =

0.1, 𝑝𝑖 = 0.3. The selection for reproduction is performed using a

tournament selection of size 𝜏 = 2. The evolutionary algorithm

employs a replacement strategy (` + _).
All experiments are run on a server with an AMD EPYC 7301 16-

Core Processor and 128 GB of RAM. Fitness evaluations of candidate

individuals have been parallelized using the multi-process options

of inspyred.

4.1 Case study: lake eutrophication
4.1.1 Problem description. Eutrophication is a phenomenon affect-

ing bodies of water, by which they become progressively enriched

with minerals and nutrients, particularly nitrogen and phosphorus,

increasing the growth of phytoplankton. When this process starts

rapidly affecting water that is normally oligotrophic, thus very low

in nitrogen and phosphorus, the effects can be extremely deleteri-

ous on the lake’s ecosystem. Several lakes have experienced sudden

shifts from an oligotrophic to an eutrophic state. This phenomenon

is due to excess phosphorus in the lake. The model describes the

dynamics of phosphorus concentration and phosphorus inputs over

time. The issue is to determine whether it is possible to maintain the

lake in an oligotrophic state while preserving agricultural activities

in its watershed. For this particular application, it is possible to act

on the input of phosphorus in the lake, as a residual of agricultural

activities. This is a classical viability problem, whose description is

available from the ViNO platform
3
.

From [9], we consider that the phosporus concentration dynam-

ics is governed by :{
𝐿(𝑡 + 1) = 𝐿(𝑡) + 𝑢
𝑃 (𝑡 + 1) = 𝑃 (𝑡) − 𝑏 · 𝑃 (𝑡) + 𝐿(𝑡) + 𝑟 · 𝑃 (𝑡 )𝑞

𝑃 (𝑡 )𝑞+𝑚𝑞

with 𝑢 ∈ [𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥 ]
(10)

where 𝐿 is the input of phosphorus, 𝑃 is the concentration of

phosphorus, 𝑢 is the variation in the input of phosphorus, and 𝑏, 𝑟 ,

𝑚, 𝑞, 𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥 are parameters.

2
https://gplearn.readthedocs.io/en/stable/intro.html

3
https://lisc.inrae.fr/vino/

4.1.2 Experimental setup. For the simulations below, we used the

2D-lake-PSP-16384ppa benchmark
4
with the following parame-

ters:

𝑏 = 0.8, 𝑟 = 1.0, 𝑞 = 8.0,𝑚 = 1.0

and the following constraints:

𝐿𝑚𝑖𝑛 = 0.1, 𝐿𝑚𝑎𝑥 = 1.0, 𝑃𝑚𝑖𝑛 = 0.0,

𝑃𝑚𝑎𝑥 = 1.4, 𝑢𝑚𝑖𝑛 = −0.09, 𝑢𝑚𝑎𝑥 = 0.09

This particular case study includes a single control law, 𝑢, that

we define as an equation 𝑢 (𝐿, 𝑃) to be found through the proposed

approach. As the problem includes a constraint 𝑢𝑚𝑖𝑛 ≤ 𝑢 (𝐿, 𝑃) ≤
𝑢𝑚𝑎𝑥 , we define a candidate solution as:

𝑢 (𝐿, 𝑃) =


𝑢𝑚𝑖𝑛 if 𝑢 < 𝑢𝑚𝑖𝑛

𝐺 (𝐿, 𝑃) if 𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥

𝑢𝑚𝑎𝑥 if 𝑢 > 𝑢𝑚𝑎𝑥

(11)

where 𝐺 (𝐿, 𝑃) is the equation represented by a GP tree. We decide

to impose these threshold to prevent the evolutionary approach

from employing computational time to autonomously rediscover

a way to respect this constraint. In practice, this corresponds to

setting 𝑢 (𝐿, 𝑃) = max(𝑢𝑚𝑖𝑛,min(𝑢𝑚𝑎𝑥 ,𝐺 (𝐿, 𝑃))).
The experimental run uses the following parameters for the evo-

lutionary algorithm: ` = 100, _ = 200 and a termination condition

set on the maximum number of evaluations, 𝐸𝑚𝑎𝑥 = 10, 000. Each

candidate solution is evaluated on 𝑛𝑖𝑐 = 100 randomly selected ini-

tial conditions. For the integration of the ODE system representing

the problem, the solver selected is an explicit Runge-Kutta method

of order 4 [16], with Δ𝑡 = 0.01 and max𝑡 = 100. The experimental

run lasted a total of 30 hours on the previously described hardware

configuration.

4.1.3 Results. Analyzing the results, the fitness value of the best
individual grows over the generations as expected for evolutionary

computation approaches; but since the fitness evaluation is noisy,

with a new set of initial conditions randomly generated at each

iteration, a further validation is needed to assess the improvements.

Figure 3 shows a comparison between the best individual at gen-

eration 0 and the best individual in the final generation, using 500

randomly generated initial conditions, different from those seen

during the evolutionary process. The area highlighted in blue in

the figure represents the viability kernel, that for this particular

benchmark is known. Remarkably, the best control law found in the

experiment keeps all trajectories that originate inside the viability

kernel viable. With reference to Eq. 11, the best control found at

the end of the experiment has the form:

𝐺 (𝐿, 𝑃) = sin(log(𝐿)) − (log(𝐿) − 1.4617) (12)

4.2 Case study: 3D-sphere
4.2.1 Problem description. This case study is another classical via-

bility benchmark, again found in the ViNO platform, with the ODE

system describing a sphere in three dimensions:

4
Available at https://demo.vino.openmole.org/viabilityproblem/1/#kernel/1/ppa/1000/

https://github.com/albertotonda/evolutionary-viability-theory
https://github.com/albertotonda/evolutionary-viability-theory
https://gplearn.readthedocs.io/en/stable/intro.html
https://lisc.inrae.fr/vino/
https://demo.vino.openmole.org/viabilityproblem/1/#kernel/1/ppa/1000/
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Figure 3: Analysis of individuals for the lake eutrophication case study, using the same 500 randomly generated initial
conditions, not seen during the evolutionary optimization. The fitness value is reported as a percentage of the total number of
initial conditions. The area in blue represents the viability kernel, that is known for this particular benchmark [9]. (Left) best
individual at generation 0, (Right) best individual at generation 100.


𝑥 (𝑡 + 1) = 𝑥 (𝑡) + 𝑎 · 𝑢𝑥
𝑦 (𝑡 + 1) = 𝑦 (𝑡) + 𝑎 · 𝑢𝑦
𝑧 (𝑡 + 1) = 𝑧 (𝑡) + 𝑎 · 𝑢𝑧

with 𝑢2𝑥 + 𝑢2𝑦 + 𝑢2𝑧 ≤ 1

(13)

where𝑢𝑥 , 𝑢𝑦, 𝑢𝑧 are the three control laws, and the viable volume

in the state space is constrained by:

𝑥2 + 𝑦2 + 𝑧2 ≤ 𝑟 (14)

4.2.2 Experimental setup. For this experiment, we consider the fol-

lowing parameters, taken fromproblem instance 3D-ball-Viablab-
81ppa5: 𝑎 = 1.0, 𝑟 = 1.5.

The experimental run uses the following parameters for the evo-

lutionary algorithm: ` = 100, _ = 200 and a termination condition

set on the maximum number of evaluations, 𝐸𝑚𝑎𝑥 = 10, 000. Each

candidate solution is evaluated on 𝑛𝑖𝑐 = 100 randomly selected ini-

tial conditions. For the integration of the ODE system representing

the problem, the solver selected is an explicit Runge-Kutta method

of order 4 [16], with Δ𝑡 = 0.01 and max𝑡 = 100. The experimental

run lasted a total of 90 hours on the previously described hardware

configuration.

4.2.3 Results. The 3D-sphere benchmark proves to be considerably

more challenging than the lake eutrophication case study. The best

fitness value in generation 0 is 0.0016, far below 0.01, indicating

that a randomly generated control law typically cannot keep even

one single trajectory inside the viable volume described by the

constraints.

Figure 4 shows that a considerable number of non-viable trajec-

tories stop before crossing the constraint in the state space: this

indicates that they violate the constraint imposed on the control

5
https://demo.vino.openmole.org/viabilityproblem/6/#kernel/12/

laws,𝑢2𝑥 +𝑢2𝑦+𝑢2𝑧 < 1.0. Apparently, for this case study, the proposed

approach has difficulty discovering a way around this obstacle: even

after 100 generations, the best individual still has fitness 0.0061,

indicating that the candidate control law managed to keep the

trajectories viable for longer, but in the end they all escaped the

boundaries of the constraints.

These results are not completely unexpected, as in this case set-

ting thresholds for each control equation separately is not possible;

and the search space to be explored by the proposed GP-based ap-

proach is substantially larger, as three GP trees need to be optimized,

instead of just one. With reference to Eq. 13, the best candidate

control law found is:


𝑢𝑥 (𝑥,𝑦, 𝑧) = 𝑦 · −0.9655·𝑥

𝑦

𝑢𝑦 (𝑥,𝑦, 𝑧) = cos(cos((𝑦 + log(cos(−0.4505 · 𝑧))) · 0.3767))
𝑢𝑧 (𝑥,𝑦, 𝑧) = 𝑧 · sin(−0.6640)

(15)

It could be possible to frame the same problem in spherical coor-

dinates, which might make the evolutionary search more efficient,

as in a spherical coordinates system it could be easier to express

the constraints of Eq. 13 and Eq. 14 as separate constraints on each

control rule, and replicate the individual encoding used in the lake

eutrophication case study, described by Eq. 11. Further experiments

are needed to explore this possibility.

5 CONCLUSION AND PERSPECTIVES
In this work, we presented a novel evolutionary approach to the

automatic discovery of analytic control laws for viability problems.

Viability theory traditionally approached control laws by employing

rules or by performing local optimization after each integration step

of an ODE system representing the viability problem. To the best

of the authors’ knowledge, this is the first time that the problem

https://demo.vino.openmole.org/viabilityproblem/6/#kernel/12/
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Figure 4: Analysis of individuals for the 3D-Sphere case study, using 1,000 randomly generated initial conditions, unseen during
the evolutionary optimization. The two top plots show trajectories for the best control of generation 0, the bottom two show
the trajectories for the same initial conditions for the best control at generation 100. Even though the control at generation 100
is able to keep the trajectories viable for longer, they all eventually escape the constraints.

of finding explicit analytic equations for control laws is posed,

and a possible framework to solve it is introduced. The proposed

approach is based on the evolution of GP trees modeling equations

for each control law, while the fitness value of a candidate solution

is assessed by sampling the state space of the problem for random

initial conditions at each generation. Preliminary experimental

results on classical viability benchmarks show that the approach

is able to deliver promising results, even for controls including

several equations. Having explicit, high-quality control equations
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for a viability problem could help improve the communication with

the stakeholders and ease the analysis of a problem’s behavior.

A possible extension for real-world applications would be to

integrate a term into the fitness function to drive the evolutionary

search towards control laws that are similar to stakeholders’ current

control practices. This way small changes, more acceptable with

respect to the current practices, could be proposed to them.

Other future works will focus on improving the fitness function.

Instead of using randomly generated valid initial conditions at each

generation, it might be possible to progressively store informa-

tion on the viability of initial conditions previously evaluated, and

eventually approximate the frontier of the viability kernel during

the evolution. As the frontier, which is in principle unknown, is

where the initial conditions most interesting for the evaluation of

candidate control equations lay, this could provide more relevant

information for the evolutionary algorithm, and at the same time

deliver interesting results to analyze for viability experts.

A non-negligible part of viability theory is concernedwith tyches,

in other words, unpredictable and uncontrollable factors that are

usually assumed to be stochastic. The same proposed approach

described in this work could be used to evolve equations describing

deterministic tyches, which would attempt to rapidly push the

system towards a non-viable state, thus leading to the discovery

of worst-case scenarios for given viability problems. It would also

be possible to frame the problem as a competitive co-evolutionary

optimization task, with a population of candidate tyches trying to

push trajectories to a non-viable state, and a population of control

laws attempting to keep them inside the viable area.

Besides a few early attempts [30], more focused on the discovery

of an optimal trajectory when starting from an initial condition

inside the viability kernel, the application of evolutionary compu-

tation to viability theory is still a relatively unexplored field, with

several exciting possibilities for evolutionary approaches to shine

and provide valuable results for the viability research community.
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