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Abstract

It has been postulated that ultraviolet reflectance is important in mate choice in King Penguins
Aptenodytes patagonicus, although not in other penguin species that do not have body parts that
reflect UV light. However, this theory has been challenged. Here we aimed to determine the
transmission of the ocular media in the large King Penguin as well as the smallest penguin, the Little
Penguin Eudyptula minor, and a medium-sized penguin, the Gentoo Penguin Pygoscelis papua, to
determine if the penguin eye is capable of seeing ultraviolet light. In all species the cornea absorbed
the most damaging rays at 300 nm or below but it was the lens that predominantly determined the
transmission of light between 300 and 400 nm. The lenses of a young King Penguin absorbed almost
all light less than 370 nm and had 50% transmission at 406 nm, thus ultraviolet perception in the
King Penguin is very limited. In contrast, 50% lenticular transmission was 329 nm in the Little
Penguin and 367 nm in the Gentoo. Therefore, we suspect that ultraviolet light may be more
important in the behaviour of smaller penguins than in the King Penguin, where it is unlikely to play

a significant role.
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Spheniscidae, lens, cornea, ultraviolet, Gentoo, King, Little
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Introduction

Ultraviolet (UV) reflectance and ultraviolet-sensitive (UVS) vision are thought to play a role in many
avian behaviors, including orientation, foraging and sexual selection (Bennett et al. 1996; Johnsen et
al. 1998). Color also appears to be important in penguin (Spheniscidae) mate selection (Jouventin
1982; Massaro et al. 2003). The orange beak spots of both King Aptenodytes patagonicus and
Emperor A. forsteri penguins have been found to have UV reflectance (Jouventin et al. 2005) and, in
the case of the King Penguin, a multilayer photonic microstructure appears to be the source of this
reflectance, which is maximal at 367.5 nm (Dresp et al. 2005). Beak reflectance has also been
reported in juvenile Gentoo Penguins Pygoscelis papua (Meyer-Rochow and Shimoyama 2008).
However, similar beak reflectance has not been found in 10 other species of penguin, nor on the

claws, feathers or skin of any penguin (Jouventin et al. 2005).

This finding, together with the observations that UV reflectance from the beak only appeared when
the animal was sexually mature and of pairing behavior, led to the suggestion that such UV
reflection could be important in King and Emperor penguin breeding (Jouventin et al. 2005). This
would appear to be supported by a higher UV beak reflectance amongst early pairing King Penguins
(the most successful in breeding) and the observation that experimentally reduced UV reflectance
from beak spots is associated with delayed pairing (Jouventin et al. 2009; Nolan et al. 2010).
However, this interpretation was challenged on the basis that UVS vision had not been
demonstrated in penguins (Meyer-Rochow et al. 2008), leading to a fierce debate in this journal

(Jouventin et al. 2009; Meyer-Rochow et al. 2009; Nolan et al. 2010).

Ultraviolet-sensitive visual pigments (<400 nm) are widespread in the animal kingdom (Hunt et al.
2001) and in birds a UVS visual pigment is thought to have evolved from ancestral violet vision on
multiple occasions (Wilkie et al. 2000; Hart et al. 2007), although molecular evidence suggests that

UVS cones are more widespread in terrestrial birds than in seabirds (Hart and Hunt 2007). A UVS
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cone has not been found in penguins; however, a short wavelength 1 (SWS1) cone with maximum
sensitivity at 403 — 405 nm has been identified in the Humboldt Penguin Spheniscus humboldti
(Bowmaker et al. 1985; Wilkie et al. 2000), very close to the UV range. More recently, Gentoo
Penguins have been shown to respond behaviourally to UV light maximal at 365 nm, tapering to no
output at 390 nm (Cole et al. 2022). Although, this visual pigment does not have maximal
absorbance in the UV range, it is close to that range (<400 nm) and the absence of UVS visual
pigments is not evidence of blindness to UV, as there is a significant secondary absorption (p-peak)
by all visual pigments in the UV range despite maximum absorbance in the visible spectrum (Douglas
et al. 2014). This can be demonstrated by the ability of aphakic humans to see in the UV spectrum

despite lacking a UVS cone (Stark et al. 1994).

Because of this secondary absorption, ocular transmission is more critical to UVS vision than the
presence of a UVS cone. Many animals have been shown to have ocular media that allow the
transmission of near-ultraviolet (near-UV, <400 nm) light, including many bird species (Emmerton et
al. 1980; Siebeck et al. 2001; Mullen et al. 2007; Tsukahara et al. 2013; Lind 2014; Olsson et al.
2021). Although all biological tissues are opaque to light below 300 nm due to absorption by
molecules such as nucleic acids and aromatic amino acids, in birds as in mammals the lens is usually
more critical than the cornea with regard to UV light transmission, particularly above 345 nm

(Douglas et al. 1999; Douglas and Jeffery 2014; Olsson et al. 2021).

Clearly, in order for UV reflectance to be important in mate selection such reflectance has to be
visible. Given the debate, the primary aim of this study was to determine the ocular transmission of
the King Penguin eye and thus determine the potential sensitivity of its visual system to UV light.
Little Penguins (Eudyptula minor) and Gentoo Penguins were also available to us in Auckland, New
Zealand, and represent a different lineage within Spheniscidae (Zusi 1975; Baker et al. 2006; Cole et
al. 2022), with recent DNA evidence (Vianna et al. 2020) suggesting that King and Emporer penguins

form a sister clade to all other extant penguins. Little and Gentoo penguins are also of different sizes
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(Shirihai 2007), dive to different depths (Montague 1985; Culik et al. 1996) and inhabit vastly
different environments (Shirihai 2007) to the Kings, therefore we also wished to determine if these

findings were consistent across all penguins.

Methods

Animals and ethics

Permission was obtained for this study from the New Zealand Department of Conservation (permit
numbers 68003-DOA, 28 November 2018 and 89983-DOA, 27 July 2021), Auckland Zoo and SEA LIFE
(SL (G) — AR 001). A Little Penguin (L1) was recovered from the wild in the Auckland Region, New
Zealand, but was unable to be re-released due to a physical disability not involving the eye. Its exact
age was unknown, although it was an adult bird and had passed its first moult. Two Gentoo Penguins
were examined, G1 aged 7 weeks (lens) and G2 aged 26 years (cornea and vitreous), as well as two
King Penguins, K1 aged 23 months and K2 aged 32 years. The Gentoo and King penguins had spent
their life in captivity at SEA LIFE Kelly Tarlton’s Aquarium in Auckland, New Zealand and were
descended from penguins living in South Georgia. With the exception of K2, all examinations were
completed within 6 hours of enucleation post-mortem, and none had any known ocular disease. The
vitreous of K2 was examined after 24 hours of refrigeration and this animal had moderate cataract;
only the vitreous from this eye was examined (Table 1). Several other eyes of all three species were
examined to check the accuracy of the two spectrometers that we used against each other.
However, we did not use these results as they were from elderly penguins, hadspent time
refrigerated, or both. Moreover, their lenticular ocular transmission was not as great as the penguins
that we included in this study, probably because of their age and preservation, and we did not wish
to combine the results for fear of underestimating potential ocular transmission in the youngest and

healthiest eyes of each species, our primary goal being to determine if the penguin optical media
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could transmit UV. The results of the right eye of G1 were also discarded, as they were not credible

(substantially more than 100% transmission at some wavelengths).

Suggested location of Table 1

Equipment and tissue preparation

Two spectrometers were used. The first was a USB2000+ (Ocean Optics, Dunedin, Florida, USA, Fig.
1), which could be transported to peripheral locations. This was used for G1 and K1. The second was
a SpectraMax 13x (Molecular Devices Inc, San Jose, CA), into which the eyes or components thereof
were inserted, and which could only be used when the central laboratory was accessible (Fig. 2). This
was used for L1, G2 and K2. It was only possible to measure vitreous transmission using the

SpectraMax 13x.

The spectral transmission of the whole eye, cornea and lens were measured in L1 and K1. In G1, only
the transmission of the lens was measured. Vitreous samples of L1, G2 and K2 were also measured,
as were the corneas of G2, noting that these were older animals but being reassured of their validity
as noted above and in the knowledge that, in all birds, it is the lens that determines ocular
transmission in any event (Olsson et al. 2021). To measure transmission through the whole eye, the
eye was enucleated and then the posterior pole was removed with a Bard-Parker 15 blade (Aspen
Surgical Products, Inc., Caledonia, Ml). To measure transmission through the cornea, the cornea was
then removed and placed in the spectrometer. Then, having removed the cornea, the vitreous was
removed as much as possible without touching the lens, leaving the lens attached to the ciliary body
(and thus the rigid ossicular ring) for stability so that we could avoid handling the lens. The residual

anterior segment, minus cornea, was then inserted into the spectrometer.

Data acquisition using SpectraMax 13x

A plate blank and a well filled with blackened paper tissue were used to verify the calibration. The

tissue being measured was then placed into a plastic tray, cushioned with paper for stability (Fig. 1)
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and inserted into the machine where it lay immediately above the detector, separated from the
latter only by the floor of the clear plastic container. To measure the transmission of the vitreous, a
well 14.5 mm high was filled with liquid vitreous. Percentage transmission was directly measured by
the machine in steps of 10 nm. This was then calculated as a percentage of the transmission at 700
nm (T,). Values obtained for light less than 300 nm were ignored as very little light was transmitted
at these wavelengths through the plate blank using the SpectraMax 13x and thus the values
obtained for transmission of ocular media as a percentage of transmission by the plate blank were
erroneous. An exception was made and the value at 290 nm used if necessary to calculate an

intercept, using the method described below (primarily the vitreous Aso but also the cornea A1o).

Suggested location of Figure 1

Data acquisition using Ocean Optics USB2000+

The tissue being measured was placed in a black case that was custom made at the University of
Auckland using a 3D plastic printer to keep it steady and to eliminate external sources of light (Fig.
2). Multiple recordings were obtained, and the maximum spectral transmission recorded. For
purposes of calibration, the spectrum without light on and with just the xenon light on was recorded
using the USB2000+. When the whole eye or the lens (attached to the ciliary body) was being
measured, this was placed as close as possible to the detector and cushioned for stability by tissue
paper. When the cornea was being measured, it was draped over the detector. The Oceans Optics
USB2000+ measured absolute transmission in steps of 0.38 to 0.39 nm. The transmission of each
wavelength (T;) measured using the USB2000+ was calculated by first subtracting the background
light (b)) measured at that wavelength within the closed box from that measured with the Xenon
source on (Xe,) and then comparing that to the light transmitted with both the Xe source on and the

optical element under investigation being in the path of the beam (Xt,).

Thus T, = (th-bx) / (Xex-bx)
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This was then calculated as a percentage (Ty) of the average transmission between 650 and 750 nm
(T700). Due to the small transmission interval of 0.38 to 0.39 nm, there was variability between
individual measurements. Therefore, the data was first exponentially smoothed with a damping
value of 0.5 using Microsoft 365® Excel. Transmission percentages for light less than 300 nm were
ignored on the USB2000+, both for consistency with the SpectraMax and because they appeared to
be highly variable, probably a function of how little light was produced by the Xenon source at those

wavelengths as compared to background.

Suggested location of Figure 2

Data analysis and plotting

Since, except for G1, both eyes were examined, the results from each eye were first averaged and
then the average T, for each species, at 10 nm intervals, was plotted against the respective
wavelengths. The wavelength at which the cornea, lens, vitreous and whole eye reached 10% (\10),
50% (Aso) and 90% (Ago) of that recorded at 700 nm for species was determined by using the forecast
function of Microsoft 365® Excel to predict where the 10%, 50% and 90% intercepts would be based
on the two recordings 10 nm and 20 nm before 10%, 50% or 90% transmission was reached and the

two recordings 10 and 20 nm after.

Results

The averaged transmission curves, combining both eyes of each penguin (except in the case of the
lens of G1, which was only the left eye), are presented in figures 3, 4, 5 and 6. A1, Aso and Ago

intercepts are listed in table 2.

Suggested location of Figure 3, Figure 4, Figure 5 and Figure 6

Suggested location of Table 2
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The dimensions of eyes of these penguins have been the subject of a previous report (Hadden et al.
2022). The average corneal thickness (measured with ultrasound pachymetry) was 0.303, 0.472 and
0.605 mm in the Little, Gentoo and King penguins respectively, the lens thickness (measured with
callipers) 4.0, 7.14 and 7.75 mm, excluding the lens of K2 which was cataractous and 10 mm thick,

and the axial length (measured with ultrasound) 17.4, 21.7 and 26.5 mm respectively.

Discussion

Importance of UV reflectance in King Penguin mate selection

Because of reduced lenticular UV transmission, the eye of the King Penguin transmitted very little UV
light, with almost all light at wavelengths less than 370 nm being blocked and 50% transmission only
being reached at 406 nm. In King Penguins, the only part of the body that reflects UV are the orange
bands of the beak (Jouventin et al. 2005). The UV peak in these bands, according to the literature, is
at 401 nm in museum specimens and 380 nm in live penguins (Jouventin et al. 2005). In a King
Penguin taxidermy available at CEFE (Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France), the
UV peak of the bands of the beak, as measured with an Avantes spectrophotometer, is at 360 nm
(FB personal data). Our results, showing that no light below 370 nm and only half of the light even at
400 nm is transmitted to the retina in this species, suggests that the use of UV in mate choice
behaviour (Jouventin et al. 2005; Nolan et al. 2010) should be reconsidered, or at least confirmed
with further experimental protocols. We also note that, in the later paper (Nolan et al. 2010), the
range of the spectrum examined in the experiment was from 320 nm to 450 nm, thus including

some visible light (> 400 nm), which could have been easily perceived by King Penguins.

Variation between species

The cornea of all specimens examined absorbed almost all light at or below 300 nm (Fig. 3),

consistent with what is known about the absorption of all biological tissues generally (Douglas et al.
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1999). However, in contrast to King Penguin, the lens of the Little Penguin did not further restrict the
ability of UV light to be perceived at the retina and thus the animal will be more sensitive to light of
these wavelengths. The Gentoo Penguin eye would appear to lie somewhere between these two,
although clearly the optical transmission would enable it to see the 365 nm torch previously
reported (Cole et al. 2022). The behavioural relevance of this finding in these species is unclear. In
regard to mate selection, adult Gentoo Penguins have no body parts that reflect UV, although beak
reflectance has been reported in juveniles (Jouventin et al. 2005; Meyer-Rochow and Shimoyama

2008).

Why are shorter wavelengths transmitted more readily through the lenses of Little and Gentoo
penguins but absorbed in the King? There is a weak association between lens thickness and UV
transmission in birds (Olsson et al. 2021), presumably because of the increased tissue thickness
across which light can be absorbed. However, the difference in UV transmission between the lens of
the Little Penguin and the King Penguin is much more marked than that between the corneas of the
two species, despite both anatomical structures being proportionately thicker in the King Penguin
(Hadden et al. 2022). Furthermore, despite the aforementioned weak association, many birds have a
higher Aso than would be expected from eye size; for instance, the Long-eared Owl Asio otus has a

7.0 mm thick lens but a lenticular Aso of 323.6 nm (Olsson et al. 2021).

An environmental difference seems unlikely, despite the habitat of King and Little penguins being
markedly dissimilar, because of the relatively high UV transmission of the Gentoo Penguin lens
despite a habitat much more similar to the King Penguin than to the Little Penguin. Both King and
Gentoo penguins predominantly breed on subantarctic islands, although the gentoo can also be
found on the Antarctic Peninsula and both can be found as rare vagrants on the New Zealand
mainland (Shirihai 2007). The Gentoo and King penguins in our study were also both of South
Georgian descent and therefore share the same pelagic environment, although King Penguins hunt

in open pelagic waters down to 300 m, which seems to correlate with their main prey, the midwater
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lanternfishes Myctophidae (Kooyman et al. 1992), while gentoos, which at South Georgia have been
recorded diving to over 100 m (Croxall et al. 1988), are both nearshore benthic and pelagic foragers,
consuming crustaceans, particularly Antarctic krill Euphasia superba and Themisto gaudichaudii, as
well as fish (Xavier et al. 2017; McClintock et al. 2020). The latitudes in which they live means that
the hours of night and day are more a function of seasonality than time of day and they forage at all
times of the year. By contrast, Little Penguins (grouping both Eudyptula minor and E.
novaehollandiae together) inhabit mainland New Zealand, southern Australia and Tasmania (Shirihai
2007; Grosser et al. 2017). They feed on small shoaling fish (particularly Clupeiformes), cephalopods
and crustaceans such as krill and forage at shallower depths, around 10-50 m (Montague 1985;
Gales et al. 1990; Chiaradia et al. 2007; lida et al. 2014). Little Penguins also breed in burrows, under
rocks and in other hollows, in dunes or amongst vegetation, rather than on the harsher shores of
South Georgia; they can be active at night but are predominantly diurnal foragers (Shirihai 2007).
The lower latitudes in which Little Penguin live, with illumination coming from more directly
overhead, means that the Little Penguin lives in a generally brighter environment; the atmospheric
transmission of UV also increases with increasing solar elevation in a similar fashion to light in the
visible spectrum (Spitschan et al. 2016). However, if this greater luminance is the explanation for
increased UV transmission in the Little Penguin, it is one that is contrary to the tendency of diurnal

mammals to block UV (Douglas et al. 2014).

It might be that the larger eyes of the larger King Penguin block UV light to maximise the increased
visual acuity their size affords, since the elimination of UV reduces chromatic aberration, to which
their large pupils renders them more sensitive; elimination of UV will also reduce Rayleigh scatter
(Walls 1931; Pye 2011; Douglas and Jeffery 2014; Olsson et al. 2021). Also, given the B-peak in the
UV range possessed by all visual pigments, allowing the transmission of UV light would make the
task of color differentiation much more difficult (Pye 2011). There would appear to be a correlation
between larger eyes, which generally possess higher spatial sensitivity given that more pixels

(photoreceptors) can be made available per visual angle, and lack of transparency of the lens to UV
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(Walls 1931; Ambach et al. 1994;Tsukahara et al. 2013; Douglas and Jeffery 2014). Furthermore, the
ocular media of raptors, which are notable for their excellent spatial sensitivity, up to 140 cycles /
degree in the Golden Eagle Aquila audax, are relatively opaque to UV, with 50% transmissions
ranging from 369 nm to 394 nm in those that have been studied, although this does not include the
Golden Eagle (Reymond 1985; Lind et al. 2013; Potier et al. 2016). In humans, a drop in potential
visual acuity has been documented in pseudophakic individuals who have intraocular lenses that do
not absorb UV, although intraocular lenses may introduce retinal images that do not occur in the
phakic eye (Rog et al. 1986). On the other hand, the potential spatial resolution of the King Penguin
eye (20.40 cycles / degree in water) is only marginally greater than that of the Little Penguin (17.07-
17.46 cycles / degree in water), despite its greater size, because of a lesser ganglion cell density
(Coimbra et al. 2012). Of course, this resolution was based on morphological ganglion cell counts
rather than actual measurements of acuity so may not reflect the true spatial sensitivity.
urthermore, UV transmission is of less relevance underwater, the environment in which penguins
forage, because it is more rapidly attenuated than are wavelengths in the visible spectrum (Williams
1973). Attenuation also increases with depth, which suggests it may be even less relevant in the
deeper diving King Penguin than in the Little Penguin, although the latter forage in more estuarine

waters where UV attenuation is higher (Zielinski 2013).

Limitations and further work

We suspect there is an artifactual drop-off in the transmission of the left lens of G1, particularly
above 50% transmission, given that the rise in shortwave transmission is less rapid above this point
than in the King Penguin despite a much lower Ao and a substantially lower Aso. This could be due
to a greater separation of the tissue from detector in the USB2000+ by mistake, increasing chromatic
aberration which is more significant at shorter wavelengths. This could also have been the reason
why the reading from the right lens was not credible. There was also a dip in transmission at 410 to

420 nm in the cornea of G2 and in the vitreous of all animals. 420 nm is an absorption peak of
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oxygenated hemoglobin, and we speculate that some tissues may have been contaminated by blood
when they were dissected out and placed in the spectrometer. Such contamination may mean that
the Aoo measurements are less reliable than the others, particularly in the case of the cornea of G2

and the lens of G1.

In the future, more individuals per species across different ages could be tested to confirm these
results and, for those species that can see UV, experimental behavioural protocols should be
designed to confirm the use of potential UV cues. In addition, more species of penguin could be
studied to determine if the apparent relationship between size and UV transmission in these three
species of penguin is consistent across the family. For instance, it would be useful to know whether
the lens of the larger Emperor Penguin blocks UV light, given that it shares the same lineage as the
King and UV reflection off the beak has been demonstrated (Jouventin et al. 2005). It would also be
interesting to understand if Galdpagos (Spheniscus mendiculus) or African (Jackass, Black-footed,
Spheniscus demersus) penguins, which inhabit yet lower latitudes than the Little Penguin, transmit
UV to a similar extent to that observed in the similarly sized but subantarctic Gentoo Penguin. It
would also be useful to correlate behaviour and vision between species with different UV
transmissions, for instance in mate choice. Previous authors have speculated that, since the UVS
form of the SWS opsin is ancestral, a lens that transmits UV may also be ancestral (Olsson et al.
2021). Investigation of the spectral transmission of oil droplets in the retina would also be
instructive, as light passes through them before being detected by cone photoreceptor outer
segments. The King Penguin retina has been found to contain only pale green droplets, similar to
nocturnal birds. This may reflect a habitat of little colour and their need to see well at depth in a
dark sea, necessitating maximisation of retinal sensitivity. Maximal absorption of these droplets was
between 500 and 600 nm; the absorption in UV wavelengths was not measured but it was
approximately 0.35 at 400 nm (Gondo and Ando 1995). Humboldt Spheniscus humboldti and
Rockhopper Eudyptes chrysocome penguins were found to have droplets of four different colours,

similar to diurnal birds and potentially because they live in areas with vegetation (Gondo and Ando
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1995). The closer phylogenetic relationship (Cole 2022) and, for the Little Penguin, habitat similarity
might suggest that Gentoo and Little penguin oil droplets may be more akin those in Humboldt and
Rockhopper penguins than to those in King Penguins. However, they have not been examined in this
regard and the similarly related Magellanic Penguin Spheniscus magellanicus was found to possess
yet different droplets (Suburo and Scolaro 1999). Finally, cataract is known to be associated with UV
exposure (Delcourt et al. 2014). Although UV radiation has been shown to cause cataract in Sprague-
Dawley rats (Michael et al. 1998), where it is unlikely that the lens constitutes an additional barrier
to UV transmission over and above the cornea (Douglas and Jeffery 2014), it would be useful to
know if absorbing this energy in the lens rather than transmitting it increases the risk of cataract; if
this was the case, there may be a relationship between lack of UV transmission and increased
incidence of cataract. On the other hand, absorbing UV in the lens may reduce the risk of UV-

induced retinal damage (Meyer-Rochow 2000).

Conclusions

Because of the UV absorbing characteristics of the King Penguin lens, its ability to perceive UV will be
poor and well-nigh impossible below 370 nm. Gentoo and Little penguins, on the other hand, can
perceive near UV light almost down to 300 nm, near the transmission cut off of the cornea and
biological tissues in general. Therefore, UV reflectance should be of much lesser importance in the

behaviour of the King Penguin than of its smaller relatives.
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Table legends

Table 1 Demographic data of penguins with, in brackets, the names and / or identification numbers,
where known, for each penguin. Fresh means the ocular examination was completed within 6 hours
of death, without being stored in any medium

Table 2 The wavelength at which transmission reached 10% (A10), 50% (As0) and 90% (Ago) of the
transmission at 700 nm for each of the cornea, lens and whole eye. Footnotes: a. The A1 values
were unable to be calculated as the eyes never recorded less than 10% transmission even at the
lowest wavelength tested, 230 nm. b. The whole eye of the Gentoo Penguin was not examined
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Figure legends

Fig. 1 The 3D printed box in which the eye or components thereof were placed, to measure their
spectral transmission using the Oceans Optics USB2000+ instrument. The fiber optic cables
delivering the xenon light source (left) and the receiver (right) were screwed in at opposite ends. A
lid was placed on top to eliminate room light while the experiment was undertaken

Fig. 2 The tray in which the eyes were placed to be examined by the SpectraMax 13x, in this case the
left and right eyes of Little Penguin Eudyptula minor L1. Note the tissue paper holding the eye stable
and central

Fig. 3 Averaged transmission of light through the cornea of Little (Eudyptula minor), Gentoo
(Pygoscelis papua) and King (Aptenodytes patagonicus) penguins L1, G2 and K1. Note a dip in
transmission maximum around 400-420 nm in G2. Created with Microsoft 365® Excel

Fig. 4 Averaged transmission of light through the lens of Little (Eudyptula minor), Gentoo (Pygoscelis
papua) and King (Aptenodytes patagonicus) penguins L1, G1 (left eye only) and K1. Note that L1
transmits much more of the shorter wavelengths than does K1, while G1 is intermediate between
the two. The rise in shortwave transmission is less rapid in G2, especially above 50%, which may be
the result of methodological error (see discussion). Created with Microsoft 365® Excel

Fig. 5 Averaged transmission of light through the vitreous of Little (Eudyptula minor), Gentoo
(Pygoscelis papua) and King (Aptenodytes patagonicus) penguins L1, G2 and K2. Created with
Microsoft 365® Excel

Fig. 6 Averaged transmission of light through all ocular structures anterior to the retina of Little
(Eudyptula minor) and King (Aptenodytes patagonicus) penguins L1 and K1. There is greater
transmission of short wavelengths through L1 than K1. The shape of each curve most closely
approximates that seen with transmission through the lens alone. Created with Microsoft 365® Excel
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Table 1

Penguin Age at Sex Preservation Lens Equipment used | Tissue examined
identification examination prior to transparency
(years) examination

Little Penguins

(Eudyptula

minor)

L1 (LP1, Adult Unknown | Fresh Clear SpectraMax 13x 2 eyes: cornea, lens,

B80231) vitreous and whole
eye

Gentoo

Penguins

(Pygoscelis

papua)

G1 (Goose, 7 weeks Unknown | Fresh Clear USB2000+ 1 eye: lens

G120)

G2 (Twinkles, 26 years Female Fresh Mild nuclear | SpectraMax 13x 2 eyes: cornea and

G194) cataract vitreous

King Penguins

(Aptenodytes

patagonicus)

K1 (Berta, K191) | 23 months Unknown | Fresh Clear USB2000+ 2 eyes: cornea, lens
and whole eye

K2 (Maggie, 32 years Female 24 hours Moderate SpectraMax 13x 2 eyes: vitreous

K155) refrigeration cataract
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Cornea

Lens

Vitreous

Whole eye

Gentoo Penguin

Pygoscelis papua
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Vitreous light transmission
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