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STABILITY FOR AN INTERFACE TRANSMISSION PROBLEM OF WAVE-PLATE

EQUATIONS WITH DYNAMICAL BOUNDARY CONTROLS

ZAHRAA ABDALLAH1,2, STÉPHANE GERBI2, CHIRAZ KASSEM1, AND ALI WEHBE1

Abstract. We investigate a two-dimensional transmission model consisting of a wave equation and a Kirchhoff
plate equation with dynamical boundary controls under geometric conditions. The two equations are coupled
through transmission conditions along a steady interface between the domains in which the wave and plate
equations evolve, respectively. Our primary concern is the stability analysis of the system, which has not
appeared in the literature. For this aim, using a unique continuation theorem, the strong stability of the
system is proved without any geometric condition and in the absence of compactness of the resolvent. Then,
we show that our system lacks exponential (uniform) stability. However, we establish a polynomial energy decay
estimate of type 1/t for smooth initial data using the frequency domain approach from semigroup theory, which
combines a contradiction argument with the multiplier technique. This method leads to certain geometrical
conditions concerning the wave’s and the plate’s domains.
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1. Introduction

1.1. Presentation of the System. In this paper, we investigate a wave-plate system coupled through trans-
mission conditions along a steady interface between the domains in which the wave and plate equations evolve
respectively with dynamical boundary controls. More precisely, let Ω ⊂ R2 be an open bounded set with
Lipschitz boundary ∂Ω such that Ω = Ω1∪Ω2, where Ωi is a bounded set with Lipschitz boundary ∂Ωi, i = 1, 2
such that Ω1 ∩ Ω2 = ∅. We denote by I the interior of Ω1 ∩ Ω2, which is called the interface between Ω1 and
Ω2, and Γi = ∂Ωi\I represents the exterior boundary of Ωi with positive measure, i = 1, 2. We consider the
following interface transmission wave-plate model:

(1.1)











































utt −∆u = 0, in Ω1 × R
∗
+,

wtt +∆2w = 0, in Ω2 × R
∗
+,

u = w, B1w = 0, B2w = ∂ν1u, on I × R∗
+,

∂ν1u+ η = 0, on Γ1 × R∗
+,

B1w + ξ = 0, on Γ2 × R∗
+,

B2w − ζ = 0, on Γ2 × R∗
+,

with the initial conditions:

(1.2) u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω1, η(x, 0) = η0(x), x ∈ Γ1,

(1.3) w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ Ω2, ξ(x, 0) = ξ0(x), ζ(x, 0) = ζ0(x), x ∈ Γ2,

where η, ξ and ζ denote the dynamical boundary controls, νi = (νi1, νi2) is the unit outward normal vector
along ∂Ωi, and τi = (−νi2, νi1) is the unit tangent vector along ∂Ωi, i = 1, 2. Now, let’s proceed with defining
the gradient of a scalar function f(x1, x2) as follows:

∇f = (fx1
, fx2

) ,

where fx1
and fx2

represent the partial derivatives of f with respect to x1 and x2, respectively. Next, the
Laplacian operator is defined as the divergence of the gradient of f, given by

∆f = div (∇f) = fx1x1
+ fx2x2

,

where fx1x1
and fx2x2

are the second partial derivatives of f with respect to x1 and x2. Additionally, in this
problem’s context, we introduce the constant µ ∈

(

0, 12
)

as the Poisson coefficient. Moreover, we define the
boundary operators B1 and B2 on ∂Ω2 as follows:

B1f = ∆f + (1− µ)C1f
and

B2f = ∂ν2∆f + (1− µ)∂τ2C2f,
where

C1f = 2ν21ν22fx1x2
− ν221fx2x2

− ν222fx1x1
and C2f = (ν221 − ν222)fx1x2

− ν21ν22 (fx1x1
− fx2x2

) .

The damping of the system is made via the indirect damping mechanism that involves the following first-order
differential equations:

(1.4)











ηt − ut + η = 0, on Γ1 × R∗
+,

ξt − ∂ν2wt + ξ = 0, on Γ2 × R∗
+,

ζt − wt + ζ = 0, on Γ2 × R
∗
+.

Moreover, by trivial computation, we know that

(1.5) C1f = −∂2τ2f − ∂τ2ν22fx1
+ ∂τ2ν21fx2

and C2f = ∂ν2τ2f − ∂τ2ν21fx1
− ∂τ2ν22fx2

.

Let u, η, w, ξ and ζ be smooth solutions of system (1.1)-(1.4). We define their associated energy by

E(t) =
1

2

{
∫

Ω1

(

|∇u|2 + |ut|2
)

dx+

∫

Γ1

|η|2dΓ
}

+
1

2

{

a(w,w) +

∫

Ω2

|wt|2dx +

∫

Γ2

(

|ξ|2 + |ζ|2
)

dΓ

}

,
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where the sesquilinear form a : H2(Ω2)×H2(Ω2) 7−→ C is defined by

(1.6) a(f, g) =

∫

Ω2

[

fx1x1
gx1x1

+ fx2x2
gx2x2

+ µ
(

fx1x1
gx2x2

+ fx2x2
gx1x1

)

+ 2(1− µ)fx1x2
gx1x2

]

dx.

For further analysis, the following Green’s formula (see [22]) is used in the study:

(1.7) a(f, g) =

∫

Ω2

∆2fgdx+

∫

∂Ω2

(B1f∂ν2g − B2fg) dΓ, ∀f ∈ H4(Ω2), g ∈ H2(Ω2).

Lemma 1.1. Let U = (u, ut, η, w, wt, ξ, ζ) be a regular solution of system (1.1)-(1.4). Then, the energy E(t)
satisfies the following estimation

E′(t) = −
∫

Γ1

|η|2dΓ−
∫

Γ2

(

|ξ|2 + |ζ|2
)

dΓ ≤ 0.

Proof. Firstly, multiplying the first and second equations of (1.1) by ut and wt respectively, then using Green’s
formula in Ω1 and Ω2 and taking the real part, we get

(1.8)
1

2

d

dt

{
∫

Ω1

(

|∇u|2 + |ut|2
)

dx+ a(w,w) +

∫

Ω2

|wt|2dx
}

+ ℜ
{
∫

Γ1

ηutdΓ +

∫

Γ2

(ξ∂ν2wt + ζwt) dΓ

}

= 0,

where ℜ stands for the real part of a complex number. Secondly, by inserting the equations (1.4) into the
second term of (1.8), we get

ℜ
{
∫

Γ1

ηutdΓ +

∫

Γ2

(ξ∂ν2wt + ζwt) dΓ

}

=
1

2

d

dt

{
∫

Γ1

|η|2dΓ +

∫

Γ2

(

|ξ|2 + |ζ|2
)

dΓ

}

+

∫

Γ1

|η|2dΓ +

∫

Γ2

(

|ξ|2 + |ζ|2
)

dΓ.

(1.9)

Combining equations (1.8) and (1.9), we obtain

E′(t) = −
∫

Γ1

|η|2dΓ−
∫

Γ2

(

|ξ|2 + |ζ|2
)

dΓ.

�
Thus, from Lemma 1.1, we deduce that the system (1.1)-(1.4) is dissipative in the sense that the energy E(t)
is non-increasing with respect to time variable t.

Remark 1.1. Note that the dissipative mechanism of the system (1.1)-(1.4) remains constructed by a single
dynamical boundary control of the wave or the plate.

1.2. Motivation and Aims. Dynamical boundary controls refer to approaches in real-life applications of
mathematical physics and engineering. Since Ö. Morgül proposed such a damping mechanism on the boundary
of elastic beams (see, for instance, [29], [30] and [31]), many authors have been interested in studying similar
problems in the context of plates (see [15], [35] and [37]). Recently in [36], B. Rao et al. considered the
boundary stabilization of a wave equation by means of singular dynamical boundary control. In particular,
they considered the following system on a given open bounded set Ω of RN with boundary Γ of class C2 divided
into two disjoint parts Γ0 and Γ1 :

(1.10)



























utt −∆u = 0, in Ω× [0, T ],

u = 0, on Γ0 × [0, T ],

∂u

∂ν
+ η = 0, on Γ1 × [0, T ],

ηt − ut = −η, on Γ1 × [0, T ]

with the initial condition:

(1.11) u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, η(x, 0) = η0(x), x ∈ Γ1,

where η denotes the dynamical boundary control. The authors proved that the energy of the system (1.10)-
(1.11) does not decay uniformly (exponentially) to zero. However, using a multiplier method, they showed the
polynomial stability of the system with an energy decay rate of 1/t under certain geometrical conditions for all
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smooth initial data.

On the other hand, stimulated by many practical applications in the modeling and control of engineering,
transmission problems have attracted considerable attention over the past several years (see [3], [13], [21], [41],
[40], [18], [17], [43] and the references therein). For instance, K. Ammari and S. Nicaise in [4] considered the
stabilization of a system coupling the wave equation with a Kirchhoff plate and damped through frictional
boundary dissipation laws. Mainly, they deal with the following system:

(1.12)



























































∂2t u1(x, t)−∆u1(x, t) = 0, in Ω1 × (0,+∞),

∂2t u2(x, t) + ∆2u2(x, t) = 0, in Ω2 × (0,+∞),

ui(x, 0) = u0i (x), ∂tui(x, 0) = u1i (x), in Ωi, i = 1, 2,

u1 = u2, B1u2 = 0, B2u2 = ∂ν1u1, on I × (0,+∞),

∂ν1u1 = −α1u1 − ∂tu1, on Γ1 × (0,+∞),

B1u2 = −β∂ν2u2 − ∂ν2∂tu2, on Γ2 × (0,+∞),

B2u2 = α2u2 + ∂tu2, on Γ2 × (0,+∞),

where Ω refers to a bounded domain in R2, as described in Subsection 1.1. The unit normal vector of ∂Ωi for
i = 1, 2 and the unit tangent vector along ∂Ωi are as described in Subsection 1.1. The boundary operator Bj

with j = 1, 2, is also defined on ∂Ω2 as mentioned above. Additionally, α1, α2, and β are three fixed positive
constants. The authors proved, under certain geometric assumptions on the polygonal domains Ωi, i = 1, 2,
that the semi-group of the problem (1.12) is exponentially stable in the energy space when the boundary damp-
ing is of frictional type.

To the best of our knowledge, the stabilization problem of a transmission system of wave and Kirchhoff
plate equations with dynamical boundary controls remains unexplored in the literature and remains an open
problem. It is essential to acknowledge that much of the motivation for studying the stabilization of this sys-
tem arises from its significance in engineering and its strong physical foundation. This approach is expected
to solve various control challenges in flexible structures composed of two physically distinct materials, where
dynamical control plays a key role. Consequently, we focus on the transmission wave-plate model (1.1)-(1.4)
and the primary objective of this paper is to estimate the decay rate of the energy for this system under specific
geometric conditions.

Before going on, let us situate our work in comparison with previously published results in [4]. Significantly,
our work differs from [4] in terms of the damping choices applied to the boundary. While [4] utilized fric-
tional boundary damping, we employ dynamical boundary controls, introducing novel mathematical challenges
and leading to distinct results. One of the most intriguing issues in the mathematical theory of (1.1)-(1.4) is
the regularity of solutions, which we emphasize in this study. We have found that the proposed dynamical
boundary conditions reduce the regularity of the solution compared to [4]. This reduction stems primarily from
the lack of regularity in the boundary control ∂ν1u near the boundary Γ1, posing significant challenges. The
mathematical theory of polygonal domains is known to be challenging, and it becomes even more complex when
dealing with solutions of poor regularity. Additionally, the non-compactness of the resolvent of the associated
operator introduces further difficulties in establishing the stability of (1.1)-(1.4). Furthermore, the uniform
decay of the natural energy observed in [4] does not hold in our case due to the implementation of dynamical
boundary controls, leading to a different decay behavior.

In part to answer these objections, we will first prove the well-posedness of the system (1.1)-(1.4). Then, we
will impose sufficient geometric restrictions on the domains Ωi, i = 1, 2 (see Assumptions (A1) and (A2) below)
to ensure the regularity of the solution to this system and guarantee the strict decay of the energy, i.e., E(t)
tends to zero as t goes to infinity. The key question we are interested in, under Assumptions (A1) and (A2),
is the energy decay rate of the solution of (1.1)-(1.4). For this purpose, we will prove the lack of exponential
decay of the system and establish a polynomial energy decay estimate of type 1/t for smooth initial data,
provided that the exterior boundaries Γ1, Γ2 and the interface I satisfy an additional geometrical assumption
described below (see Assumption (A3)). The frequency domain approach is the main tool used for the proof
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of polynomial stability. More precisely, we combine a contradiction argument with a new multiplier technique
to carry out a special analysis of the resolvent.

1.3. Literature. Dynamical controls are part of the indirect damping mechanisms proposed by Russell in [38],
which do not arise from the insertion of damping terms into the original equations describing the mechanical
motion, but by coupling those equations to further equations describing other processes in the structure. A
significant number of papers dealing with the mathematical theory of dynamical boundary control in elastic
structures have appeared. The emphasis is usually placed upon elastic beams modeled by the Euler-Bernoulli
beam or Timoshenko beam, including [29], [30] and [31] in our list of references. For example, Ö. Morgül
considered an Euler-Bernoulli beam, clamped to a rigid base at one end and free at the other end (see [29]). To
stabilize the beam vibrations, he proposed dynamic boundary control laws (i.e., dynamic actuators) at the free
end of the beam and proved that the beam vibrations decay exponentially to zero. A physical implementation
of the dynamic control may be used in pressurized gas tanks with servo-controlled actors as well as in standard
mass-spring dampers. Later, Ö. Morgül studied the stabilization of the clamped-free Timoshenko beam with
dynamic boundary control (see [30]). He proved that with the proposed control law, the beam vibrations decay

uniformly and exponentially to zero. Later on, Ö. Morgül studied the motion of a flexible beam, which may
model a flexible robot arm clamped to a rigid base at one end and free at the other end (see [31]). To suppress
the beam vibrations, he applied dynamic boundary control laws to the free end of the beam and proved that
the beam vibrations decay asymptotically to zero under some assumptions on the actuator that generates this
boundary control.

Let us start now by recalling some previous studies related to Kirchhoff plates and wave equations with
dynamical boundary controls, which are relevant to this study. In 2005, A. Wehbe and B. Rao considered a
plate equation in an open bounded domain Ω ⊂ R2 with dynamical controls on the boundary Γ with partition
Γ = Γ0 ∪ Γ1, where the dynamical controls are applied on Γ1 (see [37]). They proved that the energy decays
polynomially with the rate 1/t for all smooth initial data, assuming that the boundary Γ satisfies the Multiplier
Geometric Control Condition (MGC). This condition requires the existence of δ > 0 such that m(x) · ν ≥ δ−1

for all x ∈ Γ1 and m(x) · ν ≤ 0 for all x ∈ Γ0, where m(x) = x − x0 for x0 fixed in R2. In 2015, B. Rao et
al. considered the stabilization of a wave equation by means of dynamical boundary controls (see [36]). They
proved that a singular dynamical control applied to a portion of the boundary is sufficient to polynomially
stabilize the wave equation with a decay rate 1/t under the MGC geometrical condition. Finally, in [2], M. Akil
et al. studied the stabilization of a Kirchhoff plate equation with time delay added to the dynamical boundary
controls. They found that the energy of the system decays polynomially with a decay rate of type 1/t, provided
that an appropriate condition on the delay terms is satisfied.

On the other hand, transmission systems are mathematical models that arise most naturally in the descrip-
tion of structures that are partly composed of interactive or interconnected materials. Transmission systems
can be found in many practical applications, such as spacecraft [8], satellite antennas [28], road traffic [23],
and many other interactive physical processes. Such problems have also received attention and there have
been fruitful results concerning the control design and stability analysis of the solutions to different types of
problems. In 2004, X. Zhang and E. Zuazua considered a one-dimensional model for a heat-wave system arising
from fluid-structure interaction and proved a sharp polynomial decay rate of type 1/t2 (see [44]). Later, Q.
Zhang et al. were concerned with the stabilization of coupled systems of Euler Bernoulli-beam or plate with a
heat equation, where the heat equation plays the role of a controller of the whole system (see [42]).

Here, we will review only the stabilization for transmission systems of wave and plate equations (or strings and
beams), which have received a lot of attention in recent years. For example, K. Ammari and M. Mehrenberger
conducted a detailed analysis of the resolvent of a string-beams network, leading to an exponential stability
result for the system’s energy in their study (see [3]). For a transmission model arising in the control of noise, K.
Ammari and S. Nicaise established the exponential stability of coupled wave-plate equations under geometric
conditions that lead to a flat interface between the two parts of the domain in which the wave and the plate
equations evolve (see [4]). One notable aspect of the research in [4] is that the feedback controls are applied to
both the wave and plate equations. Nevertheless, it was presented in [25] and [16] that different locations of
internalized frictional damping bring out different kinds of energy decay rates as the dissipation acts through
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one equation of some transmission systems. Indeed, Y.-F. Li et al. in [25] obtained an optimal polynomial
decay rate of type 1/t when the frictional damping is actuated in the beam part, whereas an exponential decay
of the energy is obtained when the frictional damping is effective in the string part. Furthermore, Y.-P. Guo
et al. in [16] established a polynomial energy decay of type 1/

√
t for a wave-frictionally damped plate system

and an exponential energy decay for a frictionally damped wave-plate system.

1.4. Organization of the Paper. This paper is organized as follows: In Section 2, we formulate system
(1.1)-(1.4) into a first-order evolution equation and then deduce the well-posedness property by using semi-
group theory. Some regularity results needed in the following sections are rigorously investigated in Section 3.
In Section 4, a general criteria of Arendt-Batty theorem is used to prove the strong stability of the system in
the absence of compactness of the resolvent. We show the lack of exponential stability of (1.1)-(1.4) in Section
5. Finally, Section 6 is devoted to study the energy decay rate under certain geometric conditions given by
Theorem 6.2. We prove that the energy of our system has a polynomial decay rate of type 1/t.

Let us finish this introduction with some notations used in the remainder of the paper: The L2(Ω)−norm
will be denoted by ‖·‖L2(Ω). The usual norm and semi-norm of the Sobolev space Hs(Ω), s ≥ 0, are denoted
by ‖·‖Hs(Ω) and | · |Hs(Ω), respectively. By a . b, we mean that there exists a constant C > 0 independent of
a, b and the natural parameter n, such that a ≤ Cb.

2. Well-posedness of the Problem

This section is devoted to study the well-posedness property of system (1.1)-(1.4) using the semigroup
approach. We first introduce the following spaces:

H1
∗ (Ω1) =

{

u ∈ H1(Ω1) |
∫

Ω1

udx = 0

}

,

H2
∗ (Ω2) =

{

w ∈ H2(Ω2) |
∫

Ω2

wdx =

∫

Ω2

∇wdx = 0

}

and the energy space H by

H =
{

(u, v, η, w, z, ξ, ζ) ∈ H1
∗ (Ω1)× L2(Ω1)× L2(Γ1)×H2

∗ (Ω2)× L2(Ω2)× L2(Γ2)× L2(Γ2) | u = w on I
}

,

which is endowed with the following usual inner product

(2.1)
(

U, Ũ
)

H
=

∫

Ω1

(

∇u · ∇ũ + vṽ
)

dx+

∫

Γ1

ηη̃dΓ + a(w, w̃) +

∫

Ω2

zz̃dx+

∫

Γ2

(

ξξ̃ + ζζ̃
)

dΓ,

where U = (u, v, η, w, z, ξ, ζ), Ũ = (ũ, ṽ, η̃, w̃, z̃, ξ̃, ζ̃) ∈ H. We next define the linear unbounded operator
A : D(A) ⊂ H 7−→ H by

(2.2) D(A) =



















U = (u, v, η, w, z, ξ, ζ) ∈ H | ∆u ∈ L2(Ω1), v ∈ H1
∗ (Ω1), ∆2w ∈ L2(Ω2), z ∈ H2

∗ (Ω2),

∂ν1u+ η = 0 on Γ1, B1w + ξ = 0 on Γ2, B2w − ζ = 0 on Γ2,

v = z, B1w = 0 and B2w = ∂ν1u on I



















and

(2.3) AU =
(

v,∆u, γ1(v)− η, z,−∆2w, γ2,2(z)− ξ, γ2,1(z)− ζ
)

, ∀U = (u, v, η, w, z, ξ, ζ) ∈ D(A),

where γ1 : H1(Ω1) 7−→ L2(Γ1) and γ2 : H2(Ω2) 7−→ L2(Γ2) × L2(Γ2) are the trace operators such that
γ1(ϕ) = ϕ|Γ1

and γ2(ψ) = (γ2,1(ψ), γ2,2(ψ)) = (ψ|Γ2
, ∂ν2ψ|Γ2

) . Now, setting U = (u, ut, η, w, wt, ξ, ζ) as the
state of system (1.1)-(1.4), we rewrite the problem into a first-order evolution equation

(2.4)

{

Ut = AU,
U(0) = U0,

where U0 = (u0, u1, η0, w0, w1, ξ0, ζ0) ∈ H.
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Remark 2.1. The equation
∫

Ω2

∇w dx = 0

implies that
∫

Ω2

(wx1
, wx2

) dx = 0,

which further implies that both
∫

Ω2

wx1
dx = 0 and

∫

Ω2

wx2
dx = 0.

Remark 2.2. From (1.6) and the fact that 2ℜ (wx1x1
wx2x2

) = |wx1x1
+wx2x2

|2−|wx1x1
|2−|wx2x2

|2, we remark
that

a(w,w) =

∫

Ω2

[

|wx1x1
|2 + |wx2x2

|2 + µ (wx1x1
wx2x2

+ wx2x2
wx1x1

) + 2(1− µ)|wx1x2
|2
]

dx

=

∫

Ω2

[

|wx1x1
|2 + |wx2x2

|2 + 2µℜ (wx1x1
wx2x2

) + 2(1− µ)|wx1x2
|2
]

dx

=

∫

Ω2

[

(1 − µ)|wx1x1
|2 + (1− µ)|wx2x2

|2 + µ|wx1x1
+ wx2x2

|2 + 2(1− µ)|wx1x2
|2
]

dx ≥ 0.

Remark 2.3. We present a brief description of the function spaces H1
∗ (Ω1) and H

2
∗ (Ω2), which play a pivotal

role in establishing a crucial result. Specifically, we demonstrate that if (U,U)H = 0 of an element U =
(u, v, η, w, z, ξ, ζ) in the function space H equals zero, then U must be identically zero throughout the entire

domain (i.e., U = 0), where ‖U‖2H serves as a norm on H. To illustrate this, we consider (U,U)H = 0. We then
observe that the following equality holds:

∫

Ω1

(

|∇u|2 + |v|2
)

dx+

∫

Γ1

|η|2dΓ + a(w,w) +

∫

Ω2

|z|2dx+

∫

Γ2

(

|ξ|2 + |ζ|2
)

dΓ = 0.

From this, we deduce the following:

(1)
∫

Ω1
|∇u|2dx+ a(w,w) = 0, which implies that ∇u = 0 in Ω1 and wx1x1

= wx2x2
= wx1x2

= 0 in Ω2.

(2) η = 0 on Γ1, ξ = ζ = 0 on Γ2, v = 0 in Ω1, and z = 0 in Ω2.

To establish the final results, we make use of the following:

(1) From the condition
∫

Ω1
udx = 0, we deduce that u = 0 in Ω1.

(2) By applying Remark 2.2, we infer that wx1x1
= wx2x2

= wx1x2
= 0, leading to wx1

= c1 and wx2
= c2,

where c1 and c2 are constants. Uzing the fact that
∫

Ω2
∇wdx = 0, we further conclude that wx1

=

wx2
= 0. Moreover,

∫

Ω2
wdx = 0 implies that w = 0 in Ω2.

This implies that both u and w are identically zero in their respective domains, i.e., u = 0 in Ω1 and w = 0 in
Ω2. As a consequence, we arrive at the final result

U = 0.

Thus, the spaces H1
∗ (Ω1) and H

2
∗ (Ω2) play a crucial role in establishing this significant result.

Remark 2.4. When replacing H1
∗ (Ω1) and H2

∗ (Ω2) with more general spaces, such as H1(Ω1) and H2(Ω2),
Theorem 6.2 may no longer hold. The original theorem’s conclusion, derived from the equation

∫

Ω1
|∇u|2dx+

a(w,w) = 0, where (u,w) ∈ H1
∗ (Ω1)×H2

∗ (Ω2), may not necessarily imply u = 0 in Ω1 and w = 0 in Ω2 when
considering the broader function spaces.

For further purposes, set the Hilbert space H by

H =
{

(f, g) ∈ H1
∗ (Ω1)×H2

∗ (Ω2) | f = g on I
}

,

equipped with the norm

(2.5) ‖(f, g)‖2
H
= ‖∇f‖2L2(Ω1)

+ a(g, g).
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Note that using the compactness injection from H1(Ω1) into L2(Ω1) and from H2(Ω2) into H1(Ω2), we can

easily show that ‖∇f‖2L2(Ω1)
is equivalent to the usual norm of H1(Ω1) on H

1
∗ (Ω1) and a(g, g) is equivalent to

the usual norm of H2(Ω2) on H
2
∗ (Ω2).

Proposition 2.1. The unbounded linear operator A is m-dissipative in the energy space H.

Proof. First, let U = (u, v, η, w, z, ξ, ζ) ∈ D(A). Using (2.1) and (2.3), we have

ℜ (AU,U)H = ℜ
{

∫

Ω1

∇v · ∇udx +

∫

Ω1

∆uvdx +

∫

Γ1

(v − η)ηdΓ + a(z, w)−
∫

Ω2

∆2wzdx

+

∫

Γ2

(∂ν2z − ξ)ξdΓ +

∫

Γ2

(z − ζ)ζdΓ

}

.

We can proceed by integrating by parts and utilizing Green’s formula (1.7). Given that U ∈ D(A), we have

(2.6) ℜ (AU,U)H = −
∫

Γ1

|η|2dΓ−
∫

Γ2

|ξ|2dΓ−
∫

Γ2

|ζ|2dΓ ≤ 0,

which implies thatA is dissipative. Now, let us prove thatA is maximal. For this aim, let F = (f1, g1, h1, f2, g2, h2, h3)
∈ H, we look for U = (u, v, η, w, z, ξ, ζ) ∈ D(A) unique solution of

(2.7) U −AU = F.

Equivalently, we have the following system

u− v = f1, in Ω1,(2.8)

v −∆u = g1, in Ω1,(2.9)

η − v + η = h1, on Γ1,(2.10)

w − z = f2, in Ω2,(2.11)

z +∆2w = g2, in Ω2,(2.12)

ξ − ∂ν2z + ξ = h2, on Γ2,(2.13)

ζ − z + ζ = h3, on Γ2,(2.14)

with the following transmission and boundary conditions

(2.15)























u = w, B1w = 0, B2w = ∂ν1u, on I,

∂ν1u+ η = 0, on Γ1,

B1w + ξ = 0, on Γ2,

B2w − ζ = 0, on Γ2.

It follows from (2.8), (2.10), (2.11), (2.13) and (2.14) that

(2.16) v = u−f1 in Ω1, 2η = v+h1 on Γ1, z = w−f2 in Ω2, 2ξ = ∂ν2z+h
2 on Γ2 and 2ζ = z+h3 on Γ2.

By elimination of v, z, η, ξ and ζ in (2.9), (2.12) and (2.15), we find that u and w satisfy the following system:

(2.17)











































u−∆u = f1 + g1, in Ω1,

w +∆2w = f2 + g2, in Ω2,

u = w, B1w = 0, B2w = ∂ν1u, on I,

2∂ν1u+ u = f1 − h1, on Γ1,

2B1w + ∂ν2w = ∂ν2f
2 − h2, on Γ2,

2B2w − w = h3 − f2, on Γ2.

Let φ = (ϕ, ψ) ∈ H. Multiplying the first equation of (2.17) by ϕ and integrating over Ω1, multiplying the
second equation of (2.17) by ψ and integrating over Ω2, then using Green’s formula, we get

(2.18)

∫

Ω1

uϕdx+

∫

Ω1

∇u · ∇ϕdx+
1

2

∫

Γ1

uϕdΓ−
∫

I

∂ν1uϕdΓ =

∫

Ω1

F 1ϕdx+
1

2

∫

Γ1

F 2ϕdΓ,
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∫

Ω2

wψdx+ a(w,ψ) +
1

2

∫

Γ2

(

∂ν2w∂ν2ψ + wψ
)

dΓ−
∫

I

(

B1w∂ν2ψ − B2wψ
)

dΓ

=

∫

Ω2

F 3ψdx+
1

2

∫

Γ2

F 4∂ν2ψdΓ +
1

2

∫

Γ2

F 5ψdΓ,

(2.19)

where F 1 = f1 + g1, F 2 = f1 − h1, F 3 = f2 + g2, F 4 = ∂ν2f
2 − h2 and F 5 = f2 − h3. Adding the resulting

equations and using the transmission conditions, we obtain a variational formulation of (2.17): Find (u,w) ∈ H

such that

(2.20) b((u,w), (ϕ, ψ)) = l(ϕ, ψ), ∀(ϕ, ψ) ∈ H,

where

b((u,w), (ϕ, ψ)) =

∫

Ω1

uϕdx+

∫

Ω1

∇u · ∇ϕdx+ 1

2

∫

Γ1

uϕdΓ+

∫

Ω2

wψdx+ a(w,ψ) +
1

2

∫

Γ2

(

∂ν2w∂ν2ψ + wψ
)

dΓ

and

l(ϕ, ψ) =

∫

Ω1

F 1ϕdx+
1

2

∫

Γ1

F 2ϕdΓ +

∫

Ω2

F 3ψdx+
1

2

∫

Γ2

F 4∂ν2ψdΓ +
1

2

∫

Γ2

F 5ψdΓ.

It is easy to see that b is a sesquilinear, continuous, and coercive form on the space H×H and l is an antilinear
and continuous form on H. Then, it follows by Lax-Milgram’s theorem that (2.20) admits a unique solution
(u,w) ∈ H. By choosing ϕ ∈ C∞

0 (Ω1), ψ = 0 in (2.20) and applying Green’s formula, we have
∫

Ω1

(u−∆u)ϕdx =

∫

Ω1

(

f1 + g1
)

ϕdx, ∀ϕ ∈ C∞
0 (Ω1),

which implies that the first equation of (2.17) holds in the sense of distributions in Ω1 and hence is satisfied in
L2(Ω1). As u− f1− g1 belongs to L2(Ω1), the same holds for ∆u, i.e., ∆u ∈ L2(Ω1). In the same way, choosing
ϕ = 0 and ψ ∈ C∞

0 (Ω2) in (2.20), we see that the second equation of (2.17) holds as equality in L2(Ω2) and
therefore ∆2w ∈ L2(Ω2). Now, let us define the spaces

H1
∗,I(Ω1) =

{

f ∈ H1
∗ (Ω1) | f = 0 on I

}

,

and
H2

∗,I(Ω2) =
{

f ∈ H2
∗ (Ω2) | f = ∂ν2f = 0 on I

}

.

By taking ϕ ∈ H1
∗,I(Ω1), ψ = 0 and applying Green’s formula in (2.20), we calculate

∫

Γ1

(2∂ν1u+ u− f1 + h1)ϕdΓ = 0, ∀ϕ ∈ H
1
2

∗,I(Γ1),

where H
1
2

∗,I(Γ1) is the corresponding trace space of H1
∗,I(Ω1) through the operator γ1. This implies that

2∂ν1u+ u− f1 + h1 ∈ (H
1
2

∗,I(Γ1))
⊥ in L2(Γ1), and since H

1
2

∗,I(Γ1) is dense in L2(Γ1), we deduce that u satisfies

2∂ν1u+ u = f1 − h1, on Γ1.

Similarly, by taking ϕ = 0, ψ ∈ H2
∗,I(Ω2) and applying Green’s formula in (2.20), we deduce that w satisfies

2B1w + ∂ν2w = ∂ν2f
2 − h2, on Γ2,

as well as
2B2w − w = h3 − f2, on Γ2.

Coming back to (2.20) and again applying Green’s formula, we calculate
∫

I

B1w∂ν2ψdΓ−
∫

I

(B2w − ∂ν1u)ψdΓ = 0, ∀ψ ∈ H
3
2
∗ (I),

where H
3
2
∗ (I) is the corresponding trace space of H2

∗ (Ω2) through the operator ψ 7−→ ψ|I . Due to the density

of H
3
2
∗ (I) into L

2(I), we can easily check that u and w satisfy the transmission conditions of (2.17). Therefore,
we deduce that system (2.17) has a unique solution (u,w) ∈ H such that ∆u ∈ L2(Ω1) and ∆2w ∈ L2(Ω2).
Finally, by setting

v := u− f1, η := −∂ν1u, z := w − f2, ξ := −B1w and ζ := B2w,

we conclude that there exists a unique U = (u, v, η, w, z, ξ, ζ) ∈ D(A) solution of equation (2.7) and thus the
operator A is m-dissipative on H. The proof is thus complete. �
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According to Lumer-Philips theorem (see [32]), Proposition 2.1 implies that the operator A generates a C0-
semigroup of contractions

(

etA
)

t≥0
in H which gives the well-posedness of (2.4). Then, we have the following

result:

Theorem 2.1. For all U0 ∈ H, system (2.4) admits a unique weak solution

U(t) ∈ C0(R+,H).

Moreover, if U0 ∈ D(A), then the system (2.4) admits a unique strong solution

U(t) ∈ C0(R+, D(A)) ∩ C1(R+,H).

Remark 2.5. Note that Proposition 2.1 remains true and system (2.4) admits a unique solution even if the
domains Ω1 and Ω2 have no dynamical controls at their exterior boundaries Γ1 and Γ2.

3. Some Regularity Results

In the following sections, our goal is to establish energy estimates of the system (2.4). Our stability results are
based on a frequency domain approach combined with a multiplier technique and hence require some Green’s
formulas in Ω1 and Ω2. In order to justify these formulas, we will need some regularity results proved in [9]
and [12]. Hence, from now on, we assume that Ω1 and Ω2 have a polygonal boundary in the sense that their
boundary is piecewise smooth. For i = 1, 2, we denote by ωi,j , j = 1, . . . , Ni the interior angles at the corners
of Ωi enclosed between two consecutive curves. These angles may vary within the range 0 < ωi,j ≤ 2π. To
obtain the needed regularity, we require the following assumptions concerning the angles at the corners of Ω1

and Ω2:

Assumption (A1). The inner angles ω1,j < π, for all j = 1, . . . , N1.

Assumption (A2). There exists a minimal angle ω0 where ω0 depends on the Poisson coefficient µ (for
instance, ω0 ≃ 77.753311 . . .◦ when µ = 0.3) such that ω2,j < ω0, for all j = 1, . . . , N2.

The regularity results are summarized by the following proposition:

Proposition 3.1. Let U = (u, v, η, w, z, ξ, ζ) ∈ D(A). Assume that Ω1 and Ω2 are polygonal domains as
described above, satisfying Assumptions (A1) and (A2), respectively. Then, there exists ε ∈ (0, 12 ) such that u

belongs to H
3
2
−ε(Ω1) and there exists a sequence {wk}k≥0 ⊂ H4(Ω2) such that wk converges to w in H2(Ω2)

and ∆2wk converges to ∆2w in L2(Ω2).

Now, let us introduce some lemmas that are sufficient to prove our regularity result.

Lemma 3.1. Assume that Ω1 is a polygonal domain as described above, satisfying Assumption (A1). Then,
there exists ε ∈ (0, 12 ) such that the solution y ∈ H1(Ω1) of

(3.1)











∆y ∈ L2(Ω1),

∂ν1y = v1 ∈ L2(Γ1), on Γ1,

y = v2 ∈ H
3
2 (I), on I,

belongs to H
3
2
−ε(Ω1).

Proof. We define the operator:

P : H1+s(Ω1) → Ξs(Ω1) := Hs−1(Ω1)×Hs+ 1
2 (I)×Hs− 1

2 (Γ1)

y 7→ P (y) := (∆y, y|I , ∂ν1y|Γ1
)

for all 0 < s < 1 such that s 6= 1
2 . From the elliptic regularity theory (see Theorem 23.3 of [12]), we deduce

that there exists ε ∈ (0, 12 ) such that for any s = 1
2 − ε, the operator P is [0, s]−regular in the sense that if

y ∈ H1(Ω1) is such that P (y) ∈ Ξs(Ω1), then y ∈ H1+s(Ω1). This implies that the solution y ∈ H1(Ω1) of

system (3.1) belongs to H1+s(Ω1), hence y belongs to the space H
3
2
−ε(Ω1) for some ε ∈ (0, 12 ). �
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Lemma 3.2. Assume that Ω2 is a polygonal domain as described above, satisfying Assumption (A2). Then,
for any ε ∈ (0, 12 ) and y ∈ H2(Ω2) solution of

(3.2)



































∆2y ∈ L2(Ω2),

B1y = 0, on I,

B2y = v3 ∈ H−ε(I), on I,

B1y = v4 ∈ L2(Γ2), on Γ2,

B2y = v5 ∈ L2(Γ2), on Γ2,

there exists a sequence {yk}k≥0 ⊂ H4(Ω2) such that yk converges to y in H2(Ω2) and ∆2yk converges to ∆2y

in L2(Ω2).

Proof. Given v4, v5 ∈ L2(Γ2) and v3 ∈ H−ε(I), by density, there exist three sequences {v4,k}k≥0 , {v5,k}k≥0

⊂ C∞
c (Γ2) and {v3,k}k≥0 ⊂ C∞

c (I) such that

(3.3) v4,k −→
k→∞

v4, v5,k −→
k→∞

v5 in L2(Γ2) and v3,k −→
k→∞

v3 in H−ε(I).

Then we consider the unique solution yk of

(3.4)



































yk +∆2yk = y +∆2y ∈ L2(Ω2), in Ω2,

B1yk = 0, on I,

B2yk = v3,k, on I,

B1yk = v4,k, on Γ2,

B2yk = v5,k, on Γ2.

As the system (∆2,B1,B2) is a strongly elliptic system, we can use the elliptic regularity theory (see Theorem
2 of [9]). This allows us to deduce that yk ∈ H4(Ω2) and that there exists a positive constant C > 0 such that

(3.5) ‖y − yk‖H2(Ω2) ≤ C
(

‖v4 − v4,k‖L2(Γ2) + ‖v5 − v5,k‖L2(Γ2) + ‖v3 − v3,k‖H−ε(I)

)

.

By (3.3) and (3.5), we deduce that yk converges to y in H2(Ω2). Thanks to (3.4), we have ∆2yk = y+∆2y−yk,
which converges to ∆2y in L2(Ω2). �

Proof of Proposition 3.1. Indeed, u may be seen as the unique solution u ∈ H1(Ω1) of










∆u ∈ L2(Ω1),

∂ν1u = −η ∈ L2(Γ1), on Γ1,

u = w ∈ H
3
2 (I), on I,

and using Lemma 3.1, we conclude that u ∈ H
3
2
−ε(Ω1) for some ε ∈ (0, 12 ). By the definition of D(A), we

notice that w is a solution of system (3.2) with v3 = ∂ν1u, v4 = −ξ and v5 = ζ. We know that v3 belongs to
H−ε(I) for some ε > 0, while the L2(Γ2) regularity of v4 and v5 follows from the regularity ξ and ζ ∈ L2(Γ2).
We then conclude using Lemma 3.2.

Remark 3.1. The situation is much more complicated for the regularity of w due to the lack of regularity of
the boundary conditions B1w = −ξ and B2w = ζ on Γ2, as ξ and ζ belong at most to L2(Γ2), which is not
sufficient to achieve the required regularity of w. For this reason, we use arguments inspired by Lemma 3.1 of
[34] and Lemma 3.2 of [4].

4. Strong Stability with Non-compact Resolvent

In this section, we will prove the strong stability of the system (1.1)-(1.4) in the sense that its energy E(t)
converges to zero as t goes to infinity for all initial data in H. As the resolvent of A is not compact, classical
methods such as Lasalle’s invariance principle [39] or the spectrum decomposition theory of Benchimol [7] are
not applicable in this case. Instead, we will prove the strong stability using a more general criteria of Arendt-
Batty [5] which states that in a reflexive Banach space, a C0-semigroup of contractions (etA)t≥0 is strongly
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stable if A has no eigenvalues on the imaginary axis, and σ(A) ∩ iR is countable, where σ(A) denotes the
spectrum of A. Our main result in this section is summarized by the following theorem:

Theorem 4.1. Assume that Ω1 and Ω2 are polygonal domains as described above. Assume also that Assump-
tions (A1) and (A2) hold. Then, the semigroup of contractions etA is strongly stable in the energy space H in
the sense that

lim
t→∞

‖etAU0‖H = 0, ∀U0 ∈ H.

In the proof of Theorem 4.1, we shall use the following lemmas:

Lemma 4.1. Assuming that Assumptions (A1) and (A2) hold, the operator A has no pure imaginary eigen-
values.

Proof. Let λ ∈ R and let U = (u, v, η, w, z, ξ, ζ) ∈ D(A) such that

(4.1) AU = iλU.

Equivalently, we have the following system of equations

v = iλu, in Ω1,(4.2)

∆u = iλv, in Ω1,(4.3)

v − η = iλη, on Γ1,(4.4)

z = iλw, in Ω2,(4.5)

−∆2w = iλz, in Ω2,(4.6)

∂ν2z − ξ = iλξ, on Γ2,(4.7)

z − ζ = iλζ, on Γ2.(4.8)

By using equations (4.1) and (2.6), a direct computation leads to the following:

0 = ℜ
{

iλ ‖U‖2H
}

= ℜ{(AU,U)H} = −
∫

Γ1

|η|2dΓ−
∫

Γ2

|ξ|2dΓ−
∫

Γ2

|ζ|2dΓ,

which implies that

(4.9) η = 0 on Γ1 and ξ = ζ = 0 on Γ2.

It follows from (2.2) that

(4.10) ∂ν1u = 0 on Γ1 and B1w = B2w = 0 on Γ2,

and from (4.4), (4.7) and (4.8) that

(4.11) v = 0 on Γ1 and z = ∂ν2z = 0 on Γ2.

Now, we need to consider two distinct cases:

Case 1. If λ = 0, then v = 0 in Ω1 and z = 0 in Ω2, and we obtain the following system

−∆u = 0, in Ω1,(4.12)

∆2w = 0, in Ω2,(4.13)

∂ν1u = 0, on Γ1,(4.14)

B1w = B2w = 0, on Γ2,(4.15)

with the following transmission conditions

(4.16) u = w, B1w = 0, B2w = ∂ν1u on I.

Multiplying equations (4.12) and (4.13) by u and w respectively, integrating over Ω1 and Ω2, then using Green’s
formula and equations (4.14) and (4.15), we get

(4.17)

∫

Ω1

|∇u|2dx−
∫

I

∂ν1uudΓ = 0,

(4.18) a(w,w)−
∫

I

(B1w∂ν2w − B2ww) dΓ = 0.
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Adding the resulting equations and taking (4.16) into consideration, we obtain

(4.19)

∫

Ω1

|∇u|2dx+ a(w,w) = 0,

which leads to

(4.20) u = 0 in Ω1 and w = 0 in Ω2.

Hence, we get

U = 0.

Case 2. If λ 6= 0, then using equations (4.2), (4.5) and (4.11), we get

(4.21) u = 0 on Γ1 and w = ∂ν2w = 0 on Γ2.

Inserting (4.2) in (4.3), we obtain

(4.22)

{

λ2u+∆u = 0, in Ω1,

u = ∂ν1u = 0, on Γ1.

Thus, from the above system and by using a unique continuation theorem (see [24]) , we obtain

(4.23) u = 0 in Ω1.

Now, from (4.10), we get

(4.24) B1w = ∆w + (1− µ)C1w = 0 on Γ2 and B2w = ∂ν2∆w + (1 − µ)∂τ2C2w = 0 on Γ2.

Using (4.21) and the fact that ∇w = ∂τ2wτ2 + ∂ν2wν2 on Γ2, we obtain

(4.25) ∇w = (wx1
, wx2

) = (0, 0) on Γ2 × Γ2 and consequently wx1
= wx2

= 0 on Γ2.

From equations (1.5), (4.21) and (4.25), we get

(4.26) C1w = C2w = 0 on Γ2,

consequently, from (4.24), we get

(4.27) ∆w = ∂ν2∆w = 0 on Γ2.

Inserting (4.5) into (4.6), we obtain

(4.28)

{

λ2w −∆2w = 0, in Ω2,

w = ∂ν2w = ∆w = ∂ν2∆w = 0, on Γ2.

Again, from the above system and by using a unique continuation theorem (see [24]), we obtain

(4.29) w = 0 in Ω2.

Consequently, from equations (4.2), (4.5), (4.9), (4.23) and (4.29), we get

U = 0.

The proof is thus complete. �

Remark 4.1. The preceding result is indeed true with some slight modifications, where only two dynamical
controls ξ and ζ are applied. First, one can show that w = 0 in Ω2. Then, due to some useful information
provided by the interface, we obtain that u = 0 in Ω1. The transmission conditions play an essential role in
this case. However, this may happen under certain geometric conditions in the case where only one dynamical
control η is applied. In such cases, we get u = 0 in Ω1, but the transmission conditions introduced are not
enough to conclude that w = 0 in Ω2.

Lemma 4.2. Assume that Assumptions (A1) and (A2) hold. Then, the operator iλI − A is surjective for all
real number λ ∈ R.
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Proof. For any given F = (f1, g1, h1, f2, g2, h2, h3) ∈ H, we are looking for U = (u, v, η, w, z, ξ, ζ) ∈ D(A)
that solves the following system:

(4.30) (iλI − A)U = F,

which is equivalent to the following equations:

iλu− v = f1, in Ω1,(4.31)

iλv −∆u = g1, in Ω1,(4.32)

iλη − v + η = h1, on Γ1,(4.33)

iλw − z = f2, in Ω2,(4.34)

iλz +∆2w = g2, in Ω2,(4.35)

iλξ − ∂ν2z + ξ = h2, on Γ2,(4.36)

iλζ − z + ζ = h3, on Γ2.(4.37)

By eliminating v, z, η, ξ and ζ from the above equations and using (2.2), we obtain the following system:

(4.38)































































λ2u+∆u = −(iλf1 + g1), in Ω1,

λ2w −∆2w = −(iλf2 + g2), in Ω2,

u = w, B1w = 0, B2w = ∂ν1u, on I,

∂ν1u+
iλ

iλ+ 1
u =

1

iλ+ 1
(f1 − h1), on Γ1,

B1w +
iλ

iλ+ 1
∂ν2w =

1

iλ+ 1
(∂ν2f

2 − h2), on Γ2,

B2w − iλ

iλ+ 1
w =

1

iλ+ 1
(h3 − f2), on Γ2.

Let φ = (ϕ, ψ) ∈ H. Multiplying the first equation of (4.38) by ϕ and integrating over Ω1, and multiplying the
second equation of (4.38) by ψ and integrating over Ω2, we use Green’s formula to get the following equations:

(4.39) − λ2
∫

Ω1

uϕdx+

∫

Ω1

∇u · ∇ϕdx+
iλ

iλ+ 1

∫

Γ1

uϕdΓ−
∫

I

∂ν1uϕdΓ =

∫

Ω1

F 1ϕdx+
1

iλ+ 1

∫

Γ1

F 2ϕdΓ,

and

− λ2
∫

Ω2

wψdx+ a(w,ψ) +
iλ

iλ+ 1

∫

Γ2

(

∂ν2w∂ν2ψ + wψ
)

dΓ−
∫

I

(

B1w∂ν2ψ − B2wψ
)

dΓ

=

∫

Ω2

F 3ψdx+
1

iλ+ 1

∫

Γ2

F 4∂ν2ψdΓ +
1

iλ+ 1

∫

Γ2

F 5ψdΓ,

(4.40)

where

F 1 = iλf1 + g1, F 2 = f1 − h1, F 3 = iλf2 + g2, F 4 = ∂ν2f
2 − h2 and F 5 = f2 − h3.

Adding equations (4.39) and (4.40) and using the transmission conditions, we obtain

− λ2
(
∫

Ω1

uϕdx+

∫

Ω2

wψdx

)

+

∫

Ω1

∇u · ∇ϕdx+ iλΛ

∫

Γ1

uϕdΓ

+ a(w,ψ) + iλΛ

∫

Γ2

(

∂ν2w∂ν2ψ + wψ
)

dΓ

=

∫

Ω1

F 1ϕdx+ Λ

∫

Γ1

F 2ϕdΓ +

∫

Ω2

F 3ψdx+ Λ

∫

Γ2

F 4∂ν2ψdΓ + Λ

∫

Γ2

F 5ψdΓ,

(4.41)

where

(4.42) Λ =
1− iλ

λ2 + 1
.
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Here we note that Lax-Milgram’s theorem cannot be applied because coercivity is not available. Therefore, we
use a compact perturbation argument. For that purpose, let us introduce the sesquilinear form

bλ((u,w), (ϕ, ψ)) =

∫

Ω1

∇u · ∇ϕdx+ iλΛ

∫

Γ1

uϕdΓ + a(w,ψ)

+ iλΛ

∫

Γ2

(

∂ν2w∂ν2ψ + wψ
)

dΓ, ∀ (ϕ, ψ) ∈ H.

(4.43)

This sesquilinear form bλ is continuous and coercive on H×H. Then, by Lax-Milgram’s theorem, the operator

Bλ : H → H
′ : (u,w) → Bλ(u,w),

with Bλ(u,w)((ϕ,ψ)) := bλ((u,w), (ϕ,ψ)) ∀(ϕ, ψ) ∈ H, is an isomorphism, where H
′ is the dual space of H.

Now, let us set

Rλ : H → H
′ : (u,w) → Rλ(u,w),

with

Rλ(u,w)((ϕ,ψ)) = −λ2
(
∫

Ω1

uϕdx+

∫

Ω2

wψdx

)

, ∀ (ϕ, ψ) ∈ H.

As Rλ is a compact operator, we deduce that Bλ +Rλ is a Fredholm operator of index zero from H to H
′. Now

by setting

Lλ(ϕ, ψ) =

∫

Ω1

F 1ϕdx + Λ

∫

Γ1

F 2ϕdΓ +

∫

Ω2

F 3ψdx+ Λ

∫

Γ2

F 4∂ν2ψdΓ + Λ

∫

Γ2

F 5ψdΓ,

we notice that (4.41) is equivalent to

(4.44) (Bλ +Rλ)(u,w) = Lλ in H
′.

Hence, problem (4.41) admits a unique solution (u,w) ∈ H if and only if Bλ +Rλ is invertible. Since Bλ +Rλ

is a Fredholm operator, it is enough to prove that Bλ +Rλ is injective, i.e.,

ker(Bλ +Rλ) = {0}.
Let us now fix (u,w) ∈ ker(Bλ +Rλ), which means it satisfies

− λ2
(
∫

Ω1

uϕdx+

∫

Ω2

wψdx

)

+

∫

Ω1

∇u · ∇ϕdx+ iλΛ

∫

Γ1

uϕdΓ

+ a(w,ψ) + iλΛ

∫

Γ2

(

∂ν2w∂ν2ψ +wψ
)

dΓ = 0, ∀ (ϕ,ψ) ∈ H.

(4.45)

Thus, if we set

v = iλu, η = iλΛu, z = iλw, ξ = iλΛ∂ν2w and ζ = iλΛw,

we can conclude that U = (u,v,η,w, z, ξ, ζ) ∈ D(A) is a solution of

(iλ−A)U = 0.

Using Lemma 4.1, we deduce that U = 0. This shows that Bλ+Rλ is invertible, and therefore a unique solution
(u,w) ∈ H of (4.44) exists. At this stage, by setting

v = iλu− f1, η = iλΛu+ Λ(h1 − f1), z = iλw − f2,

ξ = iλΛ∂ν2w + Λ(h2 − ∂ν2f
2) and ζ = iλΛw + Λ(h3 − f2),

we conclude that (u, v, η, w, z, ξ, ζ) ∈ D(A) is a solution of (4.30) and the proof is thus complete. �

Proof of Theorem 4.1. Using Lemma 4.1, we conclude that the operatorA has no pure imaginary eigenvalues.
Additionally, by Lemma 4.2, we have Im(iλI − A) = H for all real numbers λ ∈ R. Therefore, the closed
graph theorem of Banach implies that σ(A) ∩ iR = ∅. Following Arendt-Batty (see [5]), the C0-semigroup of
contractions (etA)t≥0 is strongly stable and the proof is complete.
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5. Lack of Exponential Stability

In this section, we will prove that the system (1.1)-(1.4) is not exponentially stable. Concerning the char-
acterization of exponential stability of a C0−semigroup of contractions, we rely on the following result due to
Huang [19] and Prüss [33]:

Theorem 5.1. Let A : D(A) ⊂ H −→ H generate a C0−semigroup of contractions
(

etA
)

t≥0
on H . Then,

the C0−semigroup
(

etA
)

t≥0
is exponentially stable if and only if iR ⊂ ρ(A) and

lim sup
λ∈R, |λ|→∞

‖(iλI −A)−1‖L(H) <∞.

The main result of this section is the following theorem:

Theorem 5.2. The C0−semigroup of contractions (etA)t≥0 is not uniformly stable in the energy space H.

According to Theorem 5.1 due to Huang [19] and Prüss [33], it is sufficient to prove that the resolvent of the
operator A is not uniformly bounded on the imaginary axis. For this aim, let us start with the following
technical lemma:

Lemma 5.1. Define the linear unbounded operator O∆,R : D (O∆,R) 7−→ L2(Ω1)× L2(Ω2) by

D (O∆,R) =







(f, g) ∈ H |
(

∆f,∆2g
)

∈ L2(Ω1)× L2(Ω2), ∂ν1f + f = 0 on Γ1,

B1g + ∂ν2g = 0 on Γ2, B2g − g = 0 on Γ2, B1g = 0 and B2g = ∂ν1f on I







,(5.1)

and

(5.2) O∆,R(f, g) =
(

−∆f,∆2g
)

, ∀ (f, g) ∈ D (O∆,R) .

Then, O∆,R is a positive self-adjoint operator with a compact resolvent.

Proof. To prove that O∆,R is a positive self-adjoint operator, we will show that it is a symmetric m-accretive
operator. For this purpose, we will divide the proof into steps:

Step 1. (O∆,R is symmetric.) Indeed, for all (f, g), (h, k) ∈ D (O∆,R), we have

(O∆,R(f, g), (h, k))L2(Ω1)×L2(Ω2)
= −

∫

Ω1

(∆f)hdx+

∫

Ω2

(∆2g)kdx

=

∫

Ω1

∇f · ∇hdx +

∫

Γ1

fhdΓ + a(g, k) +

∫

Γ2

(

∂ν2g∂ν2k + gk
)

dΓ

= ((f, g),O∆,R(h, k))L2(Ω1)×L2(Ω2)
.

(5.3)

Thus, O∆,R is symmetric.

Step 2. (O∆,R is m−accretive.) Indeed, for all (f, g) ∈ D(O∆,R), we have

ℜ (O∆,R(f, g), (f, g))L2(Ω1)×L2(Ω2)
= ℜ

{

−
∫

Ω1

(∆f)fdx +

∫

Ω2

(∆2g)gdx

}

=

∫

Ω1

|∇f |2dx+

∫

Γ1

|f |2dΓ + a(g, g) +

∫

Γ2

(

|∂ν2g|2 + |g|2
)

dΓ ≥ 0.

(5.4)

Thus, O∆,R is an accretive operator. Now, let (F,G) ∈ L2(Ω1)×L2(Ω2) and λ > 0, looking for (f, g) ∈ D (O∆,R)
solution of

(5.5) (λI +O∆,R) (f, g) = (F,G).



16 STABILITY OF WAVE-PLATE TRANSMISSION PROBLEM

Equivalently, we have the following system:

λf −∆f = F,(5.6)

λg +∆2g = G.(5.7)

Taking (ϕ, ψ) ∈ H, then integrating after multiplying (5.6) by ϕ and (5.7) by ψ yields the two equations added
as follows

∫

Ω1

∇f · ∇ϕdx+ a(g, ψ) +

∫

Γ1

fϕdΓ +

∫

Γ2

(

∂ν2g∂ν2ψ + gψ
)

dΓ + λ

∫

Ω1

fϕdx+ λ

∫

Ω2

gψdx

=

∫

Ω1

Fϕdx+

∫

Ω2

Gψdx.

(5.8)

Let

S ((f, g), (ϕ, ψ)) =

∫

Ω1

∇f · ∇ϕdx+ a(g, ψ) +

∫

Γ1

fϕdΓ +

∫

Γ2

(

∂ν2g∂ν2ψ + gψ
)

dΓ

+λ

∫

Ω1

fϕdx+ λ

∫

Ω2

gψdx,

(5.9)

and

(5.10) L(ϕ, ψ) =

∫

Ω1

Fϕdx+

∫

Ω2

Gψdx.

It is easy to see that S is a sesquilinear, continuous, and coercive form on the space H×H, and L is an antilinear
and continuous form on H. Then, it follows by Lax-Milgram’s theorem that S((f, g), (ϕ, ψ)) = L(ϕ, ψ) admits a
unique solution (f, g) ∈ H. By classical elliptic regularity, we deduce that (f, g) ∈ D(O∆,R) solution of system
(5.6)-(5.7). Thus, O∆,R is m-accretive.

Step 3. (O∆,R has a compact resolvent.) Let

Rλ(O∆,R) = (λI +O∆,R)
−1 .

Due to Sobolev embeddings, R0(O∆,R) is compact. Then, using the following resolvent identity

Rλ −Rµ = (µ− λ)RµRλ,

we deduce that the resolvent (λI +O∆,R)
−1 of the operator O∆,R is compact, and the proof is thus complete.

�

Proof of Theorem 5.2. According to Theorem 5.1 due to Huang [19] and Prüss [33], it is sufficient to show
that the resolvent of A is not uniformly bounded on the imaginary axis. In other words, it is enough to show the
existence of a positive real number M and some sequences λn ∈ iR, Un = (un, vn, ηn, wn, zn, ξn, ζn)

⊤ ∈ D(A),
and Fn = (f1

n, g
1
n, h

1
n, f

2
n, g

2
n, h

2
n, h

3
n)

⊤ ∈ H, where n ∈ N, such that

(5.11) (λnI − A)Un = Fn, ∀n ∈ N,

(5.12) ‖Un‖H ≥M, ∀n ∈ N,

(5.13) lim
n→∞

‖Fn‖H = 0.

From Lemma 5.1, we can consider the sequence of eigenfunctions (ϕn, ψn)n∈N (that form an orthonormal basis
of L2(Ω1) × L2(Ω2)) of the operator O∆,R, corresponding to the eigenvalues (µ2

n)n∈N, such that µ2
n tends to

infinity as n goes to infinity. Consequently, for all n ∈ N, they satisfy the following system
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(5.14)























































−∆ϕn = µ2
nϕn, in Ω1,

∆2ψn = µ2
nψn, in Ω2,

ϕn − ψn = 0, B1ψn = 0, B2ψn = ∂ν1ϕn on I,

∂ν1ϕn + ϕn = 0, on Γ1,

B1ψn + ∂ν2ψn = 0, on Γ2,

B2ψn − ψn = 0, on Γ2,

with

(5.15) ‖(ϕn, ψn)‖2L2(Ω1)×L2(Ω2)
=

∫

Ω1

|ϕn|2dx +

∫

Ω2

|ψn|2dx = 1.

Now, let us choose

(5.16) un =
ϕn

iµn

, vn = ϕn, ηn =
1

iµn

γ1(ϕn), wn =
ψn

iµn

, zn = ψn, ξn =
1

iµn

γ2,2(ψn), ζn =
1

iµn

γ2,1(ψn).

So, by setting

(5.17) Fn =

(

0, 0,
1

iµn

γ1(ϕn), 0, 0,
1

iµn

γ2,2(ψn),
1

iµn

γ2,1(ψn)

)

,

we deduce that

(5.18) Un = (un, vn, ηn, wn, zn, ξn, ζn) ,

is the solution in D(A) of the following equation

(5.19) (iµnI − A)Un = Fn.

Now, multiplying equation (5.14)1 and (5.14)2 by ϕn and ψn respectively, integrating by parts, we get

∫

Ω1

|∇ϕn|2dx+

∫

Γ1

|ϕn|2dΓ + a(ψn, ψn) +

∫

Γ2

(

|∂ν2ψn|2 + |ψn|2
)

dΓ

= µ2
n

∫

Ω1

|ϕn|2dx+ µ2
n

∫

Ω2

|ψn|2dx = µ2
n.

(5.20)

Since the norm defined on the left-hand side of the above equation is equivalent to the usual norm of H1(Ω1)×
H2(Ω2) on H

1(Ω1)×H2(Ω2), we get

(5.21) ‖(ϕn, ψn)‖2H1(Ω1)×H2(Ω2)
. µ2

n.

On the other hand, we have

‖Un‖2H =

∫

Ω1

|ϕn|2dx +

∫

Ω2

|ψn|2dx

+ µ−2
n

∫

Ω1

|∇ϕn|2dx + µ−2
n

∫

Γ1

|ϕn|2dΓ + µ−2
n a(ψn, ψn) + µ−2

n

∫

Γ2

(

|∂ν2ψn|2 + |ψn|2
)

dΓ ≥ 1,

(5.22)

which implies that (5.12) holds forM = 1. By using the trace theorem of interpolation type (see Theorem 1.4.4
in [27] and Theorem 1.5.1.10 in [14]), we obtain

‖Fn‖2H = µ−2
n ‖ϕn‖2L2(Γ1)

+ µ−2
n ‖∂ν2ψn‖2L2(Γ2)

+ µ−2
n ‖ψn‖2L2(Γ2)

. µ−2
n ‖ϕn‖H1(Ω1)‖ϕn‖L2(Ω1) + µ−2

n ‖ψn‖H2(Ω2)‖ψn‖H1(Ω2) + µ−2
n ‖ψn‖H1(Ω2)‖ψn‖L2(Ω2).

(5.23)
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Further, by using Theorem 4.17 in [1], equation (5.15) and equation (5.21), we obtain from the above inequality
that

‖Fn‖2H . µ−2
n ‖ϕn‖H1(Ω1)‖ϕn‖L2(Ω1) + µ−2

n ‖ψn‖
3
2

H2(Ω2)
‖ψn‖

1
2

L2(Ω2)
+ µ−2

n ‖ψn‖
1
2

H2(Ω2)
‖ψn‖

3
2

L2(Ω2)

. µ−1
n + µ

− 1
2

n + µ
− 3

2
n → 0 as n→ ∞.

(5.24)

Then, the resolvent of the operator A is not uniformly bounded on the imaginary axis, and consequently, our
system is not uniformly (exponentially) stable. The proof is thus complete.

6. Polynomial Stability

In this section, we will study the polynomial decay of the system (1.1)-(1.4) for smooth solutions by a
multiplier method, since the system (1.1)-(1.4) is not uniformly stable. One of the main ingredients is to use
the frequency domain approach, specifically the key ingredient for the proof of polynomial stability is Theorem
2.4 of [10] (see also [6] and [26]), which we will partially recall:

Theorem 6.1. (Borichev-Tomilov (see [10])) Let
(

etA
)

t≥0
be a bounded C0-semigroup of contractions on a

Hilbert space H generated by A such that iR ⊂ ρ(A). Then, for a fixed ℓ > 0, the following conditions are
equivalent:

(i) : sup
β∈R

1

|β|ℓ
∥

∥(iβI −A)−1
∥

∥

L(H)
< +∞,

(ii) : there exists a constant C > 0 such that for all U0 ∈ D(A) we have

‖etAU0‖2H ≤ C

t
2
ℓ

‖U0‖2D(A), ∀t > 0.

To proceed with our polynomial energy decay result, we require the following additional geometric assump-
tion on the wave and the plate, which is due to the requirements of integration in Ω1 and Ω2:

Assumption (A3). Assume that there exists a fixed point x0 ∈ R
2 such that, putting m(x) = x − x0, we

have

(6.1) (m · ν1) = 0, ∀x ∈ I,

and

(6.2) (m · ν) ≥ δ, ∀x ∈ ∂Ω,

where δ is a positive real number and ( · ) designates the scalar product in R2.

Remark 6.1. We remark that if condition (6.1) is satisfied, then the interface I is straight. Hence, from now
on, we assume that the interface is straight and the interior angles ωi,1 and ωi,Ni

, for i = 1, 2, are the angles at
the extremities of I.

The following figures provide some examples of geometries that satisfy the previously mentioned assumptions:

Now, we can state our energy decay rate result.

Theorem 6.2. Assume that Ω1 and Ω2 are polygonal domains as described above. Also, assume that As-
sumptions (A1), (A2) and (A3) hold. Then, there exists a constant C > 0 such that for all initial data
U0 = (u0, u1, η0, w0, w1, ξ0, ζ0) ∈ D(A), the energy of system (1.1)-(1.4) satisfies the following estimate:

(6.3) E(t) ≤ C
t
‖U0‖2D(A), ∀t > 0.

Before stating the proof of the above theorem, we shall preliminarily present the following two technical
lemmas to be used in the proof of our polynomial-type decay estimate:

Lemma 6.1. Assume that Ω1 is a polygonal domain as described above. Assume also that Assumptions (A1)
and (A3) hold. Then, there exists ε ∈ (0, 12 ) such that the solution y ∈ H1(Ω1) of system (3.1) satisfies the
following inequality

(6.4) −ℜ
{
∫

Ω1

∆y(m · ∇y)dx
}

≥ −R
2
1

δ

∫

Γ1

|∂ν1y|2dΓ−ℜ
{

〈∂ν1y,m · ∇y〉H−ε(I)×Hε(I)

}

,

where R1 = max
x∈Γ1

|m(x)|.
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Figure 1. Transmission wave-plate models satisfying Assumptions (A1), (A2) and (A3)

Proof. Before starting the proof, we assume that y ∈ H2(Ω1). Using Green’s formula, we have the following
Rellich’s identity (see [20], also see identity 3.17 of [36]):

(6.5) −
∫

Ω1

∆y(m · ∇y)dx =
1

2

∫

∂Ω1

(m · ν1)|∇y|2dΓ−
∫

∂Ω1

∂ν1y(m · ∇y)dΓ.

According to the geometric condition (6.1), we have from (6.5) that

(6.6) −
∫

Ω1

∆y(m · ∇y)dx =
1

2

∫

Γ1

(m · ν1)|∇y|2dΓ−
∫

Γ1

∂ν1y(m · ∇y)dΓ−
∫

I

∂ν1y(m · ∇y)dΓ.

Next, for any ε1 > 0, using Young’s inequality, we have

(6.7) ℜ
{
∫

Γ1

∂ν1y(m · ∇y)dΓ
}

≤ 1

2ε1

∫

Γ1

|∂ν1y|2dΓ +
R2

1ε1
2

∫

Γ1

|∇y|2dΓ.

Using the geometric condition (6.2), we deduce from (6.7) that

1

2

∫

Γ1

(m · ν1)|∇y|2dΓ−ℜ
{
∫

Γ1

∂ν1y(m · ∇y)dΓ
}

≥
(

δ

2
− R2

1ε1
2

)
∫

Γ1

|∇y|2dΓ− 1

2ε1

∫

Γ1

|∂ν1y|2dΓ.(6.8)
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Choosing ε1 = δ
2R2

1

> 0 in (6.8), we get

1

2

∫

Γ1

(m · ν1)|∇y|2dΓ−ℜ
{
∫

Γ1

∂ν1y(m · ∇y)dΓ
}

≥ δ

4

∫

Γ1

|∇y|2dΓ− R2
1

δ

∫

Γ1

|∂ν1y|2dΓ

≥ −R
2
1

δ

∫

Γ1

|∂ν1y|2dΓ.
(6.9)

Taking the real part of (6.6) and then inserting (6.9), we obtain

−ℜ
{
∫

Ω1

∆y(m · ∇y)dx
}

≥ −R
2
1

δ

∫

Γ1

|∂ν1y|2dΓ−ℜ
{
∫

I

∂ν1y(m · ∇y)dΓ
}

.(6.10)

Now, for y ∈ H1(Ω1), the solution of (3.1), we deduce from Lemma 3.1 and Assumption (A1) that y ∈ H
3
2
−ε(Ω1)

for some ε ∈ (0, 12 ). By density, there exists a sequence {yk}k≥0 ⊂ H2(Ω1) such that

yk −→
k→∞

y in H
3
2
−ε(Ω1).

Applying (6.10) to yk and then passing to the limit in k, we obtain

−ℜ
{

〈∆y,m · ∇y〉
H

−

1
2
−ε(Ω1)×H

1
2
+ε(Ω1)

}

≥ −R
2
1

δ
‖∂ν1y‖2H−ε(Γ1)

−ℜ
{

〈∂ν1y,m · ∇y〉H−ε(I)×Hε(I)

}

.

Since y satisfies (3.1), we see that the duality pairings become integrals in the first two terms of the above
identity, which gives (6.4), as desired. �

Lemma 6.2. Assume that Ω2 is a polygonal domain as described above. Assume also that Assumptions (A2)
and (A3) hold. Then, there exists ε ∈ (0, 12 ) such that the solution y ∈ H2(Ω2) of system (3.2) satisfies the
following inequality

ℜ
{
∫

Ω2

∆2y(m · ∇y)dx
}

≥ 1

2
a(y, y)− δ(1− µ)

4R2
2

∫

Γ2

|∂ν2y|2dΓ− 2R2
2

δ(1 − µ)

∫

Γ2

|B1y|2dΓ

−R
2
2M

2

∫

Γ2

|B2y|2dΓ + ℜ
{

〈B2y,m · ∇y〉H−ε(I)×Hε(I)

}

,

(6.11)

where R2 = max
x∈Γ2

|m(x)| and M is a positive constant.

Proof. Before starting, we assume that B1y and B2y are smooth enough so that y ∈ H4(Ω2) (see [14]). Using
Green’s formula and identity 3.4 of [37] (see also [22] and [34]), we have

∫

Ω2

∆2y(m · ∇y)dx = a(y, y)−
∫

∂Ω2

[B1y∂ν2(m · ∇y)− B2y(m · ∇y)] dΓ +
1

2

∫

∂Ω2

(m · ν2)b(y)dΓ,(6.12)

where

b(y) =

(

∂2y

∂x21

)2

+

(

∂2y

∂x22

)2

+ 2µ
∂2y

∂x21

∂2y

∂x22
+ 2(1− µ)

(

∂2y

∂x1∂x2

)2

.

It follows from the geometric condition (6.1) and the boundary condition B1y = 0 on I that
∫

Ω2

∆2y(m · ∇y)dx = a(y, y)−
∫

Γ2

B1y∂ν2(m · ∇y)dΓ +

∫

Γ2

B2y(m · ∇y)dΓ

+
1

2

∫

Γ2

(m · ν2)b(y)dΓ +

∫

I

B2y(m · ∇y)dΓ.
(6.13)

A straightforward computation shows that

b(y) =

(

∂2y

∂x21

)2

+

(

∂2y

∂x22

)2

+ 2µ
∂2y

∂x21

∂2y

∂x22
+ 2(1− µ)

(

∂2y

∂x1∂x2

)2

= µ

{

(

∂2y

∂x21

)2

+

(

∂2y

∂x22

)2

+ 2
∂2y

∂x21

∂2y

∂x22

}

+ (1 − µ)

{

(

∂2y

∂x21

)2

+

(

∂2y

∂x22

)2

+ 2

(

∂2y

∂x1∂x2

)2
}

= µ (∆y)2 + (1− µ)

{

(

∂2y

∂x21

)2

+

(

∂2y

∂x22

)2

+ 2

(

∂2y

∂x1∂x2

)2
}

,

(6.14)
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and

(6.15) |∂ν2(m · ∇y)| ≤ |∂ν2y|+R2

{

(

∂2y

∂x21

)2

+

(

∂2y

∂x22

)2

+ 2

(

∂2y

∂x1∂x2

)2
}

1
2

.

Indeed, applying Young’s inequality, we obtain from (6.15) that

ℜ
{
∫

Γ2

B1y∂ν2(m · ∇y)dΓ
}

≤ 1

2ε2

∫

Γ2

|B1y|2dΓ +
ε2
2

∫

Γ2

|∂ν2(m · ∇y)|2 dΓ

≤ 1

2ε2

∫

Γ2

|B1y|2dΓ + ε2

∫

Γ2

|∂ν2y|2 dΓ

+R2
2ε2

∫

Γ2

{

(

∂2y

∂x21

)2

+

(

∂2y

∂x22

)2

+ 2

(

∂2y

∂x1∂x2

)2
}

dΓ,

(6.16)

for any ε2 > 0. Taking the geometric condition (6.2) into consideration, it follows from (6.14) that

1

2

∫

Γ2

(m · ν2)b(y)dΓ ≥ δ

2

∫

Γ2

b(y)dΓ

≥ δµ

2

∫

Γ2

(∆y)
2
dΓ +

δ(1 − µ)

2

∫

Γ2

{

(

∂2y

∂x21

)2

+

(

∂2y

∂x22

)2

+ 2

(

∂2y

∂x1∂x2

)2
}

dΓ

≥ δ(1− µ)

2

∫

Γ2

{

(

∂2y

∂x21

)2

+

(

∂2y

∂x22

)2

+ 2

(

∂2y

∂x1∂x2

)2
}

dΓ.

(6.17)

Combining (6.16) and (6.17), we obtain

1

2

∫

Γ2

(m · ν2)b(y)dΓ−ℜ
{
∫

Γ2

B1y∂ν2(m · ∇y)dΓ
}

≥ − 1

2ε2

∫

Γ2

|B1y|2dΓ− ε2

∫

Γ2

|∂ν2y|2 dΓ

+

(

δ(1− µ)

2
−R2

2ε2

)
∫

Γ2

{

(

∂2y

∂x21

)2

+

(

∂2y

∂x22

)2

+ 2

(

∂2y

∂x1∂x2

)2
}

dΓ.

(6.18)

By taking ε2 = δ(1−µ)
4R2

2

> 0 in (6.18), we deduce

1

2

∫

Γ2

(m · ν2)b(y)dΓ−ℜ
{
∫

Γ2

B1y∂ν2(m · ∇y)dΓ
}

≥ − 2R2
2

δ(1− µ)

∫

Γ2

|B1y|2dΓ− δ(1− µ)

4R2
2

∫

Γ2

|∂ν2y|2 dΓ

+
δ(1− µ)

4

∫

Γ2

{

(

∂2y

∂x21

)2

+

(

∂2y

∂x22

)2

+ 2

(

∂2y

∂x1∂x2

)2
}

dΓ,

from which we conclude

1

2

∫

Γ2

(m · ν2)b(y)dΓ−ℜ
{
∫

Γ2

B1y∂ν2(m · ∇y)dΓ
}

≥ − 2R2
2

δ(1− µ)

∫

Γ2

|B1y|2dΓ

−δ(1− µ)

4R2
2

∫

Γ2

|∂ν2y|2 dΓ.
(6.19)

On the other hand, applying Young’s inequality once more gives

(6.20) ℜ
{
∫

Γ2

B2y(m · ∇y)dΓ
}

≥ − 1

2ε3

∫

Γ2

|B2y|2dΓ− R2
2ε3
2

∫

Γ2

|∇y|2 dΓ,

for any ε3 > 0. Thanks to the trace theorem (see Theorem 1.6.6 of [11]), we know that there exists a constant
C1 > 0 such that

(6.21) ‖∇y‖2L2(Γ2)
≤ C1‖∇y‖L2(Ω2)‖∇y‖H1(Ω2) ≤ C1‖y‖2H2(Ω2)

.

Moreover, according to the fact that a(y, y) is equivalent to the usual norm of H2(Ω2) on H2
∗ (Ω2), we know

that there exists a constant C2 > 0 such that

(6.22) ‖y‖2H2(Ω2)
≤ C2a(y, y).
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The combination of (6.21) and (6.22) yields

(6.23) ‖∇y‖2L2(Γ2)
≤Ma(y, y),

where the constant M = C1C2 > 0. This, along with (6.20), implies that

(6.24) ℜ
{
∫

Γ2

B2y(m · ∇y)dΓ
}

≥ − 1

2ε3

∫

Γ2

|B2y|2dΓ− R2
2Mε3
2

a(y, y).

By taking the real part of (6.13) and inserting (6.19) and (6.24), we obtain

ℜ
{
∫

Ω2

∆2y(m · ∇y)dx
}

≥
(

1− R2
2Mε3
2

)

a(y, y)− 2R2
2

δ(1− µ)

∫

Γ2

|B1y|2dΓ− δ(1 − µ)

4R2
2

∫

Γ2

|∂ν2y|2 dΓ

− 1

2ε3

∫

Γ2

|B2y|2dΓ + ℜ
{
∫

I

B2y(m · ∇y)dΓ
}

.

(6.25)

By letting ε3 = 1
R2

2
M
> 0 in (6.25), we conclude that

ℜ
{
∫

Ω2

∆2y(m · ∇y)dx
}

≥ 1

2
a(y, y)− 2R2

2

δ(1− µ)

∫

Γ2

|B1y|2dΓ− δ(1 − µ)

4R2
2

∫

Γ2

|∂ν2y|2 dΓ

−R
2
2M

2

∫

Γ2

|B2y|2dΓ + ℜ
{
∫

I

B2y(m · ∇y)dΓ
}

.

(6.26)

Now, for y ∈ H2(Ω2), which is a solution of (3.2), we deduce, based on Lemma 3.2 and Assumption (A2) that
there exists a sequence {yk}k≥0 ⊂ H4(Ω2) such that

yk −→
k→∞

y in H2(Ω2) and ∆2yk −→
k→∞

∆2y in L2(Ω2).

By applying (6.26) to yk and passing the limit in k, we obtain the desired estimation (6.11). �

We are now ready to present the proof of Theorem 6.2.

Proof. In accordance to Theorem 6.1, a C0-semigroup of contractions (etA)t≥0 on a Hilbert space H verifies
(6.3) if the following conditions

iR ⊂ ρ(A) (P1)

and

lim sup
|λ|→∞

1

λ2

∥

∥(iλI − A)−1
∥

∥

L(H)
< +∞ (P2)

are satisfied. Since the resolvent of the operator A is not compact in the energy space H and 0 ∈ ρ(A), proving
iR ⊂ ρ(A) is equivalent to showing that iλI − A is bijective in the energy space H for all λ ∈ R∗. This is
established in Section 4 using a unique continuation theorem and Fredholm’s alternative. Then, we still need
to prove condition (P2). This is checked by a contradiction argument. Indeed, suppose that there exists a
sequence {λn}n≥1 ⊂ R∗

+ and a sequence {Un := (un, vn, ηn, wn, zn, ξn, ζn)}n≥1 ⊂ D(A) such that

(6.27) λn −→ +∞, ‖Un‖H = 1,

and

(6.28) λ2n(iλnI − A)Un = (f1
n, g

1
n, h

1
n, f

2
n, g

2
n, h

2
n, h

3
n) −→ 0 in H.
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Our aim is to show that ‖(un, vn, ηn, wn, zn, ξn, ζn)‖H −→ 0. This condition provides a contradiction with
(6.27). By detailing equation (6.28), we get the following system

λ2n(iλnun − vn) = f1
n → 0 in H1

∗ (Ω1),(6.29)

λ2n(iλnvn −∆un) = g1n → 0 in L2(Ω1),(6.30)

λ2n(iλnηn − vn + ηn) = h1n → 0 in L2(Γ1),(6.31)

λ2n(iλnwn − zn) = f2
n → 0 in H2

∗ (Ω2),(6.32)

λ2n(iλnzn +∆2wn) = g2n → 0 in L2(Ω2),(6.33)

λ2n(iλnξn − ∂ν2zn + ξn) = h2n → 0 in L2(Γ2),(6.34)

λ2n(iλnζn − zn + ζn) = h3n → 0 in L2(Γ2).(6.35)

We notice from (6.27) that vn and zn are uniformly bounded in L2(Ω1) and L2(Ω2), respectively. It follows
from Equations (6.29) and (6.32) that

(6.36) ‖un‖L2(Ω1) =
O(1)

λn
and ‖wn‖L2(Ω2) =

O(1)

λn
.

On the other hand, inserting Equation (6.29) (resp. (6.32)) into Equation (6.30) (resp. (6.33)), we obtain the
following system

−λ2nun −∆un =
if1

n

λn
+
g1n
λ2n
,(6.37)

−λ2nwn +∆2wn =
if2

n

λn
+
g2n
λ2n
.(6.38)

For clarity, the proof is divided into several lemmas:

Lemma 6.3. The solution (un, vn, ηn, wn, zn, ξn, ζn) ∈ D(A) of system (6.29)-(6.35) satisfies the following
asymptotic behavior estimation

(6.39)

∫

Γ1

|ηn|2dΓ =
o(1)

λ2n
,

∫

Γ2

|ξn|2dΓ =
o(1)

λ2n
and

∫

Γ2

|ζn|2dΓ =
o(1)

λ2n
.

Proof. Taking the inner product of (6.28) with Un = (un, vn, ηn, wn, zn, ξn, ζn) in H, then using the fact that
Un is uniformly bounded in H, we get

∫

Γ1

|ηn|2dΓ +

∫

Γ2

|ξn|2dΓ +

∫

Γ2

|ζn|2dΓ = ℜ{((iλnI − A)Un, Un)H} =
o(1)

λ2n
,

which implies that
∫

Γ1

|ηn|2dΓ =
o(1)

λ2n
,

∫

Γ2

|ξn|2dΓ =
o(1)

λ2n
and

∫

Γ2

|ζn|2dΓ =
o(1)

λ2n
.

�

Lemma 6.4. The solution (un, vn, ηn, wn, zn, ξn, ζn) ∈ D(A) of system (6.29)-(6.35) satisfies the following
asymptotic behavior estimation

‖un‖L2(Γ1) =
o(1)

λn
,(6.40)

‖∂ν2wn‖L2(Γ2) =
o(1)

λn
,(6.41)

‖wn‖L2(Γ2) =
o(1)

λn
.(6.42)

Proof. First, using Equation (6.31) and the first estimation of (6.39), we get

(6.43) ‖vn‖L2(Γ1) = o(1).

From Equation (6.29) and the fact that the trace operator ϕ 7−→ ϕ|Γ1
is a linear and continuous mapping from

H1
∗ (Ω1) into L

2(Γ1), we have

iλnun − vn =
f1
n

λ2n
→ 0 in L2(Γ1).
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Multiplying the above equation by −iλnun and integrating over Γ1, we obtain
∫

Γ1

|λnun|2dΓ +

∫

Γ1

iλnunvndΓ = −
∫

Γ1

if1
nun
λn

dΓ.

Using estimations (6.36), (6.43) and the fact that f1
n converges to zero in L2(Γ1), we deduce from the above

equation that
∫

Γ1

|λnun|2dΓ = o(1),

which gives the desired estimation (6.40). Next, using Equations (6.34), (6.35) and the second two estimations
of (6.39), we obtain

(6.44) ‖∂ν2zn‖L2(Γ2) = o(1) and ‖zn‖L2(Γ2) = o(1).

Similar computation performed on Equation (6.32), using estimation (6.44) and the fact that f2
n converges to

zero in L2(Γ2), yield, as well,
∫

Γ2

|λn∂ν2wn|2dΓ = o(1) and

∫

Γ2

|λnwn|2dΓ = o(1),

which gives the desired estimations (6.41) and (6.42). �

Lemma 6.5. The solution (un, vn, ηn, wn, zn, ξn, ζn) ∈ D(A) of system (6.29)-(6.35) satisfies the following
asymptotic behavior estimation

‖∂ν1un‖L2(Γ1) =
o(1)

λn
,(6.45)

‖B1wn‖L2(Γ2) =
o(1)

λn
,(6.46)

‖B2wn‖L2(Γ2) =
o(1)

λn
.(6.47)

Proof. From the boundary conditions of (2.2), we have ∂ν1un = −ηn on Γ1, B1wn = −ξn and B2wn = ζn on
Γ2. Therefore, using estimation (6.39), the desired asymptotic estimations (6.45), (6.46) and (6.47) follow. �

Lemma 6.6. Assume that Assumptions (A1), (A2) and (A3) hold. Then, the solution (un, vn, ηn, wn, zn, ξn, ζn) ∈
D(A) of system (6.29)-(6.35) satisfies the following estimation

ℜ
{
∫

Ω2

∆2wn(m · ∇wn)dx−
∫

Ω1

∆un(m · ∇un)dx
}

≥ 1

2
a(wn, wn)−

R2
1

δ

∫

Γ1

|∂ν1un|2dΓ

−δ(1− µ)

4R2
2

∫

Γ2

|∂ν2wn|2dΓ− 2R2
2

δ(1− µ)

∫

Γ2

|B1wn|2dΓ− R2
2M

2

∫

Γ2

|B2wn|2dΓ,
(6.48)

where R1 = max
x∈Γ1

|m(x)|, R2 = max
x∈Γ2

|m(x)| and M is a positive constant independent of n.

Proof. By the definition of D(A), un may be seen as the unique solution un ∈ H1(Ω1) of system (3.1) with
v1 = −ηn and v2 = wn. As Assumptions (A1) and (A3) hold, it suffices to apply Lemma 6.1 for un to obtain

(6.49) −ℜ
{
∫

Ω1

∆un(m · ∇un)dx
}

≥ −R
2
1

δ

∫

Γ1

|∂ν1un|2dΓ−ℜ
{

〈∂ν1un,m · ∇un〉H−ε(I)×Hε(I)

}

,

for some ε ∈ (0, 12 ). Again, since Un ∈ D(A), we see that wn ∈ H2(Ω2) is a solution of system (3.2) with
v3 = ∂ν1un, v4 = −ξn and v5 = ζn. It follows from Lemma 6.2, Assumptions (A2) and (A3) that

ℜ
{
∫

Ω2

∆2wn(m · ∇wn)dx

}

≥ 1

2
a(wn, wn)−

δ(1− µ)

4R2
2

∫

Γ2

|∂ν2wn|2dΓ− 2R2
2

δ(1 − µ)

∫

Γ2

|B1wn|2dΓ

−R
2
2M

2

∫

Γ2

|B2wn|2dΓ + ℜ
{

〈B2wn,m · ∇wn〉H−ε(I)×Hε(I)

}

.

(6.50)
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Now, by adding (6.49) and (6.50), we obtain

ℜ
{
∫

Ω2

∆2wn(m · ∇wn)dx

}

−ℜ
{
∫

Ω1

∆un(m · ∇un)dx
}

≥ 1

2
a(wn, wn)−

R2
1

δ

∫

Γ1

|∂ν1un|2dΓ

−δ(1− µ)

4R2
2

∫

Γ2

|∂ν2wn|2dΓ− 2R2
2

δ(1− µ)

∫

Γ2

|B1wn|2dΓ− R2
2M

2

∫

Γ2

|B2wn|2dΓ

+ℜ
{

〈B2wn,m · ∇wn〉H−ε(I)×Hε(I) − 〈∂ν1un,m · ∇un〉H−ε(I)×Hε(I)

}

.

(6.51)

The boundary conditions un = wn and B2wn = ∂ν1un on the interface I, along with the geometric condition
(6.1), lead to

〈B2wn,m · ∇wn〉H−ε(I)×Hε(I) − 〈∂ν1un,m · ∇un〉H−ε(I)×Hε(I)

= 〈B2wn,m · (ν2∂ν2wn + τ2∂τ2wn)〉H−ε(I)×Hε(I) − 〈∂ν1un,m · (ν1∂ν1un + τ1∂τ1un)〉H−ε(I)×Hε(I)

= 〈B2wn,m · τ2∂τ2wn〉H−ε(I)×Hε(I) − 〈∂ν1un,m · τ1∂τ1un〉H−ε(I)×Hε(I)

= 〈B2wn,m · τ2∂τ2wn〉H−ε(I)×Hε(I) − 〈∂ν1un,m · τ2∂τ2wn〉H−ε(I)×Hε(I)

= 〈B2wn − ∂ν1un,m · τ2∂τ2wn〉H−ε(I)×Hε(I) = 0.

This, together with (6.51), proves (6.48), as desired. �

Lemma 6.7. Assume that Assumptions (A1) and (A2) hold. Then, the solution (un, vn, ηn, wn, zn, ξn, ζn) ∈
D(A) of system (6.29)-(6.35) satisfies the following asymptotic behavior estimation

(6.52)

∫

Ω1

|λnun|2 dx+

∫

Ω2

|λnwn|2 dx =

∫

Ω1

|∇un|2 dx+ a(wn, wn) +
o(1)

λ2n
.

Proof. Before starting the proof, we assume that un ∈ H2(Ω1) and wn ∈ H4(Ω2). Multiplying Equation (6.37)
(resp. (6.38)) by −un (resp. −wn), integrating over Ω1 (resp. Ω2) and applying Green’s formula, we obtain

(6.53)

∫

Ω1

|λnun|2 dx−
∫

Ω1

|∇un|2 dx+

∫

∂Ω1

∂ν1unundΓ = −
∫

Ω1

(

if1
n

λn
+
g1n
λ2n

)

undx,

and

(6.54)

∫

Ω2

|λnwn|2 dx− a(wn, wn) +

∫

∂Ω2

(B1wn∂ν2wn − B2wnwn) dΓ = −
∫

Ω2

(

if2
n

λn
+
g2n
λ2n

)

wndx.

Taking into consideration that f1
n, g

1
n converge to zero in L2(Ω1), f

2
n, g

2
n converge to zero in L2(Ω2) and using

(6.36), we get from (6.53) and (6.54) that
∫

Ω1

|λnun|2 dx−
∫

Ω1

|∇un|2 dx+

∫

∂Ω1

∂ν1unundΓ =
o(1)

λ2n
,

and
∫

Ω2

|λnwn|2 dx − a(wn, wn) +

∫

∂Ω2

(B1wn∂ν2wn − B2wnwn) dΓ =
o(1)

λ2n
.

Adding both equations and taking into account the boundary conditions on the interface, as well as the
estimations (6.40), (6.41), (6.42), (6.45), (6.46) and (6.47), we obtain

∫

Ω1

|λnun|2 dx−
∫

Ω1

|∇un|2 dx+

∫

Ω2

|λnwn|2 dx − a(wn, wn) =
o(1)

λ2n
.

By following a similar argument to the end of the proof of Lemma 6.1 and Lemma 6.2, we obtain the desired
estimation (6.52). �
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Lemma 6.8. Assume that Assumptions (A1), (A2) and (A3) hold. Then, the solution (un, vn, ηn, wn, zn, ξn, ζn) ∈
D(A) of system (6.29)-(6.35) satisfies the following asymptotic behavior estimation

(6.55)

∫

Ω1

|λnun|2 dx = o(1),

∫

Ω2

|λnwn|2 dx = o(1) and a(wn, wn) = o(1).

Proof. Multiplying Equation (6.37) by m · ∇un and integrating over Ω1, and similarly for Equation (6.38)
over Ω2, we obtain

(6.56) −
∫

Ω1

λ2nun (m · ∇un) dx−
∫

Ω1

∆un (m · ∇un) dx =

∫

Ω1

(

if1
n

λn
+
g1n
λ2n

)

(m · ∇un) dx,

and

(6.57) −
∫

Ω2

λ2nwn (m · ∇wn) dx+

∫

Ω2

∆2wn (m · ∇wn) dx =

∫

Ω2

(

if2
n

λn
+
g2n
λ2n

)

(m · ∇wn) dx.

Using Cauchy-Schwartz inequality and the fact that a(wn, wn) is equivalent to the usual norm of H2(Ω2)
on H2

∗ (Ω2), we can observe that ∇un is uniformly bounded in L2(Ω1) and a(wn, wn) is uniformly bounded.
Additionally, f1

n and g1n converge to zero in L2(Ω1), while f
2
n and g2n converge to zero in L2(Ω2). Hence, we

obtain

(6.58)

∣

∣

∣

∣

∫

Ω1

(

if1
n

λn
+
g1n
λ2n

)

(m · ∇un) dx
∣

∣

∣

∣

≤ ‖m‖∞
(‖f1

n‖L2(Ω1)

λn
+

‖g1n‖L2(Ω1)

λ2n

)

‖∇un‖L2(Ω1) =
o(1)

λn
,

and

(6.59)

∣

∣

∣

∣

∫

Ω2

(

if2
n

λn
+
g2n
λ2n

)

(m · ∇wn) dx

∣

∣

∣

∣

≤ ‖m‖∞
(‖f2

n‖L2(Ω2)

λn
+

‖g2n‖L2(Ω2)

λ2n

)

‖∇wn‖L2(Ω2) =
o(1)

λn
.

On the other hand, applying Green’s formula to the first terms of (6.56) and (6.57) yields

(6.60)

∫

Ω1

λ2nun (m · ∇un) dx =
1

2

∫

∂Ω1

(m · ν1) |λnun|2 dΓ−
∫

Ω1

|λnun|2 dx,

and

(6.61)

∫

Ω2

λ2nwn (m · ∇wn) dx =
1

2

∫

∂Ω2

(m · ν2) |λnwn|2 dΓ−
∫

Ω2

|λnwn|2 dx.

Then, substituting (6.60) (resp. (6.61)) into (6.56) (resp. (6.57)) and considering the estimates (6.58) and
(6.59), we obtain

∫

Ω1

|λnun|2 dx− 1

2

∫

∂Ω1

(m · ν1) |λnun|2 dΓ−
∫

Ω1

∆un (m · ∇un) dx =
o(1)

λn
,

and
∫

Ω2

|λnwn|2 dx− 1

2

∫

∂Ω2

(m · ν2) |λnwn|2 dΓ +

∫

Ω2

∆2wn (m · ∇wn) dx =
o(1)

λn
.

Adding both equations and using the boundary condition un = wn on the interface I and the estimates (6.40)
and (6.42), then taking the real part, we obtain

(6.62)

∫

Ω1

|λnun|2 dx +

∫

Ω2

|λnwn|2 dx+ ℜ
{
∫

Ω2

∆2wn(m · ∇wn)dx−
∫

Ω1

∆un(m · ∇un)dx
}

= o(1).

As Assumptions (A1), (A2) and (A3) hold, it suffices to apply Lemma 6.6. Hence, inserting (6.48) into (6.62),
we get

∫

Ω1

|λnun|2 dx+

∫

Ω2

|λnwn|2 dx+
1

2
a(wn, wn)−

R2
1

δ

∫

Γ1

|∂ν1un|2dΓ− δ(1− µ)

4R2
2

∫

Γ2

|∂ν2wn|2dΓ

− 2R2
2

δ(1 − µ)

∫

Γ2

|B1wn|2dΓ− R2
2M

2

∫

Γ2

|B2wn|2dΓ = o(1).

(6.63)

Finally, using the estimations (6.41), (6.45), (6.46) and (6.47), it follows from (6.63) that
∫

Ω1

|λnun|2 dx+

∫

Ω2

|λnwn|2 dx+
1

2
a(wn, wn) = o(1),
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which proves the estimation (6.55), as desired. �

Proof of Theorem 6.2. Using (6.52) and (6.55), we deduce that

(6.64)

∫

Ω1

|∇un|2dx = o(1).

Therefore, combining the estimates (6.39), (6.55) and (6.64), we obtain ‖Un‖H −→ 0, which leads to the desired
contradiction with (6.27). Consequently, condition (P2) holds and this permits us to conclude that the energy
of system (1.1)-(1.4) decays polynomially to zero as t goes to infinity. The proof is thus complete.

7. Conclusion and Open Problems

In this paper, we present a study of the stabilization of a transmission wave-plate model coupled through
the interface with dynamical boundary controls. By employing a general criterion proposed by Arendt-Batty,
we have successfully demonstrated the strong stability of the system. Additionally, we have proven the lack of
exponential stability. Notably, under certain geometric assumptions on the boundary, particularly when the in-
terface between the wave and the plate is straight, we establish a polynomial decay rate of the energy of type 1/t.

An intriguing question arising from the problem studied in this paper is the optimality of the polynomial
decay rate through spectral analysis. Furthermore, it would be interesting to extend the obtained results to the
case of a wave-plate model subject to only one or two dynamical boundary feedbacks at the exterior boundaries
of the wave’s and the plate’s domains. Such generalizations could lead to further insights and applications in
related fields.
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