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Abstract: Endocytosis is one of the major ways cells communicate with their environment. This
process is frequently hijacked by pathogens. Endocytosis also participates in the oncogenic transfor-
mation. Here, we review the approaches to inhibit endocytosis, discuss chemical inhibitors of this
process, and discuss potential clinical applications of the endocytosis inhibitors.

Keywords: clathrin-mediated endocytosis; clathrin-independent endocytosis; cell-penetrating
peptides; inhibitors of endocytosis

1. Introduction

Endocytosis is a complex process that plays a crucial role in the regulation of numerous
intracellular signaling cascades, cell migration, and antigen presentation, among others.
Cell sensitivity to certain ligands is modified by the endocytosis of receptors from the
membrane surface [1]. Endocytosis results in the formation of membrane vesicles, which
transport a variety of cargo molecules from the plasma membrane of eukaryotic cells to the
cytoplasm. The cargo consisting of transmembrane proteins and their ligands are involved
in a wide range of physiological processes, including cell signaling, nutrient uptake, devel-
opmental regulation, and cell adhesion [2]. The most well-recognized endocytosis pathway
is clathrin-mediated endocytosis (Figure 1). Clathrin forms a framework for vesicles with
cargoes attached to specific receptors; it mediates a large proportion of endocytosis events.
However, some cells are capable of clathrin-independent endocytosis [3]. Depending on
the involvement of specific proteins or lipids and the ability to internalize specific cargoes,
we can divide clathrin-independent endocytosis into several types that we will discuss
below [4]. Pathogens can also enter the cell by endocytosis. For infection to occur, viruses
must first bind to the outer membrane. This interaction might be nonspecific or occur via
viral receptors; it promotes the pathogen entry by initiating conformational changes in the
virus itself, activating signaling pathways, and inducing endocytosis [5–7]. Endocytosis
is also affected in different human pathologies, including cancer, where the deregulation
of multiple endocytic proteins and pathways favors metastasis (reviewed in [7]). Endo-
cytosis dysfunction occurs in other pathological conditions, such as heart diseases [8],
lipid disorders [9], and atherosclerosis [10], which are undeniably the main contributors to
human mortality worldwide. Endocytosis disturbances are also observed in lung diseases
characterized by increased contractility, such as asthma and chronic obstructive pulmonary
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disease (COPD) [11]. Currently, a new therapeutic approach, the delivery of exogenous
RNA, has been introduced. Delivery of drugs can be improved by using nanoparticles that
enhance endocytosis [12,13]. Endocytic inhibitors were first developed to study this pro-
cess; currently, these inhibitors are proposed as a potential treatment for some pathologies.
Here, we review the basic notions of endocytosis and summarize the data on endocytosis
inhibitors and their potential use in clinical practice.
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2. Mechanisms of Endocytosis
2.1. Clathrin-Mediated Endocytosis (CME)

In mammals, the AP-complex family consists of five members, but only adaptor
protein complex 1 (AP-1) and AP-2 produce clathrin-coated vesicles (CCV) [14], while the
other four AP complexes do not cooperate with clathrin. Beginning with the recognition of
short sequence motifs in their cytoplasmic domains, monomeric adaptins and AP-2 bind to
the cargo proteins to initiate CME [15]. Some cargo proteins are endocytosed constitutively,
while others need to be altered to remove a steric barrier to the binding sequence motif. AP-
2 recruits a clathrin heavy chain (CHC), which binds to several monomeric adaptor proteins.
The affinity of AP-2 for binding to plasma membranes requires conformational changes
in the complex and its subunits. The phosphorylation of its 2-adaptin subunit supports
this conformational shift. The conformational change enables cargo protein binding as well
as PI-4,5-P2 binding of its α-, β2, and µ2-adaptins. All of these interactions help clathrin
attach to the plasma membrane with high affinity and stability [16]. Subsequently, BAR
proteins (Bin-Amphiphysin-Rvs) initiate the recruitment of dynamin that forms a helical
loop, which, following GTP hydrolysis, splits the membrane and releases the vesicle [17].

2.2. Caveolae-Dependent Endocytosis

Caveolin1 (Cav-1) is important for caveolae formation, and approximately
100–200 molecules of Cav-1 are included in a single caveolar coat [18] of 14–16 monomers [19].
Caveolae form in the Golgi complex where Cav-1 oligomerizes and binds cholesterol and
fatty acids, which stabilize caveolae formation [20,21]. Cav-1 moves more freely in the
plasma membrane, and caveolin flattens due to the decreased cholesterol levels [22]. Plasma
membrane bending and stabilization of caveolar invaginations depend on pacsin2, ATPase
EHD2, and EHD2 binding partner (EHBP1). The BAR protein FBP17 is necessary for the
formation of caveolae rosettes in the plasma membrane. ER/Golgi-level phosphorylation
of caveolae membranes might be controlled by the development of Cav-1-dependent do-
mains [23]. Phosphorylation of caveolae membranes at the ER/Golgi level might regulate



Cells 2023, 12, 2312 3 of 32

Cav-1-dependent domain formation. [18]. Caveolae separation and its intracellular traffick-
ing are aided by the removal of EHD2 from the caveolar neck. This process also involves
dynamin and intersectin [24,25] (Figure 2).
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2.3. CLIC/GEEC Endocytosis

CLIC (clathrin-independent carrier)/GEEC (GPI-AP enriched early endosomal compart-
ment) endocytosis is clathrin- and dynamin-independent. The glycosylphosphatidylinositol-
anchored proteins (GPI-APs) enter a specialized early endosomal compartment through an
endocytic pathway independent of dynamin to form GEECs by the fusion of CLICs, which
originate directly from the cell surface [26]. The CLIC/GEEC endocytosis has cargoes
similar to caveolae-dependent endocytosis (e.g., bacterial cholera toxin, hyaluronic acid
receptor CD44, CD59, and Thy-1 GPI-anchored proteins). This pathway requires Cdc42,
whose functions include promoting actin polymerization [27]. Members of the Rho family
of small G proteins are extensively involved in endocytic regulation, as well as in the
control of cytoskeletal changes and signaling events in the cell [28]. RhoA and Cdc42 bind
to lipids and preferentially to cholesterol-enriched membranes [29] (Figure 3).

2.4. IL2Rβ Pathway

The clathrin-independent pathway responsible for β chain of the interleukin 2 (IL2Rβ)
internalization appears to be dynamin-dependent. This process involves small G proteins
RhoA and Rac1. Cargo internalizes via small noncoated invaginations. Both GPI-related
proteins and the IL2Rβ receptor are enriched in detergent-resistant membrane fractions,
while cholesterol withdrawal eliminates the endocytosis of both [30,31]. The GPI-related
proteins, IL2Rβ receptor, some flotillin-associated receptors, and amyloid precursor pro-
teins use this route. This process is regulated by an IL-2R-activated PI3P signaling cascade
that activates RhoA and Rac1, then p21-activated kinase 1 (Pak1) phosphorylates cortactin
to promote its association with N-WASP. The complex of cortactin, N-WASP, and Arp2/3 is
recruited and activated by this cascade, and F-actin is then produced [31] (Figure 4).



Cells 2023, 12, 2312 4 of 32
Cells 2023, 12, x FOR PEER REVIEW 4 of 34 
 

 

 

Figure 3. CLIC/GEEC endocytosis. 

2.4. IL2Rβ Pathway  

The clathrin-independent pathway responsible for β chain of the interleukin 2 

(IL2Rβ) internalization appears to be dynamin-dependent. This process involves small G 

proteins RhoA and Rac1. Cargo internalizes via small noncoated invaginations. Both GPI-

related proteins and the IL2Rβ receptor are enriched in detergent-resistant membrane 

fractions, while cholesterol withdrawal eliminates the endocytosis of both [30][31]. The 

GPI-related proteins, IL2Rβ receptor, some flotillin-associated receptors, and amyloid pre-

cursor proteins use this route. This process is regulated by an IL-2R-activated PI3P signal-

ing cascade that activates RhoA and Rac1, then p21-activated kinase 1 (Pak1) phosphory-

lates cortactin to promote its association with N-WASP. The complex of cortactin, N-

WASP, and Arp2/3 is recruited and activated by this cascade, and F-actin is then produced 

[31] (Figure 4). 

 

Figure 4. IL2Rβ pathway. 

Figure 3. CLIC/GEEC endocytosis.

Cells 2023, 12, x FOR PEER REVIEW 4 of 34 
 

 

 

Figure 3. CLIC/GEEC endocytosis. 

2.4. IL2Rβ Pathway  

The clathrin-independent pathway responsible for β chain of the interleukin 2 

(IL2Rβ) internalization appears to be dynamin-dependent. This process involves small G 

proteins RhoA and Rac1. Cargo internalizes via small noncoated invaginations. Both GPI-

related proteins and the IL2Rβ receptor are enriched in detergent-resistant membrane 

fractions, while cholesterol withdrawal eliminates the endocytosis of both [30][31]. The 

GPI-related proteins, IL2Rβ receptor, some flotillin-associated receptors, and amyloid pre-

cursor proteins use this route. This process is regulated by an IL-2R-activated PI3P signal-

ing cascade that activates RhoA and Rac1, then p21-activated kinase 1 (Pak1) phosphory-

lates cortactin to promote its association with N-WASP. The complex of cortactin, N-

WASP, and Arp2/3 is recruited and activated by this cascade, and F-actin is then produced 

[31] (Figure 4). 

 

Figure 4. IL2Rβ pathway. Figure 4. IL2Rβ pathway.

2.5. Arf6-Dependent Endocytosis

Arf6 is a GTPase found in membranes and endosomal compartments [32]. Arf6 regu-
lates endocytic membrane trafficking and thus affects cell motility, cell division, and lipid
homeostasis. Arf6 is also associated with actin remodeling and facilitates ligand inter-
nalization at the cell surface, endosomal recycling, and fusion of endosomal and plasma
membranes [33]. Arf6 is involved in PIP metabolism, and the effects of its inactivation
on AP-2 membrane binding are implicated in a distinct endocytic pathway [34,35]. Actin
filaments are required for this process [36], and Arf6-dependent endocytosis is sensitive to
cholesterol reduction [37]. The entering endosomes quickly fuse with sorting endosomes
that are Rab5-positive to determine if the cargo will be recycled or destroyed. Arf6 over-
expression traps cargo in internal vacuolar structures covered with PIP2. Thus, the Arf6
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inactivation is necessary immediately after internalization for sorting endosomal cargo [38]
(Figure 5).
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2.6. Flotillin-Dependent Endocytosis

Flotillin proteins can be found oligomerized in separate membrane domains. Struc-
turally, they possess homology with Cav-1, suggesting that they might organize lipids in a
manner similar to caveolae. The flotilla1- and 2-positive domains contain ~95 molecules of
each flotillin protein and are morphologically similar to caveolae. [39]. Flotillin1 is required
for dynamin-dependent but clathrin- and caveolin-independent uptake of proteoglycans
from the cell surface [40]. The flotillin-dependent endocytosis is regulated by Src family
tyrosine kinase Fyn. The GGA family adaptors may be involved in the flotillin-mediated
sorting of endosomal cargo [41]. Flotillin1 and flotillin2 generate membrane curvature,
the formation of invaginations and buds with some properties of lipid rafts, and the ac-
cumulation of intracellular vesicles. The number of flotillin1 increases in early endocytic
vesicles after fluid-phase uptake of cargo. Fyn and EGF are involved in the modulation
of this pathway. The flotillin1 depletion partially reduced the absorption of anti-CD59
antibodies [41,42] (Figure 6).

2.7. Phagocytosis

Phagocytosis is triggered by the binding of a particle or a microorganism to surface
proteins or by specific receptor interactions. At the site of ingestion, actin polymerization
occurs after binding; this results in a widespread plasma membrane deformation into
extensions. When cargo is engulfed, a tight-fitting membrane encircles it and continues
to wrap around it until scission from the plasma membrane Actin filaments start to de-
polymerize from the phagocytic cup’s base once the particle has been absorbed; this causes
the cup to form a membrane-bound vacuole known as the phagosome. Dynamin 2 is
required for the phagocytic cup expansion. The maturation of the phagosome involves the
acquisition of Rab GTPases, microtubule-dependent trafficking through dynein/dynactin,
recruitment of components of the autophagosomal machinery, and selective retrieval of
membrane-associated components. The mature phagosome fuses with the lysosomes
and forms a phagolysosome [43,44]. This process depends on small G proteins in the
clathrin-independent internalization of opsonized particles. After binding of Fc receptors
by antibody constant regions, extensions around the particle are produced in a Cdc42-
dependent manner, and subsequent internalization is Rac1-dependent [45] (Figure 7).
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2.8. Macropinocytosis

Macropinocytosis is both a Rac1- and actin-dependent process [46,47]. The actin
filament polymerization at the cell membrane results from a signal-induced receptor acti-
vation, pushing the membrane forward and causing ruffles. Several ruffles fold inwards
and join with the basal membrane to form membrane vesicles, which trap extracellular
fluid. They move centripetally in the direction of the lysosome, and then they fuse with
the lysosome for enzymatic degradation [46,48]. Serine/threonine-protein kinase (PAK1)
is essential for inducing this process [49]. PAK1 binds Rac1, which causes activation of
the complex [50]. The activity of phosphatidylinositol-3-kinase (PI3KC3), Ras, and Src
also promotes macropinocytosis, presumably following receptor binding. The involve-
ment of histone deacetylase 6 (HDAC6) and its substrate HSP90 in this process is also
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described [47,51], although the mode of their involvement remains unclear. Macropinocy-
tosis is dependent on cholesterol, which is required for the recruitment of activated Rac1 to
these sites [52] (Figure 8).
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2.9. Fast Endophilin-Mediated Endocytosis (FEME)

A clathrin-independent endocytic pathway known as FEME is regulated by endophilin,
a BAR domain protein [53]. When particular G-protein-coupled receptors (GPCRs) are acti-
vated by their ligands, tubulovesicular carriers rapidly form at the plasma membrane. These
carriers internalize GPCRs and move toward the perinucleolar region [54]. PI3KC2/Akt sig-
naling is necessary for FEME as phosphorylation of phosphatidylinositol-4,5-bisphosphate
(PIP2) is required to produce PIP3. Lamellipodin is recruited by PIP3 dephosphorylation
back into PIP2 by the SHIP phosphatases, which then bind endophilin. The SH3 domain of
endophilin binds to cargo receptors, the BAR domain causes membrane curvature, and the
numerous membrane helices facilitate membrane scission in collaboration with dynamin
and actin [55] (Figure 9).

It should be noted that the ratio of clathrin-dependent and clathrin-independent
endocytosis can differ depending on the cell type, specific functions, and certain signaling
pathways. This leads to differential modulation of intracellular events depending on the
signals received [6]. The process itself is not identical in every cell, and its flexibility is
represented by the diversity of adaptors and accessory proteins used in the transport of
various molecules via the membrane, as discussed above.
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3. Endocytosis and Pathologies
3.1. Cardiac Disorders

Caveolin-dependent endocytosis disruption is essential at the onset of cardiac diseases.
The cardiovascular system has a significant expression of Cav-1 and Cav-2. Cav-1, which is
extensively expressed in endothelial cells, is necessary for the development and upkeep of
caveolae in non-muscle cells. This protein controls vascular development and remodeling,
calcium concentration, endothelial nitric oxide synthase (eNOS), and nitric oxide (NO)
levels [56].

G-protein-coupled receptors, tyrosine kinases, and signaling enzymes are all caveolin-
associated proteins. Consequently, Cav-1 may mediate a variety of cellular consequences [57,58].
Nitric oxide synthase (NOS) plays an important role in the cardiovascular system. eNOS,
which catalyzes the conversion of L-arginine to L-citrulline and NO, generates the constitu-
tive vasodilator NO [59–62].

In contrast, the Cav-1 CSD peptide had no effect on animals lacking eNOS, suggesting
that CSD peptides may control vascular disease by way of other proteins [58,63]. Cav-
1 peptide injection preserved left ventricular function after reperfusion in isolated rat
hearts [64]. Increased NO production and decreased immune cell adhesion were noted,
and this was related to the suppression of PKC, a Cav-1-regulated protein that blocks eNOS
action [65,66]. Cav-1-deficient animals with hyperactivated ERK 1/2 signaling displayed
cardiac hypertrophy [67]. Cav-1-deficient mice also display right ventricular hypertrophy
and dilated left ventricles [68].

3.2. Lipid Disorders and Atherosclerosis

Lipid disorders and atherosclerosis result from defects in clathrin-dependent endocy-
tosis. Throughout their metabolism, all lipoproteins undergo endocytosis to be degraded
intracellularly or to be re-secreted [69]. The identification of low-density lipoproteins (LDL)
and the discovery of their transcriptional regulation subsequently led to the development
of statins. New factors limiting the intracellular trafficking of LDL and the LDL receptor
continue to be discovered as targets for drugs such as Convertase Subtilisin/Kexin Type 9
(PCSK9) [70], IDOL [71], and COMMD/CCDC22/CCDC93 (CCC) [72].

Endocytosis of LDL and residual lipoproteins, as well as the subsequent intracellular
accumulation of cholesterol in macrophages, is a key step in the genesis of atheroscle-
rosis [73]. Vascular smooth muscle cells (VSMCs) can migrate from the arterial center
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with trapped lipoproteins [74,75]. Moreover, VSMCs contribute to as much as 50% of
foam cells in intermediate atherosclerotic lesions of coronary arteries. Experiments in
mice have revealed that about 30% of all cells in atherosclerotic plaques are derived from
VSMCs [76–78]. The acquisition of the macrophage phenotype [78–81] and subsequent
transformation into foam cells represents an important early step in the development of the
disease. An important stage in the development of atherosclerotic plaque, perhaps even
before the formation of monocyte-derived foam cells [82], may be induced by cholesterol
loading [83,84] and is probably dependent on lipoprotein endocytosis in vivo. Foam cells
express several markers that are also characteristic of macrophage-derived foam cells [76].

3.3. Respiratory Diseases

Impaired caveolin-dependent endocytosis may underlie respiratory disorders. Cav-1
immunoreactivity was observed in tracheal and bronchial epithelial cells, smooth mus-
cle, vascular endothelium, airway fibroblasts, and AT1 cells but was absent in AT2 cells
and airway epithelial cells in small rat bronchi. Caveolin-2 immunoreactivity showed a
similar distribution pattern [85]. Mice lacking caveolin-1 and caveolin-2 have severe lung
abnormalities [86–88], and abnormal caveolin-1/2 expression is involved in idiopathic
pulmonary fibrosis, lung cancer, and pulmonary hypertension [89–91].

Obstructive airway diseases, like asthma or COPD, are characterized by airway hyper-
responsiveness to inhaled and endogenous bronchoconstrictors [11], accompanied in part
by abnormalities in airway smooth muscle spasms [92–95]. In vitro, caveolin-1 expression
increases when airway smooth muscle cells mature to a contractile phenotype [96]. More-
over, the number of caveolae on smooth muscle cells is highest in mature myocytes [97,98].
These observations suggest an important role for caveolin in regulating contractile function.

Caveolins play important roles in mesenchymal cell proliferation. Reducing or silenc-
ing Cav-1 expression induces spontaneous proliferation of fibroblasts and smooth muscle
cells [96,99,100]. Conversely, overexpression of Cav-1 induces cell cycle arrest and inhibits
growth-factor-induced proliferation of smooth muscle cells [101–103]. In addition, airway
smooth muscle cells and fibroblasts that are in the G0/G1 phase increase endogenous
expression of Cav-1 [96,99,100]. Altogether, these data suggest a strong antimitogenic role
for caveolin-1 in airway mesenchymal cells, suggesting that abnormal caveolin-1 expression
might be involved in fibroproliferative lung diseases.

3.4. Cancer

CME, through its effect on signal transduction, is an important player in oncogenesis.
This is indicated by the discovery of complex biological mechanisms by which endocytosis
may be involved in cell proliferation [104]. Among these is the presence of genetic muta-
tions that involve endocytic proteins in leukemia [105]. The final effect of endocytosis is the
posttranslational ubiquitination of endocytic proteins and receptors from the membrane
surface as a sorting signal in this pathway [106]. During ubiquitination, a small peptide
called ubiquitin is attached to selected proteins by ubiquitin ligases or E3 enzymes. When
the ubiquitin in the substrate forms the appropriate chain length, the protein is targeted for
proteasomal degradation [107]. However, a single ubiquitin molecule attached to the sub-
strate can perform a signaling function by interaction with ubiquitin-binding domains [106].
Receptor tyrosine kinases, such as the EGFR, have single ubiquitin molecules at multiple
sites, which is sufficient for endocytosis and receptor degradation to occur [108]. RTK
becomes monoubiquitinated using the E3 ligase Cbl, which acts as an adaptor protein.
Interestingly, Cbl transformation and modulation of endocytosis induced by this protein
might be involved in oncogenesis [109].

The connection between tumor progression and clathrin-mediated endocytosis was
demonstrated by Bao and Yarden, who revealed that active Src, which is a non-receptor
tyrosine kinase [110], promotes Cbl destruction. Proteasomal degradation of Cbl was pro-
moted through its tyrosine phosphorylation and polyubiquitination, resulting in increased
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EGFR expression. Increased Src activity and, consequently, increased surface expression
and EGFR signaling occur in tumors [111].

Inhibition of endocytosis is a new promising enhancement of cancer immunotherapy.
The antitumor/antipsychotic drug prochlorperazine reversibly inhibits in vivo endocy-
tosis of membrane proteins targeted by therapeutic monoclonal antibodies cetuximab,
trastuzumab, and avelumab. Temporary inhibition of endocytosis results in an increased
target availability and enhanced efficiency of antibody-dependent cellular cytotoxicity
(ADCC) [112] (Table 1).

Table 1. Pathologies related to endocytosis.

Pathology Type of Endocytosis Ligands and
Receptors Molecular Mechanism References

Cardiac disorders Caveolin-dependent
eNOS, Cav-1, PCK,

L-arginine, L-citrulline,
ERK 1/2

After attaching to the CSD (caveolin
scaffolding domain), eNOS remains
dormant, which lowers NO
production. The catalytic domain of
eNOS, which is thought to act as the
enzyme’s on/off switch, contains a
putative binding domain for Cav-1.
Cav-1 binding is prevented by
mutagenesis in eNOS, although
Cav-1’s CSD is less effective at
controlling eNOS activity in vivo

[113]

Lipid disorders and
atherosclerosis Clathrin-mediated RhoA, PKC, LDLR,

AP-2, ARH

After binding to the LDL receptor,
LDL particles are internalized by
clathrin-coated pits into vesicles.
Internalization of LDLR requires the
presence of AP-2 protein. LDLR
interacts with AP-2 indirectly
through the adaptor protein ARH.
After the fusion of endocytosed
vesicles with early endosomes, a
drop in pH induces LDL
dissociation from its receptor. LDLR
is recycled back to the surface of the
cell, and LDLs are directed
to lysosomes.

[114]

Respiratory
diseases Caveolin-dependent

HSP90, Gq protein,
Cav-1, Cav-3,

calmodulin, L-arginine,
NO

Caveolins participate in Ca2+

handling in airway smooth muscle.
Caveolins probably promote smooth
muscle contraction by regulating Gq
protein function and
phosphoinositide metabolism. In
addition, recruitment across the
plasma membrane of RhoA and
PKC is dependent on Cav-1.
Negative allosteric modulation of
eNOS by Cav-1 and 3 competes with
positive allosteric modulation of
eNOS by Ca2+/calmodulin and
HSP90 complexes. Thus, in the
presence of elevated levels of
Ca2+/calmodulin and HSP90, the
inhibitory effect of Cav-1 on NOS
activity can be completely reversed.

[115–118]
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Table 1. Cont.

Pathology Type of Endocytosis Ligands and
Receptors Molecular Mechanism References

Cancer Clathrin-mediated Cdc42, Cbl, b-Pix
EGFR, Rac1, Src, RhoA

Cdc42 bound to GTP forms a
complex mediated by the adaptor
protein b-Pix and Cbl. As a
consequence, Cbl cannot react with
EGFR; this promotes ubiquitination
and degradation of the receptor.
Cdc42 belongs to the small GTPase
family, which represents critical
effectors of pathways and
Ras-derived signaling that have a
proven role in tumor cell
invasiveness and metastasis.

[119]

4. Endocytosis of Viruses

Viruses’ small size, simplicity of structure, and absence of self-sustaining metabolic ac-
tivity limit their active entry into host cells. However, they can promote membrane passage
using endogenous cellular responses. At the molecular level, activation of endogenous
cellular responses helps viruses to cross membranes and other barriers and deliver their
genes to the cytosol or the nucleus. To initiate the entry, viruses first need to bind to the
surface of the host cell. This can occur non-specifically through various adhesion factors
(heparan sulfate or other carbohydrate structures) [120]. The use of receptors that actively
promote entry is an alternative pathway. This can be accomplished by altering the viral
particle’s shape through signaling pathways, encouraging endocytosis, or both. Receptors
are essential in defining which cell types can be infected because their interactions with
viruses are quite selective [5]. Viruses are able to utilize more than one kind of receptor; e.g.,
HIV-1 uses both CD4 and chemokine receptors [121]. Interestingly, HIV-1 can also bind to
heparan sulfate, which may promote the initial recruitment of the virus onto vulnerable
cells [120,122].

CME is the most common pathway used by viruses. It transports incoming viruses
along with their receptors to early and late endosomes. This process is usually rapid
and efficient [123]. Most viruses enter through coated pits, which accumulate under the
membrane-bound virus particles. For virus endocytosis to occur via a CME, induction of
transmembrane signaling between the virus and the receptor is required [124]. However, it
is unclear whether this process is initiated by the recruitment of clathrin coat components
to the clustered cytoplasmic domains of viral receptor proteins or by a more complex
signaling cascade leading to clathrin recruitment. Entering virions are exposed to the acidic
environment of endosomes within minutes after internalization, and changes in pH can
lead to viral penetration. However, in some cases, such as Ebola virus and SARS-CoV [125],
acidic pH alone is not sufficient to induce fusion, and proteolytic cleavage of viral proteins,
particularly via cathepsin L and B, is necessary [126–128].

Capsids of SV40 and related polyomaviruses consist of 72 homopentamers, which
are similar to the pentamers of the B chain of cholera toxin [129,130]. Both cholera toxin
and these polyomaviruses enter cells through caveolar pathways dependent on cholesterol
and activation of signaling cascades [131–134]. Dynamin 2, actin, caveolin-1, and Rho
GTPases are involved in the activation of this pathway, depending on the virus and cell
type [135]. SV40 internalization by caveolin-dependent endocytosis is regulated by at
least five different kinases [136]. Inhibiting them, especially tyrosine kinases, results in a
significant reduction in cell infection [135].

A pathway by which a virus can enter into a cell can differ depending on the cell type.
Pathways depend on host cell kinases, dynamin, Rac, Rab, and Arf family GTPases, actin
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and tubulin, and cholesterol [137]. Thus, viruses such as SV40 and influenza can use several
different pathways, allowing them to infect a wide range of cells under different conditions.

5. Endocytosis of Cell-Penetrating Peptides

The ability to produce cell-penetrating peptides (CPPs) is shared by a number of
viruses. Proteins, peptides, siRNAs, and plasmid DNA can all be successfully delivered
into cells using CPPs [138]. Typically, these peptides include 5 to 30 amino acids [139].

Depending on the physicochemical characteristics of both the CPP and its cargo, differ-
ent pathways can be used for CPP uptake [138]. Most of the time, endocytosis takes place
in physiological settings and at low peptide concentrations. CPPs can directly cross the
cellular membrane at greater concentrations [140]. Full-size and unconjugated HIV-1 Tat
peptide, oligo-arginines, as well as anionic CPPs (i.e., MPGα/siRNA complexes, NickFect1
stearylated transportan 10 (TP10) analog), use CME [138]. Caveolae-mediated endocyto-
sis is used by Tat fusion proteins [141], proline-rich CPPs [142], stearylated transportan
analogs [143], amphipathic azurin fragments p18 and p28 [138], and N-terminus of VP1
from chicken anemia virus (CVP1) [144]. Octa-arginine (R8) and Tat provoke actin rear-
rangement in the initial moments of interaction with cell membranes. Macropinocytosis
participates in the transport of arginine-rich CPPs such as R8 [145], nona-arginine (R9),
dodeca-arginine (R12), Tat peptides and Flock House Virus-derived peptide [146–149].

Constitutive synthesis of HIV regulatory proteins in infected brain cells may lead to
neurological disorders since combinational antiretroviral treatment (cART) does not sup-
press the expression of HIV non-structural proteins. Despite the fact that HIV-1 replication
is efficiently regulated, people with HIV-1 experience chronic inflammation, which suggests
that processes other than viral replication are to blame for these individuals’ neurological
problems. [150]. Chronic low-level Tat production has been associated with ceramide accu-
mulation, synaptic and axonal degeneration, astrocyte activation, inflammatory cytokine
release, and decreased brain function [151].

6. Endocytosis of Nanoparticles

Nanotechnology improves overcoming limitations of conventional compounds, such
as the insufficient ability to move across membranes or particle distribution. Nanoparticles
(NPs) enhance the stability and solubility of compounds and increase the drug’s residence
time in circulation. NPs enter cells by endocytosis and accumulate mainly in lysosomes
and mitochondria, impairing their physiological functions. The uptake of nanoparticles
into the cell depends on a number of physical parameters [152].

Particle size is clearly one of the critical parameters in endocytosis. Caveolin-based
vesicles generally are smaller (average 60 nm) compared to clathrin-based vesicles (av-
erage 120 nm); therefore, larger NPs are taken up by cells via the clathrin-dependent
pathway. Particles larger than 4500 nm enter cells only by phagocytosis or macropinocy-
tosis, while other endocytosis mechanisms are limited in cargo size, with a maximum of
~200–300 nm [153].

Nanoparticle shape also affects its uptake by the cell. Differences in cell membrane
curvature, reduction of available receptor binding sites, uneven protein coverage, and lack
of multivalent binding to receptors are involved [154].

The surface charge of NPs affects their behavior in biological environments. The
surface charge of NPs may depend on biomolecules adsorbed on the surface or on the
pH of the environment. The internalization of cationic NPs is more efficient compared to
neutral and anionic NPs [155,156]. Further information on the endocytosis of nanoparticles
can be found elsewhere [157,158].

7. Endocytosis Inhibitors: Mode of Action

To better understand different types of endocytosis, scientists have looked for ways to
block this process using non-specific and specific chemical inhibitors as well as genetically
engineered cells or organisms carrying endocytic genes or protein knockouts.
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7.1. Non-Specific Endocytosis Inhibitors
7.1.1. Potassium Depletion

Endocytosis can be arrested by intracellular K+ depletion. When intracellular K+
levels fall below a threshold of 40% of the physiological values, the surface binding of LDL
and EGF is not altered, but the internalization of ligands is severely inhibited. The arrest of
endocytosis, in this case, is associated with a significant reduction in the number of coated
pits and an apparent decrease in the presence of clathrin on the cell membrane. Subsequent
addition of KCl to the culture medium restores intracellular K+ levels and endocytosis and
leads to clathrin apparition in CCPs [159].

7.1.2. Hypertonic Medium

Hypertonic medium inhibits receptor-mediated uptake of peptides without affecting
macropinocytosis by multinucleated leukocytes. Cells in a hypertonic environment do not
accumulate the peptide; however, cells still form and process endosomes containing liquid
phase markers. This inhibition is independent of the solvent: sodium chloride, sucrose,
and lactose inhibit uptake to a similar degree. The hypertonic medium had little effect on
saturated peptide binding; however, it prevented the clustering of surface molecules [160].

7.1.3. Cytosol Acidification

A mutant fibroblast cell line lacking the Na/H+ transporter was used to investigate
the effect of low cytoplasmic pH on membrane transport in the endocytic and exocytic
pathways. Cells were acidified from pH 6.2 to 6.8 for 20 min. Acidification of the cyto-
plasm does not affect intracellular ATP levels or the number of clathrin-coated pits on
the cell surface. However, acidification of the cytoplasm below pH 6.8 blocks the uptake
of fluid phase markers, as well as the internalization and recycling of transferrin. Both
macropinocytosis and receptor-induced endocytosis restart when the pH of the cytoplasm
returns to physiological values. Low cytoplasmic pH also inhibits the rate of intracellular
transport from the Golgi complex to the plasma membrane. Acidification of the cytosol
to pH < 6.8 reversibly inhibits membrane transport of vesicular stomatitis virus (VSV) by
both endocytic and exocytic pathways. Clathrin- and non-clathrin-coated vesicles, which
are involved in endo- and exocytosis, cannot detach from the cell surface below the critical
internal pH value [161].

7.1.4. Temperature Decrease

A decrease in temperature is a universal inhibitor that suppresses the process of
endocytosis and exocytosis. Using a line of rabbit alveolar macrophages with an inflection
point at 20◦, the endocytosis of labeled serum albumin and the exocytosis of labeled
lysine were examined at various temperatures. Below 10◦, no ligand degradation was
noticed [162].

7.2. Clathrin Inhibition

Clathrin is a protein used in clathrin-dependent endocytosis [163,164], mitosis, or
recycling of synaptic vesicles [165,166]. Its activity is determined by the formation of a
complex called triskelion, which consists of three heavy chains of clathrin, each linked to a
light chain. The three arms of the triskelion are flexible to allow the formation of various
diameter vesicles by polymerizing units [167]. Two human clathrin heavy-chain isoforms
have been identified: CHC17, which is important in membrane maintenance and mitosis,
and CHC22, which is mostly present in skeletal muscle. The amino acid homology between
the two isoforms is 85%. The CHC17 form can interact with two light clathrin chains that
are 60% homologous to one another [168]. During these interactions, the hydrophobic rests
of the light chains turn toward the heavy chains. The C-terminal is located near the apex of
the triskelion [169]. The inhibitors reviewed in this section do not have a clearly defined
capture point but have proven activity against clathrin.



Cells 2023, 12, 2312 14 of 32

Six segments make up the heavy chains of clathrin: proximal, knee, distal, ankle,
linker, and terminal domain. For a discussion of terminal domain inhibition, which is the
main target for developing inhibitors, see Section 7.3.

7.2.1. Bolinaquinone (BLQ)

The natural marine hydroxyquinone terpenoid bolinaquinone (BLQ) placed on a
carrier, after modification by adding the a,o-diaminopolyethylene glycol chain (Figure 10),
inhibits CME. BLQ inhibitory effect on CME was confirmed using microscopy and flow
cytometry in direct proportion to the dose [170].
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7.2.2. Ikarugamycin (IKA)

Streptomyces phaeochromogenes is the source of ikarugamycin. IKA was formerly cate-
gorized as an antiprotozoal chemical but is now a widely used antibiotic. IKA prevents
the uptake of oxidized low-density lipoproteins and can suppress CME both in plant and
mammalian cell lines. The uptake of the transferrin receptor was seen to decrease in an
IKA dose-dependent manner. The IC50 was 2.7 ± 0.3 µM in the H1299 line preincubated
with IKA for 1h. In H1299, HCC366, and ARPE-19 cells, TfnR uptake was decreased by
80%; in H1437 and HBEC3KT cells, 50%. These findings imply that IKA can prevent TfnR
uptake. IKA alters the morphology of the CCP, which causes a redistribution of AP-2 and
CHC. The exact mechanism is unknown [171].

7.2.3. ES9-17

A mitochondrial uncoupler, endosidin 9 (ES9), was identified as an inhibitor of CHC
and what follows CME function in both Arabidopsis as well as human cells through in vitro
binding studies and X-ray crystallography. A chemically improved analog of ES9, ES9-17,
does not have the side effects of ES9 and preserves its ability to target CHC [172].

7.2.4. Monodansylcadaverine (MDC)

Monodansylcadaverine (MDC) is an in vivo marker for autophagic vacuoles and a
relatively specific blocker of CME. The inhibitory activity of MDC has been attributed to
the stabilization of clathrin-coated pits. However, evidence for this mechanism has only
been obtained in cell-free systems using purified clathrin and very high concentrations of
MDC. It remains to be investigated whether similar stabilization of clathrin-coated pits can
be achieved at lower (100–300 µM) concentrations of MDC, which impair endocytosis in
living cells [173].

7.3. Clathrin’s Terminal Domain Inhibition

Clathrin terminal domain (CTD) is a central node of protein–protein interactions [6];
overexpression of clathrin-binding endocytic protein fragments results in clathrin uptake
within the cytoplasm [174], suggesting that multiple abundant accessory protein interac-
tions involving the CTD serve to recruit clathrin to membranes. Seven sheets are joined
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to form the propeller-like CTD [175]. Small helical segments are located in the prolonged
gap between blades 1–7 and 3–4 of the rotor. In order to connect with adaptor proteins and
enable direct cargo attachment, the terminal domain expands inward. Short linear peptide
sequences are used by adaptors to bind to the terminal domain [176]. A brief helical linker,
followed by an ankle region, connects the CTD to the distal leg [177]. ADP-ribosylation
factor-binding protein (GGA1) and the beta chains of AP-1 and AP-2 have sites in the ankle.
Important C682 and G710 residues can be found in this binding site [178].

Several more clathrin-binding sites exist. The rest of the essential residues for binding
(Q89, F91, K96, and K98) are situated between the blades of the first structure, known as
the clathrin box, which corresponds to the propeller’s blades 1 and 2 [175,176]. The W-Box,
which binds proteins with the sequence PWXXW, where X is any amino acid, is the second
binding site. I154, F27, Q152, and I170 are the important residues at this position [176,179].
Arrestin 2L binding occurs at another position. Indicated by T235, V190, Q192, W164, L183,
E232, R188, 231, I194 and K245, it is located between blades 4 and 5. A binding motif is
present in the AP-2 -2 subunit, perhaps making it possible to attach to both site 1 and site
3 [180]. The final suggested location has the following residues: N175, G179, R221, F252,
Q23, and F260 between blades 5 and 6. A molecular dynamics investigation of putative
bolinaquinone binding sites led to the suggestion of this location [181,182].

Pitstop Family

Pitstops were designed as inhibitors of the terminal domain of clathrin, binding to
the clathrin-box motif site (Figure 10). The effect of rhodanine-based pitstop 2 on clathrin-
dependent endocytosis is observed within minutes of cell exposure to the compound. [183].
Treatment of human cultured cells (BEAS-2b, COS-7, HeLa) with Pitstop2 at a concentration
of 20 mM resulted in blocking the internalization of transferrin and MHCI, although MHCI
still could bind to the cell surface. Endocytosis of CIE-translocated proteins was verified
in the presence of pitstop2, CD59 protein (which has the same translocation pathway as
MHCI) anchored to GPI was blocked by this substance. Other proteins (CD44, CD98, and
CD147) that have a different translocation pathway than CD59 also had their internalization
inhibited, and in the control sample, these proteins were observed in recycling endosomes.
Inhibition of endocytosis by pitstop 2 occurs after 10 min of exposure and is reversible. In
COS-7 and BEAS-2B cells, the same effect was observed on the two types of endocytosis by
blocking the n-terminal domain of clathrin. Inhibition of transferrin and MHCI endocytosis
was also observed in cells lacking the µ2 subunit of AP2 or the heavy chain, suggesting
that pitstop blocks CIE independently of clathrin [184].

7.4. Inhibition of Dynamin

The superfamily of dynamin-like proteins, which are GTPase-type proteins, includes
dynamin [185]. Both humans and more basic species like bacteria include the existence
of dynamin [186]. Dynamins set themselves apart from normal GTPases by having a
larger GTPase domain (~300 amino acid residues), a more developed capacity for self-
organization [187–189], and stronger activity to degrade GTP [190,191]. Dynamin is re-
cruited during the creation of clathrin-coated vesicles to separate them from the extracel-
lular membrane, and it has a size of 100 kDa [192]. Mammals have three different forms
of dynamin, known as classical dynamins (I, II, and III) [193,194]. Both share the same
domain organization and are 80% homologous; however, their expression differs. Vesicle
splitting occurs during specialized neuronal function and involves all three dynamins.
The pleckstrin homology domain (PH), middle domain (MD), GTPase effector domain
(GED), and proline-rich carboxyterminal domain (PR) are the five domains that make up
the expanded structure of classical dynamin [191,195,196]. Ras GTPases require guanine
exchange factors and GTPase-activating proteins, whereas the GTPase domain is activated
by nucleotide-dependent dimerization [188,197]. The GTPase domain contains four GTPase
binding motifs: G1, or P-loop, binds phosphate; G2, where threonine coordinates the Mg2+
ion, allows GTP hydrolysis; G3, where aspartate coordinates the Mg2+ ion and glycine
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binds phosphate; and G4, where nucleotide base is bound [198,199]. Pleckstrin and the
PH domain are highly homologous [191]. Three loops show the most variety. Each of
them exhibits an area that is primarily hydrophobic and has a positive charge within the
binding site to encourage membrane contacts, dynamin polymerization, and membrane
curvature [200]. Dynamin’s PH domain binds to phosphatidylinositol-4,5-biphosphate
(PI(4,5)P2) with a preference over other lipids [201,202]. CME is inhibited by phosphoinosi-
tide (PI(4,5)P2) binding defects in dynamin mutations with a PH domain [203]. A PRD is
unique to classical dynamin. It is a protein–protein interaction domain for many signal-
ing and cytoskeletal proteins, consisting of a number of BAR and SH3 domain binding
sites specified by the PXXP motif [186,204]. It functions to bring dynamin to endocytotic
locations and coordinate dynamin activity with these other components. The primary role
of PRD is to guide dynamin to the cell’s site of action [205–207]. In vivo, dynamin I is
highly expressed in the central nervous system (CNS), where it mediates synaptic vesicle
endocytosis, particularly in response to depolarizing stimulation [208]. Dynamin I has also
been found in non-neuronal cell line cultures, even though it typically is not expressed in
tissues outside of the CNS [209]. In synapses, dynamin I phosphorylation occurs both at
rest and during nerve stimulation. In order to facilitate the interaction of dynamin with en-
docytic proteins to promote endocytosis, it is quickly dephosphorylated at S774 and S778 by
calcium-dependent phosphatase and calcineurin [210]. More specifically, this dephosphory-
lation is thought to play a role in triggering activity-dependent endocytosis [205]. Dynamin
is also brought to the membrane via dephosphorylation, and GTPase activity inhibition
may give time for binding to the neck of the developing vesicle before GTPase hydrolyzes
to speed up cleavage [191]. All tissues express dynamin II, which plays a significant role
in CME. Dynamin II also participates in caveolae budding [211], phagocytosis [212], and
cellular functions independent of endocytosis, such as cytokinesis [213] and mitosis [214].
A postsynaptic function of dynamin III is thought to include the formation of specific
endocytic sites that recycle AMPA (amino-3-hydroxy-5-methyl-4-isoxazolopropionic acid)
receptors found in the protrusions of dendritic spines locally [215].

7.4.1. Long-Chain Amines and Long-Chain Ammonium Salts

Small-molecule inhibitors, long-chain amines, and long-chain ammonium salts were
among the first dynamin and CME inhibitors. The compounds in the series myristyl
trimethyl ammonium bromide (MiTMAB) and OcTMAB (Octadecyltrimethylammonium
bromide) are surface active and are predicted to alter protein–lipid interactions (Figure 11).
MiTMAB is the most active of these compounds, with an IC50 = 3.15 ± 0.64 µM [216]. The
suggested mechanism of action of MiTMAB is dynamin–phospholipid inhibition. In non-
neuronal cells, MiTMAB inhibits endocytosis of transferrin and EGF on various cell lines.
MiTMAB inhibits the GTPase activities of dynamin I or dynamin II. At high concentrations,
MiTMAB is a cationic surfactant, as observed with other pharmacologically active cationic
amphiphilic compounds, such as chlorpromazine or imipramine [217].

7.4.2. Antipsychotic Drugs (APD)—Phenothiazines

The central ring of phenothiazines contains heteroatoms of nitrogen and sulfur and
has a tricyclic heterocyclic structure. APD phenothiazine drugs inhibit GTPases DynI
DynII and CME in cells in vitro. It is likely that these compounds work by interfering with
the PH domain of dynamin, which is responsible for dynamin detachment. In addition,
chlorpromazine did not interfere with AP-2 or clathrin recruitment and did not inhibit
CCV formation. These effects are similar for the entire class of APDs. Compounds that
inhibited dynamin also showed inhibitory effects on CME. The IC50 of trifluoperazine and
its non-APD derivative against DynI was in the region of 2 µM. [218].
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7.4.3. Selective Serotonin Reuptake Inhibitors (SSRIs)

Selective serotonin reuptake inhibitors are the common name for a group of drugs
that are frequently prescribed as antidepressants to treat major depressive disorder and
other mental health issues. In fact, their name originates from the fact that they primarily
lead to serotonin reuptake inhibition, with limited effects on noradrenaline, dopamine,
and gamma-aminobutyric acid reuptake. SSRIs raise the neurotransmitter’s extracellular
level by restricting the neurotransmitter serotonin’s reabsorption into the presynaptic cell.
Sertraline and fluvoxamine demonstrated inhibition of DynI with an IC50 of 7.3 ± 1.0 µM
and 14.7 ± 1.6 µM, respectively. They target the PH domain of dynamin I, resulting in
the inhibition of dynamin-dependent endocytosis [219]. Sertraline acts both on DynI and
DynII. Its effect is rapid (detectable after 5 min exposure) and reversible [220].

7.4.4. Room-temperature Ionic Liquid (RTIL)

Room-temperature ionic liquid (RTIL) is a substance derived from the Spanish fly
aphrodisiac cantharidin. RTILs are imidazole or pyridine salts with a melting point below
150 ◦C (Figure 12). A group of these compounds showed an inhibitory effect on dynamin
by blocking the PH domain. Lengthening the alkyl chain from C4 to C18 increased the
inhibitory effect of the compounds. The most active against dynamin GTPase activity was
RTIL 13, with 15% inhibition at 300 µM drug concentration and IC50 2.3 ± 0.3 µM [221].

7.4.5. Dimeric Tyrphostins (Bis-T)

Dimeric tyrphostins (Bis-T) exhibit activity against the enzyme dynamin I but have a
weak inhibitory effect on CME. The most active dynamin I inhibitor is compound Bis-T-22,
with an IC50 of 1.7 ± 0.2 µM. The mechanism of action of this compound is unclear; it
neither affects GTP nor competes with GTP or lipids. The inhibitory potency of this class of
compounds requires a dimers with two aromatic rings, where the rings contain two -OH
groups at the -3,-4 positions; the presence of two free amide -NH or ester -O groups in
the linker arm, and the presence of -CN is also of great importance [222]. A new Bis-T-22
prodrug created by adding propionic acid ester has an enhanced ability to pass through
membranes; it is rapidly hydrolyzed in the cytoplasm to the parent compound. Despite its
strong activity against dynamin, it had a weak effect on CME inhibition. The new prodrug
of Bis-T-22 inhibits CME with an IC50 of 8.0 ± 0.5µM [223].
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7.4.6. Dynasore

Dynasore was discovered among a library of 16,000 compounds that inhibit CME. It
shows activity against the GTPases DynI and DynII, dynamin-related protein 1 (Drp1), and
mitochondrial dynamin in vitro (Figure 12). The inhibitory activity of Dynasore is observed
1–2 min after the start of treatment, presumed to be limited by diffusion to the molecular
target. This effect is reversible about 20 min after the inhibitor is removed. Dynasore is
a non-competitive inhibitor of GTP hydrolysis, with no effect on GTP binding affinity or
dynamin self-organization. In addition, testing for DynI inhibition has shown that the
compound exhibits inhibitory activity against transferrin endocytosis and the LDL receptor.
Unfortunately, this compound has side effects. It binds to serum proteins, which reduces
its target inhibitory effect, and to detergents, which may prevent analytic manipulations
with this compound in vitro [224].
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7.4.7. Dynoles

Dynoles are the first generation of indole-based dynamin inhibitors of DynI GTPase.
Dynole 34-2 is the best one with an IC50 of 1.3 ± 0.3 µM (15x more potent than dynasore).
This compound is characterized by high lipophilicity and, thus, permeability through cell
membranes, which indicates a high level of inhibition of endocytosis. Furthermore, it
is not toxic to normal fibroblast cells after exposure to the compound for seven days in
culture. The inhibition mechanism involves incompetent binding between dynamin and
GTP; dynamin probably binds to the enzyme-substrate complex at a different site than the
active site [225].

7.4.8. Iminodines

Iminodines (iminochrome scaffold) are the first nanomolar-range inhibitors of DynI
and DynII synthesized on the basis of compounds with the Bis-T pharmacophore. The
most potent compounds, Iminodin-17, Iminodin-22, and Iminodin-23, have an IC50 of
330 ± 70 nM, 450 ± 50 nM, and 260 ± 80 nM, respectively. Compared to the earlier class
of dynole compounds, new derivatives exhibit five-fold higher activity than Dynole 34-2
or 400-fold that of Dynasore. These compounds incompetently bind the GTPase domain.
Iminodyn-22 is the best, exhibiting activity as a broad-spectrum inhibitor against both DynI
and DynII [226].

7.4.9. Pthaladyns

Pthaladyns have an inhibitory effect against the GTPase dynamin and SVE (synaptic
vesicle endocytosis). These substances are the first class to exhibit competitive inhibitory
activity. Pthaladyn-23 was found to be competitive with GTP in cells, and Pthaladyn-
29, whose IC50 against dynamins was 4.58 ± 0.06 µM, were the two most promising
compounds. With an IC50 of 12.9 ± 5.9 µM, only Pthaladyn-23 proved a potent inhibitor of
SVE in brain synaptosomes [227].

7.4.10. Rhodanines

Rhodanine (2-thioxothiazolidin-4-one) skeleton is widely used in medicine, and an
attempt was made to use this framework to inhibit CME [228]. Rhodanine derivatives
containing N-ethyl (C) and N-acetic acid (E) showed the strongest activity (Rhodadyn-C8
IC50 = 3.0± 0.9 µM, Rhodadyn-E9 IC50 = 3.4± 0.49 µM), while no inhibition of clathrin was
observed at a concentration of 100 µM. Interestingly, not all compounds showed activity
against endocytosis inhibition due to insufficient lipophilicity. N-ethyl Rhodadyn-C10
and N-allyl Rhodadyn-D10 were identified as the most potent endocytosis blockers, with
IC50 values of 7.0 ± 2.2 and 5.9 ± 1.0 µM, respectively [229].

7.4.11. Dynoles 2

The second generation of indole-based dynamin inhibitors was developed from a
series of bisindolylmaleimides (BIMs). They showed a potential inhibitory activity against
purified DynI GTPase, with Dynole 2-24 showing the strongest activity with an IC50 of
0.56 ± 0.09 µM. This compound exhibited enhanced DynII inhibition, as well as a slight
improvement in DynI vs. DynII selectivity over the first-generation Dynole 34-2. Dynole
2-24 strongly inhibits CME in U2OS cells with an IC50 of 1.9 ± 0.3 µM. In addition, it has a
reduced toxicity profile despite the fact that the incorporation of straight alkyl chains can
cause off-target membrane activity [230].

7.4.12. Pyrimidines

Pyrimidine derivatives are the first dual-action inhibitors of CME, targeting both
dynamin’s interaction with GTP and phospholipids. Pyrimidines also showed effects on
CME by examining the uptake of transferrin (Tf) and epidermal growth factor (EGF) in
COS7 cells. Both Pyrimidine 6 and 7 at a concentration of 30 µM caused a strong reduction
in the internalization of EGF-A488 and Tf-TXR. When evaluated, the IC50 of CME inhibition
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in non-neuronal cells (by semiautomated CME assay) by the new compounds Pyrimidine
7 in COS-7 cells was 12.1 ± 2.1 µM, and Pyrimidine 6 was 19.6 ± 3.5 µM; similar results
were obtained for U2OS cells. The inhibitory effect on CME is reversible 60 min after
the removal of the compounds. Incubation of cells with Pyrimidines 6 or 7 (30 µM)
disrupted GFP-dynamines I-PH in the plasma membrane—Pyrimidine analogs disrupt
the binding of dynamines to the plasma membrane via the PH domain, which is the main
mechanism of CME inhibition. Cytotoxicity studies have shown that these compounds
do not cause significant damage to cellular lipids but cause growth arrest in 12 cancer
cell lines (HT29, SW480—colon carcinoma; MCF-7—breast carcinoma; A2780—ovarian
carcinoma; H460—lung carcinoma; A431—skin carcinoma; DU145—prostate carcinoma;
BE2-C—neuroblastoma, SJ-G2, U87—glioblastoma; MIA PaCa2—pancreatic carcinoma;
SMA (spontaneous murine astrocytoma)—GI50 of about 1 µM at 72 h exposure time [231].

7.4.13. Dyngo

Dyngo is a development of Dynasore with the aim to eliminate the side effects of
the latter, such as binding to serum proteins, detergents, and relatively high cytotoxicity.
Dyngo group was obtained by condensation of 3-hydroxy-2-naphthoic acid hydrazide
with various substituents. Dyngo-4a and Dyngo-6a showed excellent inhibitory activity
against DynI (177 and 90 times stronger than the previous generation compound, respec-
tively) both in the presence and in the absence of Tween-80 (T-80) (IC50 2.7 ± 0.7 µM and
0.38 ± 0.05 µM for 4a, and IC50 5.5 ± 0.2 µM and 3.2 ± 0.3 µM for Dyngo-6a, with and
without T-80, respectively). In comparison, Dynasore had a much weaker inhibitory effect
on DynI in the presence of surfactants (IC50 479 ± 49µM vs. 12.4 ± 1.5 µM in the control).
The number and position of hydroxyl groups in the phenyl ring determines both dynamin
inhibition activity and detergent sensitivity. Compounds containing at least one -OH at the
C3′ or C4′ position are the most sensitive, while removal of this group from C4′ or inclusion
at C5′ reduces sensitivity to T-80. Dyngo-6a containing -OH at C2′ and lacking at C4′ is the
most detergent-resistant and, at the same time, the most potent DynI inhibitor. The most
active compound, Dyngo-4a, inhibits both CME with the IC50 of 5.7 ± 1 µM and SVE at
presynaptic nerve terminals. New Dyngo compounds exhibit a preference for inhibiting
dynamin in a helical conformation and also bind to detergents stoichiometrically [232].

7.4.14. Naphthaladyn Series

1,8-naphthalamide derivatives were predicted by molecular docking experiments to tar-
get the amino-terminal G region of dynamin, which binds and hydrolyzes GTP. Naphtaladyn-
23 and Naphthaladyn-29 inhibit DynI activity with the IC50 of 19.1 ± 0.3 µM and
18.5 ± 1.7 µM, respectively. Both compounds inhibit CME with the IC50 of 115 µM and
66 µM, respectively. The lower activity of Naphthaladyn-23 may be due to its lower lipophilicity
and, thus, its lower ability to pass through membranes as compared to Naphthaladyn-29 [233].

7.4.15. Quinones

A search in the databases of compounds against DynI activity followed by in silico
optimization led to the synthesis of 54 benzoquinone/naphthoquinone-based compounds.
Extensive molecular docking analysis suggested several preferential hydrogen bonding
and hydrophobic or electrostatic interactions with the binding site. Among these com-
pounds, p-hydroxy and p-carboxy derivatives of aniline called 45 and 49 were the most
potent inhibitors of CME with DynI inhibition IC50 of 11.1 ± 3.6 and 10.6 ± 1.6 mM,
respectively [234].

7.4.16. Dynazos

Dynazos, the first photosensitive inhibitor of CME, is a derivative of Dynasore with
an addition of a photochromic p-azobenzene group. The presence of the azobenzene group
does not inhibit the structure’s activity, and Dynazo-3 and Dynazo-4 derivatives inhibit
CME in a dose-dependent manner; their activity can be controlled by light [235].
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7.5. Other Binding Sites for Inhibitors
7.5.1. Nocodazole and Paclitaxel

Paclitaxel, an anticancer drug, targets tubulin, while another anticancer drug, nocoda-
zole, prevents microtubule polymerization. Both paclitaxel, which promotes microtubule
assembly, and nocodazole, which promotes microtubule disassembly, alter the dynamics
of receptor movement of the endosomal pathway in macropinocytosis. Neither paclitaxel
nor nocodazole significantly inhibited endocytosis in the fluid phase. However, paclitaxel
caused a redistribution of the fluid phase fluorescent marker to the periphery. Both pacli-
taxel and nocodazole treatment reduce cargo uptake by 50% after 5 min treatment [236].

7.5.2. Genistein

Genistein is a naturally occurring substance of the isoflavone group that inhibits
several tyrosine kinases and SV40-induced caveolin vesicle formation [136]. However,
it is not a selective inhibitor of caveolae. For example, Genistein inhibits the uptake by
clathrin-coated pits of receptors such as EGF, which require tyrosine phosphorylation for
accumulation [237,238].

7.5.3. Phenylarsine Oxide

Phenylarsine oxide (PAO) has an arsenic atom in connection with a phenyl group and
an oxygen atom. It inhibits both clathrin pathways, macropinocytosis, and phagocytosis.
PAO cross-links sulfhydryl groups; therefore, it can inhibit many intracellular targets such
as Rho family GTPases [173]. PAO also inhibits oxygen consumption and reduces ATP
concentration in cells. The effects of PAO on labeled cargo internalization, ATP content,
oxygen consumption, and lactate dehydrogenase (LDH) latency in isolated rat hepatocytes
were determined. Treatment with 10 µmol/L PAO for 20 min blocks cargo internalization
without affecting ATP concentration [239]. PAO also induces dramatic disorganization of
the actin cytoskeleton [204].

8. Off-Target Activity of Endocytosis Inhibitors

An important issue with endocytosis inhibitors is their selectivity against a pathway
of interest [173]. For example, both Dynasore and Dyngo-4a exert an inhibitory effect on
fluid-phase endocytosis in knock-out cells where their target, dynamin, was eliminated,
indicating that this activity also represents an off-target effect. In addition, both Dynasore
and Dyngo-4a have a strong blocking effect on membrane ruffling [240]. Despite inhibiting
clathrin-dependent endocytosis of VEGFR2, Dynasore, Dynole, and Dyngo exert opposite
effects on receptor signaling. Dynasore and Dynole have additional activity on VEGFR2
phosphorylation, unlike Dyngo. This suggests additional inhibitory effects on cell signaling
beyond the inhibition of endocytosis [241]. Inhibitors of dynamin and endocytosis are also
potent suppressors of mTORC1 activation independently of dynamin. Dynasore inhibits
RagA by binding to Raptor, reduces mTORC1 recruitment to the lysosome, and inhibits
Akt activation and TSC2-S939 phosphorylation, thus reducing mTORC1 activity [242].
Dynasore also reduces cellular cholesterol and disrupts plasma membrane lipid rafts. Due
to this ability, it had a protective effect on cells by preserving them from pyolysin from
Trueperella pyogenes [243]. The absence of absolute specificity does not mean that they
cannot be used for research and potential clinical applications. Future research is needed to
produce more selective inhibitors of endocytosis.

9. Clinical Applications

As endocytosis is linked to several pathological conditions and pathogen entry into
cells, it is tempting to block this process. Endocytosis inhibitors have shown promise in
clinical trials for various conditions and diseases. They are summarized in Table 2. Probably
the most famous was the attempt to use hydroxychloroquine (NCT04437693, NCT04318444,
NCT04315896, NCT04318015, NCT04308668), chlorpromazine (NCT04366739), and chloro-
quine phosphate (NCT04344951) during the COVID-19 epidemics. Although these attempts
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did not produce the expected results, they demonstrated a good tolerance to these endo-
cytosis blockers. Ruxolitinib and simvastatin have been investigated in a Phase 2 trial
(NCT04348695) for their potential to block the entry process used by COVID-19, targeting
clathrin-dependent endocytosis. Another Phase 2 trial (NCT04033159) focused on dynamin2
and the antisense oligonucleotide DYN101, which targets dynamin2 pre-mRNA, for the treat-
ment of Centronuclear Myopathy. In a Phase 4 trial (NCT01064284), a chaperone molecule
for procoagulant factor VIII (FVIII) was used to block endocytosis in human dendritic cells,
thereby protecting FVIII from being endocytosed and subsequently presented to FVIII-specific
T cells in patients with Hemophilia A. These clinical trials provide valuable insights into the
therapeutic potential of endocytosis inhibitors for various conditions and diseases, including
coronavirus infections, Centronuclear Myopathy, Hemophilia A, and pneumonia.

Table 2. Clinical trials of endocytosis modulators.

Target Compound Condition or
Disease Mechanism Number Status References

Blocking clathrin-dependent
endocytosis

Ruxolitinib and
simvastatin

Coronavirus
Infection

Block the entry process
used by COVID-19 NCT04348695 Phase 2 [244,245]

Dynamin2 DYN101 Centronuclear
Myopathy

Antisense
oligonucleotide directed

against dynamin2
pre-mRNA

NCT04033159 Phase 2 [246]

Blocking endocytosis in
human dendritic cells

Chaperone
molecule for

procoagulant factor
VIII (FVIII)

Hemophilia A

VWF protects FVIII from
being endocytosed by
human dendritic cells

and subsequently
presented to

FVIII-specific T cells

NCT01064284 Phase 4 [247,248]

Reducing the expression of
phosphatidylinositol-binding

clathrin assembly protein
and blocking the

clathrin-mediated
endocytosis

Hydroxychloroquine
(HCQ)

Coronavirus
Infection

(COVID-19)

Inhibits the ability of
viruses to escape into the

host cell and
start replicating

NCT04437693 Phase 3 [249]

Coronavirus
Infection

(COVID-19)
NCT04318444 Phase 3 [250,251]

COVID-19, Severe
Acute Respiratory

Syndrome
NCT04315896 Phase 3 [252]

COVID-19, Severe
Acute Respiratory

Syndrome
NCT04318015 Phase 3 [253]

Coronavirus
Infection

(COVID-19)
NCT04308668 Phase 3 [254]

Coronavirus
Infection

(COVID-19)
NCT04316377 Phase 4 [255,256]

Blocking clathrin-mediated
endocytosis

Chlorpromazine
(CPZ)

Coronavirus
Infection

(COVID-19)

CPZ affects the
translocation of the

clathrin and AP2 from
the cell surface to

intracellular endosomes

NCT04366739 Phase 3 [257]

Inhibiting endosome
acidification

UNIKINON
(Chloroquine
phosphate)

Pneumonia,
Coronavirus

Infection
(COVID-19)

Blocks the
endosomal-mediated

viral entry
NCT04344951 Phase 2 [258]

10. Questions and Challenges

Endocytosis dysfunctions are observed in many pathological conditions. Thus, endo-
cytosis inhibitors are a promising field for the development of the pharmaceutical industry.
Inhibiting endocytosis also inhibits cargo entry into a cell, so one can protect cells from
viruses or secreted/circulating proteins, including viral ones. Overcoming resistance and
cellular adaptation, which can arise through alternative routes or compensatory mecha-
nisms, is a critical challenge. In these conditions, inhibition of dynamin, which connects
most pathways of endocytosis, is probably the best option. Achieving selective targeting
and specificity toward desired molecular targets or pathways while minimizing off-target
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effects is crucial. A rigorous assessment of safety and toxicity is essential to minimize risks.
By addressing these challenges, the clinical potential of endocytosis inhibitors can be maxi-
mized, paving the way for innovative therapeutic interventions. The field of endocytosis
inhibitors holds great promise for the development of novel therapeutics. Addressing the
emerging questions and challenges highlighted in this review will provide crucial insights
into the optimal design, development, and clinical translation of these inhibitors.
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