N
N

N

HAL

open science

Blockchain asset lifecycle management for visual content
tracking
Alexandre C Moreaux, Mihai P Mitrea

» To cite this version:

Alexandre C Moreaux, Mihai P Mitrea. Blockchain asset lifecycle management for visual content
tracking. IEEE Access, 2023, 11, pp.100518-100539. 10.1109/ACCESS.2023.3311635 . hal-04230150

HAL Id: hal-04230150
https://hal.science/hal-04230150
Submitted on 5 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04230150
https://hal.archives-ouvertes.fr

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 18 July 2023, accepted 28 August 2023, date of publication 4 September 2023, date of current version 20 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3311635

== RESEARCH ARTICLE

Blockchain Asset Lifecycle Management for
Visual Content Tracking

ALEXANDRE C. MOREAUX™ AND MIHAI P. MITREA

Samovar Laboratory, Télécom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau, France

Corresponding author: Mihai P. Mitrea (mihai.mitrea @telecom-sudparis.eu)

ABSTRACT With the current complexification of image manipulation technologies (ranging from color
editing or aspect ratio modifications to Al-generated fake news), many numerical representations can be con-
nected to the same semantic visual content. Thus, ensuring trust and authenticity for tracking near-duplicated
visual content (i.e., semantically identical yet digitally different content) becomes challenging from both
methodological and technical points of view. Addressing these challenges requires the synergistic combi-
nation of methodological solutions from different research fields, while current solutions are heterogeneous
and lack interoperability. In this paper, we create an automatic complete lifecycle management workflow
for visual content assets represented on blockchains. The workflow is supported by a novel architecture
seamlessly integrating near-duplicated content detection, Smart Contract automation, and token brokerage.
The architecture leverages a load-balancing framework and near-duplicated content detection to grant
properties natively featured by blockchains (security, trust, and transparency) to the authentication of assets
in environments where the same semantic content has various digital representations. Subsequently, minted
blockchain assets can be used contingently with other state-of-the-art tools, ensuring interoperability with
blockchain working standards. The effectiveness of this workflow is demonstrated through open-source
example implementations for the Ethereum and Tezos frameworks, illustrating the benefits this process
brings to automatic asset generation and Intellectual Property Rights (IPR) management.

INDEX TERMS Asset management, blockchains, decentralized applications, load management, smart
contracts, tokenization, visual information retrieval.

I. INTRODUCTION

Visual content is one of the highly valuable assets on the
market today. From entertainment movies [1] and social
networks [2] to video content generated by uncrewed vehi-
cles [3] or by Al [4], nearly every applicative vertical benefits
from advancements in digital content products and services.
The global digital creation market was valued at close to
26 billion USD in 2022 and is forecasted to reach 70 billion
USD before 2030 [5]. While multimedia assets represent
a foundation of the modern digital economy, they can still
suffer from improper use or IPR (Intellectual Property Rights)
infringements, such as copying, illicit commercial exploita-
tion, resource waste, or false appropriation [6]. The online
piracy market was estimated at 51.6 billion USD in 2022 [7],

The associate editor coordinating the review of this manuscript and

approving it for publication was Shu Xiao

and abuses have an immediate, tangible influence on fields
such as the movie industry [8]. Moreover, multimedia content
must face novel issues in web3! environments [12], such as
metaverse content creation [13], [14], which raises environ-
mental [15], economic [16], and social [17] challenges to be
tackled by innovative solutions from both public and private
sectors.

Consequently, no matter the specific application and
throughout its entire lifecycle, visual content protection is
currently achieved by a large variety of conventional solu-
tions, ranging from data encryption (ensuring privacy in data
transmission and storage [18]), digital signatures (tracking

1Web3 refers to the paradigm shift of the web from the social application-
oriented interactive era (web2) to the open decentralized era focused on
Distributed Ledger Technologies, cryptocurrencies, Artificial Intelligence,
etc. [9], [10], [11].

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

100518

VOLUME 11, 2023

https://orcid.org/0009-0007-4292-4593
https://orcid.org/0000-0003-4666-6847
https://orcid.org/0000-0001-9092-4052

A. C. Moreaux, M. P. Mitrea: Blockchain Asset Lifecycle Management for Visual Content Tracking

IEEE Access

the content by compact digests of its digital representa-
tion [19]), watermarking (tracking the content by inserting
additional data inside it [20]), to digital fingerprinting (track-
ing the very semantics” of the content by compact digests of
its human perceived features [22]).

In this paper, we focus on the authentication of digi-
tal assets using visual fingerprinting. This methodological
framework produces a semantically invariant digest out of
the perceptual characteristics of a given visual input, thus
allowing visual content to be tracked via its semantic fea-
tures. Concisely, visual fingerprinting is designed to reach
a trade-off between its unicity (i.e., semantically different
contents shall result in different fingerprints) and robustness
(i.e., semantically identical yet digitally different contents
shall result in similar fingerprints). As such, slightly modified
versions of the original content can also be matched back
to their original. While this methodological framework is
compatible with web2 environments, it does not feature
any inner security properties, which can be found in web3
environments.

Currently, decentralized environments [23], blockchains
at the forefront, are commonly known not only as a sup-
port for transactional systems but also as generic solutions
for ensuring immutable, zero-trust security3 [24] for a large
variety of digital assets. These assets range from generic
cryptocurrencies [26] to unique decentralized assets with
a variety of purposes [27], [28], [29], passing by standard
web2 [30] or physical assets [31], [32]. Although limited
in their computation capabilities and storage availability,
blockchains innovated the paradigms of a wide range of con-
ventional businesses, including finance [33], auditing [34],
and IPR management [35], to mention but a few. Hence,
our study investigates whether and how blockchains can
complement visual fingerprinting solutions by providing
them with security and resilience features.

Coupling blockchains with visual content fingerprint-
ing presents neither conceptual nor theoretical con-
tradictions. However, the association between the two
is drastically restricted by the lack of methodological
bridges and by critical limitations in their technical and
functional properties. First, a disconnect in the processing
workflow appears between visual content assets and their
blockchain representations. Not only does the level of web3
abstraction need to be accounted for in a trustworthy manner,
but the same semantic content, although unambiguously iden-
tified by human beings, presents a potentially infinite number
of digital representations that can be processed. Secondly,
visual content processing is prohibitively complex to be exe-
cuted on blockchain environments (further referred to as

2Throughout this study, the semantic content of visual assets is defined
as the sum of their perceptual characteristics as understood by a human
being [21].

3We use the notion of zero trust formalized in [24], i.e., the assumption
that there is no implicit trust granted to assets or user accounts based solely
on their physical or network location, nor based on asset ownership. This
notion is often summarized by “never trust, always verify” [25].

VOLUME 11, 2023

on-chain processing, as opposed to legacy off-chain process-
ing). Accommodating computationally intensive operations
intrinsic to visual content processing, distribution, and stor-
age in an environment so heavily constrained in resource
usage presents a significant challenge to our subject. Thirdly,
current-day implementation efforts are typically limited to
specific use cases, which leads to the absence of widely
adopted interoperable standards as of the time of writing. As
such, we aim to create and automate a systematic process
for managing decentralized assets representing physical
or web2 assets createdon-chainmaking the most out of
modern visual content processing.

To this end, we build on and extend ideas brought
forth in [36], [37], and [38] to provide automatic, end-
to-end semantic content tracking through authenticated on-
chain digital assets that are unambiguously and persistently
linked to off-chain visual content assets. Specifically, we
conceive, design, implement, and evaluate anon-chain-
off-chainload-balancing architecture that accommodates:
(1)off-chaindata storages; (2) semantic content identifica-
tion through fingerprinting techniques; (3) Smart Con-
tracts for immutable storage; (4) MPEG-21 Part 23 Smart
Contract prototyping for format standardization; (5)on-
chainassets, including their protection and distribution.

The resulting framework enables multimedia content to be
connected to decentralized assets while bearing the trace of
an authentication process, guaranteeing its semantic unicity.
Such assets can then be upgraded with blockchain protection
functionalities such as royalty management tools, handed to
state-of-the-art on-chain brokers, and distributed accordingly.
Once out in the environment, these assets carry the trace of
this authentication process and can be used with no restric-
tions, thus ensuring backward compatibility with existing
solutions.

While targeting the automation of a comprehensive, end-
to-end workflow catering to the needs of creation and
distribution of on-chain assets representing off-chain visual
content assets, the main contributions of this paper are:

o An architecture enabling the systematic generation of
authenticated assets as well as their subsequent manage-
ment, featuring:

o A mechanism establishing mutually beneficial asso-
ciations of on and off-chain applications for said
authentication,

o An easy to operate automated workflow, with built-in
protection against mistakes,

o Backwards and forwards interoperability with contin-
gent state-of-the-art solutions.

« An open-source software implementation of the above
architecture for the Ethereum framework, alongside key
modules for the Tezos framework. This software is
shown to function standalone and as part of an already
established workflow.

The present paper is structured as follows. Section II is
devoted to state-of-the-art concepts and tools for fingerprint-
ing, applicative blockchains, and their joint usage. Section III

100519

IEEE Access

A. C. Moreaux, M. P. Mitrea: Blockchain Asset Lifecycle Management for Visual Content Tracking

advances the methodological pillars of our solution before
combining them into a novel architecture. In Section IV,
we detail the software implementations of the architectural
components, while end-to-end proof-of-concept implemen-
tations are instantiated for two use cases in Section V.
Section VI analyses the paper’s contributions, highlighting
their strengths and identifying their limitations. Section VII
concludes and lays out future work.

Il. STATE-OF-THE-ART

This section begins by providing a global view of
visual content tracking (Section II-A) and applicative
blockchains (Section II-B) before investigating their joint
uses (Section II-C). Its findings (summarized in Section II-D)
identify the current-day deadlocks, thus serving as a base for
the design principles we identify and adopt for our method-
ology (Section III).

A. FINGERPRINTING-BASED VISUAL CONTENT TRACKING
As previously mentioned, visual content protection can take
different approaches. Although the workflow we will present
could benefit from data encryption at the level of data
storage or hidden signatures without any extra drawbacks,
it focuses on content tracking. Indeed, while turning multime-
dia content into web3 assets, said content naturally becomes
accessible and hence vulnerable to copying or abusive usage.
As such, the first step is to enable the tracking of content by
identifying it.

Cryptographic hashing functions [39] might seem like
a natural solution to identify content through fixed-length
digests, allowing one to look for copies throughout data
storages efficiently. However, multimedia content scarcely
remains strictly similar when being processed. Even omit-
ting malicious modifications, changes naturally occur in file
format, encoding, and metadata when stored, sent, or used.
These changes give birth to near copies, or near duplicate con-
tent, of the same original multimedia excerpt. If one were to
take a picture using a camera, upload it to their computer, and
send the picture to someone else, three instances of the pic-
ture would exist. Each of these instances would be different
from the others in digital representation and, as such, would
have different cryptographic hashes. However, we would
commonly call all three the ““same picture.” Formally, [40]
provides four definitions related to near-duplicated video
content. The most useful to our paper is the most general,
namely: “Identical or approximately identical videos close to
the exact duplicate of each other, but different in file formats,
encoding parameters, photometric variations (color, lighting
changes), editing operations (caption, logo, and border inser-
tion), different lengths, and certain modifications (frames
add/remove).”

In opposition to cryptographic hashing, near-duplicated
content tracking (also referred to as visual fingerprinting)
is a methodological framework that considers the semantic
content of its input when creating the digest. As such, it can
identify slightly modified versions of multimedia content,

100520

—— Cryptographic hashing

—— Visual fingerprinting

fi=fh

FIGURE 1. lllustration of the differences between digests produced by
cryptographic hashes and similarity preserving visual fingerprints.

i.e., near-duplicated content. Consequently, one can check if
two fingerprints are strictly equal and how similar they are,
as illustrated in Figure 1.

Given this feature, visual fingerprints can be used in
advanced feature-based comparisons [41], using a variety of
multimedia formats as inputs (e.g., audio files) [42]. Never-
theless, their applications are not limited to feature detection
and can range from Digital Rights Management [43] to
network protection [44]. Their primary use remains video
identification, for which various methods have emerged. [45]
presents a survey of the landscape of fingerprinting for video
files while [46] benchmarks performances of widely used
methods. Performance requirements also affect the specifics
of given methods; some only need to compare sparse inputs,
while others are expected to detect near copies in web repos-
itories [47]. Visual fingerprinting has also repeatedly been
associated with deep and machine learning to be trained and
optimized over specific sets of data [48], [49], [50], [51].
Some fingerprinting methods allow for various input for-
mats, while some include metadata and instance data in their
methodology.

The broader characteristics of fingerprinting methods also
diverge significantly. For instance, the format of the digest
identifying the semantic content can range from short strings
to large matrices. Targeted performances can explain these
differences, i.e., semantic information required to identify
an input with the desired robustness. Once a method is
decided upon, a similarity threshold is selected to reflect
the chosen near-copy detection sensitivity. A low sensitivity
will consider mildly different inputs as unique, while a high
sensitivity will flag minor differences more precisely. The
robustness relates to the capacity to identify near-duplicated
content after it has been modified by standard attacks (i.e.,
visual content modifications, be they malicious or not). For
instance, while some fingerprints might not perform well
after the resizing of an input, others might suffer from
changes in luminosity or color balance.

The output format also defines the comparison methods
that can be used to verify similarities between inputs. While
the Hamming distance or the bit error rate can be used for

VOLUME 11, 2023

A. C. Moreaux, M. P. Mitrea: Blockchain Asset Lifecycle Management for Visual Content Tracking

IEEE Access

binary digests, the most recurrent methods revolve around
using normalized correlation functions. Detection thresholds
are to be adjusted depending on the level of similarity needing
to be detected.

As the introduction mentions, fingerprinting methods do
not feature native security features and can be modified when
recorded in standard data storage. We aim for blockchain
to provide additional security and data integrity to state-of-
the-art fingerprinting methods. The architecture presented
in this paper will use a combination of cryptographic
hashing and visual fingerprinting. Cryptographic hash-
ing will allow us to turn large fingerprints into smaller
digests, while fingerprinting technology will power the
near-duplicated content detection aspect of the process.

B. APPLICATIVE BLOCKCHAINS

Blockchains are peer-to-peer anonymous networks of nodes
that produce a sequence of cryptographically linked blocks.
These blocks contain information about the transactions that
have occurred in that network. Blockchains function as a
zero-trust third party in the exchange of assets and infor-
mation [52]. They now support a wide array of applicative
verticals [53], [54], reflecting the heterogeneity of the modern
blockchain ecosystem [55].

1) SMART CONTRACTS

The fundamental brick of application-oriented blockchains is
the Smart Contract [56], an automated piece of code written
in blockchain-specific language (e.g., Solidity for Ethereum
or Michelson for Tezos), which runs as programmed, with no
possibility of change or influence from any central authority
or unauthorized party. Smart Contracts provide tamper-proof,
zero-trust features, and complete data integrity but suffer
from low processing capabilities and lack of maintenance,
which bars them from competing with their web2 counter-
parts [57]. Furthermore, blockchain programming languages
do not support as many features as off-chain ones (e.g.,
Python or Java), limiting the complexity of the data formats
and the operations that can be included in a Smart Contract.

Specifically, all operations in blockchains (e.g., transac-
tions, Smart Contract deployments) require gas, i.e., a fee to
compensate for the power used on the blockchain. This gas
is spent by validators elected via a consensus algorithm [58]
to include transactions in a block. Hence, all operations in
a Smart Contract consume a certain amount of gas, making
heavy operations expensive or even impossible due to the gas
limit of the blocks. The nature of the execution of operations
in blockchain environments also entails that they take signif-
icantly longer to be processed than in web2 environments,
as even the most basic transaction must be validated and
included in a block before it is executed.

Smart Contract security, programming language limita-
tions, and performance problems are identified by [59]
as significant challenges developers face when tackling
applicative blockchain environments. In practice, these issues

VOLUME 11, 2023

materialize in the risk of unmodifiable mistakes (bolstered by
code being public and hence targetable), the lack of general-
purpose libraries, the absence of support, or the constrained
number of local variables. As such, it is not only best practice
but mandatory to keep Smart Contracts simple and intuitive to
avoid them becoming prohibitively expensive or significant
liabilities. Our study deals with the secure storage of these
Smart Contracts, and although the specific strategy is novel,
we do not add any novel aspect to data storage. Numer-
ous studies have innovated unique features, including repair
groups [60] and large-scale computability [61].

2) TOKENS AND THEIR DISTRIBUTIONS

Another central notion of blockchains is the token, i.e.,
the blockchain representation of digital assets. Tokens are
either native transactional tokens used to compensate for
computing power and pay for services on the blockchain
or custom tokens created by users according to widely
accepted blockchain-specific application-level working stan-
dards [62], [63], [64]. User-created tokens can be fungible
(interchangeable and splitable, as per legal tender) or non-
fungible (representing unique assets and being undividable).
Both native and customs tokens can be owned and traded by
users and Smart Contracts.

Application-level standards are typically set by the com-
munity and serve as trusted precedents for best practices.
Token formats are such standards and function as secure
and open ledgers for digital assets to be accounted for,
wielding supply management tools alongside secure transfer
functions. For instance, the Ethereum community creates
ERCs — Ethereum Request for Comments standards [65] that
allow anyone to submit ideas that have fostered community
support: the ERC20 [66] standard corresponds to Fungible
Tokens (FTs), and ERC721 [67] to Non-Fungible Tokens
(NFTs). Hybrid standards also exist, notably the multi-token
ERC1155 [68].

NFTs are sometimes used as representations of digital art
in a massive market where decentralized exchanges recorded
a trading volume of 343 billion USD in the second quar-
ter of 2021 [69]. Specifically, blockchain marketplaces are
decentralized applications that provide vast arrays of features
and rules but fundamentally connect NFT sellers and buy-
ers for a fee. Most rely on a Swap Contract model, where
a central Smart Contract manages sales, as illustrated in
Figure 2 [70].

Interestingly, interoperability between marketplaces is
limited, even when they operate in the same blockchain
ecosystem. Moreover, NFTs have suffered repeated repu-
tational damages due to malicious actors [71], [72], [73],
with controversial news making their way to mainstream,
non-specialized media outlets [74]. Accomplished careers
and online fame have even been achieved by investigating
NFT schemes and frauds [75], [76]. Even the most promi-
nent actors have acknowledged that NFT abuse is rampant.
Namely, Opensea (a historic Ethereum marketplace that,

100521

IEEE Access

A. C. Moreaux, M. P. Mitrea: Blockchain Asset Lifecycle Management for Visual Content Tracking

X

Manager

o *iB&
Swap Contract
ey
Creator C2 04,

Fee

Rules (prices, etc.)

Map of held tokens 7, @
@ Cungelswuv and their info %.
(royalties, owners,
L =
= \
)70;‘,_.?} o

LuunrhES
Fees L‘DDIde\‘EE

Creator C1

Buyer B

Payment

FIGURE 2. Simplified Swap Contract workflow [70]. Numbers represent
steps, in order; yellow arrows show token movement; red arrows show
purchase execution; white and red arrows show royalty distribution.

according to [77], led the space and continues to be a fron-
trunner) had to change its simplified creation process because
it was vastly contributing to plagiarized works, fake collec-
tions, and spam [78]. The protection of multimedia-based
blockchain assets as a whole and the importance of their
relationship with the financial market was investigated in a
report [79] issued by the Organisation for Economic Coop-
eration and Development (OECD), which put the protection
of these assets into perspective. Further technological oppor-
tunities associated with tokenizing novel assets are studied
in [80].

Although the most common use for NFTs is digital art,
they can enable more complex processes that could require
or benefit from different distribution methods. For instance,
IPR management can be traced by exchanging designated
tokens. In this respect, [81] used NFTs to manage patented
and copyrighted IP traceability. Yet, distributing these tokens
in open marketplaces is not always the best solution. Other
use cases also require content to be monitored or subjected
to specific limitations (e.g., royalties). Consequently, some
of these use cases use complementary state-of-the-art distri-
bution solutions (e.g., marketplaces), while others require a
more dedicated means of distribution.

3) TOKEN PROTECTION

Tokens being at the center of the blockchain economy, their
protection is of high stakes. This fact is reinforced when the
tokens represent real-world assets, as discussed in this paper.
While the security of the asset within the blockchain environ-
ment is assured by native blockchain mechanisms and careful
private key management, abuse regarding the relationship
with the original asset is not guaranteed. Notably, owner-
ship and IPR issues are at risk in blockchain environments,
exacerbated by the fact that a sizeable portion of purchasers
and potential purchasers do not fully understand what they

100522

; @
Creates, owns

Creator C

Send token Swap Contract

—r
———"———— Informs Royalty
Wrking reatianship holder information /;j
d by {S*’"‘E
-E _/ﬁE _I% 4:/1"’“'65 o f eiuwi
Royalty Holders R1,
R2, R3

[Smart Contract | <N

Creates, owns Calls buy function, sends
appropriate funds Buyer B

® f

Fixed info (royalty

holders, rules) U
owns

Variable info (price) @
\ Smart Contract

Sends rest of the funds
Creator C

Working relationship -
OKEN

Oh/,,ﬂr 5&-
SE‘ndS appropriate
funds

Royalty Holders

Fixed info (royalty
holders, rules)

Variable info (price)

TOKEN

FIGURE 3. (Top) EIP2981 distribution workflow; (bottom) Royalty
Management Token-Level Smart Contract (RM-TLSC) from [70]. Numbers
represent steps, in order; white arrows show ownership; red arrows show
purchase execution; white and red arrows show royalty distribution;
green arrows show changing of hands of the RM-TLSC.

possess after acquiring an NFT. Buyers obtain two distinct
pieces of information when acquiring a token:

« A digital token that contains metadata that often points

to off-chain storage.

o A usage license [82].

These licenses are usually very restrictive and limited to
creative commons and personal use licenses [83]. As such,
proper token protection worries itself with the specifics of
the license it provides for future owners. However, even
assuming these points are correctly understood and applied,
further protection cannot be ensured without complementary
solutions.

Notably, another prominent issue with tokens lies in the
ability to distribute royalties alongside sales. Stances on
royalties are one of the major differentiating factors of mar-
ketplaces, which must position themselves with respect to
limits for the primary and secondary markets. These royalties
are far from negligible, as Ethereum marketplace royal-
ties have already added up to almost 2 billion USD [84].
Marketplace-agnostic royalty modules also exist and can
be added to our token before being distributed, e.g., the
EIP2981 [84] standard on Ethereum or a Royalty Manag-
ing Token Level Smart Contract (RM-TLSC) brought forth
in [70]. The former relies on Intellectual Property (IP) and
royalty metadata being appended to the token, which sellers
can then enforce, while the latter sets the token in a separate
Smart Contract, which enforces a set of rules systematically.
Figure 3 shows simplified schemas of the initial distribution
lifecycle of assets implementing both solutions.

VOLUME 11, 2023

A. C. Moreaux, M. P. Mitrea: Blockchain Asset Lifecycle Management for Visual Content Tracking

IEEE Access

The issues and limitations above invite one to consider
applying advanced visual content protection techniques to
these assets. Unfortunately, blockchains cannot support the
required computational load for the fingerprinting methods
presented in Section II-A. Nevertheless, the robustness and
immutability of blockchains are features we target to combine
with fingerprinting methods. As such, we aim to create a
framework enabling modern content-tracking techniques
to benefit from blockchain properties.

C. DIGITAL FINGERPRINTING AND BLOCKCHAINS

The association of visual fingerprinting and applicative
blockchains makes sense on a conceptual level. Indeed,
content protection technologies such as visual fingerprint-
ing provide advanced solutions in identifying and detecting
sometimes modified content. At the same time, blockchains
can bring a layer of security through the immutability of
their open ledger. However, their combination is limited by
computational capacities and the lack of operational bridges.
In this paper, we focus not only on combining tools present
in both on andoff-chainenvironments but on providing an
architecture that allows the mutually beneficial associa-
tion of said tools.

This association, although scarce, has previously appeared
in the scientific literature. As mentioned in Section I,
this paper extends a previous study [37] that incorporated
visual fingerprinting elements in blockchain environments.
As such, its state-of-the-art is also relevant to this paper.
Briefly, blockchains can aid visual content tracking as part
of the process [86] or alongside off-chain processing [87].
Encryption, watermarking, and transaction tracking finger-
printing are notably reviewed in [12]. To our knowledge,
only [37] combines visual fingerprinting near-copy detection
with blockchain. The proof of concept for the on-chain -
off-chain connection we use in our workflow was brought
forth in [88], in which the authors advance a lightweight
framework for document tracking. This idea was extended
in [89] to include a blockchain shadow database to track
original inputs, which we also make the best of later in this
paper (c.f., Section III). Other combined uses of multimedia
technologies and blockchains have notably been studied for
IoT [90] and cloud computing [91]. To the best of our knowl-
edge, multimedia technologies have only been associated
with blockchains as partial support to an overall process, and
the lifecycles of physical or web2 assets (e.g., visual content)
and their web3 counterparts have been kept separate. In this
study, we aim to ensure the symbiosis of both paradigms for
the entire life cycle of web3 assets, from their creation to their
eventual distribution.

D. SUMMARY

This section investigates the state-of-the-art of visual content
tracking, blockchain applications, and assets, as well as their
joint uses. It brings to light that:

« Visual fingerprinting can be a powerful tool in seman-
tic content tracking for various use cases (e.g., archive

VOLUME 11, 2023

protecting, IPR tagging). However, its applicative scope
is limited by the lack of native security mechanisms.

o Blockchain features trust and immutability that would
benefit visual content tracking but cannot support the
computation requirements set by fingerprinting opera-
tions.

« Coupling both technologies is conceptually and theoreti-
cally possible but drastically limited because of the lack
of methodological bridges, their antagonistic technical
properties, and their divergent functionalities.

« Current solutions are targeted at specific use cases and
require the manual processing of parts of their workflow,
in addition to lacking support across standards and envi-
ronments.

In this paper, we create a systematic, interoperable workflow
that can provide automatic and complete lifecycle content
identification. The following section will detail our method-
ology and its components on a conceptual level before we
consider practical illustrations and complete implementations
further in the paper.

Ill. METHODOLOGY

This section describes the advanced architecture and work-
flow alongside the specifics of the on and off-chain method-
ological bricks that constitute them. We explain our approach
to the architecture design (Section III-A) before describing
it and our workflow in general terms (Section III-B). Then
(Section III-C), we detail how the individual components of
the architecture contribute to the workflow before ending
(Section III-D) with a macro description of the process. The
implementation details are left for presentation in Section IV
and for illustration in Section V.

A. ARCHITECTURE DESIGN

The advanced solution reconsiders, extends, and innovates
state-of-the-art studies to automate the entire lifecycle of
multimedia assets into blockchain environments so they can
serve a broad spectrum of further uses.

Our solution will follow an architectural design con-
ceived to overcome the current-day limitations identified
in Section II. Specifically, the workflow accommodated by
the architecture shall comply with the following five design
criteria (DC):

DCI1. It shall support assets throughout their entire life

cycle.

DC2. It shall identify the semantic content of an input and

not the digital representation of the input per se.

DC3. It shall identify the content in a robust fashion.

DC4. It shall be backward and forward compatible, i.e.,

it shall be non-intrusive regarding complementary
state-of-the-art solutions while being open to further
use.

DCS. It shall be versatile in supporting of diverse input for-

mats, blockchain environments, and token standards.
Figure 4 illustrates the main successive processing steps
assets undergo during our process. The specifics of this work-
flow are detailed hereafter.

100523

IEEE Access

A. C. Moreaux, M. P. Mitrea: Blockchain Asset Lifecycle Management for Visual Content Tracking

(continued from the left)
Database entry

Visual content

Token
minting

Fingerprint
identification

Fingerprint

Token
protection

On chain
initialization
Transaction ID Protected Token

Off chain
initialization distribution

@ Database entry Further use
(continued on the right)

FIGURE 4. General workflow of our solution, starting with a piece of
visual content and ending with a distributed token. The left side shows
semantic comparison processing, and the right side shows token related
actions. The two are sequential in practice.

Token

Let us start with a set of web2 visual content (e.g., images,
video) whose semantic content we want to create a trusted
precedent for, as per DC1. We designed this solution to enable
extra content to be appended to the set anytime. We begin
by identifying semantic features of our content for compar-
ison purposes using a fingerprinting method, as shown in
the first block on the left side of Figure 4 and detailed in
Section II-A, to fulfil DC2. Simply storing the fingerprints
would make them vulnerable, static, and unfit for content
distribution. This approach would contradict DC3 and DC4
above. Consequently, we initialize this information on the
blockchain to benefit from the environment’s immutable data
tracing and comply with DC3 before storing the fingerprints.
Storage resource limitations naturally invite us to hash the
information before recording it on-chain. This operation cor-
responds to the second block on the left side of Figure 4.
Once certain the information appears in a Smart Contract,
we store the initial fingerprints in an off-chain data storage,
as shown in the third and last block of the left side of Figure 4.
This redundancy will enable advanced checks we explain
in Section III-C. When further candidate entries go through
the same process, they are verified for their semantic unicity
against all previously verified entries.

At this point of the process, we have an immutable
trace of semantic data processing, establishing a precedent
for the original content. To enable the further use of the
assets with contingent state-of-the-art solutions (as dictated
by our DC4), we create a standardized token (as presented
in Section II-B2), which includes links to the data storage
entries. This operation is the first block on the right side of
Figure 4. This token can either represent the original or a
related asset, e.g., an asset representing exploitation rights
or IPRs. We then protect this token with state-of-the-art
solutions (as presented in Section II-B3) and hand them to
a Token Broker for distribution. These steps are illustrated in

100524

the second and third blocks of the right column of Figure 4,
respectively. As such, the asset bears the immutable trace of
the semantic verification for the rest of its life cycle. This
process intrinsically makes provisions for a variety of inputs
as well as for the simultaneous use of various blockchain
environments and token standards, as per DCS.

B. ARCHITECTURE DESCRIPTION

The advanced architecture, illustrated in Figure 5, answers the
five requirements discussed above and ensures seamless data
processing between on and off-chain technological bricks.
Specifically:

o The App: The central piece of the architecture. It pro-
cesses the multimedia content, communicates with the
other blocks, and serves as the interface with the opera-
tor; details are presented in Section III-C1.

o The Smart Contract: The on-chain piece of code serv-
ing as an unfalsifiable integrity check for the off-chain
database; details are presented in Section ITI-C1.

o The off-chain database(s): The lightweight databases
holding the hashes of the fingerprints for the recorded
content. The advanced architecture is agnostic concern-
ing the database technology; details are presented in
Section III-C1.

o The Token prototype: A piece of code that uniformizes
the input format of the information processed to cre-
ate (or mint) the tokens; details are presented in
Section III-C2.

e The Token Contract(s): One or several Smart Con-
tract(s) that establish(es) the capacities and limitations
of the tokens while also generating them on demand
in a permissioned fashion; details are presented in
Section III-C2.

o The Token Protection Module: A Smart Contract or
piece of code in a standard Smart Contract that adds
a layer of protection to the tokens before they are dis-
tributed. This step should be customized according to the
specific use case; details are presented in Section I1I-C2.

e The Token Broker: A state-of-the-art Smart Contract
or decentralized application (DApp) that connects
token buyers and sellers; details are presented in
Section III-C2.

We will elaborate on each one of these elements in the fol-
lowing sections. The operating workflow of the architecture
is performed in two steps:

o A qualified blockchain expert accomplishes the initial
setup of the database and blockchain Smart Contracts.

« Once set up, an unqualified operator can use the archi-
tecture, only ever needing to interact with the App.

The process starts with visual content being fed to the
App and fingerprinted. The generated fingerprints are then
checked for near copies in the off-chain database. This copy-
detection process, illustrated in Figure 6, can lead to three
results:

VOLUME 11, 2023

A. C. Moreaux, M. P. Mitrea: Blockchain Asset Lifecycle Management for Visual Content Tracking

IEEE Access

Off chain elements

Off chain
database 1

database 2

database n

Token _ Token
N\ Mint tokens
prototype | " #l Contractl
%5‘%' \ LContract 2

Add to databgpe

On chain elements

Smart
Contract

Contract n

Optional

v

Token Protection
s Module

T T T T T T Y T LT . A"

":Oofa‘mg‘-ﬁ

4 Sendto

Token
Broker

Regibf token
life cycle

Smart Contract side Token side

FIGURE 5. Advanced architecture. The modules are grouped according to their environment of execution.

Calculate fingerprint
and look for matches
off chain

Suspected copy:

Match No match S wcall Further processing
emantically
Calculate hash and look)
new entry

for matches on chain

Match No match

FIGURE 6. Multimedia semantic content comparison flowchart.

« The input is detected as a copy of existing content (i.e.,
the fingerprint is identical to an entry of the database),
the operator is informed as such, and the process stops.

o The input is detected as a near copy of one of the entries
according to the designating threshold (cf. Section IV).
The operator is informed as such, and the process stops.

« The content is not detected as a copy or near-copy of any
existing entry. The content can be added to the database.

Suppose the input is considered original in semantic terms
(according to the matching criterion of the fingerprinting
method). In that case, it can be initialized on the blockchain,
specifically in the Smart Contract’s storage. This storage
serves as a pseudo database that shadows the off-chain
database. This tamperproof (because on-chain), redundant
database allows the Smart Contract to serve as an arbiter,
ensuring the database has not been tampered with. Once the
App has received confirmation of this operation, it adds the

VOLUME 11, 2023

original input to the off-chain database. These operations are
illustrated in the complete architecture shown in Figure 5.

Upon arriving in the on-chain database, the entry is minted
as a Non-Fungible Token according to the Token Prototype,
optionally protected with complementary solutions, and sent
to a Token Broker. This token could also be sent to a desig-
nated wallet per the use case.

C. FUNCTIONAL BRICKS

1) NEAR-DUPLICATED CONTENT DETECTION (APP, SMART
CONTRACT,Off-chain DATABASES)

The near-duplicated content detection of this architecture
uses the database, Smart Contract, and App. It is powered by
fingerprinting technology and enables the authentication of
the information eventually used in the tokens.

As mentioned, the database only holds the fingerprints of
the recorded content. Although it would be possible to hold
the content in the database and fingerprint it upon retrieval,
a lighter database that does not hold any content directly
allows for faster processing and fewer potential privacy con-
cerns. The database must only pass given fingerprints to the
App on request.

The Smart Contract is used on two occasions: to provide
information to the App during the greenlight function to
cross-check the database entries (explained in the following
two paragraphs) and to process a new entry admissible in
the database. The former does not require input data, while
the latter requires a hash and an optional string of general

100525

IEEE Access

A. C. Moreaux, M. P. Mitrea: Blockchain Asset Lifecycle Management for Visual Content Tracking

Off chain
database

Smart
Contract

Fingerprint Fn

For each entry
Check h(Fn) exists ize

APP

Size S1

Check S1=52

1 greenlight

FIGURE 7. Illustration of the greenlight function’s database verification,
which unlocks the rest of the process.

information recorded with the entry. Both are mapped to a
Boolean, indicating their existence.

The App interacts with both databases and is also the only
point of contact for the operator. As such, the visual interface
can be designed to make the process intuitive and easy to
operate. In the context of an academic study, we did not
develop any graphical interface and interacted with the App
using a command prompt. The App is given a multimedia file
(whose format is dictated by the fingerprint in context) as an
input parameter. It begins by establishing a connection with
the Smart Contract. The greenlight function is immediately
called prior to any operation. This function returns True,
allowing the process to continue, if and only if the off-chain
and on-chain databases match. It does so by retrieving the
size of the map of hashes and using the compare function
of the Smart Contract. As such, the App ensures that each
database entry appears on-chain and that no other entries
do. This process is expedited because the database contains
fingerprints that need not be reprocessed systematically. This
process is shown in Figure 7.

The greenlight function returning False immediately inter-
rupts the process and informs the operator that the databases
have been tampered with. Assuming this important con-
trol passed, the App calculates the input file’s fingerprint
and compares it to all the entries in the off-chain database.
Because of the previous greenlight check, this processing
can be performed entirely off-chain, enabling this workflow’s
computational efficiency. As explained in Section III-B, three
results can be given to the operator: copy, near copy, or no
copy. In the latter case, the operator may prompt the App
to add the input to the database. If this is done, the App
transactions the Smart Contract via the deployer wallet to add
the hash of the new fingerprint to the Smart Contract and the
off-chain database. Note that the fingerprint is hashed before
being stored in the Smart Contract because of format and
storage concerns in blockchain environments (e.g., matrices
are not supported). If the fingerprint in context happens to
output short identifiers (e.g., the International Standard Con-
tent Code [91] considers four different 72-bit strings), the
hashing step may be skipped as it is not essential to the proper

100526

Smart
App Database (R
In
A greenlight function

database cross verification

TR

4 ..
Calculate
fingerprint

check for correlated entries

»

correlated entries

L R L S B g e
Prompts
operator to add
new enftry if
relevant
add to onchain database %
confirmation
(. ..

add to database

FIGURE 8. Sequence diagram of the step-by-step addition of a new entry
in the databases.

functioning of the code, although it adds a layer of privacy
to the information. These successive states are illustrated
through a sequence diagram in Figure 8.

This paper also introduces the possibility of simultane-
ously accommodating multiple databases and tokens. Indeed,
use cases might require categorizing content according to fea-
tures such as format or origin. Given the lightweight approach
of the databases, a single database can support multiple types
of inputs on the simple condition that it can filter out specific
sets to send to the App. This concern is rendered quasi-trivial
by modern data storage technologies. A single Token Con-
tract can be used if an appropriate mixed standard exists (e.g.,
ERC1155 [68]). The only required adaptations for the App
and Smart Contract are separate variables representing the
distinct databases. The architecture’s flexibility enables its
scalability: it can be expanded to a vast realm of use cases
while only being minimally impacted in terms of computa-
tional requirements and gas cost. Such considerations would
not be practical if they required the multiplication of every
methodological brick in the architecture.

2) TOKEN MANAGEMENT (TOKEN PROTOTYPE, TOKEN
CONTRACT, TOKEN PROTECTION MODULE, TOKEN BROKER)
We now present the various complementary aspects of
the token lifecycle: creation, definition, protection, and
distribution.

During the initial setup, a Token Contract is deployed
on the blockchain. This Token Contract follows a stan-
dard explained in Section II (e.g., ERC721). Note that
the Token Contracts need not be deployed on the same

VOLUME 11, 2023

A. C. Moreaux, M. P. Mitrea: Blockchain Asset Lifecycle Management for Visual Content Tracking

IEEE Access

Prototype
Lot number 0000A

House prototype

Material Wood

Nb of bed 2 — Prototype —
ot bedrooms Lot number 00008

Nb of floors 1

Prototype
Lot number 0000C

FIGURE 9. A basic example of prototyping. Data formats are made
simpler by the presence of a standard unifying element.

blockchain on which the Smart Contract is deployed. The
tokens can be minted by multiple standards on any (or multi-
ple) blockchain(s). Once deployed, the Token Contracts can
be called individually to create blockchain-specific assets
on demand or simultaneously to create equivalent assets on
different blockchains. The presence or absence of advanced
features of the standards in the Token Contracts is imposed by
the specifics of a given use case. The only hard requirement is
a mint function, which the App will call to generate tokens.
This function is called once the transaction that adds a new
entry to the Smart Contract is executed and confirmed.

To uniformly identify the assets we create, we use a
systematic way to generate them. To do so, we take inspi-
ration from code Prototyping [93], a form of instance-based
programming that establishes the reuse of existing objects,
sometimes across different platforms of programming lan-
guages. Prototypes are dictionaries of variables and functions
that enable the translation of code from one environment
to another in a systematic fashion. For instance, [94] uses
a prototype to generate Smart Contracts from MPEG-21
standard CEL/MCO IPR specifications [95]. Figure 9 illus-
trates a basic example of prototyping by standardizing all
but one characteristic of a set of houses. In our case,
we do not need complex indexing functions but the sim-
ple formatting of input variables to be passed to various
Token Contract constructors. This way, the traces of the
near-duplication detection are ensured to be uniform across
assets and platforms.

The creation process of the assets and architecture are also
adaptable to the simultaneous use of multiple token standards.
The only added cost in this expansion comes in the initial
deployment of Token Contracts. In use, the App will only call
the relevant Token Contract(s) upon adding a new entry to
the database. The gas cost of the initial deployment evolves
linearly with the number of Token Contracts to deploy. Unfor-
tunately, no state-of-the-art mechanism can curb these costs
at the time of writing. On the plus side, our solution makes
the Token Contract the only technological brick that must
be multiplied when using this architecture for simultaneous
input formats and token standards.

VOLUME 11, 2023

Once the token is minted, it can optionally be protected
(e.g., in terms of IP or royalties) with one of the state-of-the-
art tools explained in Section II and illustrated in Figure 3.
For instance, our software makes provisions for adding
royalty-related metadata through EIP2981 or the enforced
protection of IP rights via an RM-TLSC. For the former,
the IERC2981 interface would be implemented and signaled
on the ERC721 token through the _registerInterface
function and equipped with the appropriate royalty informa-
tion for supported marketplaces. More ample details can be
found in [85]. For the latter, an RM-TLSC Smart Contract
Prototype (such as [96]) would be taken and customized via
its initialization function, which allows to set rules that will
be automatically enforced in a zero-trust fashion. These rules
can, for instance, relate to price caps, royalty payments, or IP
limitations. This initialization will also send the token to
the Smart Contract, where it remains until retraction rules
are fulfilled according to the initializer’s demands. A simple
instance of such a Smart Contract and its use can be found
in [97], and further details about TLSCs can be found in [70].

The output of these methods can be a token or a Smart
Contract, which can then be distributed appropriately with the
necessities of a use case. This distribution can be as simple
as sending the asset to the deployer wallet (or any other
designated wallet) for safekeeping and further use, as stan-
dard as sending the asset to a marketplace, or as complex as
tailor-made solutions to distribute the asset in a permissioned
fashion. We explore the former in Section V-A and the latter
in Section V-B, in an example where an automatic broker
manages the sale of access FT's, which can be exchanged for
the permissioned access of live content provided by an IloMT
Camera.

D. SUMMARY

This section presents the consecutive steps taken in the pro-
cessing of an input. We assume the input is a piece of visual
content semantically original with regards to the rest of the
database inputs and that it will pass the fingerprint compari-
son successfully:

o Step 1: The on-chain and off-chain fingerprint storages
are compared. If they match, the process is greenlit.

o Step 2: The input is fingerprinted. From this point
onward, the original content is no longer used.

« Step 3: The fingerprint is compared to the entries in the
off-chain database. It is detected as a copy, near-copy,
or no copy. The process continues in case of no copy.

o Step 4: The fingerprint is added to the Smart Contract,
which prompts its addition to the off-chain database.

o Step 5: The App generates the token input using the
Token Prototype and the specific input information.

o Step 6: The Token Contract is called and mints a unique
NFT.

o Step 7: The NFT is empowered with the required secu-
rity resources and passed on to the desired Token Broker.

These steps are illustrated in a simplified sequence diagram
in Figure 10.

100527

IEEE Access

A. C. Moreaux, M. P. Mitrea: Blockchain Asset Lifecycle Management for Visual Content Tracking

App Do Smart Token ‘ { Token

Contract Prototype | Conbact Token Broker

Input

—
Calculate
fingemrint

Check for
copy/near copy
entries.

greenlight

Onchain database addition

Database addition

Generate

Mint Token
Send Token

FIGURE 10. Sequence diagram of the step-by-step addition of a new
entry in the database.

This framework allows for the creation of digital assets rep-
resenting semantically verified content. These digital assets
bear the trace of this verification yet are compatible with
various solutions in the blockchain space and can be used
with no added restrictions. The following section will show
the technological bricks for nondescript use cases before we
apply our workflow to real-world scenarios.

IV. IMPLEMENTATION DETAILS

In this section, we focus on the technical details of the
methodological bricks of the architecture. While some are
standard and can be used throughout the interfaces provided
by their creators, some are not and require a level of detail to
understand how and why they were built as such. Hereafter,
we shall go over both, referring to the standard tools we
used and detailing those that are not. More space shall be
allotted to methodological bricks who innovate with regard to
current-day standards and those with a more significant role
in the architecture.

Specifically, we first go in-depth on the Smart Contract
and illustrate its functioning through an example developed
for the Tezos infrastructure because of the simplicity of the
sandbox environment and the visualization tools provided by
Tezos’ SmartPy [98] (legacy code can be run on [99]). Then,
we will discuss the appropriate token standards and com-
plementary solutions for our architecture for the Ethereum
and Tezos blockchains. Throughout the section, we will
alternatively illustrate on-chain tools for both Ethereum and
Tezos to highlight that our architecture is deployable through-
out multiple blockchain infrastructures. Finally, the last part
of this section will refer to the technologies used for the
off-chain elements of our architecture, highlighting their fea-
tures and potential replacements.

Access control not being a central feature of this paper,
we set out two simple parties: (1) creator, which initial-
izes the Smart Contract and has all access rights, and (2)

100528

TABLE 1. Environment parameters used in the Tezos smart contract.

Blockchain
Environment
Language and version

Tezos
SmartPy
SmartPy v0.16.0

otherUser, which only has the basic view right default to
all blockchain users and cannot modify the Smart Contract.

A. THE SMART CONTRACT

Before we showcase complete implementations in Section V,
we show the basics of the Smart Contract’s format and
use with Tezos’s SmartPy [98], [99] and a generic test
scenario executed in a sandbox environment. The familiar
syntax of the language should enable readers unfamiliar with
on-chain development to understand the role of the Smart
Contract. Please note that Tezos development is based on
meta-programming; as such, the code we write is not a Smart
Contract but serves to construct the actual Smart Contract that
will run on the blockchain [100]. The settings used in this
section are summarized in Table 1.

The Smart Contract implements five functions. Three of
these functions are of get type and allow communicating
information about the on-chain storage to the App. They
return the size of the map, the information associated with
a hash, and the Boolean associated with a hash, respectively.
The latter serves as the compare function called by the App
during the greenlight function. The other two functions man-
age database entries, respectively, providing the addition
and deletion of entries. The addition function veri-
fies the prior inexistence of the entry in the database, maps
the new entry, and returns a Boolean upon processing. The
deletion function checks for the entry’s existence and
adjusts the map’s size if needed before returning a Boolean.

Please note that within this proof-of-concept, the deletion
(or burning) of the token created alongside the entry in the
database does not occur. The addition and deletion
functions can only be called by the address that deployed the
Smart Contract. If a use case requires multiple addresses to
call the Smart Contract, an allowlist can replace the “only
deployer” approach. If multiple databases and Token Con-
tracts were required, the Smart Contract would simply bear a
new map of entries for each one. The functions would then use
an extra input parameter specifying the map the App wishes
to access and modify.

Figure 11 shows an implementation of this Smart Con-
tract on SmartPy. The functions are straightforward and
lightweight, as required by blockchain development. We vol-
untarily did not include the constructor of the Smart Contract
to focus on the functions explained above.

The first two functions shown in Figure 8 will manipulate
the map of hashes sent by the App in the complete workflow
and are, as such, tagged @entry_point. The three later func-
tions shown in Figure 11 are the get functions, which pass on
information to the App. They only read data and are hence

VOLUME 11, 2023

A. C. Moreaux, M. P. Mitrea: Blockchain Asset Lifecycle Management for Visual Content Tracking

IEEE Access

@sp.entry_point

def addToDB(self, info, hash):
sp.verify(sp.sender==self.data.owner, 'Only owner.')
sp.verify(self.data.fingerprintHashes.contains(hash)==False)
self.data.fingerprintHashes[hash] = sp.record(info=info)

@sp.entry_point()

def deleteEntry(self, hash):
sp.verify(sp.sender==self.data.owner, 'Only owner.")
del self.data.fingerprintHashes[hash]

@sp.onchain_view()
def compare(self, hash):
sp.result(self.data.fingerprintHashes.contains(hash))

@sp.onchain_view()
def getSize(self):
sp.result(sp.len(self.data.fingerprintHashes))

@sp.onchain_view()
def getInfo(self,hash):
sp.result(self.data.fingerprintHashes[hash].info)

FIGURE 11. A SmartPy implementation of the architecture’s Smart
Contract.

preceded by @onchain_view. Now, we build an illustrative
test scenario for this Smart Contract. It is shown in Figure 12.
This scenario is powered by SmartPy’s Smart Contract test
features.

We begin by setting up the scenario and the creator
and otherUser accounts. We then attempt to initialize
the on-chain storage as the App would, illustrated in the
second block of transactions of Figure 11. When creator
requests the addition of a new, adequately formatted input, the
transactions are executed without issues, as done in the first
line of Figure 11°s second bloc. On the contrary, inputting
a previously recorded entry and otherUser’s attempts are
rightfully unallowed operations and are hence denied by the
blockchain (or reverted). At the term of these operations, the
Smart Contract’s storage matches what is shown in Figure 13.

The addition of new inputs can be prone to errors, as illus-
trated in the third set of transactions of Figure 11, where an
unwanted entry is added before being deleted by creator,
while otherUser is shown to be unable to affect said
entry. At the term of these transactions, the storage is back
to the state shown in Figure 13. We consider this storage to
correspond to the initial storage of a given use case.

When the App executes the greenlight function, the oper-
ations that constitute the last bloc of transactions shown in
Figure 11 are requested. The App starts by checking that the
number of hashes recorded in the Smart Contract equals the
number of entries it counts in its local storage (3 in this case)
and then uses the compare function to check that said hashes
match. If this test passes, the greenlight function returns
True to signal that the off-chain and on-chain databases
match, enabling the rest of the workflow.

The Smart Contract used in the Section is available in
SmartPy’s online IDE via [101]. The test scenario can be run
using the ““Run Code” button at the top left of the screen.

VOLUME 11, 2023

scenario = sp.test_scenario()

creator = sp.test_account("creator").address
otherUser = sp.test_account("otherUser").address
cl = FingerprintStorage (owner=creator)

scenario += cl

c1.addToDB(hash="0x0001", info="first input").run(sender=creator)
cl.addToDB(hash="0x0001", info="same input").run(sender=creator, valid=False)
cl.addToDB(hash="06x0002", info="unauthorized user").run(sender=otherUser, valid=False)
c1.addToDB(hash="6x0002", info="second input").run(sender=creator)
cl.addToDB(hash="6x0003", info="third input").run(sender=creator)
scenario.show(cl.getInfo("0x0003"))

cl.addToDB(hash="0x9999", info="input including a mistake™).run(sender=creator)
cl.deleteEntry("0x9999").run(sender=otherUser, valid=False)
cl.deleteEntry("0x9999").run(sender=creator)

scenario.verify(cl.getSize() == 3)

scenario.show(cl.compare("0x0001"))
scenario.show(cl.compare("0x0002"))
scenario.show(cl.compare("0x0003"))

FIGURE 12. An illustrative SmartPy test scenario that manipulates the
Smart Contract as the App would in our workflow.

FingerprintHashes Owner

Key Info tzlaRxdK2bTSg..

'0x0001" | *first input’

'0x0002' | 'second
input’

'0x0003' | 'third input’

FIGURE 13. SmartPy Smart Contract storage after the addition of the
three inputs shown in Figure 9.

The Smart Contract is also deployed to the Ghostnet Tezos
testnet at the following address:

KTIMSVoHdoYQpWPBXw4QbfvjSUlabizJbzM2.

Its functions, storage, and deployment figures can be
searched using a Tezos explorer, such as TzKT [102].

B. TOKEN ELEMENTS

While the Smart Contract had to be constructed to meet the
demands of the architecture, the on-chain elements related to
tokens are much more standard.

First, the Token Contract must follow a working standard
for security and acceptance purposes. Various standards exist
on each blockchain infrastructure to accommodate various
use cases—the Smart Contract presented in Section IV-A
would likely be used alongside the FA2 standard [103].
Ethereum users could consider ERC721 [67] for purely NFT
support or ERC1155 [68] for multi-token support. An imple-
mentation of these standards can be found at [104] and [105],
respectively. Token Contracts can be generated online via
intuitive wizards, such as [105]. The specifics or the recorded
information will appear via the Uniform Resource Identi-
fier (URI) field, which points to the metadata of the token
instance.

Once an entry is added to on and off-chain storages, the
Token Contract mints a new token on demand of the App.
This token can be protected via tools such as EIP2981 or
an RM-TLSC. Once the token has been equipped with the
desired protection, it can be sent to standard or specific

100529

IEEE Access

A. C. Moreaux, M. P. Mitrea: Blockchain Asset Lifecycle Management for Visual Content Tracking

distribution methods, according to the use case. The tools for
the token protection and distribution steps are explained in
Section III, and we illustrate examples in Section V.

C. OFF-CHAIN ELEMENTS

As explained in Section III, the database holds fingerprints
where the App can retrieve them. Lightweight implementa-
tions can satisfy themselves of local file storage thanks to
redundancy and greenlight checks brought by the blockchain
and the App, respectively. We did as such for the implemen-
tations in Section V.

Although a more complex Token Prototype can be neces-
sary when multiple blockchains host various tokens simul-
taneously, it remains a simple element in single-platform
uses. For instance, simple lines of code unifying the software
format can be used. In our case, the Token Prototype merges
into the App in the architecture presented in Figure 3. For
instance, using the ERC721 standard, we can pass on the
deployer wallet information alongside the fingerprint hash.
This hash is recorded in the URI of the token, which stores
its metadata. In Section V, we opted to populate said URI with
the hashed fingerprint of the original input. This data could
be made more thorough, but its specifics, once again, depend
on the use case.

If this architecture were used to certify content before it
is sold as original, one could imagine additional information
being present in the token to ensure the good standing of the
token’s underlying content. Such additional information may
relate to the transaction number of the initial admission of
the entry in the database, the address of the Smart Contract
where the fingerprint is recorded, the threshold used during
the authentication process, or the electronic signature of the
issuing body operating the database.

Providing a unique, one-size-fits-all solution for any of the
flexible bricks would hamper this workflow’s broad spectrum
of potential applications.

Finally, we built the App wusing Python and the
web3py [106] library to interact with the blockchain. Any
programming language that interacts with databases and
blockchains can be used similarly. The complete App we
used is available at [108] and was only modified to accom-
modate various fingerprints tailored to the various use cases.
We allowed the near-copy threshold to be set during initial-
ization for testing purposes, but it would remain fixed for
complete implementations.

D. SUMMARY

In this section, we provided illustrative examples of the
methodological bricks presented in Section III. Specifically,
we detail the format and functionalities of a generic Tezos
Smart Contract that could be used in our methodology before
illustrating the variety of working standards and complemen-
tary state-of-the-art solutions that can seamlessly be slotted
into our general architecture.

100530

TABLE 2. Environment parameters used in the Ethereum
implementations.

Blockchain Ethereum
Environment Private EEA
Hyperledger Besu
Language and version Solidity 0.8.18
Token standard ERC721

Consequently, we put each methodological brick in per-
spective with the complete workflow presented in Section III,
explaining why we specified them and how they contribute
to said workflow. We also used this discussion to point out
the flexibility of various components to suit specific needs in
real-world contexts. We shall continue supporting this point
in the next section, where we assemble these technologies
into our complete architecture, which we put at the service
of two real-world use cases.

V. USE CASE ILLUSTRATIONS

This section shows how our solution can benefit two visual
content management use cases. First, Section V-A presents
how our architecture can serve as the backbone to a use
case simulating a museum being wary of the IP of their
online content. Then, Section V-B demonstrates how our
architecture and workflow can be flexibly integrated into
other advanced solutions by automating and adding content
traceability functionalities to an IoMT use case dealing with
monetizing live video content.

Both are implemented on a 3-node, Hyperledger Besu
EEA (Enterprise Ethereum Alliance [108])-compliant Proof
of Authority private blockchain deployed on an Amazon Web
Services server, as well as on the now deprecated Rinkeby
Ethereum testnet* accessed through the Infura node cluster;
these characteristics are shown in Table 2.

A. MUSEUM VISUAL CONTENT TRACKING

In this use case, we implement the architecture presented in
Section III and Figure 5 without integrating other high-level
operations. It is a pragmatic use case rooted in a simplified
workflow to be found in [37]. The database belongs to a
museum that wants to protect the content they put online from
being copied and redistributed fraudulently. We decided to
apply this scenario to the virtual visit of six rooms offered
by the Louvre Museum in Paris during the COVID-19 pan-
demic [110]. We use these images for strictly academic and
non-commercial purposes and do not intend any infringement
of the Louvre’s IPR. We sampled images of the visit of
these six rooms on keyframes containing semantic content to
be protected (e.g., paintings) in sequences of one frame per
second. Separate rooms were treated as different inputs.

4The specifics of our testing setup do not affect the software presented in
the paper, which is compatible with EVM (Ethereum Virtual Machine) [109]
blockchains.

VOLUME 11, 2023

A. C. Moreaux, M. P. Mitrea: Blockchain Asset Lifecycle Management for Visual Content Tracking

IEEE Access

offchain and onchain entries match. Proceeding..
No matches found. Would
Added h to onchain datab
c4bl c649c18cbd9b38fafdd2d 58
Minted token and sent it to @x8DCe350.
Transaction hash: @x38d8e987e5bcd8459

ike to add it to the database
Transaction number: @xcfbf

bec8cb7e18fofb3ea2

7143524A7dC8C7ac1EDA326F281C
31fef4b5baf7bd7ele44d346ac794870ca67f980ca

FIGURE 14. The App's output when processing a copy (top), and an
original input which is added to the database (bottom).

We elected to use a robust video fingerprinting method
brought forth in [111]. This method is optimized for live
recordings and invariant regarding scale and affine transfor-
mations, which will be part of our tests. We compared these
fingerprints using a normalized correlation method with a
threshold decided upon for general detection purposes of
0.7. In this use case, near-copies cannot be added to the
data storage. Our open-source software implementation for
this use case is available at [108]. It contains the App,
Smart Contracts, Token Contracts (for the ERC721 stan-
dard), Token Prototypes, and lightweight local storage of the
inputs described above. The Smart and Token Contracts were
deployed on our local architecture (detailed in the introduc-
tory paragraph of this section) at the addresses stored in the
eponymous folder.

We initialized the six original rooms to the database and
Smart Contract. To evaluate our setup, we generated modi-
fied versions of the inputs (i.e., near copies) and unrelated
content composed of other images from the virtual visit and
other random images. The modified inputs were created by
computer-generated distortions, namely:

« Grayscale conversion,

« Brightness increases,

o 50% cropping (25% from top and bottom),

e 90% quality factor JPEG compression,

« Resizing (not respecting dimensions),

« Combinations of the above.

While some of this near-duplicated content is very resemblant
to one of the original sequences, some bear little similarities
with any input to the naked eye. We fed each one as a new
entry to the App. The detection of copies and near-copies
matched the performance analysis provided by the authors
of [111]. We illustrate this by following the process for three
different inputs corresponding to the three different detection
cases detailed in Section III-B:

« We give an exact copy of one of the original room visits
as input. This file is already stored as is, and our compar-
ison is insensitive to metadata. As expected, a correlation
of 1 is found with one of the entries, and the process is
rightfully interrupted.

o Then, we feed the App a sequence of images entirely
unrelated to any one of the entries. The App does not
find any semantic content in the database in the input
and indicates the operator as such. If they do, the Smart
Contract is called, the database is updated, and an NFT
is minted, as Section III explains. The outputs of the

VOLUME 11, 2023

FIGURE 15. Sample image of the near copy (top) and original counterpart
(middle) of Room 1, and the result it generates are being given to the App
(bottom).

App for both instances are shown in Figure 14. In the
second image, the operator has prompted the addition
of the input in the database, leading to the transactions,
of which we show an exploration in the bottom images.
After these transactions, if one were to offer the latter
file as input once more, the App would answer as in the
first image because this input would be recorded as is in
the database.

o Finally, to illustrate the ambiguous, near-copy case,
we offer a cropped, increased luminosity version of
Room 1 to the App. Figure 15 shows the before and
after alteration of a sample image of the sequence and
the App’s response to the input. As dictated by the fin-
gerprinting method’s performances, the App computes a
0.78 correlation between the input and one of the entries
in the database (the original entry for Room 1). This
value (quite comfortably) passes the decided threshold,
and the input is detected as a near copy. This result sup-
ports the efficiency of the fingerprinting method, which
provides robust detection of the semantic content. The
App verifies the unicity of the fingerprint in the Smart
Contract storage and informs the operator that the entry
is anear-copy of arecorded entry. As such, itis not added
to the database according to the rules of the use case.
If we had decided on a stricter threshold of 0.8, this input
would have been considered new and could have been
added to the database. However, a museum operator
finding both images of Figure 15 in their records would
be surprised, as both show the same painting in the same
circumstances. This fact illustrates the careful consider-
ation that should be applied to threshold selection.

If the museum wanted to incorporate new rooms into their
virtual visit, they would offer a multimedia representation as
an input to the workflow, which would confirm its unicity

100531

IEEE Access

A. C. Moreaux, M. P. Mitrea: Blockchain Asset Lifecycle Management for Visual Content Tracking

FIGURE 16. Extracts of the TLSC setup for museum tokens. Specifically,
the setup function inputs (top) and the changePrice() and buyToken()
functions (bottom) which are called during the lifecycle of the token.

before adding it. Upon addition, the App requests the creation
of ERC721 NFTs using the Token Prototype. It sends the
tokens to the operating wallet of the architecture for extra pro-
tection steps to be taken before distribution. Here, we use an
RM-TLSC [70] to enforce that a percentage of all subsequent
token sales will automatically be sent to the wallet. The same
tool can cap the token’s price if the museum wants to limit
speculation. In Figure 16, we show an extract of this Smart
Contract on the Remix online IDE [112], which enables the
setting of a museum cut and price cap.

This token can then be sent to a broker or further distributed
using any method seen fit by the museum. Otherwise, the
token can be kept as proof of the good standing of this original
Input.

B. IOMT CONTENT TRACING

In this example, we shall illustrate how our architecture and
workflow can upgrade and automate an existing solution
for monetizing the video content produced by Internet of
Media Things (IoMT) cameras. To do so, we use a con-
text where IoMT devices [113], [114], [115] can have their
content accessed in a trusted and permissioned fashion by
being represented on a blockchain. Specifically, we extend
the architecture and use case presented in [38]. For context,
Media Things (or MThings) — which are defined as Things
capable of sensing, acquiring, actuating, or processing media
content or metadata related with such content — are repre-
sented on-chain in a systematic fashion using a framework
presented in [38] and illustrated hereafter in Figure 17.

The Smart Contracts deployed as such manage the dis-
tribution of data collected and produced by the MThings.
They do so by creating and monitoring the flow of FTs that
serve as access coins through dedicated IoMT interfaces,
which they sell via an automatic broker. Potential buyers then
interact directly with the broker to acquire these tokens to be
redeemed for access to certain content.

Although functional, this software could benefit from the
workflow presented in this paper. While this paper’s inno-
vation could support the MThing Smart Contracts (produced

100532

Smart Contract "
Specification [Bleckehain |
Manager |

v
Smart
API Contract
Developer
'y

Deployed

Blockchain
Govemance

FIGURE 17. Architectural framework for automating the conversion of
blockchain loMT API and data formats into Smart Contracts [38], with
focuses on extracts of a Smart Contract Prototype, the output of an loMT
Parser, and an explored Smart Contract, from left to right. The end point
of this legacy workflow serves as an input to our architecture,

as presented in Figure 18.

by the workflow shown in Figure 17) in the control of FTs
(e.g., by recording previous buyers), the main advantage it can
provide resides in the minting and authentication of an NFT
standing for the final access of the content, which can further
be used as a Zero-Knowledge Proof (or ZKP) [116]. In [38],
the on-chain functionalities are limited to the initial purchase
of FTs. Although the automatic broker manages a variety of
MThings simultaneously and automatically compensates the
wallets associated with the MThings, it does not provide sup-
port past the purchase of tokens. Further support could track
the supply of FTs, potentially restricting undesired behavior.
For instance, a given party could potentially hoard these
tokens and restrict access to targeted content. By implement-
ing our workflow, the access of this content can be proved
and traced authentically, not only through the specification
of access tokens that can be limited to given addresses and
timeframes but also by creating an NFT timestamping the
access to the content.

We approach this complex use case by imagining a single
MThing — an MCamera as the sole content provider for
illustration purposes. The ideas can be applied to n MThings
communicating with the broker, as originally shown in [38].
Once the original architecture and this paper’s tools are
deployed, the process happens in three steps:

1) A user (through an off-chain App) buys access FTs
for cryptocurrency or legal tender from an automatized
broker. This operator acts as a dam, monitoring the flow
of available content and potentially regulating said flow.

2) Using the FTs they bought, users may access/livestream
a given amount of feed provided by the MCamera.

3) The access is tokenized and backed, as Section III
explains, before being sent to the user as proof of pur-
chase and access to the content. This token’s metadata
contains information such as MThing characterizations,
the buyer, the purchase of FTs, or the time the content
was delivered. It can further be used as ZKP.

VOLUME 11, 2023

A. C. Moreaux, M. P. Mitrea: Blockchain Asset Lifecycle Management for Visual Content Tracking

IEEE Access

Blockchain

Deployed
Manager etk

v —u | Broker

Contract

rinden - Off chain
E database
e
Smart and

Token Contracts

FIGURE 18. Simplified architecture integrating 1ISO/IEC23093 features.
The Broker’s input is generated via the workflow shown in Figure 17 and
is the entry point of the use case into the novel architecture.

[T B 600ETH
EZEE - iminesgo
0 5l

Oxf17F... 186732 0x088c... 767384

188315 0Gwei
84,984

64,984

FIGURE 19. Deployment receipt of a Fungible Token Contract used by the
1oMT workflow on (left), an explored transaction that occurred
automatically during the interaction with the loMT Broker (right).

Steps 1 and 2 are original to [38], but the off-chain Apps can
be combined and function as the user’s sole contact point
with third parties (Broker, Token Contract). A simplified
combined architecture is shown in Figure 18.

Specifically, these steps are powered by the architecture
and APIs of ISO/IEC23093 series standards (or MPEG-
IoMT) [113], [114], [115], which define the data flow and
interaction with MThings via blockchains. In [38], the spe-
cific interactions between App, blockchain, and MThing in
the FT selling and spending process are detailed through a
sequence diagram shown in Figure 1 [38].

The deployment of the Token Contract of the MCamera
and an example transaction launched under the hood of the
IoMT workflow are illustrated in Figure 19. The latter occurs
during the exchange shown in the sequence diagram shown
in Figure 1 of [38].

Step 3 relies on the architecture brought forth in this
paper. Specifically, the identification method of the con-
tent should be selected to consider data (the accessed
content) and metadata (e.g., timestamps, dates, user).
As such, we chose the International Standard Content Code
(ISCC) [92], an ISO standardization work item (ISO/AWI
24138, TC 46/DC9/WG18). The ISCC is an open-source,
universal, similarity fingerprinting method. ISCC are short
and designed for blockchain registration, and they identify
any type of content while still being comparable, which
could be helpful if multiple MThings were to provide con-
tent. ISCC codes comprise four sub-codes: the Meta-Code,
Content-Code, Data-Code, and Instance-Code. These codes

VOLUME 11, 2023

respectively identify the provider-side metadata, content,
data, and user-side metadata. As such, the ISCC generated
after two buyers purchase the same content at the same
time will remain different, allowing further use and precise
identification of the actions of each party, as required by
this use case. To do so, codes are compared in subparts,
i.e., we calculate the difference between two given codes
and the respective differences in each sub-code. While the
near duplication of visual content is ensured by combining
the Content and Data codes, the Meta and Instance Codes
function as checks of the origin of the content on the provider
and purchaser side.

Although we mint an ERC721 standard token and con-
sider it a transferable asset that can be protected and sold
as its owner wishes, one could keep an eye on the recent
advancements in soulbound tokens [117], which are not trans-
ferable. This use would reinforce the purpose of the NFT as
ZKP but kill other uses for the token. Regardless, a Smart
Contract-backed off-chain database now records the access
of the restricted content and can furthermore sort entries by
similarity of data or metadata using unfalsifiable information.

C. SUMMARY

After having detailed our methodology in Sections IIl and I'V,
this section illustrates the design philosophy of our solution
with regards to set up and further use through an IPR use
case (cf. Museum use case) as well as to the integration
with high-level solutions (cf. IoMT use case). These use
cases bear little resemblance to one another and demon-
strate the flexibility of the workflow presented in this paper.
In Table 3, we provide a point-by-point comparison of the
features supported by our approach with regard to state-of-
the-art solutions ([37], [38], [88]), thus showing that the
present paper outperforms previous studies. The first three
characteristics shown in Table 3 (i.e., near-copy detection,
load-balancing architecture, and blockchain-backed storage)
deal with functional aspects related to visual content tracking,
the two following (i.e., asset tokenization and token distribu-
tion) with applicative blockchain concerns, and the last four
(i.e., simultaneous standards, simultaneous blockchains, and
full lifecycle support, automated workflow) with horizontal
features. Green checks signify compliance, red crosses non-
compliance, and orange tildes partial compliance.

In the following section, we go further in analyzing the
solution presented in this paper, discussing its advantages
and drawbacks and its applicative scope and performance
ceilings.

VI. ANALYSIS

In Section III, we introduced the fundamental ideas of
our architecture and its general workflow. Section IV illus-
trated the general technological bricks we make use of, and
Section V implemented the architecture in the context of
real-world scenarios. This section will provide a critical ret-
rospective view of our solution.

100533

IEEE Access

A. C. Moreaux, M. P. Mitrea: Blockchain Asset Lifecycle Management for Visual Content Tracking

TABLE 3. Comparative analysis of our solution with regards to
state-of-the-art solutions.

State-of-the-art Advanced
solutions solution
371 | [38] | I88]
Near-copy &% &%
detection
Load-balancing & & &
architecture
Blockchain- &
backed storage 'ﬁ' g
Asset ﬂ
Tokenization
Token &
distribution
Simultaneous ﬂ
standards
Simultaneous 'ﬁ'
blockchains
Automated &%
workflow
Full lifecycle ﬁ
support

The ideas presented in this paper combine various visual
content and blockchain technologies to provide automated,
end-to-end lifecycle management of authenticated assets
on blockchain environments. As such, our architecture and
workflow design results from the strengths and limitations
of each of its technologies and their combination. Hereafter,
we analyze the main benefits and shortcomings of our work
through the lens of four aspects, specifically: the use case
reliance, the flexibility of the architecture through the asso-
ciation of technologies, the key features of the architecture,
and its overarching technical challenges.

@ Use case reliance: This architecture’s most significant
advantage and drawback is its intimate symbiosis with the
specifics of the applicative scenario. Throughout Sections
IIT and IV, we reiterated that the optimization of most tech-
nological bricks was heavily reliant on use cases. Although
specified and prototyped, the architecture and workflow are
only completely defined within a context they are tailor-made
to suit. As such, it is natural that the method be performant
within these set bounds at the expense of being defined by
them.

Although the most recurrent characteristics could be stan-
dardized into a cookie-cutter adapted to most use cases,
further work should instead focus on applying the cus-
tomization processes we showed in Section V to contingent
workflows that would benefit from the creation and authenti-
cation of assets.

@ Technology association and flexibility: An essential
aspect of our architecture is the performance preservation
of each part. The architecture does not impose any extra
constraints on the methods it accommodates. This allows, for

100534

instance, the identification method to be selected according
to its format and robustness to various kinds of visual content
attacks, the inclusion of metadata, or any other feature. The
same can be said with most technologies used in the work-
flow: not only are the database solution, App programming
language, blockchain infrastructure, and token standards
interchangeable, but the very input formats can also be modi-
fied to suit specific requirements (e.g., to an audio-oriented
use case). Current-day on-chain environments lack precise
semantic content identification that similarity-preserving fin-
gerprints can bring thanks to this workflow. The association
of both provides a robust framework for identifying semantic
content, which can be put at the service of a wide array of
scenarios thanks to the flexibility of the workflow. Never-
theless, the advanced workflow is flexible in its expansion,
enabling multifaceted management with simple additions,
and our solution is conceived, designed, and implemented to
let the near duplicated content detection be substituted with-
out breaking the workflow. If a use case did not need to worry
itself with near-duplication and semantic content concerns,
a hashing method could substitute fingerprinting without
affecting the nature of the processing chain. Consequently,
our architecture and workflow can seamlessly integrate a
broad spectrum of standard visual identification technologies,
which we illustrated using two very different algorithms in
our implementation section. Further media technologies for
speech, audio, or 3D data could also be employed similarly or
in combination with visual identification, e.g., using MPEG
Compact Descriptors for Video Recognition.

We already showed that our findings could be valuable
add-ons to existing solutions, extending their functionalities
and automating the process, as in Section V-B. Hence, future
applicative work could enable this solution in new environ-
ments such as the metaverse. From a methodological point
of view, future work could explore technologies capable of
supporting further features in each architecture brick and use
emerging mixed token standards to enable the multifaceted
reliance on a single Token Contract.

® Architectural features: When considering the work-
flow supported by our architecture, a key element is the
complete lifecycle support of assets. The workflow begins
with multiple steps before creating a blockchain asset and
ends with distributing the new asset. This wide range of
operations notably allows the tailoring of the asset and inte-
gration of complementary state-of-the-art solutions related,
for instance, to royalties or brokering.

We can also note the simplicity of using this solution.
Once a qualified expert has set the architecture up, operators
without knowledge of databases and blockchain develop-
ment can use it. The App serves as the sole interaction
point for the operator, primarily through simple prompts.
The workflow interrupts itself in case of database tamper-
ing, preventing the operator from knowingly or unknowingly
validating malicious behavior. This feature is a significant
benefit for solution’s acceptance, which remains a significant
issue for any new blockchain technology. Additionally, this

VOLUME 11, 2023

A. C. Moreaux, M. P. Mitrea: Blockchain Asset Lifecycle Management for Visual Content Tracking

IEEE Access

solution’s end users are institutions possessing diverse media
content with IPR to be applied to web3 environments, not
individuals with minimal resources to allocate.

The perennity and privacy of user data are also ensured
by the fact that only a dedicated wallet interacts with the
blockchain at the command of the App. Although our use
cases did not require the on-chain storage of sensitive data,
extensions that would require such a feature could rely on the
fact that said data only appears through the hashes of its visual
fingerprints and, hence, is not exposed when publicly acces-
sible. Further, as dictated by best practices and blockchain de
facto standards, the Smart Contract used in the architecture is
very simple and lightweight, ensuring its purpose is fulfilled
while maintaining its blockchain-inherited security.

Furthermore, our solution showcases various interoperabil-
ity features of the software and its components, although
we do not deal with an Interoperability Mechanism (IM) as
defined by [118]. We ensured the interchangeability and sys-
tematic integration of diverse state-of-the-art methodological
bricks from on and off-chain environments, as mentioned
in @ . The workflow uses the fundamental features of each
technology it accommodates while benefiting from more
complex features. This is true for the off-chain data stor-
age, blockchain environments and standards, and the App in
and of itself. For instance, all modern, application-oriented
blockchains seamlessly interacting with an off-chain App
can be used indiscriminately. Moreover, the workflow output
carries traces of these solutions and is used in standard ways
throughout the environment. This feature is the case with a
broad spectrum of potential use cases related to various fields,
two examples of which are given in Section V. Moreover,
the App can manage Smart Contracts throughout multiple
blockchain environments simultaneously. As such, this work-
flow promotes interoperability at the level of a blockchain but
also between blockchains.

Scalability is always of significant concern when dealing
with blockchains. Although our methodology does not act at
the level of the infrastructure or protocol, it is designed to
enable seamless expandability. First, all the blockchain data
is stored in web3-friendly formats (e.g., ISCC fingerprints).
Fingerprints not supporting this feature are systematically
adjusted to minimize resource usage via hashing functions.
Second, features that typically linearly scale with the number
of entries in the database, namely the greenlight process,
which occurs at every call of the Smart Contract, use value
mapping and call-only operations that do not write informa-
tion on the blockchain (i.e., do not constitute transactions).
The transactions only occur once an entry is appended, and
results in changing a single Boolean value and in the optional
subsequent token minting. In its off-chain components, con-
tent is only treated a single time in its potential admission,
which puts the limiting scalability factor in the fingerprint
treatment capacity of the database. Although database per-
formance is not in our area of expertise, we can note that not
only are our required entries light (e.g., <IMB for our most
advanced video fingerprint), but they can benefit from further

VOLUME 11, 2023

compression, which has been an active research field for
over 30 years. Lastly, the Token Contract is the only element
requiring any extra instantiation in expanding the architecture
to support multiple databases and formats simultaneously
(cf. Section IV). As such, our approach shows its benefits in
scalability, which trickle down to its resource consumption
and cost, as presented in @.

Future work could formalize IMs provided by this
workflow but also use Inter-Blockchain Communication
(IBC) [119]-oriented IMs being explored, specifically those
enabling token exchanges across infrastructures. Potential
additions should remain mindful of retaining the straightfor-
wardness of the solution.

@ Technical challenges: The central presence of
blockchain processing in this architecture brings native
blockchain security mechanisms into the workflow. In our
case, a Smart Contract acts as a zero-trust third party that
verifies the integrity of the database used to authenticate
assets. As such, the workflow is as secure as the link between
the App and blockchain, which lies in sound daily security
practices and careful private key management. However, the
presence of a blockchain also naturally brings other points
of the question, notably in terms of computational efficiency
and energy consumption.

Regarding computational efficiency, the bulk of the com-
putational power required for our workflow is concentrated in
the initial setup. After the setup and for routine use, the Smart
Contract is only invoked at two specific moments, limiting
the resource consumption of this process. The first use of
the Smart Contract is the greenlight function and does not
constitute a transaction as it does not write any information on
the blockchain. This call does not cost gas and is not limited
by slow block rates. The second is the addition of a new entry
in the database. This step is the initial setup brought to the
scale of a single entry. A single line of code in the Smart
Contract setting a Boolean variable to True is sufficient for
this task. As was our aim, this design leaves the heavy lifting
to the off-chain technological bricks. Thus, we avoid the
brunt of the central issue of on-chain development: lengthy
processing times and resource intensity.

Resource consumption on the blockchain is measured
via gas, whose costs are relative to specific blockchains
and network congestion. Moreover, the gas price on the
largest blockchains is also subject to financial market fluc-
tuations. The workflow presented in this paper minimizes
these dependencies by only calling its blockchain elements
(Smart and Token Contracts) in the event of successfully pro-
cessing a new verified entry, which limits post-deployment
gas spending to a minimum. Regarding the initial deploy-
ment, no strategies other than code optimization can curb the
cost of instantiating software on blockchains. For instance,
the deployment of the Smart and Token Contracts of the
Museum IPR use case we presented in Section V respec-
tively used 15.24% and 61.45% of the default 4.5M gas limit
of our private EEA blockchain (i.e., approx. 685,000 and
2.7M). These values are made possible by the load-balancing

100535

IEEE Access

A. C. Moreaux, M. P. Mitrea: Blockchain Asset Lifecycle Management for Visual Content Tracking

features of the architecture, without which most fingerprints,
even if they were supported, would be prohibitively expensive
to be stored on a blockchain. To put these numbers in per-
spective, [120] estimates 640k gas being necessary to store
a kilobyte of data on Ethereum’s mainnet. As such, a single
fingerprint computed with [111], as we use in Section V-A,
would cost 22.4M gas to be stored, which is higher than
Ethereum’s total block gas target of 15M [121]. For compari-
son, a simple transaction of ETH from one account to another
account costs about 21,000 gas, while an ETH transaction to
a Smart Contract costs 68,000 in the same circumstances.
As such, the processing times and costs brought forth are
well within blockchain standards and participate in the per-
formance preservation discussed in @.

Of course, these gas and performance costs relate to
real-world spending and energy consumption proportionately
to the mindfulness of the blockchain’s consensus algorithm
and energetical mindfulness, as well as absolute gas prices in
legal tender. We decided to employ the Ethereum and Tezos
blockchains, which both use variations on the Proof of Stake
consensus algorithm. This method has now widely succeeded
energy-hungry Proof of Work in the applicative blockchain
realm in a general effort to build an environmentally con-
scious web3 ecosystem. The consensus shift from Ethereum
1.0 to Ethereum 2.0 lowered its energy consumption by a
staggering 99.95%, now making the blockchain consume ten
times less energy than AirBnB at approximately 0.0026 TWh
per year. Tezos is also one of the most energy-responsible
blockchains, consuming even less than the newly efficient
Ethereum 2.0. Moreover, this workflow does not aim to create
assets that would not have been created without it but to
support said assets and assert their link with their real-world
or web2 counterparts. Gas is what is paid in exchange for the
authentication provided by this workflow.

Future work could apply the efforts presented in this paper
in the light of so-called green blockchains [122], [123] and
energy-conscious blockchain discoveries to ensure the bene-
fit provided by our workflow can come at a minimal cost.

VII. CONCLUSION
Web3 paradigms brought and continue to bring new
high-stake threats to multimedia content in terms of misuse
(e.g., copying, IPR infringement) but also carry the oppor-
tunity of more robust protection schemes. In this paper,
we bring forward a flexible architecture that enables the
backing of semantic information from given datasets in
a blockchain-supported fashion and its subsequent usage
through automated workflows. Specifically, this architecture
makes the most out of the mutually beneficial connection
between off-chain and on-chain technologies to provide
advanced multimedia identification and data integrity. Data
authenticated as such is then made into blockchain assets that
bear the trace of the process and can be distributed or serve
as ZKPs.

This solution can rely on various web2 and web3 tech-
nologies and be implemented standalone or non-invasively

100536

within already established workflows. It avoids the biggest
blockchain pitfalls by keeping slow and costly operations at a
minimum yet ensuring the best out of the robustness provided
by the technology. These features widen its spectrum of
potential uses, as we illustrated throughout this paper.

Further efforts should not only integrate this solution into
new use cases to face new challenges but also keep it up to
date with new web3 concepts such as emerging mixed token
standards, IBC, and green blockchains.

APPENDIX—-ABBREVIATIONS
Abbreviations used more than once throughout this paper are

summarized in Table 4.

TABLE 4. Abbreviations used in this paper.

API Application Programming Interface

EEA Ethereum Enterprise Alliance

EIP Ethereum Improvement Proposals

ERC Ethereum Request for Comments

FT Fungible Token

IBC Inter Blockchain Communication

IDE Integrated Development Environment

1IEC International Electrotechnical Commission

IM Interoperability Mechanism

IoMT Internet of Media Things

1P Intellectual Property

IPR Intellectual Property Rights

ISCC International Standard Content Code

ISO International Organization for
Standardization

MPEG | Moving Picture Experts Group

MThing | Media Thing

NFT Non-Fungible Token

RM- Royalty Management Token Level Smart

TLSC Contract

ZKP Zero-Knowledge Proof

REFERENCES

[1]1 H. Lippell, “Big data in the media and entertainment sectors,” in New
Horizons for a Data-Driven Economy: A Roadmap for Usage and
Exploitation of Big Data in Europe. Cham, Switzerland: Springer, 2016,
pp. 245-259, doi: 10.1007/978-3-319-21569-3_14.

[2] L. Cao, G.-J. Qi, S.-F. Tsai, M.-H. Tsai, A. Pozo, X. Zhang, and S. Lim,
“Multimedia information networks in social media,” in Social Network
Data Analytics. Boston, MA, USA: Springer, 2011, pp. 413-445, doi:
10.1007/978-1-4419-8462-3_15.

[3] S.-C. Chen, “Multimedia for autonomous driving,” IEEE Multimedia,
vol. 26, no. 3, pp. 5-8, Jul. 2019, doi: 10.1109/MMUL.2019.2935397.

[4] W. Zhu, X. Wang, and W. Gao, “Multimedia intelligence: When mul-
timedia meets artificial intelligence,” IEEE Trans. Multimedia, vol. 22,
no. 7, pp. 1823-1835, Jul. 2020, doi: 10.1109/TMM.2020.2969791.

[5] Grand View Research. Digital Content Creation Market Size,
Share & Trends Analysis. Accessed: Jul. 2023. [Online]. Available:
https://www.grandviewresearch.com/industry-analysis/digital-content-
creation-market-report

[6] H. Abbas and R. Di Pietro, “Sanitization of visual multimedia con-
tent: A survey of techniques, attacks, and future directions,” 2022,
arXiv:2207.02051.

VOLUME 11, 2023

http://dx.doi.org/10.1007/978-3-319-21569-3_14
http://dx.doi.org/10.1007/978-1-4419-8462-3_15
http://dx.doi.org/10.1109/MMUL.2019.2935397
http://dx.doi.org/10.1109/TMM.2020.2969791

A. C. Moreaux, M. P. Mitrea: Blockchain Asset Lifecycle Management for Visual Content Tracking

IEEE Access

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

A. Koschmann and Y. Qian, “‘Latent estimation of piracy quality and its
effect on revenues and distribution: The case of motion pictures,” White
Paper 27649, Nat. Bureau Econ. Res., Cambridge, MA, USA, 2020, doi:
10.3386/w27649.

L. Ma, A. L. Montgomery, P. V. Singh, and M. D. Smith, “An empir-
ical analysis of the impact of pre-release movie piracy on box office
revenue,” Inf. Syst. Res., vol. 25, no. 3, pp. 590-603, Sep. 2014, doi:
10.1287/isre.2014.0530.

L. Cao, “Decentralized Al: Edge intelligence and smart blockchain,
metaverse, Web3, and DeSci,” IEEE Intell. Syst., vol. 37, no. 3, pp. 6-19,
May 2022, doi: 10.1109/MIS.2022.3181504.

W. Ding, J. Hou, J. Li, C. Guo, J. Qin, R. Kozma, and F.-Y. Wang,
“DeSci based on Web3 and DAO: A comprehensive overview
and reference model,” [EEE Trans. Computat. Social Syst.,
vol. 9, no. 5, pp.1563-1573, Oct. 2022. [Online]. Available:
https://ieeexplore.ieee.org/document/9906878

Z. Liu, Y. Xiang, J. Shi, P. Gao, H. Wang, X. Xiao, B. Wen, Q. Li, and
Y.-C. Hu, “Make Web3.0 connected,” IEEE Trans. Dependable Secure
Comput., vol. 19, no. 5, pp. 2965-2981, Sep. 2022. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9428608

A. Qureshi and D. M. Jiménez, “Blockchain-based multimedia content
protection: Review and open challenges,” Appl. Sci., vol. 11, no. 1, p. 1,
Dec. 2020, doi: 10.3390/app11010001.

S.-C. Chen, ‘“Multimedia research toward the metaverse,” IEEE
Multimedia, vol. 29, no. 1, pp.125-127, Jan/Mar. 2022, doi:
10.1109/MMUL.2022.3156185.

H. Dong and J. S. A. Lee, “The metaverse from a multimedia commu-
nications perspective,” IEEE Multimedia, vol. 29, no. 4, pp. 123-127,
Oct./Dec. 2022, doi: 10.1109/MMUL.2022.3217627.

X. Xu, G. Zou, L. Chen, and T. Zhou, “Metaverse space ecolog-
ical scene design based on multimedia digital technology,” Mobile
Inf. Syst., vol. 2022, Jul. 2022, Art. no. 7539240, doi: 10.1155/2022/
7539240.

D. Buhalis, M. S. Lin, and D. Leung, “Metaverse as a driver
for customer experience and value co-creation: Implications for
hospitality and tourism management and marketing,” Int. J. Con-
temp. Hospitality Manage., vol. 35, no. 2, pp. 701-716, Jan. 2023,
doi: 10.1108/IJCHM-05-2022-0631.

H. Duan, J. Li, S. Fan, Z. Lin, X. Wu, and W. Cai, “Metaverse
for social good: A university campus prototype,” in Proc. 29th ACM
Int. Conf. Multimedia, Oct. 2021, pp. 153-161, doi: 10.1145/3474085.
3479238.

A. Nadeem and M. Y. Javed, “A performance comparison of data encryp-
tion algorithms,” in Proc. Int. Conf. Inf. Commun. Technol., Karachi,
Pakistan, Aug. 2005, pp. 84-89, doi: 10.1109/ICICT.2005.1598556.

S. R. Subramanya and B. K. Yi, “Digital signatures,” IEEE Potentials,
vol. 25, no. 2, pp. 5-8, Mar./Apr. 2006, doi: 10.1109/MP.2006.1649003.
C. L. Podilchuk and E. J. Delp, “Digital watermarking: Algorithms and
applications,” [EEE Signal Process. Mag., vol. 18, no. 4, pp. 33—46,
Jul. 2001, doi: 10.1109/79.939835.

B. Rogosky and R. Goldstone, ‘“‘Adaptation of perceptual and seman-
tic features,” in Functional Features in Language and Space: Insights
from Perception, Categorization, and Development, L. Carlson and
E. van der Zee, Eds. Oxford, U.K.: Oxford Academic, Jan. 2010, doi:
10.1093/acprof:0s0/9780199264339.003.0017.

J. Lu, “Video fingerprinting for copy identification: From research to
industry applications,” Proc. SPIE, vol. 7254, Feb. 2009, Art. no. 725402,
doi: 10.1117/12.805709.

C. Antal, T. Cioara, I. Anghel, M. Antal, and 1. Salomie, “Distributed
ledger technology review and decentralized applications development
guidelines,” Future Internet, vol. 13, no. 3, p. 62, Feb. 2021. [Online].
Available: https://www.mdpi.com/1999-5903/13/3/62

S. Rose, O. Borchert, S. Mitchell, and S. Connelly, “Zero trust
architecture,” Natl. Inst. Stand. Technol., Gaithersburg, MD, USA,
Tech. Rep. 800-207, Aug. 2020, pp.1-59, doi: 10.6028/NIST.
SP.800-207.

C. Buck, C. Olenberger, A. Schweizer, F. Volter, and T. Eymann, “Never
trust, always verify: A multivocal literature review on current knowledge
and research gaps of zero-trust,” Comput. Secur., vol. 110, Nov. 2021,
Art. no. 102436, doi: 10.1016/j.cose.2021.102436.

T. M. Navamani, “A review on cryptocurrencies security,”
J. Appl. Secur. Res., vol. 18, no. 1, pp.49-69, Jan. 2023, doi:
10.1080/19361610.2021.1933322.

VOLUME 11, 2023

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43

—

[44]

[45]

S. Biswas, K. Sharif, F. Li, I. Alam, and S. P. Mohanty, “DAAC: Digital
asset access control in a unified blockchain based e-health system,”
IEEE Trans. Big Data, vol. 8, no. 5, pp. 1273-1287, Oct. 2022, doi:
10.1109/TBDATA.2020.3037914.

V.T. Truong, L. Le, and D. Niyato, ‘“Blockchain meets metaverse and dig-
ital asset management: A comprehensive survey,” IEEE Access, vol. 11,
pp. 26258-26288, 2023.

H. R. Hasan and K. Salah, “Proof of delivery of digital assets using
blockchain and smart contracts,” IEEE Access, vol. 6, pp. 65439-65448,
2018, doi: 10.1109/ACCESS.2018.2876971.

T. Schrepel, “The complex relationship between Web2 giants and Web3
projects,” Amsterdam Law & Technol. Inst. Working Paper 1-2023,
VU Univ. Amsterdam Legal Stud., Amsterdam, The Netherlands,
Jan. 10, 2023, doi: 10.2139/ssrn.4284597.

B. Notheisen, J. B. Cholewa, and A. P. Shanmugam, ““Trading real-
world assets on blockchain,” Bus. Inf. Syst. Eng., vol. 59, pp. 425-440,
Oct. 2017, doi: 10.1007/s12599-017-0499-8.

X. Min, L. Kong, Q. Li, Y. Liu, B. Zhang, Y. Zhao, Z. Xiao, and B. Guo,
“Blockchain-native mechanism supporting the circulation of complex
physical assets,” Comput. Netw., vol. 202, Jan. 2022, Art. no. 108588,
doi: 10.1016/j.comnet.2021.108588.

Y. Chen and C. Bellavitis, “Blockchain disruption and decentralized
finance: The rise of decentralized business models,” J. Bus.
Venturing Insights, vol. 13, Jun. 2020, Art. no. e00151, doi:
10.1016/j.jbvi.2019.e00151.

R. Lombardi, C. de Villiers, N. Moscariello, and M. Pizzo, “The
disruption of blockchain in auditing—A systematic literature
review and an agenda for future research,” Accounting, Auditing
Accountability J., vol. 35, no. 7, pp.1534-1565, Aug. 2022,
doi: 10.1108/AAAJ-10-2020-4992.

V. Rambhia, V. Mehta, R. Mehta, R. Shah, and D. Patel, “Intel-
lectual property rights management using blockchain,” in Infor-
mation and Communication Technology for Competitive Strategies
(ICTCS 2020) (Lecture Notes in Networks and Systems), vol. 190,
M. S. Kaiser, J. Xie, and V. S. Rathore, Eds. Singapore: Springer, 2022,
doi: 10.1007/978-981-16-0882-7_47.

M. Allouche, T. Frikha, M. Mitrea, G. Memmi, and F. Chaabane,
“Lightweight blockchain processing. Case study: Scanned document
tracking on Tezos blockchain,” Appl. Sci., vol. 11, no. 15, p. 7169,
Aug. 2021, doi: 10.3390/app11157169.

A. Moreaux and M. Mitrea, ““Visual content verification in blockchain
environments,” Blockchain Cryptocurrency, vol. 1, no. 1, pp. 44-55, Sep.
2023.

M. Allouche, M. Mitrea, A. Moreaux, and S.-K. Kim, “Automatic smart
contract generation for Internet of Media Things,” ICT Exp., vol. 7, no.
3, pp. 274-277, Sep. 2021, doi: 10.1016/j.icte.2021.08.009.

R. Sobti and G. Ganesan, “‘Cryptographic hash functions: A review,” Int.
J. Comput. Sci. Issues, vol. 9, no. 2, pp. 461-479, 2012.

J. Liu, Z. Huang, H. Cai, H.T. Shen, C.W. Ngo, and W. Wang, “Near
duplicate video retrieval: Current research and future trends,” ACM Com-
put. Surv., vol. 45, no. 4, pp. 1-23, 2013, doi: 10.1145/2501654.2501658.
J. Oostveen, T.Kalker, and J. Haitsma, ‘“Feature extraction and a
database strategy for video fingerprinting,” in Recent Advances in Visual
Information Systems (Lecture Notes in Computer Science), vol. 2314,
S. K. Chang, Z. Chen, and S. Y. Lee, Eds. Berlin, Germany: Springer,
2002, doi: 10.1007/3-540-45925-1_11.

A. Saracoglu, E. Esen, T. K. Ates, B. O. Acar, U. Zubari, E. C. Ozan,
E. Ozalp, A. A. Alatan, and T. Ciloglu, “Content based copy detec-
tion with coarse audio-visual fingerprints,” in Proc. 7th Int. Work-
shop Content-Based Multimedia Indexing, Chania, Greece, Jun. 2009,
pp. 213-218, doi: 10.1109/CBMI.2009.12.

H. Chen, B. D. Rouhani, C. Fu, J. Zhao, and F. Koushanfar, “‘DeepMarks:
A secure fingerprinting framework for digital rights management of
deep learning models,” in Proc. Int. Conf. Multimedia Retr. (ICMR).
New York, NY, USA: Association for Computing Machinery, Jun. 2019,
pp. 105-113, doi: 10.1145/3323873.3325042.

G. Conti and K. Abdullah, “Passive visual fingerprinting of network
attack tools,” in Proc. ACM Workshop Visualizat. Data Mining Comput.
Secur. (VizSEC/DMSEC). New York, NY, USA: Association for Comput-
ing Machinery, Oct. 2004, pp. 45-54, doi: 10.1145/1029208.1029216.
M. Allouche and M. Mitrea, ““Video fingerprinting: Past, present, and
future,” Frontiers Signal Process., vol. 2, Sep. 2022, Art. no. 984169, doi:
10.3389/frsip.2022.984169.

100537

http://dx.doi.org/10.3386/w27649
http://dx.doi.org/10.1287/isre.2014.0530
http://dx.doi.org/10.1109/MIS.2022.3181504
http://dx.doi.org/10.3390/app11010001
http://dx.doi.org/10.1109/MMUL.2022.3156185
http://dx.doi.org/10.1109/MMUL.2022.3217627
http://dx.doi.org/10.1155/2022/7539240
http://dx.doi.org/10.1155/2022/7539240
http://dx.doi.org/10.1108/IJCHM-05-2022-0631
http://dx.doi.org/10.1145/3474085.3479238
http://dx.doi.org/10.1145/3474085.3479238
http://dx.doi.org/10.1109/ICICT.2005.1598556
http://dx.doi.org/10.1109/MP.2006.1649003
http://dx.doi.org/10.1109/79.939835
http://dx.doi.org/10.1093/acprof:oso/9780199264339.003.0017
http://dx.doi.org/10.1117/12.805709
http://dx.doi.org/10.6028/NIST.SP.800-207
http://dx.doi.org/10.6028/NIST.SP.800-207
http://dx.doi.org/10.1016/j.cose.2021.102436
http://dx.doi.org/10.1080/19361610.2021.1933322
http://dx.doi.org/10.1109/TBDATA.2020.3037914
http://dx.doi.org/10.1109/ACCESS.2018.2876971
http://dx.doi.org/10.2139/ssrn.4284597
http://dx.doi.org/10.1007/s12599-017-0499-8
http://dx.doi.org/10.1016/j.comnet.2021.108588
http://dx.doi.org/10.1016/j.jbvi.2019.e00151
http://dx.doi.org/10.1108/AAAJ-10-2020-4992
http://dx.doi.org/10.1007/978-981-16-0882-7_47
http://dx.doi.org/10.3390/app11157169
http://dx.doi.org/10.1016/j.icte.2021.08.009
http://dx.doi.org/10.1145/2501654.2501658
http://dx.doi.org/10.1007/3-540-45925-1_11
http://dx.doi.org/10.1109/CBMI.2009.12
http://dx.doi.org/10.1145/3323873.3325042
http://dx.doi.org/10.1145/1029208.1029216
http://dx.doi.org/10.3389/frsip.2022.984169

IEEE Access

A. C. Moreaux, M. P. Mitrea: Blockchain Asset Lifecycle Management for Visual Content Tracking

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65

[66]

[67]

[68]

Y.-G. Jiang and J. Wang, ““Partial copy detection in videos: A benchmark
and an evaluation of popular methods,” IEEE Trans. Big Data, vol. 2,
no. 1, pp. 32-42, Mar. 2016, doi: 10.1109/TBDATA.2016.2530714.

M. Wu, W. Trappe, Z. J. Wang, and K. J. R. Liu, “Collusion-resistant
fingerprinting for multimedia,” in /EEE Signal Process. Mag., vol. 21,
no. 2, pp. 15-27, Mar. 2004, doi: 10.1109/MSP.2004.1276103.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Las Vegas, NV, USA, Jun. 2016, pp.770-778, doi:
10.1109/CVPR.2016.90.

J. Jin, X. Zhang, X. Fu, H. Zhang, W. Lin, J. Lou, and Y. Zhao, “Just
noticeable difference for deep machine vision,” IEEE Trans. Circuits
Syst. Video Technol., vol. 32, no. 6, pp. 3452-3461, Jun. 2022. [Online].
Available: https://ieeexplore.ieee.org/document/9540665

G. Kordopatis-Zilos, S. Papadopoulos, 1. Patras, and Y. Kompatsiaris,
“Near-duplicate video retrieval with deep metric learning,” in Proc. IEEE
Int. Conf. Comput. Vis. Workshops (ICCVW), Venice, Italy, Oct. 2017,
pp. 347-356, doi: 10.1109/ICCVW.2017.49.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84-90, May 2017, doi: 10.1145/3065386.

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Bitcoin,
White paper, 2008. [Online]. Available: https://bitcoin.org/bitcoin.pdf
V. Buterin, “A next-generation smart contract and decentralized appli-
cation platform,” Ethereum, White Paper, pp. 2-1, 2014, vol. 3, no. 37.
[Online]. Available: https://ethereum.org/en/whitepaper/

Gartner Peer Insights. Blockchain Platforms Reviews 2021. Accessed:
Jun. 2023. [Online]. Available: https://www.gartner.com/reviews
/market/blockchain-platforms

CoinMarketCap. Coin Market Cap. For All Coins 2021. Accessed:
May 2023. [Online]. Available: https://coinmarketcap.com/coins
[views/all/

N. Szabo, “Formalizing and securing relationships on public networks,”
1st Monday, vol. 2, no. 9, pp. 1-25, Sep. 1997, doi: 10.5210/fm.v2i9.548.
S. Rouhani and R. Deters, ‘“Security, performance, and applica-
tions of smart contracts: A systematic survey,” [EEE Access, vol. 7,
pp. 50759-50779, 2019, doi: 10.1109/ACCESS.2019.2911031.

S. M. H. Bamakan, A. Motavali, and A. B. Bondarti, “A survey
of blockchain consensus algorithms performance evaluation -crite-
ria,” Expert Syst. Appl., vol. 154, Sep. 2020, Art.no. 113385, doi:
10.1016/j.eswa.2020.113385.

W. Zou, D. Lo, P. S. Kochhar, X. D. Le, X. Xia, Y. Feng, Z. Chen,
and B. Xu, “Smart contract development: Challenges and opportunities,”
IEEE Trans. Softw. Eng., vol. 47, no. 10, pp.2084-2106, Oct. 2021.
[Online]. Available: https://ieeexplore.ieee.org/document/8847638

W. Liang, Y. Fan, K. -C. Li, D. Zhang, and J. -L. Gaudiot, ““Secure data
storage and recovery in industrial blockchain network environments,”
IEEE Trans. Ind. Informat., vol. 16, no. 10, pp. 6543-6552, Oct. 2020,
doi: 10.1109/T11.2020.2966069.

R. Li, T. Song, B. Mei, H. Li, X. Cheng, and L. Sun, “Blockchain
for large-scale Internet of Things data storage and protection,” /EEE
Trans. Services Comput., vol. 12, no. 5, pp. 762-771, Sep. 2019, doi:
10.1109/TSC.2018.2853167.

IEEE Xplore. IEEE Blockchains Standards. Accessed: Jun. 2023.
[Online]. Available: https://innovate.ieee.org/ieee-blockchain-standards-
collection/

ISO. ISO/TC 307 Blockchain and Distributed Ledger Technolo-
gies. Accessed: Jun. 2023. [Online]. Available: https://www.iso.org
/committee/6266604.html

International Association for Trusted Blockchain Applications. Accessed:
Jun. 2023. [Online]. Available: https://inatba.org/

Enterprise Ethereum Alliance. Accessed: May 2023. [Online]. Available:
https://entethalliance.org/

F. Vogelsteller and V. Buterin. (Nov. 2015). ERC-20: Token Stan-
dard. Ethereum Improvement Proposals No. 20. [Online]. Available:
https://eips.ethereum.org/EIPS/eip-20

W. Entriken, D. Shirley, J. Evans, and N. Sachs. (Jan. 2018). EIP-
721: Non-Fungible Token Standard. Ethereum Improvement Proposals
No. 721. [Online]. Available: https://eips.ethereum.org/EIPS/eip-721

W. Radomski, A. Cooke, P. Castonguay, J. Therien, E. Binet, and
R. Sandford. (Jun. 2018). ERC-1155: Multi Token Standard. Ethereum
Improvement Proposals No. 1155. [Online]. Available: https:/eips.
ethereum.org/EIPS/eip-1155

100538

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

Consensys. An Analysis of Ethereum’s Decentralized Finance Ecosystem
in Q2 2021. DeFi Report Q2 2021. Accessed: Mar. 2023. [Online].
Available: https://consensys.net/reports/defi-report-q2-2021

A. C. Moreaux and M. P. Mitrea, “Royalty-friendly digital asset
exchanges on blockchains,” IEEE Access, vol. 11, pp. 56235-56247,
2023, doi: 10.1109/ACCESS.2023.3283153.

N. Kshetri, “Scams, frauds, and crimes in the nonfungible token
market,” Computer, vol. 55, no. 4, pp.60-64, Apr. 2022, doi:
10.1109/MC.2022.3144763.

D. Das, P. Bose, N. Ruaro, C. Kruegel, and G. Vigna, “Under-
standing security issues in the NFT ecosystem,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur. (CCS). New York, NY, USA:
Association for Computing Machinery, Nov. 2022, pp. 667-681, doi:
10.1145/3548606.3559342.

S. Saha Roy, D. Das, P. Bose, C. Kruegel, G. Vigna, and S. Nilizadeh,
“Demystifying NFT promotion and phishing scams,” 2023,
arXiv:2301.09806.

Cryptocurrencies: Last Week Tonight with John Oliver (HBO). YouTube.
Accessed: Feb. 2023. [Online]. Available: https://www.youtube.com
/watch?v=g6iDZspbRMg

J. Sor. Who is Cofeezilla, the Crypto Detective Who Says He Got
Sam Bankman-Fried to Admit to Fraud. Business Insider. Accessed:
Jun. 2023. [Online]. Available: https://markets.businessinsider.com/news
/currencies/coffeezilla-sam-bankman-fried-ftx-bankruptcy-crypto-scam-
detective-2023-1

R. Monroe. Coffeezilla, the YouTuber Exposing Crypto Scams. The
New Yorker. Accessed: Jun. 2023. [Online]. Available: https://www.
newyorker.com/news/letter-from-the-southwest/coffeezilla-the-youtuber
-exposing-crypto-scams

The Block. Ethereum NFT Marketplace Monthly Volume. Accessed:
May 2023. [Online]. Available: https://www.theblock.co/data/nft-non-
fungible-tokens/marketplaces/nft-marketplace-monthly-volume

M. K. Manoylov. OpenSea Reveals that Over 80% of Its Free NFT
Mints were Plagiarized, Spam or Fake. The Block. Accessed: Feb. 2023.
[Online]. Available: https://www.theblock.co/linked/132511/opensea-re
veals-that-over-80-of-its-free-nft-mints-were-plagiarized-spam-or-fake
(2020). The Tokenisation of Assets and Potential Implications for
Financial Markets. OECD Blockchain Policy Series. [Online]. Available:
https://www.oecd.org/finance/The-Tokenisation-of- Assets-and-Potential
-Implications-for-Financial-Markets.htm

R. Heines, C. Dick, C. Pohle, and R. Jung, “The tokenization of every-
thing: Towards a framework for understanding the potentials of tokenized
assets,” in Proc. PACIS, Jul. 2021, pp. 1-15.

S. M. H. Bamakan, N. Nezhadsistani, O. Bodaghi, and Q. Qu, “Patents
and intellectual property assets as non-fungible tokens; key technolo-
gies and challenges,” Sci. Rep., vol. 12, p.2178, Feb. 2022, doi:
10.1038/541598-022-05920-6.

A. Thorn, M. Marcantonio, and G. Parker. A Survey of NFT
Licenses: Facts & Fictions. Galaxy. Accessed: May 2023. [Online].
Available: https://www.galaxy.com/research/insights/a-survey-of-nft-
licenses-facts-and-fictions/

Creative Commons. About CC Licenses. Accessed: Jul. 2023. [Online].
Available: https://creativecommons.org/about/cclicenses/

S. Qadir and G. Parker. NFT Royalties: The $1.8bn Question. Galaxy.
Accessed: Feb. 2023. [Online]. Available: https://www.galaxy.com
/research/insights/nft-royalties/

Z. Burks, J. Morgan, B. Malone, and J. Seibel. (Sep. 2020). EIP-2981:
NFT Royalty Standard. Ethereum Improvement Proposals No. 2981.
[Online]. Available: https://eips.ethereum.org/EIPS/eip-2981

R. Li, “Fingerprint-related chaotic image encryption scheme based
on blockchain framework,” Multimedia Tools Appl., vol. 80, no. 20,
pp. 30583-30603, Aug. 2021, doi: 10.1007/s11042-020-08802-z.

F. Frattolillo, “A watermarking protocol based on blockchain,”
Appl. Sci., vol. 10, no. 21, p.7746, Nov. 2020, doi: 10.3390/
app10217746.

M. Allouche, M. Ljubojevic, and M. Mitrea, “Visual document track-
ing and blockchain technologies in mobile world,” in Proc. Elec-
tron. Imag. Int. Conf. Imag. Multimedia Anal. Web Mobile World,
Jan. 2021, pp.279-1-279-6, doi: 10.2352/ISSN.2470-1173.2021.8.
IMAWM-279.

A. Moreauxa and M. Mitrea, ‘“‘Blockchain assisted near-duplicated con-
tent detection,” in Proc. Blockchain Cryptocurrency Congr. (B2C), 2022,
pp. 98-139.

VOLUME 11, 2023

http://dx.doi.org/10.1109/TBDATA.2016.2530714
http://dx.doi.org/10.1109/MSP.2004.1276103
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/ICCVW.2017.49
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.5210/fm.v2i9.548
http://dx.doi.org/10.1109/ACCESS.2019.2911031
http://dx.doi.org/10.1016/j.eswa.2020.113385
http://dx.doi.org/10.1109/TII.2020.2966069
http://dx.doi.org/10.1109/TSC.2018.2853167
http://dx.doi.org/10.1109/ACCESS.2023.3283153
http://dx.doi.org/10.1109/MC.2022.3144763
http://dx.doi.org/10.1145/3548606.3559342
http://dx.doi.org/10.1038/s41598-022-05920-6
http://dx.doi.org/10.1007/s11042-020-08802-z
http://dx.doi.org/10.3390/app10217746
http://dx.doi.org/10.3390/app10217746
http://dx.doi.org/10.2352/ISSN.2470-1173.2021.8.IMAWM-279
http://dx.doi.org/10.2352/ISSN.2470-1173.2021.8.IMAWM-279

A. C. Moreaux, M. P. Mitrea: Blockchain Asset Lifecycle Management for Visual Content Tracking

IEEE Access

[90]

[91]

[92]
[93]
[94]

[95]

[96]

[97]

[98]
[99]

[100]

[101]

[102]
[103]
[104]
[105]
[106]
[107]

[108]

[109]
[110]

[111]

[112]

[113]

[114]

L. Tseng, X. Yao, S. Otoum, M. Aloqaily, and Y. Jararweh, ““Blockchain-
based database in an IoT environment: Challenges, opportunities, and
analysis,” Cluster Comput., vol. 23, pp.2151-2165, Jul. 2020, doi:
10.1007/s10586-020-03138-7.

X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, and L. Njilla,
“ProvChain: A blockchain-based data provenance architecture in
cloud environment with enhanced privacy and availability,” in Proc.
17th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput. (CCGRID),
May 2017, pp. 468-477, doi: 10.1109/CCGRID.2017.8.

International Standard Content Code Foundation Portal. Accessed: Mar.
2023. [Online]. Available: https://iscc.foundation/iscc/

J. Noble, A. K. P. Taivalsaari, and 1. Moore, Prototype-Based Program-
ming: Concepts, Languages and Applications. Singapore: Springer, 1999.
ISO/IEC 21000-23 Smart Contracts for Media. Accessed: Jan. 2023.
[Online]. Available: https://scm.linkeddata.es/

ISO. ISO/IEC ~ 21000-23:2022(EN) Information Technology—
Multimedia Framework (MPEG-21)—Part 23: Smart Contracts for
Media. Accessed: May 2023. [Online]. Available: https://www.iso.org
/obp/ui/fr/#iso:std:iso-iec:21000:-23:ed-1:v1:en

GitHub. Royalty Token Repository. Accessed: Aug. 2023. [Online]. Avail-
able: https://github.com/a-moreaux/Royalty Token

SmartPy. SmartPy RM-TLSC Demo Contract. Accessed: Aug. 2023.
[Online]. Available: https://legacy.smartpy.io/ide?cid=QmSyFVp
5Sm7RDj9SyLyspEsLvfaNcGL8TYeHvReNFLTzoGt&k=5167c9ceb09f5
ff9ae5c

SmartPy Tezos IDE. Accessed: Jun. 2023. [Online]. Available: https://
smartpy.io/

SmartPy. Legacy SmartPy Tezos IDE. Accessed: Jun. 2023. [Online].
Available: https://legacy.smartpy.io/

SmartPy. Meta-Programming. Accessed: Feb. 2023. [Online]. Available:
https://legacy.smartpy.io/docs/introduction/meta_programming#meta-
programming

SmartPy. SmartPy Smart Contract Database Backing. Accessed:
Apr. 2023. [Online]. Available: https://legacy.smartpy.io/ide?cid=QmZa
8H7PPHDXtmEk5umZqFsSS5R4wBmLcTr7WxDSvNqHwk&k=24dea
b4dcl4ccfda82ca

TzKT. Tezos Blockchain Explorer. Accessed: Jun. 2023. [Online]. Avail-
able: https://tzkt.io/

Tezos Deverloper Portal. FA2 A Unified Token Contract Interface.
Accessed: Sep. 2023. [Online]. Available: https://tezos.b9lab.com/fa2
OpenZeppelin Docs. ERC721. Accessed: Mar. 2023. [Online]. Available:
https://docs.openzeppelin.com/contracts/2.x/api/token/erc721
OpenZeppelin Docs. ERC1155. Accessed: Mar. 2023. [Online]. Avail-
able: https://docs.openzeppelin.com/contracts/3.x/erc1155
OpenZeppelin Token Wizard. Accessed: Apr. 2023. [Online]. Available:
https://wizard.openzeppelin.com/

Web3Py. Web3Py Documentation. Accessed: Feb. 2023. [Online]. Avail-
able: https://web3py.readthedocs.io/en/v5/

GitHub. Repository of the Architecture for the Museum IPR Use
Case. Accessed: May 2023. [Online]. Available: https://github.com/a-
moreaux/Lempicka

Ethereum. Ethereum Virtual Machine (EVM). Accessed: Apr. 2023.
[Online]. Available: https://ethereum.org/en/developers/docs/evm/

Le Louvre. Le Louvre Online Tour Portal. Accessed: Jan. 2023. [Online].
Auvailable: https://www.louvre.fr/en/online-tours

A. Garboan and M. Mitrea, “Live camera recording robust video fin-
gerprinting,” Multimedia Syst., vol. 22, pp. 229-243, Mar. 2016, doi:
10.1007/s00530-014-0447-0.

Remix. Remix Ethereum IDE. Accessed: Jun. 2023. [Online]. Available:
https://remix.ethereum.org/

ISO. ISO/IEC 23093-1:2022 Information Technology—Internet of Media
Things—Part 1: Architecture. Accessed: Jun. 2023. [Online]. Available:
https://www.iso.org/standard/81586.html

ISO. ISO/IEC 23093-2:2022 Information Technology—Internet of
Media Things—Part 2: Discovery and Communication API. Accessed:
Jun. 2023. [Online]. Available: https://www.iso.org/standard/81587.html

VOLUME 11, 2023

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

ISO. ISO/IEC 23093-3:2022 Information Technology—Internet of Media
Things—Part 3: Media Data Formats and APIs. Accessed: Jun. 2023.
[Online]. Available: https://www.iso.org/standard/81589.html

0. Goldreich and Y. Oren, “Definitions, and properties of zero-
knowledge proof systems,” J. Cryptol., vol. 7, pp. 1-32, Dec. 1994, doi:
10.1007/BF00195207.

E. Weyl, P. Ohlhaver and V. Buterin, “Decentralized society: Find-
ing Web3’s soul,” May 2022. [Online]. Available: https://dx.doi.org/10.
2139/ssrn.4105763

R. Belchior, L. Riley, T. Hardjono, A. Vasconcelos, and M. Correia,
“Do you need a distributed ledger technology interoperability solution?”
Distrib. Ledger Technol., Res. Pract., vol. 2, no. 1, pp. 1-37, Mar. 2023,
doi: 10.1145/3564532.

I. A. Qasse, M. A. Talib, and Q. Nasir, ““Inter blockchain communication:
A survey,” in Proc. ArabWIC 6th Annu. Int. Conf. Res. Track. New York,
NY, USA: Association for Computing Machinery, Mar. 2019, pp. 1-6,
doi: 10.1145/3333165.3333167.

G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum, Yellow Paper 151.2014, pp. 1-32, 2014.
Ethereum. Blocks. Accessed: Jul. 2023. [Online].
https://ethereum.org/en/developers/docs/blocks/

A. O. Bada, A. Damianou, C. M. Angelopoulos, and V. Katos,
“Towards a green blockchain: A review of consensus mechanisms and
their energy consumption,” in Proc. 17th Int. Conf. Distrib. Comput.
Sensor Syst. (DCOSS), Pafos, Cyprus, Jul. 2021, pp. 503-511, doi:
10.1109/DCOSS52077.2021.00083.

P. K. Sharma, N. Kumar, and J. H. Park, ‘“‘Blockchain technology toward
green IoT: Opportunities and challenges,” IEEE Netw., vol. 34, no. 4,
pp. 263-269, Jul./Aug. 2020, doi: 10.1109/MNET.001.1900526.

Available:

ALEXANDRE C. MOREAUX received the M.S.
degree in digital imaging from Telecom SudParis.
He is currently pursuing the Ph.D. degree with
Institut Polytechnique de Paris. He was a Guest
Researcher with the NIST’s Network Depart-
ment. He is also an active contributor to ISO/IEC
21000-23 smart contracts for media and ISO
23093 family—Internet of Media Things.

MIHAI P. MITREA received the Habilitation
a Diriger des Recherches (H.D.R.) degree from
Pierre and Marie Curie University, Paris, in 2010,
and the Ph.D. degree from the Politechnica Uni-
versity of Bucharest, in 2003. He is currently
an Associate Professor with Telecom SudParis.
His research interests include multimedia con-
tent tracking (watermarking, fingerprinting, and
blockchain). He is also the Vice-President of the
Cap Digital’s Technical Commission on Digital

Content and serves as an Advisor for the French Delegation at ISO/IEC
JTC1 SC29 (a.k.a. MPEG). Inside MPAI standardization organization, he is
coordinating neural network watermarking efforts.

100539

http://dx.doi.org/10.1007/s10586-020-03138-7
http://dx.doi.org/10.1109/CCGRID.2017.8
http://dx.doi.org/10.1007/s00530-014-0447-0
http://dx.doi.org/10.1007/BF00195207
http://dx.doi.org/10.1145/3564532
http://dx.doi.org/10.1145/3333165.3333167
http://dx.doi.org/10.1109/DCOSS52077.2021.00083
http://dx.doi.org/10.1109/MNET.001.1900526

