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ABSTRACT

Aims. In this work, we perform the first cosmological parameter analysis of the fourth release of Kilo Degree Survey (KiDS-1000)
data with second- and third-order shear statistics. This paper builds on a series of studies aimed at describing the roadmap to third-
order shear statistics.
Methods. We derived and tested a combined model of the second-order shear statistic, namely, the COSEBIs and the third-order
aperture mass statistics 〈M3

ap〉 in a tomographic set-up. We validated our pipeline with N-body mock simulations of the KiDS-1000
data release. To model the second- and third-order statistics, we used the latest version of HMcode2020 for the power spectrum
and BiHalofit for the bispectrum. Furthermore, we used an analytic description to model intrinsic alignments and hydro-dynamical
simulations to model the effect of baryonic feedback processes. Lastly, we decreased the dimension of the data vector significantly by
considering only equal smoothing radii for the 〈M3

ap〉 part of the data vector. This makes it possible to carry out a data analysis of the
KiDS-1000 data release using a combined analysis of COSEBIs and third-order shear statistics.
Results. We first validated the accuracy of our modelling by analysing a noise-free mock data vector, assuming the KiDS-1000 error
budget, finding a shift in the maximum of the posterior distribution of the matter density parameter, ∆Ωm < 0.02σΩm , and of the
structure growth parameter, ∆S 8 < 0.05σS 8 . Lastly, we performed the first KiDS-1000 cosmological analysis using a combined
analysis of second- and third-order shear statistics, where we constrained Ωm = 0.248+0.062

−0.055 and S 8 = σ8
√

Ωm/0.3 = 0.772 ± 0.022.
The geometric average on the errors of Ωm and S 8 of the combined statistics decreases, compared to the second-order statistic, by a
factor of 2.2.

Key words. gravitation – gravitational lensing: weak – methods: analytical – methods: numerical – cosmological parameters –
large-scale structure of Universe

1. Introduction

Gravitational lensing describes the deflection of light by massive
objects. It is sensitive to baryonic and dark matter and, therefore,
ideal for probing the total matter distribution in the Universe.
Since the distribution of matter is highly sensitive to cosmo-
logical parameters, it is excellent to test and probe the stan-
dard model of cosmology, called the Λ cold dark matter model
(ΛCDM). Although the ΛCDM model can describe observations
of the early Universe, such as the cosmic microwave background
(CMB; e.g., Planck Collaboration VI 2020), or the Local Uni-
verse, such as the observed large-scale structure (LSS) of mat-

ter and galaxies (Sánchez et al. 2017), with remarkable accu-
racy, it is being put under stress due to tension observed between
early and local probes. A ∼2σ tension is in the structure growth
parameter S 8 = σ8

√
Ωm/0.3, where σ8 is the normalisation of

the power spectrum and Ωm is the total matter density param-
eter (Hildebrandt et al. 2017; Planck Collaboration VI 2020;
Joudaki et al. 2020; Heymans et al. 2021; DES Collaboration
2022; Di Valentino et al. 2021; Dalal et al. 2023), suggests that
the Local Universe is less clustered than what is expected from
early-time measurements when extrapolated under the ΛCDM
model. If these tensions are not due to systematics, extensions
to the ΛCDM model are necessary, which will be tested with
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the next generation of cosmic shear surveys such as Euclid
(Laureijs et al. 2011) or the Vera Rubin Observatory Legacy Sur-
vey of Space and Time (LSST, Ivezic et al. 2008).

Commonly, two-point statistics for weak lensing and galaxy
positions are used to infer cosmological parameters since
they can be modelled accurately and systematic inaccuracies
are well understood (Schneider et al. 1998; Troxel et al. 2018;
Hildebrandt et al. 2017, 2020; Hikage et al. 2019; Asgari et al.
2019, 2020). Two-point statistics are excellent for capturing
the entire information content of a Gaussian random field.
However, non-linear gravitational instabilities created a sig-
nificant amount of non-Gaussian features during the evolu-
tion of the Universe, such that the local matter distribution
departed strongly from a Gaussian field. Therefore, higher
order statistics are needed to extract all the available infor-
mation in the local LSS of matter and galaxies. Furthermore,
such higher order statistics usually depend differently on cos-
mological parameters and systematic effects such as intrinsic
alignment (IA), meaning that a joint investigation of second-
and higher order statistics tightens cosmological parameter
constraints (see, e.g., Kilbinger & Schneider 2005; Bergé et al.
2010; Pires et al. 2012; Fu et al. 2014; Pyne & Joachimi 2021).
Recently used examples of higher order statistics are the
peak count statistics (Martinet et al. 2018; Harnois-Déraps et al.
2021), persistent homology (Heydenreich et al. 2021), density
split statistics (Gruen et al. 2018; Burger et al. 2023), and the
integrated three-point correlation function used in (Halder et al.
2021; Halder & Barreira 2022), along with a second- and third-
order convergence moment analysis (Gatti et al. 2022).

This work considers second- and third-order shear statistics,
where the former probes the variance and the latter the skewness
of the LSS at various scales. Our chosen second-order statistic
is the En-modes of the COSEBIs (Schneider et al. 2010), and
the third-order statistic 〈M3

ap〉 is described in Schneider et al.
(2005) and recently measured in the Dark Energy Survey Year
(DES) 3 Results (Secco et al. 2022). Furthermore, this work
belongs to a series of papers that aim for cosmological parame-
ter analyses using third-order shear statistics. In the first paper,
Heydenreich et al. (2023, hereafter H23), we validated the ana-
lytical fitting formulae for a non-tomographic analysis and the
conversion from three-point correlation function (3PCF) of cos-
mic shear to 〈M3

ap〉. We found that 〈M3
ap〉, even though they are

combined from the shear 3PCF at different scales, contain a sim-
ilar amount of information on Ωm and S 8 as the 3PCF itself.
The fact that 〈M3

ap〉 can be measured from 3PCF is very conve-
nient since this allows unbiased estimates for any survey geom-
etry. A fast computation method of the aperture mass statistics
by measuring the shear 3PCF is tackled in Porth et al. (2023).
Lastly, adding third-order statistics increases the dimension of
the data vector significantly, and an analytical expression for
the covariance is preferred, which is derived and validated for
〈M3

ap〉 in a non-tomographic setup in Linke et al. (2023). How-
ever, as this analysis considers combining second-order statistics
with 〈M3

ap〉 in a tomographic setup, and a joint covariance matrix
has not been derived yet (Wielders et al., in prep.), we must
still rely on numerical simulations to determine the covariance
matrix.

This article presents the first cosmological parameter
analysis using the fourth data release of KiDS (KiDS-1000),
combining second- and third-order shear statistics. We show
the cosmological results, preceded by validation of several
extensions of the analytical model to allow for a tomo-
graphic analysis and to include astrophysical effects such as
IA (e.g., Joachimi et al. 2015) or baryonic feedback processes

(Chisari et al. 2015). We aim to find the smallest set of scales
that retain most of the cosmological information.

The paper is structured as follows: In Sect. 2, we review the
basics of the second- and third-order shear statistics, extend the
modelling to a tomographic analysis and describe our method to
model the IA analytically. In Sect. 4, we describe the KiDS-1000
data and in Sect. 5, we introduce the simulation data used to vali-
date our model and to correct it for baryonic feedback processes.
In Sect. 6, we briefly review our method to perform cosmological
parameter interference. In Sects. 7 and 8, we validate our anal-
ysis pipeline against several systematics. The final cosmological
results are presented in Sect. 9, and we present our conclusions
in Sect. 10.

2. Theoretical background

This section offers a review of the basics of weak gravi-
tational lensing formalism and aperture statistics. For more
detailed reviews, we refer to Bartelmann & Schneider (2001),
Hoekstra & Jain (2008), Munshi et al. (2008), Bartelmann
(2010), and Kilbinger (2015). In this work, we assume a spa-
tially flat universe, such that the comoving angular-diameter
distance is expressed as fK[χ(z)] = χ(z), where χ(z) is the
comoving distance at redshift z. Given the matter density, ρ(x, z),
at comoving position, x, and redshift, z, the density contrast is
δ(x, z) =

ρ(x,z)
ρ̄(z) −1, where ρ̄(z) is the average matter density at red-

shift, z. The dimensionless surface mass density or convergence,
κ, for sources at redshift, z, is determined by the line-of-sight
integration as

κ(ϑ, z) =
3ΩmH2

0

2c2

∫ χ(z)

0
dχ′

χ′ [χ(z) − χ′]
χ(z)

δ(χ′ϑ, z)
a(χ′)

, (1)

where ϑ is the angular position on the sky, H0 is the Hubble con-
stant, and a is the scale factor. The second argument of δ simul-
taneously describes the radial direction and the cosmological
epoch, related through the light-cone condition |c dt| = a(z) dχ.

2.1. Limber projections of power- and bispectrum

Given the Fourier transform δ̂ of the matter density con-
trast, the matter power spectrum, Pδδ(k, z), and bispectrum,
Bδδδ(k1, k2, k3, z), are:

〈δ̂(k1, z)δ̂(k2, z)〉 = (2π)3 δD(k1 + k2) Pδδ(k1, z), (2)

〈δ̂(k1, z)δ̂(k2, z)δ̂(k3, z)〉 = (2π)3 δD(k1 + k2 + k3)
× Bδδδ(k1, k2, k3, z), (3)

where δD is the Dirac-delta distribution. The statistical isotropy
of the Universe implies that the power- and bispectrum only
depend on the moduli of the k-vectors.

The projected power- and bispectrum can then be
computed using the Limber approximation (Limber 1954;
Kaiser & Jaffe 1997; Bernardeau et al. 1997; Schneider et al.
1998; LoVerde & Afshordi 2008),

P(i j)
κκ (`) =

∫ χmax

0
dχ

g(i)(χ) g( j)(χ)
a2(χ)

Pδδ

[
` + 1/2
χ

, z(χ)
]
,

(4)

B(i jk)
κκκ (`1, `2, `3) =

∫ χmax

0
dχ

g(i)(χ) g( j)(χ) g(k)(χ)
a3(χ) χ

× Bδδδ

[
`1

χ
,
`2

χ
,
`3

χ
, z(χ)

]
, (5)
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where `3 = |`1 + `2|, and g(i)(χ) denotes the lensing efficiency
and is defined as

g(i)(χ) =
3ΩmH2

0

2c2

∫ χmax

χ

dχ′ n(i)(χ′)
χ′ − χ

χ′
, (6)

with n(i)(χ) being the redshift probability distribution of the ith
tomographic zph-bin. Since the Limber approximation breaks
down for small values of ` (Kilbinger et al. 2017), we consider
only scales below 4◦ to model 〈M3

ap〉. In principle, we could
have also used the modified Limber approximation and shift
`1,2,3 → `1,2,3 +1/2, but since we found a difference at maximum
for the largest filter radii of 1.5%, we neglected it here. To model
the non-linear matter power spectrum Pδδ, we use the revised
HMcode2020 model of Mead et al. (2021) and for the matter
bispectrum Bδδδ the BiHalofit of Takahashi et al. (2020).

2.2. Non-linear alignment model

The impact of galaxy IA is a known contaminating signal to the
cosmic shear measurements that must be accounted for in all
weak lensing studies. To model the effects of intrinsic alignment,
we use the non-linear alignment (NLA) model (Bridle & King
2007), which is a one-parameter model described as

fIA = −
AIAC̄1ρ̄(z)

D+(z)
, (7)

where D+ is the linear growth factor at redshift z, C̄1 = 5 ×
10−14 M−1

� h−2 Mpc3, as calibrated in Brown et al. (2002), and
AIA captures the coupling strength between the matter density
and the tidal field.

By considering the tidal alignment field, δI, as a biased tracer
of the matter density contrast field δ, neglecting all higher order
bias terms, we get:

δI(x, z) = fIAδ(x, z). (8)

With this, we find that:

PδδI (k, z) = fIA Pδδ(k, z), (9)

PδIδI (k, z) = f 2
IA Pδδ(k, z), (10)

where Pδδ(k, z) is the non-linear matter power spectrum. The pro-
jected power spectra then follow to

P(i j)
GI (`) =

∫ ∞

0
dχ
g(i)(χ) n( j)(χ)

a(χ)χ
PδδI (`/χ, χ), (11)

P(i j)
II (`) =

∫ ∞

0
dχ

n(i)(χ′) n( j)(χ)
χ2 PδIδI (`/χ, χ), (12)

and the total projected power spectrum becomes

P(i j)(`) = P(i j)
GG(`) + P(i j)

GI (`) + P( ji)
GI (`) + P(i j)

II (`). (13)

The term P(i j)
GG(`) = P(i j)

κκ (`) describes the actual lensing signal,
which is given in Eq. (4) with the weighting kernel in Eq. (6).
The II contribution describes how two galaxies spatially close
together tend to be aligned. The term GI(zi > z j) describes the
fact that high matter density regions align the lower redshift
galaxies but also affect the shear of the background galaxies.
While the II term is dominant if galaxies of the same tomo-
graphic bin are considered, GI and IG start to dominate if galax-
ies of separated tomographic bins are considered. With zi < z j,

the term GI is expected to vanish for two tomographic bins with
no significant redshift overlap.

Following the ansatz for modelling IA in the power spec-
trum, we get

BδδδI (k1, k2, k3, z) = fIA Bδδδ(k1, k2, k3, z), (14)

BδδIδI (k1, k2, k3, z) = f 2
IA Bδδδ(k1, k2, k3, z), (15)

BδIδIδI (k1, k2, k3, z) = f 3
IA Bδδδ(k1, k2, k3, z), (16)

where Bδδδ is the non-linear matter bispectrum, which we calcu-
lated with BiHalofit. The projected bispectra are

B(i jk)
GGI(`1, `2, `3) =∫ ∞

0
dχ
g(i)(χ) g( j)(χ) n(k)(χ)

a2(χ)χ2 BδδδI (`1/χ, `2/χ, `3/χ, χ), (17)

B(i jk)
GII (`1, `2, `3) =∫ ∞

0
dχ
g(i)(χ) n( j)(χ) n(k)(χ)

a(χ)χ3 BδδIδI (`1/χ, `2/χ, `3/χ, χ), (18)

B(i jk)
III (`1, `2, `3) =∫ ∞

0
dχ

n(i)(χ) n( j)(χ) n(k)(χ)
χ4 BδIδIδI (`1/χ, `2/χ, `3/χ, χ). (19)

The total projected bispectrum is:

B(i jk)( ˆ̀) = B(i jk)
GGG( ˆ̀) + B(i jk)

GGI( ˆ̀) + B(ki j)
GGI( ˆ̀) + B( jki)

GGI( ˆ̀)

+ B(i jk)
GII ( ˆ̀) + B(ki j)

GII ( ˆ̀) + B( jki)
GII ( ˆ̀) + B(i jk)

III ( ˆ̀), (20)

where the tuple is ˆ̀ = (`1, `2, `3). The interpretation of all these
terms is analogous to the ones from the power spectrum, where
B(i jk)

GGG( ˆ̀) = B(i jk)
κκκ ( ˆ̀) is the actual pure lensing signal given by

Eq. (5) with the weighting kernel in Eq. (6).

2.3. Aperture mass statistics

One of the major problems of weak lensing mass recon-
struction techniques is the mass-sheet degeneracy (hereafter
MSD; Falco et al. 1985; Schneider & Seitz 1995), which cor-
responds to adding a uniform surface mass density without
affecting lensing observables such as the shear. However, it
is possible to define quantities invariant under the MSD, one
example being the aperture mass statistics (Schneider 1996;
Bartelmann & Schneider 2001). Another advantage of aperture
mass statistics is that they separate the signal into so-called
E- and B-modes (Schneider et al. 2002), where, to leading order,
the weak gravitational lensing effect cannot create B-modes.
Lastly, as shown in H23, aperture statistics are an excellent strat-
egy to compress thousands of bins of 3PCF into a few hundred
〈M3

ap〉 bins.
The aperture massMap at position ϑ with filter radius θap is

defined through the convergence κ, as follows:

Map(ϑ; θap) =

∫
d2ϑ′ Uθap (|ϑ′|) κ(ϑ + ϑ′), (21)

where Uθap (ϑ′) is a compensated filter such that∫
dϑ′ ϑ′ Uθap (ϑ′) = 0. The tangential shear component γt

of the complex shear in Cartesian coordinates γ = γ1 + iγ2, is
defined as γt = −Re(γe−2iφ), where φ is the polar angle of ϑ′.
Given the tangential shear γt, the aperture massMap can also be
calculated as

Map(ϑ; θap) =

∫
d2ϑ′ Qθap (|ϑ′|) γt(ϑ + ϑ′), (22)
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where Qθap is related to Uθap via

Qθap (ϑ) =
2
ϑ2

∫ ϑ

0
dϑ′ ϑ′ Uθap (ϑ′) − Uθap (ϑ). (23)

We define Uθap (ϑ) = θ−2
ap u(ϑ/θap), denote by û(η) the Fourier

transform of u and use the filter function introduced in
Crittenden et al. (2002),

u(x) =
1

2π

(
1 −

x2

2

)
e−x2/2, û(η) =

η2

2
e−η

2/2,

Qθap (ϑ) =
ϑ2

4πθ4
ap

exp
− ϑ2

2θ2
ap

 . (24)

2.4. Modelling aperture mass moments

The expectation value of the aperture mass 〈Map〉(θap), which
approximates the ensemble average over all positions ϑ, van-
ishes by construction. However, the second-order (variance) of
the aperture mass is nonzero and can be calculated as

〈M2
ap〉

(i j)(θap) =

∫
d` `
2π

P(i j)
κκ (`) û2(θap`). (25)

Equivalently, the third-order moment of the aperture statistics
〈M3

ap〉, can be computed from the convergence bispectrum via
(Jarvis et al. 2004; Schneider et al. 2005)

〈M3
ap〉

(i jk)(θap,1, θap,2, θap,3) =

∫
d2`1

(2π)2

∫
d2`2

(2π)2

× B(i jk)
κκκ (`1, `2, `3) û(θap,1`1) û(θap,2`2) û(θap,3`3),

(26)

where `3 = |`1 + `2|. Later, we differentiate between equal filter
radii, for which θap,1 = θap,2 = θap,3 and non-equal filter radii,
where the values of θap,i are all allowed to vary.

2.5. Modelling COSEBIs

Schneider et al. (2010) introduced the complete orthogonal sets
of E/B-integrals (COSEBIs), which are defined via the two-
point shear statistics ξ±(ϑ) = 〈γtγt〉(ϑ) ± 〈γ×γ×〉(ϑ) on a finite
angular range

E(i j)
n =

1
2

∫ ϑmax

ϑmin

dϑϑ
[
T+n(ϑ)ξ(i j)

+ (ϑ) + T−n(ϑ)ξ(i j)
− (ϑ)

]
, (27)

B(i j)
n =

1
2

∫ ϑmax

ϑmin

dϑϑ
[
T+n(ϑ)ξ(i j)

+ (ϑ) − T−n(ϑ)ξ(i j)
− (ϑ)

]
, (28)

where T±n(ϑ) are filter functions with support in [ϑmin, ϑmax]
(Schneider et al. 2010). If∫ ϑmax

ϑmin

dϑϑT+n(ϑ) J0(` ϑ) =

∫ ϑmax

ϑmin

dϑϑT−n(ϑ) J4(` ϑ)

:= Wn(`), (29)

where J0,4 are the zeroth and fourth order Bessel function, then
the COSEBIs offer the advantage of cleanly separating all well-
defined E- and B-modes within the range [ϑmin, ϑmax]. This is not
given, for instance, for second-order aperture mass statistics, as
this would require information of ξ± over the full space. Analyt-
ically, the COSEBIs can be calculated from the E-mode power

spectrum P(i j)
κκ (`) defined in Eq. (4) and a B-mode angular power

spectra P(i j)
κκ,B(`) as:

E(i j)
n =

∫ ∞

0

d` `
2π

P(i j)
κκ (`) Wn(`), (30)

B(i j)
n =

∫ ∞

0

d` `
2π

P(i j)
κκ,B(`) Wn(`). (31)

Since B-modes cannot be created by gravitational lensing
directly, we neglected the modelling of Bn for this work. There-
fore, we focus, henceforth, only on the En modes from the
COSEBIs.

3. Measuring shear statistics

As discussed in H23 〈M3
ap〉 can be estimated from data in three

ways, which we review below. The first uses the convergence
field, κ, the second uses the shear field, and the third uses corre-
lation functions. The latter is used to measure the real data and
compute the covariance matrix used for the real data analysis.

3.1. Measuring shear statistics from convergence maps

If the convergence field, κ, is available (e.g., from simulations),
the easiest way to measure Map is to use Eq. (21). If the con-
vergence field does not contain masks, this estimator is also
unbiased as long as a border of the size of the filter function
is removed from the aperture mass field before calculating the
spatial average. However, no boundaries need to be removed for
unmasked full-sky convergence fields to get an unbiased estima-
tor. To estimate the aperture mass from (full-sky) convergence
maps, the maps are smoothed with the healpy1 (Zonca et al.
2019) function smoothing. This function needs a beam window
function created by the function beam2bl, which is determined
from the corresponding Uθap filter.

In the absence of B-modes the En modes can also be calcu-
lated by using convolutions as (Schneider et al. 2010):

E(i j)
n = 〈κ(i)(ϑ)κ( j)

s (ϑ; n)〉, (32)

where

κ(i)
s (ϑ; n) =

1
2π

∫
d2θ′ap T+n(|ϑ − ϑ′|) κ(i)(θ′ap) (33)

with T+n introduced in Eq. (29).

3.2. Measuring shear statistics from galaxy catalogues

In a real survey, the convergence is not observable and can be
inferred only from the measured shear. However, estimatingMap
from these reconstructed convergence maps is not accurate as the
reconstructed convergence is necessarily smoothed and poten-
tially also contains other systematic effects caused by masks or
boundaries of the survey (Seitz & Schneider 1997).

However, as motivated by Eq. (22), the aperture mass can
also be estimated from an unmasked shear field (e.g., for simula-
tions). Given a galaxy catalogue, where galaxies are only found
at specific positions such that the number of galaxies within an
aperture varies on the sky, Eq. (22) needs to get modified to

M̂
(i)
ap(ϑ; θap) =

∑
i

Qθap (|ϑ − ϑi|)

−1 ∑
j

Qθap (|ϑ − ϑ j|) ε
(i)
t, j, (34)

1 http://healpix.sourceforge.net
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where the sum over the filter functions serves as a normalisa-
tion, εt are the observed galaxy ellipticities converted into their
tangential component, and ϑi are their respective positions. We
note that we sampled the galaxies on a grid using a cloud-in-
cell method2, so that convolutions can determine the aperture
masses. Since we used this approach solely for finite fields, we
applied the same cut-off of 4θmax

ap to all aperture mass maps,
where θmax

ap is the largest filter radius. For both approaches, where
the aperture mass is determined, the second- and third-order
aperture statistics follow by multiplying the respective aperture
mass maps pixel-wise and then taking the average of all pixel
values.

3.3. Measuring shear statistics from correlation functions

The first two methods to estimate unbiased aperture statistics are
not applicable to observed data with masks. Another disadvan-
tage is the removal of the edges, which can be significant for
a complex survey footprint, leading to decreased statistical cer-
tainty. The best method to estimate aperture shear statistics or the
En is by measuring them from two- and three-point shear corre-
lation functions (Schneider et al. 2002, 2005; Jarvis et al. 2004).
The advantage of correlation functions is that they can be esti-
mated for any survey geometry. The measurement of the two-
point shear correlation functions ξ±(θap) is unbiased and easily
performed by treecorr (Jarvis et al. 2004) and the conversion
to COSEBIs are given in Eqs. (27) and (28).

For the measurement of the aperture statistics, 〈M3
ap〉, we

refer to our companion paper, namely, Porth et al. (2023). It
describes an efficient estimation procedure of the natural com-
ponents of the shear 3PCF (Schneider & Lombardi 2003), which
is then transformed into aperture statistics. The correspond-
ing equations for a tomographic set-up can be found in their
Sect. 5.2.

4. Observed data

This analysis explores the fourth data release of KiDS
(Kuijken et al. 2015, 2019; de Jong et al. 2015, 2017). The weak
lensing data observed with the high-quality VST-OmegaCAM
camera is public3. It is collectively called ‘KiDS-1000’ as
it covers ∼1000 deg2 of images, which is then reduced to
an effective area of 777.4 deg2 after masking. The significant
advantage, compared to previous weak lensing surveys and
data releases, is its overlap with its partner survey VIKING
(VISTA Kilo-degree Infrared Galaxy survey, Edge et al. 2013),
which observes galaxy images at infrared wavelength. There-
fore, galaxies were observed in nine optical and near-infrared
bands, u, g, r, i,Z,Y, J,H,Ks, allowing for better control over red-
shift uncertainties (Hildebrandt et al. 2021, hereafter H21).

The KiDS-1000 cosmic shear catalogue is divided into five
tomographic zph-bins, whose redshifts are calibrated using the
self-organising map (SOM) method4 described in Wright et al.
(2020). The redshift distributions of all five tomographic bins

2 When placing the properties (shear) of a galaxy in a pixel grid,
instead of shifting it to the pixel centre, we assume that the galaxy itself
has the size of a pixel and distribute its properties to all neighbour-
ing pixel centres weighted by their relative distance to the galaxy. This
improves the accuracy on scales smaller than the pixel size.
3 The KiDS data products are public and available through http://
kids.strw.leidenuniv.nl/DR4
4 By use of the nine-band photometry the SOM method allocates
groups of galaxies to corresponding spectroscopic samples. If no
matches are found, these galaxies are removed from the catalogue.

Fig. 1. Redshift distribution of the five tomographic zph-bins of the
KiDS-1000 data.

are shown in Fig. 1, and were initially presented in H21. The
residual systematic uncertainties on the redshift distributions
are listed in Table 1 and are included in this work as nui-
sance parameters which we marginalise over. We note that they
are correlated, which we account for by using their correlation
matrix for the marginalisation. The galaxy shear ellipticities and
their corresponding weights, w, are estimated by the lensfit tool
(Miller et al. 2013; Fenech Conti et al. 2017; Kannawadi et al.
2019) and are described in more detail in Giblin et al. (2021).
These shear-related systematic effects shift the S 8 parameter by
(at most) 0.1σ when measured by cosmic shear two-point func-
tions. The resulting systematics are stated in Table 1, where we
marginalise over the shear multiplicative m-bias correction in the
resulting posteriors.

5. Simulated data

We use several simulated data sets created to resemble the
observed KiDS-1000 data, to validate our inference pipeline,
study the impact of key systematic uncertainties, and forecast
the expected KiDS-1000 analysis.

In particular, we used the full-sky gravitational lens-
ing simulations described in Takahashi et al. (2017, here-
after T17) to generate data vectors and numerical covari-
ance matrices. The cosmo-SLICS+IA simulations, described in
Harnois-Déraps et al. (2022), were used to test the modelling of
IA; while the Magneticum lensing simulations, first introduced
in Hirschmann et al. (2014), were used to infuse Baryon feed-
back on the model whose strength we regulate with a free param-
eter in the posterior estimation.

5.1. Takahashi simulations

Since the T17 simulations are used in this series of previous
works, we only reiterate the essential details here. The T17
simulations follow the non-linear evolution of 20483 particles
evolved in a large series of nested cosmological volumes with
side length starting at L = 450 Mpc h at low redshift, and increas-
ing at higher redshift, resulting in 108 different full-sky real-
isations. These were produced by the Gadget-3 N-body code
(Springel 2005) and are publicly available5. The cosmological
parameters of the matter and vacuum energy density are fixed
to Ωm = 1 − ΩΛ = 0.279, the baryon density parameter to
Ωb = 0.046, the dimensionless Hubble constant to h = 0.7, the
normalisation of the power spectrum to σ8 = 0.82, and the spec-
tral index to ns = 0.97. The shear information of the T17 simula-
tions is given in terms of 108 γ and κ full-sky realisations, where

5 T17 simulations: http://cosmo.phys.hirosaki-u.ac.jp/
takahasi/allsky_raytracing/
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Table 1. Overview of the observational KiDS-1000 data.

Name neff[arcmin−2] δ〈z〉 σε m-bias ×103

zph-bin: 1 0.62 0.000 ± 0.0106 0.270 −10 ± 19
zph-bin: 2 1.18 0.002 ± 0.0113 0.258 −9 ± 20
zph-bin: 3 1.85 0.013 ± 0.0118 0.273 −11 ± 17
zph-bin: 4 1.26 0.011 ± 0.0087 0.254 8 ± 12
zph-bin: 5 1.31 −0.006 ± 0.0097 0.270 12 ± 10

Notes. The second column shows the effective number density, which also accounts for the lensfit weights. The third column shows the mean and
uncertainty on the redshift bias taken from H21. The redshift bias uncertainties are correlated, which we accounted for by the correlation matrix
given in H21. The fourth column displays the measured ellipticity dispersion per component, σε , as given in Giblin et al. (2021). The fifth column
shows the shear multiplicative m-bias correction updated in van den Busch et al. (2022).

each realisation is divided into 38 ascending redshift slices. To
reproduce the KiDS-1000 data for a given tomographic zph-bin
shown in Fig. 1, we built the weighted average of the first 30 γ
and κ redshift slices. The weight for each redshift slice is mea-
sured by integrating the n(z) over the corresponding width of the
redshift slice.

We decided on two approaches (convergence maps vs.
galaxy ellipticity) to measure the data vectors and covariance
matrices from the T17 simulations. While the first approach
(Sect. 5.1.1) has the advantage that a large number of mock data
is available to measure a reliable covariance matrix even for large
data vectors, the second approach (Sect. 5.1.2) has the advantage
that the exact galaxy positions are used, which implies that the
holes (masks) match the data.

5.1.1. Convergence mock data

The first approach is to convolve the full sky convergence maps
with the T±,n(θap) or U(θap) filters, then multiply with corre-
sponding other smoothed maps and then take the spatial average.
For the covariance matrix, we divided the smoothed convergence
maps into 48 sub-patches, where each patch has an area of
860 deg2. Since the κ maps are first convolved with the filter
functions and the sub-patches have common edges, the individ-
ual patches are not fully independent from each other, which
decreases the covariance matrix. However, we found in our test-
ing that selecting only 18 sub-patches, that have no common
edges, gives almost identical results. Shape noise is added to the
convergence maps by drawing random numbers from a Gaussian
distribution with a vanishing mean and a standard deviation, as
follows:

σ =
σε√

neff Apix
, (35)

with the pixel area as Apix = 0.74 arcmin2 (nside = 4096), neff

as the effective galaxy number density that included the lens-
fit weights, and σε as the shape noise contribution given in
Table 1. With 48 sub-patches and 108 realisations, the covari-
ance matrix is measured from 5184 mock data. As the actual
KiDS-1000 area is roughly 777.4 deg2, we rescaled the covari-
ance by 860 deg2/777.4 deg2 ≈ 1.1. The reference data vec-
tor is measured from one T17 realisation with a resolution of
Apix = 0.18 arcmin2 (nside = 8192) without shape noise.

5.1.2. Galaxy shear catalogue mock data

For real surveys with a complex topology, the convolved maps
give biased results (Seitz & Schneider 1997). Therefore, we

decided on our second approach to measure our statistics from
second- and third-order shear correlation functions. For this, we
created galaxy shear catalogues from projected γ and κ fields by
extracting the shear information only at the true positions of the
observed galaxies in KiDS-1000. Since the correlation functions
need to be measured to very small scales, we used realisations
with a pixel resolution of Apix = 0.18 arcmin2 (nside = 8192).
We checked that this resolution is sufficient by comparing the
data vectors obtained from catalogues constructed from the same
initial conditions on the reference resolution (nside = 8192) and
a higher resolution (nside = 16 384), finding a maximum devia-
tion of 1% for an aperture filter scale of 4′. To increase the num-
ber of mock data, we shifted the galaxy positions 18 times by 20◦
along the lines of constant declination and extracted the shear
information at the new positions. Afterwards, the shifted galaxy
positions and the corresponding lensing information are shifted
back to the original footprint. The back shifting is done only
for simplicity and has no physical reason. With this procedure,
1944 almost independent mock data were created, from which
the covariance and the reference data vector were measured. To
add shape noise, we combined the two-component reduced shear
g = γ/(1 − κ) of each object with a shape noise contribution, εs,
to create observed ellipticities εobs (Seitz & Schneider 1997), as
follows:

εobs =
εs + g

1 + εsg∗
. (36)

The quantities here are all complex numbers and the asterisk
‘∗’ indicates complex conjugation. To mock the εs, we use the
observed ellipticities εobs

KiDS of the KiDS-1000 data and randomly
rotate them to erase the underlying correlated shear signal. This
procedure offers the advantage that the resulting distribution of
εs matches the distribution of εobs

KiDS. The estimated mean and
dispersion σε are given in Table 1. Furthermore, when comput-
ing our statistics via correlation functions, we need to consider
the corresponding weight w for each shape measurement, which
ensures that we use the correct effective number density. Since
the lensing weights and the intrinsic ellipticities of source galax-
ies are correlated, adding the rotated ellipticities to the shear sig-
nal preserves this correlation.

5.1.3. Data vector measurement and modelling

We follow the analysis of Asgari et al. (2021, hereafter A21) as it
is the fiducial cosmic shear analysis of the KiDS-10006. We only
use the first five En-moments determined from two-point corre-
lation functions, measured from 0.′5 to 300′ in 400 radial bins.
6 For updated KiDS-1000 cosmic shear analysis, we refer the reader to
DES & KiDS Collaboration (2023) and Li et al. (2023).
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The resulting En are shown in Fig. 2, where we checked that
the Bn are consistent with zero. The En data vector for γ7 and g
is the mean of all 1944 T17 mock data; and for the κ data vec-
tor, we used one realisation with resolution Apix = 0.18 arcmin2

(nside = 8192). The analytical model was computed using
osmoSIS (Zuntz et al. 2015a).

The 〈M3
ap〉 data vectors are measured from the same mock

data that are also used to compute the En. The analytical model
pipeline is described in H23. In Fig. 3, we show 〈M3

ap〉 for aper-
ture filter radii θap ∈ {4′, 6′, 8′, 10′, 14′, 18′, 22′, 26′, 32′, 36′},
where we used only equal scales. We show them here for some
specific zph-bin combinations. In Fig. B.2, we show 〈M3

ap〉 also
for non-equal aperture filter radii θap ∈ {4′, 8′, 16′, 32′}.

5.2. Cosmo-SLICS+IA

The cosmo-SLICS+IA simulations are cosmic shear mock
galaxy catalogues infused with the non-linear alignment model
of Bridle & King (2007), which is ideally suited for testing and
validating our analytical IA model. They are based on N-body
simulations of identical box size and particle density as the
SLICS (Harnois-Déraps et al. 2018), which were already used
in previous works of this series; we therefore only summarise
the essential details.

The cosmology corresponds to the fiducial cosmo-SLICS
model presented in Harnois-Déraps et al. (2019), with Ωm =
0.2905, ΩΛ = 0.7095, Ωb = 0.0473, h = 0.6898, σ8 = 0.836,
w0 = −1.0 and ns = 0.969. We use the full set of 50 simulated
galaxy catalogues, each covering 100 deg2 and reproducing the
KiDS-1000 n(z) (see Fig. 1) and galaxy number densities neff

specified in H21. As we use these mock data only to infuse IA
effects into the T17 data vector, shape noise is not included. Fol-
lowing the methods described in Harnois-Déraps et al. (2022),
the intrinsic ellipticity components εIA

1/2 of these galaxies are
computed as

εIA
1 = − fIA(∂xx − ∂yy)φ , εIA

2 = −2 fIA∂xyφ, (37)

where fIA is defined in Eq. (7), and φ is the gravitational poten-
tial. The partial derivatives of the gravitational potential describe
the Cartesian components of the projected tidal field tensors. The
εIA

1,2 terms were then combined with the noise-free cosmic shear
signal using Eq. (36), resulting in an IA-contaminated weak lens-
ing sample that is consistent with the NLA model. As these mock
data cover a square patch without any masking, we used the
methods described in Sect. 3.2 to estimate the aperture statistics.
Furthermore, they were used only to validate the IA modelling,
which we discuss in Appendix A.

5.3. Magneticum simulations

The feedback processes due to baryonic matter significantly
affect the distribution of the LSS, such that the clustering of
the matter is reduced on intra-cluster scales by up to tens of per
cent (van Daalen et al. 2011). However, in a quantitative sense,
this suppression is not well understood (Chisari et al. 2015).
We use the Magneticum simulations (Hirschmann et al. 2014)
to investigate the impact of baryonic feedback processes. Mag-
neticum was run using Gadget3 code which is a more effi-
cient version of Gadget 2 (Springel 2005) that includes mod-
ern smoothed particle hydrodynamics (Beck et al. 2016). The

7 To compute the individual γ data vectors with shape noise we have
used Eq. (36) and replaced

dark matter particle mass is 6.9 × 108 h−1 M� and gas parti-
cle mass 1.4 × 108 h−1 M�. The underlying matter fields were
constructed from the Magneticum Pathfinder simulations8 in the
Run-2 with a comoving volume of side 352 h−1 Mpc and Run-2b
with a comoving volume of side 640 h−1 Mpc, and are described
in Hirschmann et al. (2014) and Ragagnin et al. (2017), respec-
tively. The Magneticum simulations account for radiative cool-
ing, star formation, supernovae and active galactic nuclei.

The Magneticum shear maps used in this work were first pre-
sented in Castro et al. (2018). Although the underlying creation
of these shear maps is similar to the production of the cosmo-
SLICS, meaning that the mock data follow the same redshift
distribution and number density as the KiDS-1000 data, there
are three main differences. First, only ten instead of 50 pseudo-
independent light cones are available. Second, the galaxies are
placed at the exact galaxy positions as in the observed data rather
than randomly. Third, as these mock data are flat sky simulations
and cover only an area of 100 deg2, the KiDS-1000 footprint is
divided into 18 regions. This results in 18 catalogues for each
of the ten pseudo-independent light cones. Due to the non-trivial
geometry of the masks, we used correlation functions to estimate
the shear statistics.

To incorporate baryonic feedback processes into our mod-
elling pipeline using the Magneticum simulations, we calculated
the data vector, dDM, using dark matter only and the data vector,
dDM+BA, where dark matter and baryons are included. With them
we modified the model vector, m, to

m′ =

[
1 + Aba

(
dDM+BA

dDM − 1
)]

m, (38)

where we introduce the parameter Aba. A value of zero for Aba
means no baryonic feedback, and a value of one is exactly the
strength of baryonic feedback as in the Magneticum. Further-
more, we interpolate between zero and one and extrapolate to
five, which we chose arbitrarily. We note that for the joint analy-
sis of second- and third-order statistics, we need at least extrap-
olation to Aba = 2 (at 95% confidence), which approximately
agrees with the baryonic strength of other hydrodynamical sim-
ulations (Martinet et al. 2021). The third-order analysis alone is
bound by the prior Aba = 5. Although extrapolating to these large
values is probably incorrect, we introduced Aba only to give the
model some flexibility to account for baryonic feedback effects
without having a direct physical meaning such as the ejected gas.

6. Cosmological parameter inference methodology

In the following sections, we determine multiple posterior dis-
tributions using Markov chain Monte Carlo (MCMC) samplings
for different model ingredients.

We varied the two cosmological parameters Ωm and S 8 while
fixing the remaining parameters to the T17 cosmology. Addi-
tionally, we varied the intrinsic alignment amplitude, AIA, and
the parameter Aba that accounts for the strengths of the response
to baryonic feedback9 and was described in Sect. 5.3. Lastly, we
always marginalise over the shifts of the redshift distributions
δ〈z〉 given in H21 and the m-bias (Giblin et al. 2021) of all five
tomographic bins shown in Table 1. For these nuisance parame-
ters, we assume Gaussian priors and account for the fact that the

8 www.magneticum.org
9 This parameter is used for both the En and the 〈M3

ap〉 part of the
data vector. We found that Aba = [0.0, 1.0, 3.0] roughly corressponds
to log10 TAGN = [7.1, 7.6, 8.5], which is the baryon parameter used in
HMcode2020.
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Fig. 2. Measured and modelled En vector for the first five moments in the T17 mock data. The green and blue dots are the mean of all 1944
KiDS-1000 mock data that are also used to compute the covariance matrix with a resolution Apix = 0.18 arcmin2 and shape noise. The red dots
represent the data vector measured from one full-sky T17 realisation with a resolution Apix = 0.18 arcmin2 and no shape noise. The grey band
indicates the expected uncertainty from the KiDS-1000 survey.

Fig. 3. Same as Fig. 2, but here the measured data and model are the 〈M3
ap〉 vector for equal-scale aperture filter radii θap ∈

{4′, 6′, 8′, 10′, 14′, 18′, 22′, 26′, 32′, 36′} in the T17 mock data for some selected zph-bin combinations. The full data set is shown in Fig. B.1.

uncertainties of shifts of the redshift distributions are correlated
using its correlation matrix. We give an overview of the priors in
Table 2.

If the covariance matrix, C̃, is measured from simula-
tions, it is a random variable. We followed the method from
Percival et al. (2022), which leads to credible intervals that can
also be interpreted as confidence intervals with approximately
the same coverage probability. The posterior distribution of a
model vector, m, that depends on np parameters, p, if the covari-
ance matrix C̃ is measured from nr mock data, is given by:

P
[
m(p)|d, C̃

]
∝ |C̃|−

1
2

(
1 +

χ2

nr − 1

)−m/2

, (39)

where d is the measured data vector and

χ2 =
[
m(p) − d

]T C̃−1 [
m(p) − d

]
. (40)

The power-law index m is

m = np + 2 +
nr − 1 + B(nd − np)

1 + B(nd − np)
, (41)

with nd being the number of data points and

B =
nr − nd − 2

(nr − nd − 1)(nr − nd − 4)
. (42)

To give a quantified value for the comparison of different mod-
elling choices, we use the Figure of Merit (FoM), which we cal-
culate as

FoM =
1

√
det C

, (43)
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Table 2. All varied parameters and their flat prior knowledge.

Parameter Validation Real

Ωm [0.10, 0.50] [0.10, 0.75]
S 8 [0.6, 1.0] [0.6, 1.0]
AIA [−1.8, 1.8] [−1.5, 1.5]
Aba [0.0, 5.0] [0.0, 5.0]

Notes. Uniformly distributed priors on the parameters used in our cos-
mological inferences. The priors given in Table 1 on the multiplicative
shear m-bias and photometric redshift errors δ〈z〉 are used both for the
real data analysis and for the mock data analysis, where for the latter the
expectation values are set to zero. The δ〈z〉 for the sources follow a joint
normal distribution with covariance matrix Cδ〈z〉 shown in Fig. 6 of H21.
The m-bias follows an uncorrelated normal distribution. We increased
the upper prior range on Ωm to 0.75 for the real data analysis to have En
posteriors that are not bound by the prior. The AIA of the real data anal-
ysis are narrower to improve the emulator accuracy. The upper bound
of Aba is chosen arbitrarily and does play a role only for 〈M3

ap〉-only
analysis.

where C is the parameter covariance matrix of the S 8−Ωm plane
resulting from the MCMC process.

Depending on the used filter combinations, the modelling
of 〈M3

ap〉 takes around 10–20 min, which stands as an obstacle
to directly running an MCMC using the model. To circumvent
this issue, we use the emulation tool contained in CosmoPower
(Spurio Mancini et al. 2022). We trained the emulator on 3000
model points for the analysis based on mock data in the param-
eter space {Ωm, S 8, AIA} and 5000 model points for the real data
analysis in the parameter space {Ωm, S 8, AIA, δ〈z〉}, which we
distributed in a Latin hypercube for the given prior range, and
fixed all other parameters to the ones used in the T17 simula-
tions. The m-bias and the Aba do not need to be emulated as
they follow a simple correction formalism that is applied during
the MCMC sampling. The δ〈z〉 of each zph-bin for the training
and testing are distributed uncorrelated between [−0.06, 0.06].
The accuracy of the emulator is tested by comparing the emu-
lator prediction with the model at 500 independent points in the
same parameter space. The fractional error of each vector ele-
ment is smaller than 2% for En and smaller than 5% for 〈M3

ap〉,
which is well within the accuracy of the HMcode2020 or the
BiHalofit model itself. We used a Metropolis-Hastings sam-
pler for MCMC10, where we used 1000 walkers running each
20 000 steps and cut the first 2000 steps away to ensure that the
posteriors are not biased by the burn-in phase.

7. Reduction of data vector combinations and filter
radii

Generally, as long as the covariance is converged, the more infor-
mation is used, the higher the constraining power. However, for
third-order statistics with four different filter radii and five tomo-
graphic bins, the data vector contains 700 elements. To obtain
a reliable covariance matrix, roughly ∼10 times the dimension
of the data vector is needed. This implies that modelling and
measuring the model/data vector and covariance matrix are time-
consuming and require thousands of simulations. Therefore, it is
inevitable for this and for future analyses to compress the data
vector without substantial information loss. We note that this
section is only concerned with reducing the dimension of the

10 The code we made use of can be find here: https://github.com/
justinalsing/affine

Fig. 4. Posterior distribution for data vectors and covariance measured
from the T17 convergence maps catalogues. Here only specific parts of
the 〈M3

ap〉 data vector are used. Here ‘only equal zph-bins’ means that
only the auto tomographic bins are used. Lastly, all non-equal filter radii
are discarded for ‘only equal filter radii’.

data vector and is not meant as a proper forecast, which we do in
the following sections. The spatial resolution of the mock data
used to compute the covariance induces an error smaller than
<1% in the En covariance matrix. However, as we only reduce
the elements of 〈M3

ap〉, while using all combinations of the En,
this is unproblematic for the purpose of this section. We note
again that the data vector was measured from one realisation
with a resolution of Apix = 0.18 arcmin2, and that we use the κ
based covariance for this section to ensure the covariance matrix
is converged even for the data vector with the largest dimension.
As a first check, we show in Fig. 4 multiple element choices that
discard a significant part of the 〈M3

ap〉 data vector. Using only the
five auto-tomographic bins is not a good choice for reduction, as
seen in the fact that the FoM is reduced by 32%. However, using
only equal-scale aperture radii is a better reduction, reducing the
data vector to 28% while reducing the FoM by only ≈8%. Using
only equal-scale aperture radii also has the advantage of being
modelled faster. Therefore, we continue using only the equal-
scale aperture radii for the rest of this work, which reduces the
dimension of the data vector from 775 to 215.

Next, we investigated the choice of aperture filter radii.
The aperture filter radii under consideration are θap ∈

{4′, 6′, 8′, 10′, 14′, 18′, 22′, 26′, 32′, 36′}. The resulting posteri-
ors are displayed in Fig. 5, which reveals that using only the
large filter radii above >22′ have the worst constraining power.
However, using only the four smallest filter radii is also not the
best choice, as they are largely correlated and miss the large-
scale information. The best choice of filter function is to use a
filter from each range such as θap ∈ {4′, 8′, 14′, 32′}.

Next, we considered the full data vector, meaning the 〈M3
ap〉,

and the En for the next compression strategy. The idea is to
decrease the number of elements by considering only those with
the highest constraining power on S 8. We start with the element
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Fig. 5. Posterior distribution for different filter radii combinations if the
data vector and covariances are measured from the T17 convergence
maps.

Table 3. Overview of the 〈M3
ap〉 data vector choices and their relative

constraining power.

Choice Figure rel. FoM nd

All combinations 4 1.00 775
Only equal zph-bins 4 0.68 175
θap ∈ {4′, 8′, 16′, 32′} 4 0.92 215
θap ∈ {4′, 8′, 14′, 32′} 5 0.92 215
θap ∈ {4′, 14′} – 0.87 145
θap ∈ {4′, 14′, 32′} – 0.89 180
θap ∈ {4′, 6′, 8′, 10′} 5 0.88 215
θap ∈ {10′, 14′, 18′, 22′} 5 0.72 215
θap ∈ {22′, 26′, 32′, 36′} 5 0.55 215
All equal-filter radii – 0.92 425
Best 100 elements – 0.80 100
Best 215 elements – 0.89 200

Notes. For the measurement of the relative FoM the individual FoM is
divided by the FoM of the En + 〈M3

ap〉 of the ‘all combinations’ case.
From the second row onwards, only equal-scale filter radii are used.

with the highest S/N, then consecutively add those vector ele-
ments that maximise the S 8 Fisher information content. This
Fisher information is calculated as (Tegmark et al. 1997)

FS 8 =

(
∂m(S 8)
∂S 8

)T

C−1
(
∂m(S 8)
∂S 8

)
, (44)

where the partial derivatives are computed with a five-point sten-
cil beam (Fornberg 1988),

∂m(S 8)
∂S 8

≈
−m(S ++

8 ) + 8m(S +
8 ) − 8m(S −8 ) + m(S −8 )

12∆S 8
, (45)

where S ±8 = S T17
8 ± 0.02 S T17

8 and S ±±8 = S T17
8 ± 0.04 S T17

8 .
For this analysis, we used only the equal-scale filter radii

θap ∈ {4′, 6′, 8′, 10′, 14′, 18′, 22′, 26′, 32′, 36′}. The first ∼200
elements are sufficient to get converged posteriors. It is also
interesting to see which elements help increase the constrain-
ing power. Unsurprisingly, the first elements are all COSEBIs,
but among the first 100, approximately half are 〈M3

ap〉 elements.
Furthermore, it is interesting to see that cross-tomographic bin
elements are more likely to be selected by our method, which is
expected because they have a higher S/N than auto-tomographic
bin elements. Nevertheless, we also observe that using equal-
scale filter radii θap ∈ {4′, 8′, 14′, 32′} results in a better FoM then
using the best 215 elements. This is likely because we optimised
only the S 8 parameter here while fixing all others. Therefore, we
also checked for the equal scale filter case if a principal compo-
nent analysis (PCA) applied to the covariance matrix performs
better in compressing the data. However, it needs more elements
to get the same constraining power as our FoM maximiser. This
is probably because a PCA considers only the covariance matrix
and ignores the derivatives, meaning that a PCA is not necessar-
ily sensitive to cosmology.

Finally, we give in Table 3 an overview of the FoM for the
Ωm–S 8 plane and the size of the data vector for some more ele-
ment choices. As the covariance matrix is measured from 5184
mock data, we can assume that for all data vector dimensions
under consideration, the covariance matrix is converged. Nev-
ertheless, for the next sections, we use the covariance matrix
measured from 1944 galaxy shear catalogues, limiting us to a
maximum dimension of our data vector ∼200 elements. Given
the investigations in this section, we restrict the further sections
to the case where we use all En elements and all 〈M3

ap〉 ele-
ments with the equal-scale filter radii θap ∈ {4′, 8′, 14′, 32′}, as
this resulted in the best FoM for the restricted dimension of the
data vector.

8. Validation of data vector estimator

In a real survey analysis, two further difficulties arise. The first
issue is that the lensing information is not given in terms of
convergence maps but by point estimates (galaxies). The finite
area where galaxies are measured implies that no lensing infor-
mation is available outside that area. It is, therefore, necessary
to measure the statistic from correlation functions described in
Sect. 3.3. Second, these point estimates are the reduced shear
g = γ/(1 − κ), which increases the signal and therefore needs
to be accounted for. To correct these effects, we measured data
vectors without shape noise and with the largest available reso-
lution Apix = 0.05 arcmin2. Since these data vectors result only
from one realisation without shape noise, we can expect that
the ratio is a good approximation for the reduced shear effect.
Although the deviations are small (as seen in Figs. A.3 and A.4),
we decided to scale the model vectors by the ratio of g and γ data
vector.

The resulting posteriors are shown in Fig. 6. Our first obser-
vation is that similar to the finding of H23, combining second-
order with third-order shear statistics significantly improves the
constraining power on S 8 and Ωm. Compared to the En-only, the
S 8-Ωm FoM increases by 93% and for the 〈M3

ap〉-only by 233%.
For these improvements, we have not considered that the poste-
riors of the individual statistics are bound by the priors on Ωm,
meaning that the improvements are lower bounds. Compared to
the analysis based on κ mock data (see Fig. 5), the posteriors
are broader because the covariance based on κ maps also uses
information outside the patches since the boundaries were not
removed. This decreases the variance between the patches. A
further difference is that the κ analysis is not subject to masks
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Fig. 6. Posterior distribution for data vectors and covariance measured
from the T17 galaxy shear catalogues. The covariance matrix and refer-
ence data vector were measured from 1944 noisy g mock data.

and uses a slightly larger effective area. Although we rescaled the
covariance to correct for the different effective areas, we found
in Linke et al. (2023) that this rescaling is not necessarily accu-
rate. Lastly, we notice that our modelling within the KiDS-1000
uncertainty is accurate, which we quantified by measuring the
shift of the maximum of the posterior (MP) from the true val-
ues in the matter density parameter ∆Ωm < 0.02σΩm and in the
clustering amplitude ∆S 8 < 0.05σS 8 with respect to the aver-
aged noisy mock data vector and the KiDS-1000 uncertainty. We
define the MP as the maximum of the one-dimensional marginal
distributions.

9. Cosmological results

Finally, we are ready to present the first cosmological con-
straints from the KiDS-1000 data using second- and third-order
shear statistics, displayed in Figs. 7 and 8. The data vectors are
described in more detail in A21 for the En, and the 〈M3

ap〉 in
Porth et al. (2023). Given the fact that the covariance matrix is
measured only from 1944 realisations using the reduced shear g,
we decide to build our data and model vector from all En modes
and 〈M3

ap〉 with all equal filter radii θap ∈ {4′, 8′, 14′, 32′}. To
control whether the model accurately fits the data, we minimised
the χ2

real from the real data and the χ2
T17 from each of the 1944

T17 mock data used to compute the covariance matrix. To esti-
mate the probability of measuring a χ2 > χ2

real (p-value), we
counted the number of χ2

T17 that are greater than χ2
real divided by

1944. The resulting p-value for the En-only, the 〈M3
ap〉-only, and

the combination are given in Table 4. The resulting p-values for
all combinations are better than 0.1, indicating that our covari-
ance is well matched to the observed data and our model is accu-
rate enough to describe the data. Our maximum posterior χ2

value increases to 81 if we swap our En covariance matrix to the
analytical expression in Joachimi et al. (2021) calculated at the
MP parameter values in A21. This is unsurprising as the numeri-

cal covariance is computed at the T17 cosmology, giving a signal
larger than that computed at the MP of A21. Furthermore, our
covariance matrix is measured from reduced shear mock data
that slightly increases the covariance matrix. We also notice that
the model and the data seem inconsistent for some zph-bin com-
binations. However, adjacent COSEBI modes are highly corre-
lated, so visually inspecting the model’s goodness of fit to the
data is misleading. We refer to A21 for further details on this
discrepancy.

We show the resulting posteriors in Fig. 9, where we
marginalised over the shift in the redshift distribution and mul-
tiplicative shear correction, both stated in Table 1. We improve
the constraints on S 8 by 23% and on Ωm by 47% compared to
the En-only case. This shows how powerful a combined analysis
of the second- and third-order shear statistics is. The constraints
on AIA and Aba are basically untouched, showing that 〈M3

ap〉 is
not helpful for constraining these nuisance parameters.

Compared to the maximum of the one-dimensional marginal
distributions constraints of En measurements given in A21 (S 8 =
0.758+0.017

−0.026 and Ωm = 0.253+0.088
−0.074), we have slightly larger con-

straints when using only the En. This is because we use a numer-
ical covariance, which is larger than the analytical one due to the
underlying cosmology and the fact that we model the reduced
shear effect. Furthermore, we note that A21 varied Ωcdmh2, Ωbh2

and h, while we fixed h and Ωb and varied only Ωm. We also
find that if we use the same pipeline as A21 but allow larger
Ωcdmh2, the posteriors increase towards larger Ωm and therefore
get more consistent with our results. Furthermore, we use a dif-
ferent sampler compared to A21 and different baryon feedback
process modelling. Nevertheless, our results from the En anal-
ysis are consistent with A21 within 0.03σ in Ωm and within
0.14σ in S 8. Similar to A21, we also perform an internal consis-
tency check, removing one zph-bin at a time and finding consis-
tent results. We discuss this in more detail in Appendix A, and
we find that (as expected) the fifth zph-bin is most important to
constrain Ωm and S 8. We further discuss in Appendix A mod-
elling checks regarding the infusion of IA, baryon feedback and
the reduced shear correction. The baryon feedback and reduced
shear corrections are always sub-dominant compared to a shift
in S 8. The IA, however, is important, especially if lower zph-bins
are included and must be accurately modelled.

Finally, we notice that all statistics are consistent with AIA =
0, although both statistics alone seem to favour positive AIA.
Interestingly, the joint analysis is shifted to lower AIA and is
slightly more constraining, which we do not observe in the vali-
dation in Sect. 8 where all posteriors accurately peak at the input
value and all constraining power comes from the En. This might
indicate that for real data with non-zero AIA, third-order shear
statistics can contribute (at least a bit) to constraining IA, in line
with predictions by, for instance, Pyne & Joachimi (2021) and
Troxel & Ishak (2012). Furthermore, the baryonic parameter can
be confined to Aba < 1.4 at 68% confidence with our statistic.
Here, we should note that 〈M3

ap〉 does not help in constraining
Aba, which is probably due to the fact that changes in S 8 absorb
all Aba effects.

10. Conclusions

This work validates the combined modelling of second- and
third-order shear statistics, showing that its accuracy is well-
suited for a KiDS-1000 analysis. Our second-order shear statis-
tic of choice is the En-modes of the COSEBIs (Schneider et al.
2010) and the third-order statistic is 〈M3

ap〉 (Schneider et al.
2005). In particular, we incorporated intrinsic alignment
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Fig. 7. Measured and modelled En for the first five components. The blue points show the measurements from the KiDS-1000 data (A21). The blue
error bars indicate the KiDS-1000 uncertainty. The different dashed lines show analytical descriptions at the MP if the combination of En + 〈M3

ap〉

or only En is used.

Fig. 8. Measured and modelled 〈M3
ap〉 with filter radii θap ∈ {4′, 8′, 14′, 32′}. The blue error bars indicate the KiDS-1000 uncertainty. The different

dashed lines show analytical descriptions at the MP if the combination of En + 〈M3
ap〉 or only 〈M3

ap〉 is used.

Table 4. MP values with their marginal 68% credible intervals.

Ωm S 8 σ8 AIA Aba χ2 p-value

En-only 0.246+0.137
−0.076 0.765+0.025

−0.032 0.77+0.17
−0.16 0.31+0.39

−0.46 0.19+1.29
−0.18 72 0.42

〈M3
ap〉-only 0.248+0.253

−0.082 0.791+0.060
−0.046 0.61+0.22

−0.05 0.49+0.83
−0.76 0.39+2.83

−0.38 147 0.25
En + 〈M3

ap〉 0.248+0.062
−0.055 0.772 ± 0.022 0.82+0.12

−0.09 0.12+0.40
−0.46 0.38+1.07

−0.37 224 0.26

Notes. The projected MP and their 68% confidence intervals result from the MCMC chains shown in Fig. 9. The values corresponding to the best
χ2 might differ slightly. We fixed h = 0.6898, w0 = −1 and ns = 0.969 but marginalised over the δ〈z〉 and m-bias uncertainties. The p-values were
estimated by counting the T17 mock data that give larger χ2 than the real χ2 relative to the total number of mock data.
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Fig. 9. Posterior distribution for the real KiDS-1000 data vector while the covariance is measured from the 1944 T17 galaxy shear catalogues. Here
the En are compared to 〈M3

ap〉 using all available combinations for the aperture filter radii θap ∈ {4′, 8′, 14′, 32′} and redshift bin combinations. We
note that the prior (see Table 2) range on Ωm is enlarged compared to the previous validation plots. The FoM values of the En-only or 〈M3

ap〉-only
case should not be compared to Fig. 6, as priors of Ωm bind their contours.

modelling based on the non-linear alignment model of
Bridle & King (2007) and validated its accuracy against simu-
lations infused with IA effects. This test is also interesting for
other simulation-based analyses for which IA cannot be mod-
elled analytically. We incorporated the impact of the baryonic
feedback process by measuring a response function using the
Magneticum simulations. Since the amplitude of this response
function has no physical meaning, it is considered a nuisance
parameter, which does not bias our cosmological parameter pre-
dictions.

We investigate which parts of the data vector can be
neglected without losing too much cosmological information.

This is important because the data vector for third-order shear
statistics, due to the possibility it offers of combining three
different filters with three different redshift bins, inflating the
data vector to several hundred elements easily. Therefore, both
a numerical and an analytical covariance are difficult to com-
pute. We find that cross-tomographic redshift bins contain a large
amount of cosmological information. Using only equal-scale fil-
ter radii but all available tomographic bin combinations was the
best data compression strategy, which comes with the advantage
that equal-scale filters are faster to compute analytically as they
require a lower integral accuracy. Next, we investigated the cho-
sen filter radii. For this we measured and modelled the 〈M3

ap〉
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for θap ∈ {4′, 6′, 8′, 10′, 14′, 18′, 22′, 26′, 32′, 36′}. We find that
filter radii above 30′ do not contribute much constraining power
and that having many small filter radii is unnecessary. The best
option is to use filter radii θap ∈ {4′, 8′, 14′, 32′}. We also tested
whether selecting elements that maximise the Fisher information
matrix on S 8 is more optimal but find no difference compared to
selecting all equal-scale filter radii. However, this method can
be used to speed up the modelling and measurement of future
analyses by discarding irrelevant elements.

Next, we validated the assumption that the correlation func-
tion estimator gives accurate results. This is important since
only correlation function estimators have the potential to give
unbiased results for real data. We used realistic mock data cre-
ated from the T17 simulations. In particular, we created several
galaxy catalogues where the positions of the galaxies are exactly
at the KiDS-1000 galaxy positions. We had to rely on correlation
functions to measure the second- and third-order statistics, which
give unbiased results also if the data has a complex topology.
Our first finding is that our modelling and measurement result in
unbiased cosmological parameters given the KiDS-1000 uncer-
tainty. Second, we find that using the reduced shear, or the shear
itself, does not change the results and can, therefore, be ignored
for the KiDS-1000 data analysis.

We conclude this paper with an analysis of the real KiDS-
1000 data. Overall, our En constraints are less informative than
the original KiDS-1000 analysis. This is mostly because we used
a numerical covariance matrix from T17 simulations. However,
the chosen sampler, the priors on the cosmological parameters,
and the modelling strategy of the baryonic feedback processes
impact our constraints, too. We find an S 8 = 0.772 ± 0.022 and
an Ωm = 0.248+0.062

−0.055, which are improved compared to the En-
only case by 23% and by 47%, respectively. With a p-value of
0.25, we also find a good agreement of model and data given
the KiDS-1000 uncertainty. This demonstrates that combining
second- and third-order statistics is powerful in constraining cos-
mological parameters. The gain in constraining power in Ωm is
also interesting for combined weak lensing and galaxy cluster-
ing analysis because the constraining power in Ωm for cluster-
ing analysis comes with the issue of further nuisance parame-
ters such as galaxy bias. However, since second- and third-order
shear statistics constrain Ωm quite well, combining it with clus-
tering statistics might enable us to learn more about these nui-
sance parameters.

We leave the optimisation of the IA and baryonic feedback
modelling for future analysis. An especially interesting improve-
ment would be a more physically motivated description of the
baryon feedback processes, which are identical for power and
bispectrum. As all baryon feedback models rely on hydro simu-
lations, we have to use the same simulations for power and bis-
pectrum. Furthermore, although we found that the reduced shear
and limber approximation is sufficient for a KiDS-1000 anal-
ysis, we probably have to model these effects for future Stage
IV surveys. Lastly, we ignore the effect of source clustering for
this work. Although Gatti et al. (2024) found it relevant for third-
order weak lensing statistics based on convergence mass maps,
we expect it to be less critical for our analysis, which uses shear
catalogues and no mass map reconstruction. For future Stage IV
surveys, this needs to be investigated.
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Appendix A: Consistency checks and modelling
choices

As a first consistency check, we again inferred the joint analy-
sis posteriors but removed one zph-bin at a time. The results are
shown in Fig. A.1 and reveal (most importantly) that all zph-bins
are internally consistent with each other. However, we further
observe that zph-bin one and zph-bin two are not important for
inferring cosmological parameters, as expected, given their S/N
as shown in Porth et al. (2023). For the AIA parameter, in turn,
zph-bin one is very important, as the low redshift is most sensitive
to IA. Next, we observe that the third zph-bin results are basically
the same as for all five zph-bins, meaning that the third bin can
eventually be discarded in future KiDS analyses if the dimen-
sion needs to be decreased further. Lastly, if either the fourth or
fifth zph-bin is removed, the constraining power on Ωm and S 8
drastically decreases. For the fifth zph-bin, this also affects the
constraining power on AIA.

Fig. A.1. Same as black contours in Fig. 9 but while removing one zph-
bin at a time.

Now we investigate the accuracy of the modelling strategy
of IA described in Sect. 2.2. To validate our IA modelling,
we measured the data vector from the cosmo-SLICS+IA for
AIA = {−1, 0, 1} and then took the ratio of the data vector at
AIA ∈ {−1, 1} and divided it by the data vector at AIA = 0. This
ratio is multiplied with the averaged T17 γ mock data vector
to infuse IA. For this analysis, we used only equal-scale filter
radii θap ∈ {4′, 8′, 14′, 32′}. As shown in Fig. A.2, our model
nicely recovers the input IA amplitude without shifting the other
parameter posteriors. Interestingly, the larger AIA the larger the

Fig. A.2. Posterior distribution for data vectors and covariance mea-
sured from the 1944 T17 noisy g mock data. Here the T17 data vector is
infused with IA measured from the cosmo-SLICS+IA. The modelling
is described in Sect. 2.2.

FoM, which is due to the increased degeneracy breaking seen in
the Ωm-AIA panel.

As a further modelling check, we investigate in Fig. A.3 and
Fig. A.4 the impact on our model vector of several ingredients,
namely the reduced shear correction, the infusion of baryonic
feedback processes and intrinsic alignments (IA). As a refer-
ence, we always use a model without reduced shear, AIA = 0,
Aba = 0, S 8 = 0.78, and Ωm = 0.25. We then only change
one of these effects while fixing the others. We also show the
impact on the model vector when we change the cosmology to
S 8 = 0.8. The change of the model vectors is divided by the
square root of the covariance diagonal, indicating the relevant
importance given the KiDS-1000 uncertainty. The reduced shear
and baryon feedback correction are always subdominant com-
pared to the impact of S 8 or IA. For the higher zph-bins, the S 8
change dominates, and the IA dominates if zph-bin one or two
are included. This result is unsurprising given that the lower zph-
bins are more affected by IA as the overall shear signal is much
lower. However, we observe especially for the 〈M3

ap〉 that the
largest IA S/N emerge if lower zph-bins are combined with large
zph-bins, which is due to the fact that the large zph-bins drasti-
cally deplete the noise. The takeaway from this investigation is
that for the current KiDS-1000 analysis, our model correction for
the reduced shear and baryon feedback is sufficient. The biggest
impact, especially if lower zph-bins are included, comes from IA,
which is the biggest concern of current weak lensing analyses.
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Fig. A.3. Illustration of several effects that change the En model vector. The fiducial model Efid
n is without reduced shear, AIA = 0, Aba = 0,

S 8 = 0.78 and Ωm = 0.25. For the different points, one of the effects is changed. We scaled the model differences by the KiDS-1000 uncertainty,
indicating the relevance of the change in the context of this work.

Fig. A.4. Same as Fig. A.3 but for the 〈M3
ap〉 model vector.
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Appendix B: Additional material

This section offers a collection of figures to support the analysis
in the main text. In Fig. B.1, we show the full 〈M3

ap〉 data vector

for equal filter radii, from which we showed a subpart in Fig. 3.
In Fig. B.2, we show the 〈M3

ap〉 data vector if non-equal filter
radii are used and measured from the convergence T17 maps.

Fig. B.1. Same as Fig. 3, but here the measured data and model are the 〈M3
ap〉 vector for equal-scale aperture filter radii θap ∈

{4′, 6′, 8′, 10′, 14′, 18′, 22′, 26′, 32′, 36′} in the T17 mock data for zph-bin combinations.

Fig. B.2. Measured data and model 〈M3
ap〉 vector for all combinations of aperture filter radii θap ∈ {4′, 8′, 16′, 32′}. The data vector results from one

full-sky convergence realisation without shape noise. The grey band shows the expected uncertainty of KiDS-1000 estimated with the convergence
maps. The 〈M3

ap〉 is scaled by the third root of the product of the corresponding filter radii.
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