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A B S T R A C T 

Magnetic reconnection is a ubiquitous phenomenon for magnetized plasma and leads to the rapid reconfiguration of magnetic field 

lines. During reconnection events, plasma is heated and accelerated until the magnetic field lines enclose and capture the plasma 
within a circular configuration. These so-called plasmoids could therefore observationally manifest themselves as hotspots, 
which are associated with flaring behaviour in supermassive black hole systems, such as Sagittarius A 

∗. We have developed a 
no v el algorithm for identifying plasmoid structures, which incorporates watershed and custom closed contouring steps. From the 
identified structures, we determine the plasmoids’ plasma characteristics and energetics in magnetohydrodynamical simulations. 
The algorithm’s performance is showcased for a high-resolution suite of axisymmetric ideal and resistive magnetohydrodynamical 
simulations of turbulent accretion discs surrounding a supermassive black hole. For validation purposes, we also e v aluate se veral 
Harris current sheets that are well-investigated in the literature. We reco v er the characteristic power-law distribution of plasmoid 

sizes for both the black hole and Harris sheet simulations. This indicates that while the dynamics are vastly different, with 

different dominant plasma instabilities, the plasmoid creation characteristics are similar. Plasmoid formation rates for resistive 
general relativistic magnetohydrodynamical simulations are significantly higher than for their ideal counterpart. Moreo v er, the 
largest identified plasmoids are consistent with sizes typically assumed for semi-analytical interpretation of observations. We 
reco v er a positiv e correlation between the plasmoid formation rate and decreases in black-hole-horizon-penetrating magnetic 
flux, during which the accretion flow is temporarily halted. These results demonstrate the efficacy of the newly developed 

algorithm which has enabled an e xtensiv e quantitativ e analysis of plasmoid formation in black hole accretion simulations. 

Key words: accretion, accretion discs – black hole physics – magnetic reconnection – MHD – methods: numerical. 
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 I N T RO D U C T I O N  

laring events, at the X-ray and infrared wavelengths, are known to
ccur on a daily basis for the supermassive black hole (SMBH) at the
entre of the Milky Way, Sagittarius A 

∗ (hereafter Sgr A 

∗, Baganoff
t al. 2001 ; Genzel et al. 2003 ; Eckart et al. 2004 ; Witzel et al. 2021 ).
he SMBH has an estimated mass of M ≈ 4 × 10 6 M � and lies at
 distance of D ≈ 8 kpc as was established by long-term monitoring
rograms of the source and dynamics of orbiting stars (Ghez et al.
008 ; Gillessen et al. 2009a , b , 2017 ; Gravity Collaboration 2018a ,
019 ; Do et al. 2019 ). The daily flares are most apparent at near-
nfrared (NIR; Gravity Collaboration 2018b ) and X-ray wavelengths
e.g. Baganoff et al. 2001 ; Porquet et al. 2003 ) as the flux density
ncreases by several orders of magnitude. At sub-mm/mm wave-
engths, Sgr A 

∗ is known to be a stochastically ( O(10 per cent ) o v er
ours) variable, which is associated with the stereotypical quiescent
ccretion state. While flares at NIR/X-ray wavelengths correspond
o significant increases in flux, ‘ flaring ’ events at mm-wavelenghts
re typically hard to disentangle from the background variability
EHTC et al. 2022a ; Wielgus et al. 2022b ). Recently, it was shown
 E-mail: jt.vos@astro.ru.nl 
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hat mm-wavelength light curves observed with the Atacama Large
illimeter/submillimeter Array suggest orbital motion of a hotspot

uickly after an X-ray flare (Wielgus et al. 2022a ). The physical
echanism that causes these flares is currently not well-understood,

ut a number of working theories associate them with strongly
agnetized anisotropies and locations of particle acceleration in the

ccretion flow (Broderick & Loeb 2005 , 2006 ; Dexter et al. 2020 ;
ravity Collaboration 2020b ; Porth et al. 2021 ; Ripperda et al. 2022 ;
os, Mo ́scibrodzka & Wielgus 2022 ; Vos et al. 2023 ). 
One such scenario that may explain these flares and the creation

f hotspots is the formation of plasmoids as part of a magnetic
econnection event (e.g. Ripperda, Bacchini & Philippov 2020 ;
ipperda et al. 2022 ; El Mellah, Cerutti & Crinquand 2023 ). This is
 phenomenon that occurs in a vast number of astrophysical sources,
ncluding pulsar wind nebulae, magnetars, black hole and neutron star

agnetospheres, or relativistic jets of active galactic nuclei (Kagan
t al. 2015 ). Magnetic reconnection (Uzdensky 2022 , for a re vie w)
an broadly be thought of as a rapid reconfiguration of the magnetic
eld geometry at the interface of opposite polarity magnetic fields

hat results in the formation of a magnetic island with a typical
ircular magnetic field morphology. After the closing of the magnetic
eld lines, plasma is trapped within the magnetic field structure,
reating what is known as a plasmoid. The reconfiguration is often
© 2024 The Author(s). 
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ccompanied by particle acceleration to high (non-thermal) energies 
Werner et al. 2017 ) – ef fecti v ely conv erting electromagnetic energy
nto particle kinetic energy (thermal and non-thermal). A theoretical 
escription for the large-scale dynamics of magnetic reconnection in 
dealized configurations was established by Sweet ( 1958 ) and Parker 
 1957 ). This picture is, ho we ver, too simplistic for our purposes as
t does not deal directly with the formation of plasmoid. To model
he plasmoid-unstable regime, one has to adopt a numerical ap- 
roach via particle-in-cell (PIC) or magnetohydrodynamical (MHD) 
imulations. The fact that accretion flows near Sgr A 

∗, and in low-
uminosity active galactic nuclei in general, are thought to be low 

n density with corresponding low accretion rates (e.g. EHTC et al. 
022a , b ), indicates that the plasma in these environments behaves in
 largely collisionless manner. General relativistic (GR) PIC methods 
re the most accurate numerical model for plasmas in this regime. 

Fully kinetic PIC methods have been used to model collisionless 
on–electron, electron–positron (pair), or ion–pair plasmas (Kagan 
t al. 2015 , for a re vie w). These methods are considered first
rinciple as they naturally impose both a spatial (skin depth c / ω p )
nd temporal ( ω 

−1 
p ) scale via the plasma oscillation frequency 

 p = 

√ 

4 πnq 2 /m , where n , q , m are the particle number density,
harge, and mass, respectively. While MHD methods only describe 
he plasma’s bulk motion and characteristics, PIC methods track 
he velocities, trajectories, and energies of individual particles. 
ollisionless plasma studies have been conducted to investigate 
arious physical scenarios; isolated (Harris) current sheets in 2D 

Zenitani & Hoshino 2001 ; Cerutti et al. 2012 ; Nalew ajk o et al.
015 ; Kagan, Nakar & Piran 2016 ; Sironi, Giannios & Petropoulou
016 ; Petropoulou & Sironi 2018 ) and 3D (Zenitani & Hoshino
008 ; Cerutti et al. 2014 ; Sironi & Spitko vsk y 2014 ; Guo et al. 2016 ;
erner & Uzdensky 2017 ), configurations investigating magnetic 

urbulence (Comisso & Sironi 2019 ; Bacchini et al. 2022 ; Borgogno
t al. 2022 ), and (general-relativistic) accretion simulations 
escribing plasma within the magnetosphere of compact objects 
for black holes; P arfre y, Philippo v & Cerutti 2019 ; Crinquand et al.
020 , 2021 ; El Mellah et al. 2022 , 2023 , or neutron stars; Chen &
eloborodov 2014 ; Cerutti et al. 2015 ; Philippov & Spitkovsky 
018 ; Gu ́epin, Cerutti & Kotera 2020 ). Although PIC methods
re instrumental in, e.g. understanding the origin of non-thermal 
mission, they remain confined to microscopic plasma scales, which 
akes interpretation at astrophysically large scales difficult. 
General relativistic (ideal) magnetohydrodynamical (GRMHD) 
ethods have been extensively and successfully used to describe 

he macroscopic picture of accretion onto SMBHs (for M87 ∗; EHTC
t al. 2019a , b , 2021 , for Sgr A 

∗; EHTC et al. 2022a , b ). Resistive
GR)MHD does give a scale to the current sheet and makes it
esolvable (Ripperda et al. 2019a , and reference therein) by means 
f imposing a constant resistivity ( η) in the simulations. While the
hysical resistivity is likely spatially and temporally variable (and 
ould ideally be constrained with a dedicated PIC study), a uniform 

calar resistivity already helps to consistently capture the dynamics 
ssociated with magnetic reconnection in the accretion flow. Even 
hough not physically or numerically well-constrained, we point 
ut that magnetic reconnection and plasmoid formation does occur 
n ideal GRMHD, where numerical limits ef fecti vely impose the 
inimally achie v able resisti vity. 
In this work, we investigate plasmoid formation from fast rela- 

ivistic reconnection for plasmoid-forming astrophysical plasma in 
oth ideal and resistive GRMHD. To be able to assess the plasmoid
ormation dynamics, we need to address another, equally important 
spect which is that plasmoid structures are difficult to isolate from
heir surroundings. Therefore, we have developed a novel analysis 
lgorithm for detecting them. It deviates significantly from plasmoid- 
nding methods employed previously for GRMHD simulations 
Nathanail et al. 2020 ). Plasmoid-identification studies have been am- 
ly applied in more idealized plasma-physical configurations both for 
HD (Huang & Bhattacharjee 2012 ; Loureiro et al. 2012 ) and PIC

tudies (Sironi et al. 2016 ; Petropoulou & Sironi 2018 ; Hakobyan,
hilippov & Spitkovsky 2019 ; Banesh et al. 2020 ; Hakobyan et al.
021 ; Winarto & Kunz 2022 ). For a MHD description, one does
ot have the luxury of individual particle trajectories as typically 
cquired in PIC simulations. We therefore apply our analysis fully 
n post-processing which gives it considerable flexibility. With our 
ethodology, we investigate the differences in occurrence rate, 
orphology, size, and typical plasma parameters of plasmoids in 

oth ideal and resistive GRMHD for a newly created suite of axisym-
etric (2.5D) simulations with exquisite resolution. To showcase the 

alidity and high fidelity of the algorithm, we also apply it to a set
f Harris current sheet simulations that are equally well-resolved. 
he application of our methodology to the GRMHD accretion disc 
imulations also enables a study of the connection between plasmoids 
ormation and the occurrence of flares in the Sgr A 

∗ system. 
The paper is structured as follows. An in-depth description of 

he two types of simulations (i.e. Harris current sheet and GRMHD
ccretion disc setups) is outlined in Section 2 . The plasmoid identi-
cation procedure is described in detail in Section 3 . The results and

heir interpretation are presented in Section 4 . The discussion and
onclusion can be found in Sections 5 and 6 . 

 M E T H O D S  

n the following sections, we outline the two simulation classes we
nvestigate, which are the Harris current sheet (Section 2.2 ) and
RMHD (Section 2.3 ) simulations. We also outline how we acquire

he energetics and surface-averaged quantities (Section 2.4 ), which 
re used e xtensiv ely throughout this work. 

.1 Relativistic MHD primer: ideal and resistive 

oth the Harris sheet and BH accretion disc are simulated within
he framework of the Black Hole Accretion Code ( BHAC , Porth
t al. 2017 ; Oli v ares et al. 2019 ). BHAC solves the ideal or resistive
Ripperda et al. 2019a ) MHD equations in stationary and arbitrary
pacetimes. The covariant ideal MHD equations are written as 

 μ( ρu 

μ) = 0 , (1) 

 μT μν = 0 , (2) 

 μ
� F 

μν = 0 , (3) 

here ∇ μ, ρ, u μ, T 

μν , and � F 

μν are the cov ariant deri v ati ve, the rest-
ass density, the fluid four-velocity, the energy–momentum tensor 

containing both ideal fluid and electromagnetic fields), and the 
Hodge) dual of the Faraday tensor, respectively. BHAC is a versatile
ode that sets the speed of light c to unity and utilizes Lorentz–
eaviside units, which ef fecti vely incorporates the 

√ 

4 π factors into 
he electromagnetic quantities. 

In this work, we utilize both ideal and resistive MHD. The main
ifference between both these approaches is the way they handle the
volution of the electric field, which defined as 

 = −v × B + ηJ . (4) 

he resistivity is denoted by η = 1/ σ c where σ c is the conductivity. 
hile in resistive MHD the electric field ( E ) includes an explicit
MNRAS 531, 1554–1577 (2024) 
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Table 1. The user-defined initial parameters for the Harris sheet simulations 
that include the model names (acronyms are derived from Harris-small and 
Harris-big ), density scaling ρ0 , layer half-thickness δ, background factor 
f bg , and resolution (with corresponding AMR level). The total dimensions 
of the box are denoted by x ∈ [ − L x , L x ], y ∈ [ − L y , L y ]. In addition to 
the listed parameters, there are several parameters that are constant between 
(all) the simulations; magnetic field scaling B 0 = 1, density scaling ρ0 = 1, 
resistivity η = 5 × 10 −5 , and adiabatic index ˆ γ = 13 / 9. 

Name δ L x L y f bg Effective Res. AMR
[ l ] [ l ] [ l ] N x × N y levels 

Hs 0.1 25.6 12.8 0.2 6144 × 3072 6 
Hb 0.05 51.2 12.8 0.2 24576 × 6144 5 
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alculation of the resistive Ohm’s law to get an expression for J ,
n ideal MHD it is inferred directly from the magnetic field (via
 = −v × B , also known as the frozen-in condition). In the ideal
HD limit, one ef fecti vely assumes the plasma to be perfectly

onducting (i.e. σ c → ∞ ⇒ η→ 0), which gives a macroscopically
alid approximation in large parts of the accretion disc domain. At
he basis of plasmoid formation lies the tearing of an induced current
heet via the similarly named tearing- or plasmoid-instability, which
s ill-defined in ideal MHD. More specifically, the resistivity η is not
xactly zero in the ideal case (except for infinite resolution), but rather
etermined numerically by the underlying resolution (or cell size 	 x )
hich implies that ηide ∝ 	 x k with k ≈ 2 depending on the accuracy
f the fluid evolution scheme (Ripperda et al. 2022 ). The physical
nterpretation of the resistivity η is that it acts as a proxy for kinetic
ffects within the plasma (and has similar properties as a dif fusi vity).

We investigate plasmoid formation in the fast relativistic plasmoid-
ominated reconnection regime. Whether the plasma becomes
lasmoid unstable is determined by the Lundquist number S =
 

′ v a / η, with typical length of the current sheet L 

′ and the Alfv ́en
elocity v a (see Section 2.2 for definition). In order to trigger the
ast reconnection and tearing- or plasmoid-unstable regime, the
undquist number needs to satisfy S > S crit where S crit ∼ 10 4 

Loureiro, Schekochihin & Cowley 2007 ; Bhattacharjee et al. 2009 ;
zdensky, Loureiro & Schekochihin 2010 ). Note that the Lundquist
umber is largely determined by the underlying resistivity, which is
et as a constant and uniform quantity. For the resistive simulations,
hich are described in the following sections, we set η = 5 ×
0 −5 τ , where τ is the arbitrary time unit used in the simulations. 1 

hen, if we estimate probable values of L 

′ ≈ 1 and v a ≈ c = 1, we
nd S = 2 × 10 4 which lies abo v e the fast reconnection threshold.
or the ideal simulations, one may think that as ηide is very small,
undquist number will be sufficiently large. Even though this is the
ase, the resulting current sheet will al w ays be under-resolved (as
t is determined by the underlying resolution) and typically has a
idth comparable to a singular grid cell (Ripperda et al. 2020 ). This

ndicates that the tearing instability is not triggered in the same way
s for the resistive simulation and will likely result in differences in
lasmoid formation statistics. 

.2 Harris sheet configuration 

o validate the methodology for a well-known case, we investigate a
elativistic 2D Harris sheet in resistive MHD. The implementation is
roadly based on what was prescribed for the Geospace Environmen-
al Modeling (GEM) challenge (Birn & Hesse 2001 ; Birn et al. 2001 ,
lso in Goedbloed, Poedts & Keppens 2010 ). We start with a (wide)
ectangular box with periodic boundary conditions on all sides and
nitialize two current sheets on top of a uniform background density
hat is scaled with ρ0 ; 

= ρ0 

[
cosh −2 

(
y + L y / 2 

δ

)
+ cosh −2 

(
y − L y / 2 

δ

)
+ f bg 

]
, (5) 

here L x , L y , f bg , and δ are the box half-sizes (in the ˆ x and ˆ y 
irections), the background factor, and the sheet half-thickness,
especti vely. The v alues of these parameters (and others) are sum-
NRAS 531, 1554–1577 (2024) 

arized in Table 1 . 

 In our geometrized unit system, this is numerically equal to the magnetic 
if fusi vity. Ho we ver , con version to other unit systems requires another factor 
n addition to the value of the time unit employed, namely c 2 for Lorentz–
eaviside units and c 2 /4 π for Gaussian units. 

v

w  

i  

s  
We assume a uniform resistivity; η = 5 × 10 −5 , and an initialized
agnetic and electric fields that are defined as 

 

x = 

⎧ ⎪ ⎨ ⎪ ⎩ 

B 0 tanh 
(

y−L y / 2 
δ

)
+ B 0 εp for y > 0 

−B 0 tanh 
(

y+ L y / 2 
δ

)
+ B 0 εp for y < 0 , 

(6) 

 

y = B 0 εp , (7) 

 

z = 0 , (8) 

 

x = E 

y = E 

z = 0 . (9) 

Here, εp denotes a uniform (1 per cent) white noise perturbation
o the magnetic field that varies between −0.01 and 0.01. This
erturbation is similar to what is introduced (more naturally) in PIC
imulations. Notice that we do not apply the typical magnetic field
erturbation that guides the initial plasmoids to the edges and creates
 well-controlled reconnection region in the middle of the simulation
omain (as perscribed for the GEM challenge, also in Keppens et al.
013 ). To acquire pressure equilibrium at initialization, we define
he fluid pressure to be (also outlined in Porth et al. 2014 ): 

 = 

B 

2 
0 ρ

2 
. (10) 

his implies that the initial plasma temperature T = p/ρ = B 

2 
0 / 2 =

 . 5 and is therefore relativistically hot (cf. Ripperda et al. 2020 ).
dditionally, we define the length and time-scale as a function of total

ystem length L = 2 L x , so that ( x , y ) ∈ [ − 0.5 L , 0.5 L ] × [ − 0.125 L ,
.125 L ] for Hb and ( x , y ) ∈ [ − 0.5 L , 0.5 L ] × [ − 0.25 L , 0.25 L ] for
s with a typical time unit of t c = L / c . Table 1 outlines the simulation

ength-scales and the Adaptive Mesh Refinement (AMR) resolutions,
hich are dynamically updated and applicable in all regions with

ufficient density. It becomes apparent that Hb is effectively better
esolved (i.e. 2 L x /N x ≈ 4 × 10 −3 l for Hb versus 8 × 10 −3 l for Hs ).

For completeness, we note that the computational length unit is
 = 1 with corresponding time-scale l / c = 1. If one were interested in
elating the initial layer half-thickness δ (see Table 1 ) to the resistivity
, then one finds that δ/ η = 1000 ( δ/ η = 2000) for Hb ( Hs ). 
Nevertheless, we will connect it to a more intrinsic plasma-

hysical time-scale in our unit set in the following paragraph. This
s typically determined by the upstream Alfv ́en velocity v a , which is
efined as 

 a = 

B √ 

ρh + B 

2 
= 

√ 

σ√ 

1 + σ
, (11) 

here h = 1 + ˆ γp/ ( ̂  γ − 1) ρ is the specific enthalpy with adiabatic
ndex ˆ γ = 13 / 9 and B = 

√ 

B 

2 = 

√ 

B 

i B i denotes the magnetic field
trength. Additionally, the (‘hot’) magnetization is defined as σ =
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Table 2. The model identifiers (IDs) and corresponding resolutions of the 
GRMHD accretion disc simulations. These simulations are all run with a 
dimensionless black hole spin a ∗ = 0.9375, adiabatic index ˆ γ = 13 / 9, and 
simulation domain r ∈ [1.185 r g , 1500 r g ], θ ∈ [0, π ]. The density floor and 
magnetization ceiling are set to ρmin = 10 −4 and σmax = 10 3 , respectively. 

IDs Type η Effective resolution AMR
GRMHD N r , N θ levels 

iM3 Ideal – 2048 × 2048 3 
iM4 Ideal – 4096 × 4096 4 
iM5 Ideal – 8192 × 8192 5 
rM3 Resistive 5 × 10 −5 2048 × 2048 3 
rM4 Resistive 5 × 10 −5 4096 × 4096 4 
rM5 Resistive 5 × 10 −5 8192 × 8192 5 
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2 / ρh and is set to an upstream value of σ ≈ 2 at initialization. The
arris sheet magnetization σ was set so that it is comparable with 

egions (i.e. disc–jet interface layer as seen in Fig. 6 ) in the GRMHD
imulations. While we will primarily use the light-crossing time, it 
s worthwhile to connect it to the Alfv ́en and (resistive) diffusion
ime-scales of the system, which then become τ a ≈ L 

′ / v a and τ d ≈
 

′ 2 / η with L 

′ being a representative but arbitrary current sheet length
Ripperda et al. 2019b ). Fig. 2 giv es an o v erview of the evolution of
he Harris sheet (for the Hb case). From the magnetization ( σ ) panels,
e find that σ ∼ 5 near the sheet, which indicates an upstream 

lfv ́en velocity v a ∼ c . Then, one can determine the Lundquist
umber via S = τ d / τ a , but it becomes clear that τ d is very large
nd τa ∼ L 

′ ˜ ∈ (0 . 5 , 5) (in the rele v ant computational unit, i.e. l or r g ),
hich indicates that S = L 

′ /η ˜ ∈ (10 4 , 10 5 ) will be similarly large
nd we (generally) operate in the fast reconnection regime. 

As mentioned, we set all boundaries conditions to fully periodic 
similar to Cerutti et al. 2013 , 2014 ; Keppens et al. 2013 ; Takamoto
013 , and some quasi-periodic works in Sironi & Spitko vsk y 2014 ;
etropoulou & Sironi 2018 ). This implies that no matter is lost from

he simulation domain so that the evolution eventually saturates after 
aving formed several ‘monster’ plasmoids that effectively act as 
atter reservoirs spanning a considerable part of the simulation 

omain. Up to a point, each sheet will evolve independently and 
niquely due to the minor non-uniform perturbation to the initialized 
agnetic field, but when the primary plasmoids become too large the 

heets are influenced by one another. A different approach utilizes 
utflowing boundaries at the short sides of the box corresponding 
o the y -boundaries in our simulation (Loureiro et al. 2012 ; Sironi
t al. 2016 ). Such boundary conditions tend to give less chaotic
urrent sheets and allows for longer evolution times as, for periodic 
oundaries, the large plasmoids will eventually affect the opposing 
urrent sheet. The periodic Harris sheet simulations are primarily 
eant as an additional, well-investigated verification case for the 

dentification algorithm. Nevertheless, the periodic Harris sheet 
imulations tend to display more erratic behaviour than what is found 
or the outflowing variety, especially when combined with a global 
agnetic field perturbation (so that sign( x ) · u x � 0; Loureiro et al.

012 ; Sironi et al. 2016 ). 

.3 GRMHD accretion disc configuration 

e first outline a few specifics about the 3 + 1 split that is employed
n the BHAC code. The line element is described as follows: 

 s 2 = −α2 d t 2 + γi j (d x 
i + βi d t)(d x j + βj d t) , (12) 

ith α, β, γ denoting the lapse, shift, and geometric part of
he metric ( g μν), where Roman characters i , j ∈ { 1, 2, 3 } and
reek characters μ, ν ∈ { 0, 1, 2, 3 } . The metric determinant

s then defined as 
√ −g = α

√ 

γ . Consistent with the conventions 
ntroduced in Porth et al. ( 2017 ), we denote electromagnetic quan-
ities in the Eulerian frame with capitalized letters while lower- 
ase letters denote quantities in the co-moving fluid (or plasma) 
rame. With Eulerian frame, we imply an Eulerian observer that is
oving with four-velocity n μ = { −α, 0, 0, 0 } (or contravariantly;
 

μ = { 1/ α, β i / α} ). 
The initialized torus, that is in hydrodynamic equilibrium (Fish- 

one & Moncrief 1976 , except for a small perturbation in the fluid
ressure p ), is threaded by a single poloidal magnetic field loop (that
s initialized via B = ∇ × A with A = (0, 0, A φ)), which is set by 

 φ ∝ max 

( 

ρ

ρmax 

(
r 

r in 

)3 

sin 3 θ exp 

(
− r 

400 r g 

)
− 0 . 2 , 0 

) 

. (13) 
he magnetic vector potential combined with the size of the disc
t initialization eventually bring about the Magnetically Arrested 
isc (MAD; Igumenshchev, Narayan & Abramowicz 2003 ; Narayan, 

gumenshche v & Abramo wicz 2003 ) state. The inner and pressure
aximum radii of the torus that determine the size and available
atter are set to r in = 20 r g and r max = 41 r g for a black hole spin

f a ∗ = 0.9375. The initialized magnetic field strength is scaled so
hat plasma- βmax = max( p )/max( p mag ) = max( p )/max( B 

2 /2) = 100
s satisfied within the disc interior, with p being the gas pressure
nd p mag the magnetic pressure. Other user-defined parameters of the 
 v aluated configurations can be found in Table 2 . For completeness,
e note that the less magnetized accretion scenario is known as

he Standard And Normal Evolution model (hereafter SANE; De 
illiers, Ha wle y & Krolik 2003 ; Narayan et al. 2012 ; Sadowski et al.
013 ), which is initialized with a different vector potential and tends
o display a more (small-scale) turbulent accretion state. 

To evolve the accretion disc surrounding the BH, we utilize the
odified Kerr–Schild (MKS) coordinate system (that is clearly 

escribed in McKinney & Gammie 2004 ; Porth et al. 2017 ). As
he Kerr–Schild (KS) metric is well-documented (Misner, Thorne & 

heeler 1973 ), we will only comment on the modification from the
tandard KS coordinates ( t , r , θ , φ), which is done via; 

 = R 0 + e s , (14) 

= ϑ + 

h 

2 
sin (2 ϑ) . (15) 

ere, s and ϑ are the code’s internally used coordinates, which 
an be converted to KS coordinates with the listed relations. We
ill e xclusiv ely show results in KS coordinates r and θ . All our
RMHD simulation use user-defined parameters h = 0.25 and R 0 =
, which implies that the resolution of the underlying grid will be
ore concentrated in the equatorial plane. 
BHAC inherently utilizes an AMR grid structure, but we only 

mploy static refinement criteria that do not change o v er time for the
RMHD simulations. Without explicitly showing the grid structure, 
e note that all AMR levels are applied for r < 200 r g according to
re-defined criteria. We study three ideal and three resistive GRMHD 

odels, which are run with different maximum AMR levels (see 
able 2 ). Throughout this work, ho we ver, we will mostly comment
n the highest resolution cases, which are: iM5 and rM5 . Appendix A
utlines a resolution convergence study between all AMR levels for 
oth ideal and resistive GRMHD. There, we find increased activity in
he equatorial plane for the resistive simulations, which is especially 
oteworthy as it is less pronounced in their ideal counterparts. 
MNRAS 531, 1554–1577 (2024) 
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.4 Energetics and surface averaged quantities 

n important objective of this work is to quantify if plasmoids are
ble to produce flaring events or create hot spots that would stand out
ith respect to the background. Therefore, we associate the electro-
agnetic, kinetic, and thermal fluid energies with their corresponding

omponents of the stress–energy tensor T μν according to: 

em 

= −T EM 

t 
t = − (

b 2 + e 2 
) (

u 

t u t + 

1 
2 g 

t 
t 

) + b t b t + e t e t (16) 

+ 

u λe βb κ√ 

γ

(
u 

t η
λβκ

t + u t η
tλβκ

)
, 

kin = −T PAKE 
t 
t = − ( u t + 1 ) ρu 

t , (17) 

th = −T EN 
t 
t = −( ε + p) u 

t u t − p. (18) 

ere, the hereto unexplained quantities are ε, p , and ηνλβκ , which
re the specific internal energy, the fluid pressure, and the fully
ntisymmetric symbol, respectively. εem 

denotes the electromagnetic
nergy density (Qian et al. 2017 ), εkin the kinetic energy density,
nd εen the thermal energy density (McKinne y, Tchekho vsk o y &
landford 2012 ; Ripperda et al. 2019a ). The subscripts ‘EM’,

PAKE’, and ‘EN’ correspond to the electromagnetic, free particle,
nd enthalpy terms of the stress–energy tensor T 

μν (primarily
ollowing McKinney et al. 2012 ). The free thermokinetic energy
denoted as MAKE in McKinney et al. 2012 ) is the sum of εkin 

PAKE) and εth (EN). This is important to note because εkin is
redominantly ne gativ e in our GRMHD simulation, which can
e interpreted from the geometric Bernoulli criterion ( u t ≤ −1)
orresponding to unbound matter. The term ( u t + 1) will therefore
e ne gativ e (positiv e) when the fluid element is unbound (bound)
nd as ρu t is positive we will end up with a negative εkin for bound
atter that is typically associated with the interior of the accretion

isc. Lastly, note that the minus-sign in front of T t t is due to the
etric signature ( −, + , + , + ) and is needed to get positive values. 
Next, we define the covariant surface average (denoted by a bar,

¯
 , o v er a giv en fluid variable) by 

¯
 = 

∫ 
Q 

√ 

γ d x 1 d x 2 

S 
(19) 

ith the surface S , in an arbitrary coordinate system, denoted as 

 = 

∫ √ 

γ d x 1 d x 2 . (20) 

he γ corresponds to the geometric part of the metric as explained in
ection 2.3 . Note that by surface average we imply that we take the
verage of a given quantity that is enclosed by a plasmoid-describing
ontour found by the algorithm. All averages are calculated in the
ulerian (or laboratory) frame. 

 PLASMOID  IDENTIFICATION  

he starting point of our plasmoid identification routine lies in
nding a quantity that reveals the intrinsically circular magnetic
eld geometry. A natural choice for this quantity would then fall to

he magnetic flux function, which is defined as 

 B 
KS == 

∫ √ −g B 

r d θ, (21) 

Cart. == 

∫ 
B 

x d y −
∫ 

B 

y d x, (22) 

here 
√ −g is the metric determinant. Part of the simulations utilize

 special variety of Kerr–Schild (KS) coordinates ( r , θ ), which were
ntroduced in Section 2.3 . Note that 

√ −g B 

r corresponds to the
NRAS 531, 1554–1577 (2024) 
agnetic field in the Eulerian frame and that the magnetic flux
unction � B corresponds to the out of plane component of the mag-
etic vector potential (i.e. A φ , except for a minus sign discrepancy,
ironi et al. 2016 ). The magnetic flux function � B is a good choice
s its isocontours will follow the inplane magnetic field lines (i.e.
 · ∇ � B = 0). More specifically, as plasmoids are characterized by

heir circular magnetic field configuration, the plasmoid centre will
orrespond to a local maxima or minima in � B (‘O-points’). 

For our methodology, we work with a modified quantity with
espect to the base � B structure, which is defined as ˜ 
 B = �̄ 

′ 
B − � B , (23) 

here the �̄ 

′ 
B scalar denotes the spatially averaged flux function.

he removal of the averaged flux function yields a higher accuracy
or the identification of plasmoids. We note that this choice is purely
umerically moti v ated – a particular step (i.e. iii) in the algorithm is
nly applicable for local minima and achieves better accuracy with
he average subtracted. 

After having selected a suitable plasmoid identification quantity
i.e. ˜ � B ), we need a method that can reliably classify the magnetic
sland structure and size. For this purpose, we developed an algorithm
hat consists of the following four steps: 

(i) All simulations contain a significant fine-structure in the
agnetic flux function. This can make it hard to differentiate between

magnetic) turbulence and more global features that correspond to a
resence of a plasmoid. Therefore, to guarantee we filter out much of
he turbulence, we apply a blurring (Gaussian or flat) kernel to the flux
unction ( ̃  � B ). This also gives us control over the size of the features
e want our algorithm to be sensitive to. The blurring step, ho we ver,

equires (manual) fine-tuning depending on resolution and nature of
he setup. Interestingly, to extract the global structure of the highly
urbulent primary plasmoid in the isolated Harris sheet simulation(s),
ne needs the strongest blurring procedure, while the GRMHD
imulation are well-served with a fairly light blurring procedure. 

(ii) Following the blurring step, we identify the local minima or
axima that will correspond to the plasmoid’s centre. 
(iii) Then, we apply a watershed algorithm (well-described in, e.g.

eucher & Meyer 2018 ) to isolate the domain of interest around the
ocal minimum. We have chosen an implementation that is based on
incent & Soille ( 1991 ). The watershed segmentation is then used

o make an informed cut-out of the domain that will contain a single
local) extrema, so that we have control over what is being fitted
hile simultaneously improving the quality of the fit. We note that

s the watershed is only able to identify local minima one has to run
he pipeline twice to identify all local extrema–once for ˜ � B and once
or - ̃  � B . 

(iv) Lastly, we draw the maximally possible contour within the
solated segment. Utilizing the inherent symmetry in the systems,
e sample the space efficiently by means of a binary search from
pposite sides (i.e. left and right from centre along ˆ x for the Harris
heet and inner and outer radii along ˆ r for the GRMHD setups).
he resulting contour enables us to gauge the plasmoid’s size
nd orientation, and enables calculations of the plasma quantities
ssociated with the plasmoid and its direct vicinity. 

In Fig. 1 , one finds a schematic summary of the points dis-
ussed abo v e. Additionally, it becomes clear that both setups differ
undamentally from one another and therefore warrant a different
onfiguration of the algorithm. The main differences are summarized
elow. (i) As the Harris sheet setups have periodic boundaries, one
eeds to be careful to catch plasmoids that are on the boundary. (ii)
dditionally, capturing both ‘big’ and ‘small’ plasmoids in the Harris
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Figure 1. A schematic decomposition of the plasmoid identification algorithm. In the top panels ( a –d ), we display a snapshot of a GRMHD simulation ( rM3 
at T = 3000 r g / c ) at various points in the pipeline. In the bottom panels ( e –h ), we find the same but for one of the Harris sheet cases ( Hb at T = 2 . 93 t c ). In the 
left column (panels a and e), one finds the base magnetic flux function � B – the starting point. To apply the watershed (panels c and g), one needs to make sure 
that the plasmoid corresponds to a local minimum which is done with the quantity – ˜ � B (panels b and f ). The last column (panels d and h ) sho wcases ho w the 
maximal contour is found for the watershed segment and how the plasmoid’s width and height are determined (between the orange diamonds). The e v aluated 
O-point is denoted by the black circle. Other O-points in the displayed simulation domain are denoted by the open grey circles. 
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heet setup requires two different approaches, mainly concerning the 
lurring kernel. For the big features, one has to apply a relatively
mall kernel many times (several hundred times works well in our 
xperience) to retain as much global structure as possible. To capture 
he smallest plasmoids, one only has to apply the small blurring 
ernel a few times. One acquires the master set by combining the
utput from both described configurations where the largest plasmoid 
tructure is leading (following the later defined Uzdensky et al. 2010 
riterion). (iii) For GRMHD, one has to take into account that the res-
lution is concentrated near the black hole and in the equatorial plane
nd therefore has non-uniform cell-sizes. (iv) Due to the non-uniform 

RMHD grid layout, applying a kernel blur manifests itself differ- 
ntly in various regions of the simulation domain. When applying a 
elatively small blurring kernel, this effect is minor and manageable. 
f this is not sufficient, we interpolate ˜ � B to a uniform grid structure.

Lastly, we would like to note more explicitly how plasmoids 
re identified using the magnetic flux function in other works. In
ssence, one identifies plasmoids via the so-called ‘O’- and ‘X’- 
oints. O-points corresponds to the local minima and maxima of 
he magnetic flux function and denote the center of a plasmoid. X-
oints are saddle points and lie in between O-points. Along a current
heet one therefore expects these points to succeed one another. One 
ypically finds the extrema by calculating the Hessian matrix of the 

agnetic flux function (Servidio et al. 2009 , 2010 ; Zhdankin et al.
013 ; Kadowaki, Pino & Stone 2018 ; Zhou, Loureiro & Uzdensky
020 ) via; 

 

� B 
ij ( x ) = 

∂ 2 � B ( x ) 
∂ x i ∂ x j 

. (24) 

hen, one calculates the matrix determinant of the Hessian ( | H 

� B | )
o find the critical points that correspond to | H 

� B ( x ) | = 0 at a
iven coordinate x . For an O-point, the eigenvalues of the Hessian
hen determine if it is a local minima (positive definite Hessian)
r maxima (ne gativ e definite Hessian). F or an X-point, one finds
oth positive and negati ve eigenv alues of the Hessian (Servidio et al.
010 ). Ho we ver, in our methodology, there is no need to explicitly
alculate the Hessian to identify the O- and X-points as these are
aturally isolated by the watershed algorithm. The X-points, which 
re typically harder to identify (Zhdankin et al. 2013 ), will lie on
he border of a watershed segment (which is a property that was
tilized explicitly in Winarto & Kunz 2022 ). For the O-points,
e straight-forwardly calculate the local extrema in a segment. 
inding the critical points in these turbulent maps is a complicated 
ndea v our, as is also illustrated by the computationally intensive
itigation techniques (as introduced in Servidio et al. 2010 ). Our
ethodology works around this problem in a relatively natural 
anner, but this implies that we do not know the exact orientation

f the current sheet as the X-point locations are not calculated (other
han being on the watershed segment’s border). Additionally, one 
an end up with two O-points per watershed segment, but this is
traightforwardly mitigated by the contour-finding algorithm as it 
nly selects the contour enclosing the O-point in question. Even 
hough we may sacrifice some accuracy, our methodology saves 
s from having to employ (relatively) computationally and memory 
ntensive mitigation strategies and will therefore provide a significant 
peed-up with respect to (e.g. Servidio et al. 2010 ). 

 RESULTS  

n this section, we outline the findings of the plasmoid detection rou-
ine for both classes of simulation separately. Section 4.1 summarizes 
MNRAS 531, 1554–1577 (2024) 
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he results associated with Harris sheet simulations, while Section
.2 summarizes the results associated with the GRMHD simulations.

.1 Harris sheet 

.1.1 Gener al e volution 

n Fig. 2 , a well-developed and representative state of the Hb case is
hown. Before this state is reached, the current sheet needs to evolve
or some time before it becomes (plasmoid- or tearing-) unstable
nough, as the sheet becomes thinner, to break up and form the first
agnetic islands. This first tearing mode creates the first plasmoids

hat are known as primary plasmoids (see e.g. Loureiro et al. 2007 ;
omisso et al. 2016 ; Uzdensky & Loureiro 2016 ; Petropoulou &
ironi 2018 ) and have significantly different plasma characteristics

han the ones that are created at later times in the secondary tearing-
nstable regions of the sheets. First, the primary plasmoids have
igher densities and, second, they possess a characteristic magnetic
eld profile with a lower magnetic field strength at the center than

n the rings further on the outside. This results in a lower o v erall
agnetization, but also a relati vely lo wer surface-averaged magnetic
eld strength. Their plasma properties are primarily determined by

he initial conditions. Following the initial break-up of the layer
at ∼1 . 56 t c for Hb and ∼5 . 27 t c for Hs ), a continuous and steady
reation of secondary plasmoids commences in the reconnection
ayers between the primary islands. The layer remains active till the
ery end of the e v aluated time windo w. The secondary plasmoids
o probe the underlying plasma characteristics and are relatively
naffected by the initial conditions. Two animations are attached
o Fig. 2 which show both the spatial layout corresponding to the
gure as well as the entire simulation domain o v er time. 
Following the criterion outlined by Uzdensky et al. ( 2010 ) that

hen a plasmoid coalesces with a larger plasmoid, then the smaller
ne is considered to be incorporated into the larger body. From
oalescence onwards, the smaller plasmoid is therefore no longer
onsidered as an separate entity. In practice, ho we ver, the small
lasmoid will retain its structure for some time (ranging several
.05 t c depending on its size) before dissipating into the global
tructure of the primary plasmoid. This is clearly illustrated in Fig. 2
nd accompanying animations, the coalescence of the plasmoid on
he left-hand side (at X = 0 . 135 L and is roughly 0 . 02 L in width
nitially) takes approximately 0 . 1 t c from the moment of impact to
eing fully absorbed by the primary plasmoid. When two plasmoids
f similar size coalesce, then this time-scale tends to be longer and
ignificant perturbation is needed before one of the two loses its
tructure. 

Generally, it is not simple to enforce the Uzdensky et al. ( 2010 )
riterion, which is reflected by the two-step approach outlined in
ection 3 . Starting with secondary plasmoids, the minimum size for
hich we identify this population is set to ∼10 −4 L (0 . 005 l), but in
ractice the algorithm tends to detect a plasmoid when it starts to
eviate from the straight current sheet configuration (i.e. gain some
idth). Overall, we find that the secondary plasmoids are identified
ith a very high fidelity. The primary plasmoids are typically much
arder to identify as they are the end point of the inverse cascade (or
lasmoid coalescence) and, therefore, act as highly turbulent plasma
eservoirs that will never relax as smaller plasmoids keep colliding
nd merging into them. These continuous perturbations also give rise
o magnetic reconnection and plasmoid formation within the primary
lasmoid structure. As described in Section 3 , we need to apply an
ggressive blurring kernel to identify the global primary plasmoid
tructure, but we still want to remain sensitive to the distinct plasmoid
NRAS 531, 1554–1577 (2024) 
tructure if they have not fully merged yet. This implies that two
lasmoids that have a similar magnetic flux signature (an example
s seen at X = 0.34 L in Fig. 2 g) are still picked up as two separate
ntities even though one can argue that they are actually part of one
lobal body, especially when following the Uzdensky et al. ( 2010 )
riterion. At the interface of these two plasmoids one often finds
ew plasmoids forming. Naturally, all previously mentioned points
ecome less pronounced at lower resolutions as one is resolving the
urrent sheets less well which results in a lower number of formed
lasmoids and less fine-structure. 
The end of the e v aluated time windo w (at 4 . 1 t c for Hb and 8 . 79 t c 

or Hs ) is determined by the amount of interference the current sheets
ave on one another. Beyond these times (for which no representative
tate is shown in this work), the few primary plasmoids become of
ufficient size that they start to incorporate the opposing current
heet. This brings about an interesting new turbulent mode that is
imilar to the ABC structure described in Lyutikov et al. ( 2016 ).
agnetic reconnection is then no longer confined to the current sheets

ut occurs at interfaces between the (opposite polarity) primary
lasmoids that now have lost their elliptical shape and are more
exagonal in shape. As the turbulent ABC mode is beyond the scope
f this work, we selected the e v aluated time windows based on the
resence of a clear current sheet structure. 

.1.2 Plasmoid statistics 

ig. 3 displays 2D histograms with various plasmoid quantities
s a function of width for both Harris sheet ( Hs and Hb ) cases.
irst, we w ould lik e to point out that the distributions show the
ame general trends. Starting with the surface-averaged density
 ̄ρ) panels, one finds a main triangular distribution that spans
1 . 25 < log 10 ρ̄ < −0 . 25. In addition to the main distribution, there

s a secondary channel corresponding to −0 . 25 < log 10 ρ̄ < 0 . 25
hat corresponds to the densest plasmoids which also seem to occur
 v er the entire width range. This dense plasmoid population is partly
xplained by misclassification of the global structure and partly
y the simulation conditions quickly after the initial break-up of
he layer. For the former, we find that the primary plasmoid is
ccasionally not identified properly, which is often tied to strong
uctuation in the magnetic flux function associated with the primary
lasmoid. These fluctuations, within the primary plasmoid’s interior,
ill then be identified and are responsible for the ‘dense’ population
ith a small plasmoid half-width. For the latter scenario, there

re a number of high density matter reservoirs that will eventu-
lly become the primary plasmoid population and will generally
orrespond to a large plasmoid half-width. Overall, misclassifica-
ions occur rarely, as is demonstrated by the otherwise compact
istributions. 
Returning to the ‘true’ plasmoid population, spanned by −1 . 25 <

og 10 ρ̄ < −0 . 25, we find that the smallest detected plasmoids have a
alf-width w ≈ 2 × 10 −4 L for both the Hb and Hs cases. This lower
imit is partially set by an identification requirement that either the
idth or height of the contour spans at least 5 cells (which equates

o a minimal width or height of 	x ≈ 0 . 02 l) for the e v aluated data.
or the surface-averaged magnetization ( ̄σ ), we find that the main
opulation spans −2 . 5 < log 10 σ̄ < 0 . 5. As is also seen in Fig. 2 ,
he secondary plasmoids have a remarkably similar σ profile with
he outer shells being more magnetized than the interior (similar to
ndings in Petropoulou & Sironi 2018 ). Nevertheless, we do find
 trend where the σ̄ rises with half-width, up to w ≈ 6.3 × 10 −3 

 . For log 10 w/ L > −2, the σ̄ mean plateaus and even seems to
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Figure 2. Representative state for the evolution of the Harris sheet for the Hb case corresponding to T = 2 . 46 t c . Rows (a) till (g) show the density ρ, ‘hot’ 
magnetization σ = B 

2 / ρh , plasma β = p /( B 

2 /2), electromagnetic energy density εem 

, kinetic energy density εkin , thermal energy density εth , and magnetic flux 
function � B . The ma g enta contours denote plasmoid detections corresponding to local maxima in the flux function ( � B ), while green contours correspond 
to local minima. The evolution o v er time is displayed in two animations; one for the zoom-in corresponding to this figure and another displaying the entire 
simulation domain, which can be found in the following repository; https:// doi.org/ 10.5281/ zenodo.8318522 . 
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Figure 3. 2D distributions N ( w, x ) of the plasma quantities x ∈ { ̄ρ, ̄σ , β̄, ̄εem 

, ̄εkin , ̄εth } as a function of plasmoid half-width w (with L = 2 L x , as per Table 1 ) 
for both the Hb (left-hand panels) and Hs (right-hand panels) cases. We stack the distributions as a function of time and divide by the maximum. The green line 
denotes the mean per width bin that has more than ten counts total. 
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ecrease slightly for the largest plasmoids. After the growth phase
in log 10 w/ L � −2), it seems that the increase in density and magnetic
eld strength is roughly matched. Lastly, for β̄, we find a similar but

nverse trends to what we described for σ̄ . The part of the distribution
ith the largest plasmoids ( w ∼ 0 . 1 L ) seems to deviate significantly

rom the main population and possesses a relatively high β̄ � 10 3 .
his happens because at the center of the plasmoid the magnetic field
trength becomes very small due to the circular configuration. This
enerates some very high β values that in turn affects the surface-
veraged quantities ( ̄β). 

For the energies ( ̄εem 

, ̄εkin , and ̄εth ), we find that the thermal energy
 εth ) is the leading term in the total energy budget of the plasmoids
ith a mean (denoted by the green line) that remains fairly constant

0 . 0 < log 10 ε̄th < 0 . 25) as a function of half-width ( w). At smallest
, it appears the second term is the electromagnetic energy (at ̄εem 

≈
0 −1 . 5 ) that steadily becomes more significant for increasing width.
s the kinetic energy ( εkin ) is closely tied to the velocity of the
lasmoid, we find that it can actually become a competing term for the
lectromagnetic energy, especially in the active reconnection regions
nd merging (or colliding) plasmoids (see Fig. 2 ). The distribution of

¯th and ε̄kin is wide indicating significant variance, while ε̄em 

closely
ollows the distribution of σ̄ and seems to show a more consistent
rend. This trend is explained by secondary plasmoids becoming
NRAS 531, 1554–1577 (2024) 
ore magnetized with time until they grow up to a size of w ∼
.01 L . Then, the secondary plasmoid generally encounters a primary
lasmoid and is subsequently absorbed, after which the growth in
agnetization ( ̄εem 

) stagnates. The high variance in ε̄kin is explained
y the localized nature of plasmoid acceleration – predominaintly
n active reconnection regions and just before plasmoid coalesce. As
oon as the secondary are absorbed by the primary plasmoids, ̄εth will
e the leading term by a significant factor. Even though ε̄th is still
ost dominant in the secondary plasmoid, both ε̄kin and, especially,

¯em 

can become close in significance. 
Lastly, we would like to briefly comment on the differences

etween the two cases; Hb and Hs . So far, we have mainly described
he Hb case shown in the left-most panels of Fig. 3 . Nevertheless,
e find that all findings based on Hb are also applicable to Hs . The
escription of both simulations is outlined in Table 1 , where we find
hat the main differences lie in the initial layer (half-)thickness ( δ)
hat is twice as wide and that the resolution is twice lower. This also
xplains why the evolution starts later for Hs ; it takes longer for the
erturbations to create a sufficiently thin current sheet to activate
he tearing instability . Additionally , the simulation box length (in ˆ x ,
ong side) is halved and contains more matter due to the thicker initial
ayers when compared to the Hb case. As there are only relatively

inor differences, we find that their evolution is similar, which is
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Figure 4. Probability density function f ( w/ L ) of plasmoid half-width w (along ˆ y ) that is scaled according to the total simulation box width ( L = 2 L x ) for 
both the Harris sheet cases; Hb and Hs . From scaling arguments, proposed in Uzdensky et al. ( 2010 ) and Loureiro et al. ( 2012 ), it has been shown that the 
distribution is expected to scale ∝ w 

−2 . The various probability density function profiles are coloured according the time at which they occur o v er a range 
of T ∈ [1 . 76 , 4 . 10] t c for Hb and T ∈ [5 . 47 , 8 . 79] t c for Hs . The mean density profile and 1 σ error o v er time are denoted by the dashed dark gre y line. The 
power-la w inde x is determined via p = − d log f / d log ( w/L ). 
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lso reflected by the results here. Most notably, it seems that the
rimary plasmoids spans a greater section of the simulation domain 
or Hs . To gain insight into the dependence of the plasmoid dynamics
n starting conditions, a more detailed study is needed, but that lies
eyond the scope of this work. 

.1.3 Plasmoid distribution functions 

igs 4 and 5 display a probability density function ( f ) of plasmoid
alf-width and the absolute plasmoid surface averaged magnetic flux 
unction ( | ̄� B | ), respectively. The distributions are calculated at a
ime cadence of 10 −2 t c starting at the beginning of the e v aluated
indow at T = 1 . 76 t c for Hb ( T = 5 . 47 t c for Hs ) up to T = 4 . 1 t c 

 T = 8 . 79 t c ) shown by the colour range of dark blue up to bright
ellow. Starting with Fig. 4 , we find variation of the probability
ensity function as a function of time, but a consistent image emerges
s well. Generally speaking, at the smallest plasmoid half-widths (up 
o w/ L ≈ 10 −3 ), we find a plateau followed by a steady decrease in
ccurrence frequency as the plasmoids become larger, up to the 
argest plasmoids that span a tenth of the simulation domain ( w ∼
.1 L ). We primarily quantity the growth rate of plasmoids in the
ystem by e v aluating the po wer-la w inde x p = −dlog f /dlog ( w/ L ) of
he density function. 

The plasmoid scaling laws have been studied in detail in the 
ast (Uzdensky et al. 2010 ; Huang & Bhattacharjee 2012 ; Loureiro
t al. 2012 ; Sironi et al. 2016 ). The density function of plasmoid
idth was predicted and verified to scale according to f ( w) ∼ w 

−2 

Uzdensky et al. 2010 ; Loureiro et al. 2012 ), while for magnetic flux
oth f ( ̄� B ) ∼ �̄ 

−2 
B (following the same works) or f ( ̄� B ) ∼ �̄ 

−1 
B 

Huang & Bhattacharjee 2012 ) were established. The main difference 
etween scaling found by Uzdensky et al. ( 2010 ) and Huang & Bhat-
acharjee ( 2012 ) lies in how they treat the relative velocity between
lasmoids. While Uzdensky et al. ( 2010 ) assumed it to be ∼v a ,
uang & Bhattacharjee ( 2012 ) e v aluate a size-dependent relative
elocity (see also Sironi et al. 2016 ). As our simulations have no
arge-scale magnetic field perturbation (or outflowing boundaries), 
elativ e v elocities between plasmoids are stochastically determined 
nd relatively low, so we expect a greater similarity with Huang &
hattacharjee ( 2012 ). Overall, we find that �̄ B and w do not scale
ith the same power-law index p , which is contradictory to earlier
orks (Loureiro et al. 2012 ; Sironi et al. 2016 ). Ho we ver, there

re clear explanations for this perceiv ed discrepanc y that will be
utlined in the next paragraphs. We note that we display the �̄ B 

uantity in Fig. 5 , which is the surface-average of � B as enclosed by
he identified plasmoid contour. This quantity is comparable to the 
caling relations for � listed in Loureiro et al. ( 2012 ); Sironi et al.
 2016 ). 

For the half-width ( w) scaling relations in Fig. 4 , we find a power-
a w inde x p = 1.81 ± 0.05 for the Hb case and p = 1.48 ± 0.06
or the Hs case. Overall, we find a scaling relation that is close
o f ( w) ∼ w 

−2 corresponding to p = 2 (indicating a surprising
imilarity with non-relativistic results by Uzdensky et al. 2010 ; 
oureiro et al. 2012 ). For the mean trend in magnetic flux (in
ark grey), we find p = 0.64 ± 0.10 for the Hb case and p =
.59 ± 0.06 for the Hs case. Ho we ver, the trend described by the
mallest values per bin (in light grey) is p ≈ 1, which indicates
greement with Huang & Bhattacharjee ( 2012 ). The evolution of
he distributions is characterized by a relative over-representation of 
arge plasmoids, with | ̄� B /B 0 L | ∈ [5 × 10 −2 , 10 −1 ], that expands
tself both to the left (lower | ̄� B | , smaller plasmoids) and right (higher
 ̄� B | , larger plasmoids) o v er time. The smallest plasmoids hav e the
owest magnetic fluxes (as is also verified in Fig. 2 ) and the largest
lasmoid will increase in | ̄� B | o v er time. This evolution also creates
MNRAS 531, 1554–1577 (2024) 
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Figure 5. Probability density function f ( | ̄� B | /B 0 L ) of plasmoid surface-averaged flux | ̄� B | /B 0 L that is scaled according to the total simulation box width 
( L = 2 L x ) and initial magnetic field strength ( B 0 ) for both the Harris sheet cases; Hb and Hs . The light grey dashed lines denote the mean of the lowest (1 
per cent) values per bin with a corresponding linear fit shown in the same colour. For the rest, the description of Fig. 4 also applies here. 
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he sizable 1 σ error (visually made worse by the log-scale) as the
ensity function evolves significantly over time. So, in short, the
agnetic flux distributions evolve with p = 1 o v er time (especially

or a low | ̄� B | ), but this relation is affected by a high | ̄� B | population
that is present from the start). This population is there because of
he periodic boundary conditions and would not be o v er-represented
hen utilizing outflowing boundary conditions, which was done by

he comparative studies. 
Next to differences in the physical regime (i.e. non-relativistic,

ncompressible, and higher Lundquist numbers for Huang & Bhat-
acharjee 2012 ; Loureiro et al. 2012 ), we note that our simulation
onfiguration differs substantially on at least two fronts from the
reviously mentioned scaling law studies, namely that it is rela-
ively unperturbed and that it has no outflowing boundaries. With
nperturbed, we mean that there is no large-scale magnetic field
erturbation present. This type of perturbation would recreate a
lean reconnection layer in the middle of the box and guides the
rimary plasmoids to the edge of the simulation domain (also
iscussed in detail in Section 2.2 ). In practice, this implies that (i)
oalescence of plasmoids is a relatively prominent growth channel
n our simulations and (ii) large plasmoids could disproportionately
ffect the distribution. The latter point is two-fold; as the primary
lasmoids become larger they ef fecti vely shrink the domain where
he (secondary) current sheets can form and they will eventually
tart interfering with the opposing current sheet. Especially for the
s case, these points are influential, which is also accentuated
y the larger deviations. All these effects are likely to play a
ole in explaining the differences in scaling found in this work
ith respect to previous works. Additionally, the informed (but

rbitrary) choice regarding which bins to include for the fit combined
ith the imperfect sampling of the distribution by the bins also

ntroduces a O(5 per cent ) error on the values of p . Although,
ven despite the differences in simulation configuration (and the
NRAS 531, 1554–1577 (2024) 
umerical uncertainties), we still reach a remarkable consistency
ith previous studies that employed more idealized configurations

or finding plasmoid scaling. 

.2 GRMHD 

.2.1 Gener al e volution 

igs 6 and 7 display the typical structure of the axisymmetric
AD (cf. Tchekhovsk o y, Narayan & McKinney 2011 ; McKinney

t al. 2012 ) simulations. After having evolved sufficiently, they
ill saturate in magnetic flux that penetrates the event horizon (see
ection 4.2.4 ). Following such a saturation event, the accretion flow

s completely halted in axisymmetric simulation, while in 3D a so-
alled ‘flux tube’ forms (Dexter et al. 2020 ; Porth et al. 2021 ). Instead
f halting the accretion flow completely, a localized less dense, more
agnetized cavity (i.e. the flux tube) mo v es outward from the black

ole and eventually dissipates into the accretion flow (after up to
everal orbits) in 3D. These outbursts occur semi-periodically and
eem to be even more pre v alent in the relati vely more confining 2D
imulations. 

Another feature of MAD models is that the Magneto-Rotational
nstability (MRI; Balbus & Ha wle y 1991 ), responsible for angular
omentum transport, is suppressed or only marginally influential as

he main magnetic field component component is strongly poloidal
Porth et al. 2021 ; Begelman, Scepi & Dexter 2022 , and reference
herein). The MRI does play a role in the early developing phase
f the simulation, when it is less magnetized, but then one of the
eading causes of turbulence (close to the BH) is the Rayleigh–Taylor
nstability (RTI; Avara, McKinney & Reynolds 2016 ; Marshall,
vara & McKinney 2018 , and references therein). The RTI drives

he break-up of coherent (magnetic) structures such as flux tubes
owards the central BH. The turbulence associated with the Kelvin–
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Figure 6. Overview of the iM5 simulation at T = 3840 r g /c. Here, we are in the middle of a flux eruption event with pushed back the accretion disc. The 
ma g enta contours corresponds to local maxima and the green contours correspond to local maxima in the magnetic flux function ( � B ). In panels ( a )-( d ), 
one finds the density ( ρ), the magnetization ( σ ), the ideal to magnetic pressure ratio ( β), and the magnetic flux function ( � B ). In the panels ( e )-( h ), we find 
the electromagnetic energy ( εem 

), kinetic energy ( εkin ), thermal energy ( εth ), and the magnetic Bernoulli factor ( Be m = −( h + σ /2) u t ). The corresponding 
animations can be found in the following repository; https:// doi.org/ 10.5281/ zenodo.8318522 . 
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elmholtz Instability (KHI) becomes important in regions with 
trong shear flows and is characterized by swirl-like vortices (see 
.g. Begelman, Blandford & Rees 1984 ; Hillier 2019 ). In the black
ole accretion environment, such shear layers are naturally associated 
ith the jet–disc interface. Both of these instabilities are perturbative 

hannels that are able to set off magnetic reconnection in the 
ccretion disc. Therefore, for MAD accretion discs, we find a much 
ore turbulent environment than for the Harris current sheet for 
hich reconnection is only determined by the tearing instability 

Ripperda et al. 2017 ) that is triggered in a relatively controlled
cenario. 
As we are mainly interested in the plasmoids’ ability to produce
ares, which are known to originate close to the central black hole,
e apply our algorithm only within the inner 25 r g . In Figs 6 and
 , we display maps of the plasma quantities and energies (similar to
ig. 2 ) for the iM5 and rM5 cases. The magenta and green colours
enote plasmoids found with a local maximum and local minimum 

n the magnetic flux function, respectively. Both figures show typical 
hases of MAD evolution that occur in all the GRMHD simulations in
his work. Both the ideal (i.e. iM5 ) and resistive (i.e. rM5 ) GRMHD
imulations have a similar global evolution, except that rM5 produces 
ignificantly more plasmoid and does therefore have a more variable 
MNRAS 531, 1554–1577 (2024) 
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Figure 7. Overview of the rM5 simulation at T = 3500 r g /c. Here, we find an accretion state that is standard for MAD simulations with a turbulent 
but fairly steady flow. The rest of the description is analogous to Fig. 6 . The corresponding animations can be found in the following repository; https: 
// doi.org/ 10.5281/ zenodo.8318522 . 
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isc structure as is discussed in detail in Section 4.2.4 . The panels
 a –h ) of Fig. 6 correspond to a flux eruption where we find the
ccretion flow is entirely halted. The panels ( a –h ) of Fig. 7 show
 fairly generic accretion state with the turbulent accretion flow
xtending up to the horizon. Even though the density is low near
he BH, one does find a reconnection layer along the equatorial
lane (denoted by the magenta contours). These plasmoids are the
ollisional (non-pair-production plasma) equi v alent to what has been
een in GRPIC simulation of diffuse collisionless magnetospheres
round BHs (Bransgro v e, Ripperda & Philippo v 2021 ; Crinquand
t al. 2021 ). 

The o v erall structure and location of the plasmoid chains indicate
hat at the disc–jet boundary, one finds plasmoids that correspond to
NRAS 531, 1554–1577 (2024) 
ocal maxima (magenta), while when plasmoids occur within the disc
hey correspond to local minima (green). The magenta contours seem
o have a lower density ( ρ) and higher magnetization ( σ ) than those
hat lie within the disc (denoted in green). The magenta contours
lso seem smaller when compared to their green counterparts. Their
ocation and smaller size indicates that they are likely created by
he shear-induced KHI. The magenta contours also tend to leave the
dentification domain ( r ≤ 25 r g ) on short time-scales (5–10 r g / c )
s they rapidly move outwards with turbulent jet–disc layer (often
eferred to as the jet sheath). The green contours are tied to the bulk
otion of the disc giving these plasmoids more time and matter to

nteract with, which explains their larger sizes. Lastly, we would like
o point out that the quantities (visible in the ρ, | εkin | , and εth maps)

https://doi.org/10.5281/zenodo.8318522
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ear the vertical axis ( x = 0 r g ) are due to floor violations, which
appen far from our areas of interest and will therefore not interfere
ith the analysis. 

.2.2 Plasmoid statistics 

ig. 8 shows 2D histograms with various plasmoid quantities as 
 function of width for the two GRMHD simulations ( iM5 and
M5 ). We find a significantly lower plasmoid count for the iM5
ase compared to the rM5 case. Hence, the ideal distributions 
re more sparsely sampled. We will address this point in more 
etail in Section 4.2.4 . Overall, ho we ver, we do find that the
istributions of iM5 and rM5 are consistent with one another. 
efore we start describing the distributions, we would like to note 

hat we can no longer use the Euclidean width for the GRMHD
ases, as it does not inherently take into account the space–time 
urvature. Instead, we have chosen to display the distribution of 
lasmoid sizes as a function of ‘circular’ radius R S = 

√ 

S/π as
he surface S calculation is taking into account the curvature. As
lasmoids are generally elliptical, we loose information about the 
hape because the distinction between width and length is no longer 
ade. 
Starting with the distribution of ρ̄ (panels i . a and r . a of Fig. 8 ),

e find that the surface-averaged density is highest for the smallest
lasmoids at log 10 ρ̄ ≈ 0 . 75 and then plateaus at log 10 ρ̄ ≈ −0 . 5
rom −0.5 < log 10 R S < 1.0. For σ̄ ( i . b and r . b ), we find a roughly
onstant mean value of log 10 σ̄ ≈ −1, but a wide spread in values 
s also present. For β̄ ( i . c and r . c ), one finds a very elongated
istributions centred around a mean of roughly log 10 β̄ ≈ 0 . 5 which 
as a complicated origin. This behaviour is largely explained by 
he ‘green’ (local minima in � B ) and ‘magenta’ (local maxima in
 B ) plasmoid populations (hereafter simply referred to as ‘green’ 

opulation or distributions, analogously for ‘magenta’). For the 
agenta population, we find the origin of the elongated β̄ distribution 

s the plasmoids detected in the jet sheath correspond to a distribution
entred on a relatively low log 10 β̄ ≈ −1. The typical plasmoid 
alues for β̄ are fairly uniformly distributed with −2 � log 10 β̄ � 2 
entred around a mean of log 10 β̄ ≈ 0 − 0 . 5. Similar behaviour 
s also seen for the distributions of ρ̄ and σ̄ where they both 
isplay near-identical means but a larger variance is present for 
he magenta contours. For the plasmoids corresponding to green 
ontours, we find more uniform and compact distributions o v erall 
hat are located around the mean trends for the entire (combined green
nd magenta) distribution as shown in Fig. 8 . We note that we do not
xplicitly show the results for both green and magenta populations 
eparately, but rather only comment on it in the text for brevity’s
ake. 

For the energies ( εem 

, | εkin | , and εth shown in Fig. 8 ), there are
nly minor differences between the green and magenta distributions, 
o we will just discuss the combined distributions for the energies 
n panels ( i . f - i . h and ( r . f - r . h ). Interestingly, the means for all energy
istributions follow an almost identical trend – starting at log 10 ε̄ ≈ 0 
o ending at log 10 ε̄ ≈ −2 for increasing R S . After a rapid decline
p to log 10 R S ≈ −0.5, we find that the means of log 10 ε̄ plateau,
specially for ̄εkin and ̄εth . Additionally, the distributions indicate that 
he various surface-averaged energies are of similar strength. ̄εem 

does 
tand out, ho we ver, with respect to the other energies as it displays
 more compact distribution with a clear, gradually declining trend. 
enerally speaking, we find that all energy densities are of similar

trength independent of the plasmoid size. Continuing with ε̄kin , ε̄kin 

s mostly ne gativ e, e xcept in the jet-sheath where εkin ∼ O(1). This is
xplained in detail in Section 2.4 . Here, we only consider the absolute
alue | ̄εkin | ( i . g and r . g ). The dashed magenta and green lines in these
anels correspond to the means of the distributions containing only 
he positive or negative values of ε̄kin , respectively. So, it becomes
lear that the vast majority of plasmoids has a ne gativ e ε̄kin value as
he global mean (in solid green) lies close to the dashed green line.
astly, for ε̄th , we find similar behaviour as for the other energies,
xcept it has the strongest contribution at the lowest plasmoid 
izes. 

To assess how freely a plasmoid mo v es through the accretion
isc, one can e v aluate the boundedness of the plasmoid to the
lobal accretion flow, which is described by the Bernoulli factor 
r parameter (shown in panels i . i and r . i of Fig. 8 ). We define
he magnetic Bernoulli factor as Be m = −( h + σ /2) u t , which
ncorporates the contribution of the magnetic pressure ( σ /2) and 
herefore deviates slightly from the standard relativistic Bernoulli 
e = −hu t (Rezzolla & Zanotti 2013 ). The Bernoulli criterion states

hat the fluid is unbound when Be m > 1. Note that we have taken
he liberty to incorporate a minus sign within the Bernoulli factor.
eturning to the distributions in panels ( i . i and r . i ), we find the
ajority of surface-averaged plasmoids is unbound as they pass the 

riterion, but there is still a significant number that lies under and
lose to the critical value of B̄ e m 

= 1 and are therefore bound. The
ean of the function does, ho we ver, indicate B̄ e m 

≈ 1 with a small
umber going up to relatively high values of B̄ e m 

≈ 2. In the panels
ext to B̄ e m 

, we find the distributions of �̄ B which seem elongated
nd somewhat non-uniform. Howev er, the y are easily explained as
he accretion disc is still undergoing a global evolution o v er the
uration of the e v aluated time-windo w ( 	 T = | 3000–4000 | r g / c ). At
he beginning ( T = 3000 r g / c ), we find a mean of �̄ B ≈ 6 . 5, while at
he end ( T = 4000 r g / c ) we find a mean of �̄ B ≈ 11 . 5. 

The last unexplained panels of Fig. 8 are two variations on
he orbital velocity � = u φ / u t . First, in panel ( i . e and r . e ), we
nvestigate the ratio between the surface-average within the plasmoid 
ontour ( ̄�in ) with the surface-average for a shell directly outside the
lasmoid contour ( ̄�shell ). The outer edge of the shell corresponds to
ne-and-a-half times the distance to the central O-point. From this 
uantity, we can gauge if the plasmoid mo v es with its surroundings
 ̄�in / ̄�shell = 1) or disconnected from it ( ̄�in / ̄�shell �= 1). From the
istributions, we find that the mean is consistent with �̄in / ̄�shell = 1,
ut there is also significant variance indicating that the plasmoid can
o v e twice as fast or slow with respect to its direct environment. This

an be interpreted in a number of ways, which includes, e.g. that the
lasmoid is dynamically disconnected from its direct surroundings 
n the accretion disc. 

Second, in panels ( i . j and r . j ), we e v aluate the ratio of �̄in divided
y the Keplerian circular orbital velocity in the equatorial plane 
hich is defined as �K = ( x 3/2 + a ∗) −1 with x the cylindrical

adius (corresponding the horizontal axis in Figs 6 and 7 ) and a ∗ =
.9375 the black hole spin parameter. It has been established that
AD discs are sub-Keplerian (Igumenshchev 2008 ; Porth et al. 

021 ) which explains the mean of �̄in /�K ≈ 0 . 8. Nevertheless, the
road distribution with 0 . 1 � �̄in /�K � 1 . 3 indicates the potential
or plasmoids to be super- or sub-Keplerian, which has interesting 
bserv ational implications. Ho we ver, one still has to take into account
hat our estimate of the Keplerian orbital velocity is somewhat crude
s the plasmoids have non-zero u θ or u r velocities that break both the
ircular and equatorial assumption for �K . 

Even though the distributions of iM3 , rM3 , iM4 , and rM4 are not
 xplicitly shown, we hav e confirmed that the general trends described
or iM5 and rM5 are consistent with the lower resolution simulations.
MNRAS 531, 1554–1577 (2024) 
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Figure 8. 2D distributions N ( R S , x ) of the plasma quantities x ∈ { ̄ρ, ̄σ , β̄, �̄ B , �̄in / ̄�shell , ̄εem 

, ̄εkin , ̄εth , B̄ e m , �̄in /�K } as a function of ‘circular’ radius 
R S = 

√ 

S/π of the plasmoid for both the iM5 and rM5 cases. While the other parameters have been outlined before, the magnetic Bernoulli factor is defined as 
B̄ e m = −( h + σ/ 2) u t and the orbital velocity � = u φ / u t with the surface-averaged quantity inside the plasmoid being denoted as �̄in . We stack the distributions 
as a function of time from 3000 r g / c to 4000 r g / c with a 1 r g / c cadence and divide by the maximum. The green line denotes the mean per width bin that has 
more than 20 counts total. The left -hand panels denotes iM5 case, while the right -hand panels denotes the rM5 case. 
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Figure 9. Probability density function f ( R S / r g ) of ‘circular’ plasmoid radius R S for both the high-resolution cases iM5 ( left ) and rM5 ( right ). All identification 
takes place within a circle of radius R = 25 r g and we e v aluate a time-windo w of T ∈ [3000, 3001, . . . , 3999, 4000] r g / c . The rest of the description for Fig. 4 is 
also applicable here, except now we utilize R S . 
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he quantitative differences in plasmoid identification rate ( N P ) will, 
o we ver, be outlined explicitly for all cases in Section 4.2.4 . 

.2.3 Plasmoid distribution functions 

ig. 9 displays the probability density function ( f ) of plasmoid
adius R S , while Fig. 10 displays the probability density function 
f plasmoid half-width w. We show both distributions to illustrate 
he general relativistic effects in Fig. 9 , while Fig. 10 is straight-
orwardly compared with the Harris sheet’s density function (in 
ection 4.1.3 ) and reflects the plasmoids shown in Figs 6 and 7 .
nterestingly, we reco v er the power-la w indices of p = 1.88 ± 0.06
 p = 1.90 ± 0.05) and p = 2.15 ± 0.11 ( p = 2.09 ± 0.09) for iM5
nd rM5 in Fig. 9 ( 10 ), respectively. These are similar to the results
escribed in Section 4.1.3 , which indicates that plasmoid formation 
s driven by the same principles, even when taking into account the
nderlying curvature of the space–time. Even though more plasma 
nstabilities and subsequent perturbation are acti v ated (as outlined 
n Section 4.2.1 ), we still find scaling laws that is consistent with p

2 for the GRMHD simulations. While the onset of magnetic re-
onnection in the isolated Harris sheet simulations occurs somewhat 
pontaneously, in GRMHD it is subjected to global dynamics (such 
s the RTI and KHI) that trigger magnetic reconnection. Although 
ne clearly sees Harris-sheet-like structures forming in GRMHD, 
hey also rapidly fall apart which interestingly does not affect the 
rends in the density functions. One therefore concludes that the 
idth distributions are robust features of reconnection, no matter 
ow it is triggered. 
The identification strategy we ef fecti vely employ for the GRMHD 

imulations is more consistent with studies (i.e. Huang & Bhat- 
acharjee 2012 ; Loureiro et al. 2012 ; Sironi et al. 2016 ) that
ave outflowing boundary conditions as we stop identifying plas- 
oids for r > 25 r g . Another ‘outflowing’ boundary lies at the
orizon but the vast majority of plasmoids mo v es outwards (in
he ˆ r direction) in the jet–disc region. Some plasmoids, typically 
ssociated with green contours, even move into the identification 
omain along the equatorial plane to then exit via the upper or
ower identification boundaries. Only a relatively minor fraction 
f plasmoids is accreted onto the BH and the majority of those
re created in close proximity to the BH in the equatorial current
heet. 

Close examination of Fig. 9 reveals that plasmoid radius goes 
ll the way up to R S ≈ 10 r g . The Cartesian projection equi v alent
n Fig. 10 shows a maximum radius of w ≈ 2 r g . These largest
lasmoids are visible in Fig. 6 . The smallest detected plasmoids have
adii corresponding to R S ≈ 10 −1 r g (and w ≈ 10 −2 r g ). The largest
lasmoids seem comparable in size to the ‘hotspots’ that were used
o interpret flares around Sgr A 

∗ (Gravity Collaboration 2020b ; Vos
t al. 2022 ; Wielgus et al. 2022b ). From our simulations, we find
hat the plasmoids are of sufficient size to give a physical origin
o these hotspots. Ho we v er, currently, we do not e xplicitly interpret
heir emission potential, but as plasmoids are typically hot ( p / ρ � 1)
nd magnetized ( 〈 ̄σ 〉 � 0 . 1, as per Fig. 8 ) they are likely to create
n emission feature, albeit undetermined if predominantly thermal 
r non-thermal (Werner et al. 2017 ; Petropoulou & Sironi 2018 ).
evertheless, the occurrence rate of these large, and potentially 
right, plasmoids is still quite low . More specifically , for rM5 ,
lasmoids with radii R S > 2 . 5 r g occur at least once (and three times
n average) per individually evaluated snapshot (corresponding to 8.2 
er cent of all identified plasmoids), while plasmoids with (Cartesian- 
rojected) widths w > 1 r g are much less common as they occur in
nly half (51.4 per cent) of the e v aluated snapshots (corresponding to
.8 per cent of all identified plasmoids). This perceived discrepancy 
s partially due to the space–time curvature (not taken into account for
) and the mixing of plasmoid length and width for the R S quantity.
or iM5 , the occurrence rates of at least one plasmoid passing the R S 

r w criteria are 57.7 and 16.5 per cent (with 6.6 and 2.3 per cent for
MNRAS 531, 1554–1577 (2024) 
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Figure 10. Probability density function f ( w/ r g ) of plasmoid half-width w for both the high-resolution cases iM5 ( left ) and rM5 ( right ). The rest of the description 
for Fig. 4 is also applicable here. Note that the quantities here do not correctly take into account the space–time curvature, which is the case for Fig. 9 . 
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ll identified plasmoids o v er the entire time windo w), respecti vely.
verall, if we take into account the much lower plasmoid count for
M5 , we find that the percentages of the two cases are comparable,
xcept for having at least one w > 1 plasmoid per e v aluated snapshot.
his is well-explained, ho we ver, in Section 4.2.4 . 
Lastly, we note that the power-law index p = −dlog f /dlog ( R S / r g )

s less steep for iM5 than for rM5 . We believe this is largely
xplained by the lower plasmoid number, but we also note that
he colours indicate that at later times (more yellow) the plasmoid
ensity function spans more radius (or width) bins and therefore
ies slightly lower than at earlier times (dark purple to black).
his indicates there is some evolution in the density function
s is confirmed in Section 4.2.4 . For rM5 , we find a relatively
onsistent density function o v er time. Ne xt to a potential difference
n evolution, we find that a singular linear relation (in log–log
pace) is not the best description of the downwards trend. Even
hough close to p ≈ 2, there is a minor break visible and the
lope becomes shallower at R S / r g ≈ 4. As especially the larger
lasmoid size bins contain more counts, this naturally pushes p to
lightly lo wer v alues for iM5 . Ne vertheless, it is interesting that
M5 indicates a steeper power-law index with p = 2.15 ± 0.11.
o we ver, combined with the points raised at the end of Section
.1.3 , we conclude that iM5 and rM5 are consistent with a power
aw with p ≈ 2 as more robust claims can not be made without further
nvestigation. 

.2.4 Timeseries of plasmoids and horizon penetrating fluxes 

lasmoids form within the accretion disc and are mostly go v erned
y their local plasma conditions. Nevertheless, it is interesting to
ee how plasmoids, as probes of the accretion disc, connect to the
lobal fluxes on the central black hole. Quantities that are customarily
alculated to assess this are the mass accretion rate ( Ṁ ) and surface-
NRAS 531, 1554–1577 (2024) 
enetrating magnetic flux ( � B ), which are defined as (Porth et al.
019 ): 

˙
 = −

∫ 2 π

0 

∫ π

0 
ρu 

r 
√ −g d θ d φ, (25) 

 B = 

1 

2 

∫ 2 π

0 

∫ π

0 
| ∗F 

rt | √ −g d θ d φ. (26) 

MAD models are known to saturate in horizon-penetrating mag-
etic flux. This implies that magnetic energy will be building up and
ill eventually be released in a sudden flux eruption that partly and

emporarily halts the accretion flow onto the BH. In 2D simulations,
he accretion flow will be stopped completely due to the constraining
ature of the setup. The parameter that is used to quantify this
ehaviour is the so-called MAD parameter φBH = � B / 

√ 

Ṁ , which
orresponds to the normalized magnetic flux. The MAD parameter
aturates (in 3D) at φBH ≈ 15 2 (cf. Yuan & Narayan 2014 ). In our
imulations, as shown in Fig. 11 , we find that φ occasionally rises
o φBH ∼ 120. This is partly due to the confining nature of the 2D
imulation, which allows for a greater accumulation of magnetic
ux before an eruption. These findings are consistent with behaviour
ound for simulations presented in Ripperda et al. ( 2020 ). As we used
 different adiabatic index ˆ γ = 13 / 9 (versus ˆ γ = 4 / 3 for Ripperda
t al. 2020 ), we have a thicker disc at initialization which allows for
reater accumulation of magnetic flux. 
The middle to lower panels ( d –f ) of Fig. 11 display the number of

dentified plasmoids ( N P ) per simulation. While not shown explicitly
n the figure, we confirm that plasmoids for either polarity (i.e.
agenta and green contours in Figs 6 and 7 ) are equally abundant.
s we already indicated (in Section 4.2.2 ), a significantly lower
umber of plasmoids is detected for the ideal simulations than for
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Figure 11. Timeseries of the mass accretion rate Ṁ (panel a ), magnetic flux 
� B ( b ), normalized magnetic flux φ = � B / 

√ 

| Ṁ | ( c ), number of identified 
plasmoids N plasmoids per simulation (panels d , e , and f ), and normalized 
cross-correlation function (xcorr) between −∇� B and N P ( g ). The fluxes 
are calculated at 2.5 r g . We display both the ideal ( iM3 , iM4 , and iM5 in 
shades of orange ) and resistive ( rM3 , rM4 , and rM5 in shades of purple ) 
GRMHD simulations. 

Table 3. The modulation index M Q ≡ σQ / μQ with σQ and μQ denoting 
the standard deviation and mean of quantity Q ∈ { Ṁ , � B } . This inde x giv es 
a measure of the variability in the simulations’ timeseries. 

Name μṀ 

σṀ 

M Ṁ 

μ� B σ� B M � B 

iM3 6 .86 7 .05 1 .03 55.99 8 .87 0 .16 
iM4 7 .36 11 .46 1 .56 54.19 8 .93 0 .16 
iM5 7 .29 17 .35 2 .38 50.45 10 .17 0 .2 
rM3 6 .34 8 .16 1 .29 59.38 6 .27 0 .11 
rM4 7 .29 9 .23 1 .27 59.37 6 .55 0 .11 
rM5 10 .78 17 .28 1 .6 57.79 7 .53 0 .13 
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he resistive ones where a factor 2–10 difference (in N P ) is common.
he mechanism that triggers plasmoid formation, via the tearing 

nstability, is not well-defined in ideal MHD simulations, as the ideal
esistivity ( ηide ) is resolution dependent (Zhang et al. 2003 ). This
mplies that numerical resistivity ( ηide = ηnum 

) is lower close to the
H due to the MKS coordinate system and is significantly smaller

han ηris = η ( ηnum 

< <η). Overall, the tearing instability is triggered
ess often, due to the relatively lower resistivity, and less reliably
s it is determined by (stochastic) numerical effects. Visually, the 
deal simulations are significantly calmer, which is explained by the 
uppression of the MRI after the initial few thousand time-steps. 
tarting from T ≈ 3700 r g / c , ho we ver, a sudden increase in plasmoid
ormation rate is visible, which roughly corresponds to the state 
hown in Fig. 6 for iM5 . After this ‘flaring’ event, the rate at which
lasmoids are created is somewhat increased (except for iM5 ). 
The resistive simulations possess a strikingly constant number of 

lasmoids ( N P ) indicating a steady rate of plasmoid formation. As
he MRI is also suppressed for the resistive simulations, we can
ssume that the tearing instability is a sufficient perturbation in itself
o keep plasmoid formation up. To get an indication of how the
ux eruptions could contribute to this process, we verified if there
re significant changes in the modulation index M Q ≡ σ Q / μQ (see 
HTC et al. 2022b , and description therein), with σ Q and μQ being

he standard deviation and mean, respectiv ely, o v er time-interval
 T = | 3000–4000 | r g / c for a given quantity Q . The modulation

ndex can be universally applied to a given timeseries to assess the
e vel of v ariability. We calculate the modulation index for both the
ccretion rate Ṁ and magnetic flux � B that penetrate the spherical 
hell at r = 2.5 r g . An o v erview of the simulation modulation indices
s listed in Table 3 . There seems to be little difference between M Ṁ 

or
 � B for the ideal and resistive simulations. This is surprising as N P 

ndicates a more turbulent disc for the resistive cases, as this would
ive rise to the greater plasmoid count. Nevertheless, one is not able
o ascertain this directly from the shell-penetrating fluxes. Another 
onsequence of setting a fixed resistivity is that there is a fixed
ength scale (i.e. width of the current sheet) that determines when the
earing instability is triggered. When this length-scale is sufficiently 
esolved, one finds consistent results starting from a certain critical 
esolution and upwards. It is therefore interesting that we see this
eing verified in the panels ( d )-( f ). For rM3 , the lowest resolution
ase, we find that the mean plasmoid count 〈 N P 〉 ∼ 75. While for
he higher resolution cases rM4 and rM5 , we find 〈 N P 〉 ∼ 100. As
e find converging plasmoid numbers for both resolution cases, we 

onclude that the current sheet thickness (set by η = 5 × 10 −5 ),
ithin the 25 r g domain, is fully resolved starting from a resolution
f 4096 2 . 
For the last panel ( g ), we investigate the relation between a (MAD)

ux eruption (i.e. characterized by a drop in horizon-penetrating 
agnetic flux � B ) and the detected plasmoid count ( N P ). We cross-
MNRAS 531, 1554–1577 (2024) 
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orrelate the plasmoid number ( N P ) with the ne gativ e gradient of the
agnetic shell-penetrating flux ( −∇� B ) and find a positive relation

or most cases. This indicates that the perturbing effect of the flux
ruption brings about a period of increased plasmoid formation after
 characteristic time-delay. Except for rM3 , which is the uncorrelated
omponent on the background (in lightest purple), we find a clear
orrelation between the most prominent peak in N P and a decrease in
 B . The maxima of the correlation function coincides with beginning

f a drop in the magnetic flux function and are denoted by vertical
ashed line in their corresponding panels. This is a consistent trend
s long as one has a clear flux eruption, which also explains the
ncorrelated rM3 results as there is no clear decrease in � B present.
or iM5 at T ≈ 3780 r g / c , the flux eruption is rather large as is

ndicated by the decrease in � B , which has pushed the maximum
corr( −∇� B , N P ) further to the right. Just before the flux eruption,
e find that an increase (of several factors) in � B after which it drops
uickly. The positive correlation is naturally explained by the fact
hat the flux eruption, which is accompanied by the temporary halting
f the accretion flow, is a significant perturbation to the accretion disc
hat is able to initiate reconnection in numerous places. Even though
his general picture applies, we find that the dynamics are likely also
tochastic in nature as the rM4 case displays different behaviour with
 drop in N P directly after the flux eruption. This is in part explained
y our identification strategy which only identifies plasmoids within
5 r g and as the disc has receded during the flux eruption the domain
n which plasmoids are detected also shrinks and ef fecti vely delays
he peak in N P . Additionally, the shell-penetrating magnetic flux ( � B )
nly shows a relatively minor depression which indicates a relatively
inor flux eruption and subsequent perturbation of the disc structure.
o, to summarise, one expects a reaction on the plasmoid formation
ate following a flux eruption, which tends to increase the plasmoid
ount as it perturbs the accretion disc and subsequently triggers
econnection. 

 DISCUSSION  

n this section, we will discuss our results following in the context
f earlier works following four main points; (i) direct comparison
o GRMHD-related plasmoid detection methods, (ii) specifics from
ur simulation library, (iii) implication for 3D results, (i v) ef fects of
esistivity, and (v) a discussion of the flaring potential of plasmoids.

.1 GRMHD plasmoid detection 

omparison with earlier works that have identified plasmoid struc-
ures in GRMHD (Nathanail et al. 2020 ; Jiang et al. 2023 ) suggests
hat the approach outlined in this work finds 5–10 × more plasmoids.
oth aforementioned works utilize the Bernoulli factor ( Be =
hu t ) as underlying identification medium and use a canny-edge

etection algorithm on a Gaussian blurred segment (as provided by
he scikit Python package). We have made initial attempts with
his proposed method. Ho we ver, as we did not reach the desired
fficacy or fidelity, we started the development of algorithm outlined
n this work. Overall, we typically find 5–10 × more plasmoids
han the previously mentioned works, which are not all attributed
o the detection method difference. Other potential causes for the
iscrepancy can be the identification medium, resolution, simulation
onfiguration, and the inherent differences between resistive and
deal GRMHD. A number of these points will be discussed in detail
n the following paragraphs. 

Regarding the choice of identification medium, we opted for the
agnetic flux function � B as it naturally identifies circular magnetic
NRAS 531, 1554–1577 (2024) 
eld structures. When we compare this criterion with the utilization
f the Bernoulli factor Be , then it becomes clear from the results
n this work that not all plasmoids are unbound as demonstrated in
ig. 8 . One is likely to miss the plasmoids created in the equatorial
lane as those tend to be bound (as was also pointed out in Jiang et al.
023 ). There are also clear advantages to using Be , because one can
pply well-established image-recognition algorithms if one is able
o increase the contrast (i.e. only show a limited colour range) to
hich the Be factor lends itself well. Nevertheless, this comes with

he cost that one can only identify a relatively small subset of the
ntire plasmoid population. 

.2 Simulation library 

hen visually comparing our simulation to those of Ripperda
t al. ( 2020 ), with a highest resolution of 6144 ×3072 with respect
o our 8192 ×8192, then we infer that the number of plasmoids
oes not differ significantly based on the presented figures, except
erhaps at the smallest scales. More importantly, one may even draw
he conclusion that SANE simulations produce clearer and more
bundant plasmoid structures. Nathanail et al. ( 2020 ) utilize an initial
ingle dipolar loop up to intricate multipolar initial magnetic field
onfigurations with an evolution that can be described as SANE-like
with low φBH ∼ 2). Especially, the multipolar configurations are
xpected to produce a lot of plasmoids, as is confirmed in their
ig. 6 . Ho we v er, the y do not show an y statistics. This is done,
o we ver, in Jiang et al. ( 2023 ) using the same methodology, but their
onfiguration has a multipolar initial magnetic field and evolves to be
eavily magnetized (i.e. MAD-like). The evolution is very chaotic
nd consistent with MAD but only relatively few plasmoids are
isible indicating that the lower resolution (up to 4096 × 2048) and
dentification technique are likely to play a role. It is important to
ote that those simulations all utilized an ideal MHD description,
o we only compare them to the iM3 , iM4 , and iM5 cases. The
if ferences between resisti ve and ideal GRMHD will be discussed
n detail in a following paragraph (i.e. ‘resistivity’). 

.3 3D 

ow applicable are 2D results to a 3D reality? A number of arguments
ome into play here. The plasmoids in our simulations describe
redominantly elliptical (close to circular) structures and have long
erging chains. This is in part explained by the confined nature

f the 2D simulations. As, due to this confining nature, plasmoids
ave a greater probability to interact and merge, they are likely
o become larger. If one were to add an additional dimension (in
ˆ ), one significantly complicates the situation. First, the plasmoid

orphology would change and gain the resemblance of a flux rope.
econdly, the chance for interaction would decrease significantly as

t is simply less likely to come across another flux rope. Thirdly,
he definition of flux ropes coalescence is difficult as they likely
erge in a single place but not in it’s entirety. These points are

learly demonstrated for the 3D equi v alent of the (Harris) current
heet (see e.g. Kagan, Milosavljevi ́c & Spitko vsk y 2013 ; Cerutti
t al. 2014 ; Sironi & Spitko vsk y 2014 ; Zhou et al. 2020 ). There, one
nds complex behaviour of and interaction between flux ropes that

s partially due to the presence of the kink instability (e.g. Bromberg
t al. 2019 ; Davelaar et al. 2020 ; Werner & Uzdensky 2021 ),
hich is absent in axisymmetric simulations. For high-resolution 3D
RMHD simulations, some evidence for the presence of plasmoids,
r flux ropes, was presented in Ripperda et al. ( 2022 ). Nevertheless,
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he typical appearance and how much it stands out with respect to its
nvironment is relatively unknown in 3D. 

.4 Resistivity 

n essence, setting an explicitly resistivity ( η) allows for consistently 
esolving the underlying current sheets in the simulation, which in 
deal (GR)MHD is ill-defined as it is numerically determined and 
herefore has a stochastic (and coordinate-dependent) component. 
s is outlined in Section 4.2.4 , there is a clear discrepancy between

he resistive and ideal simulations. While the former has a relatively 
onsistent plasmoids number N P ∼ 100, the latter has a non-flaring 
ount comparable to N P ∼ 10. So, even though these discrepancies 
ere e xpected, the y were not v erified in re gard to plasmoid count

ill now. In part it can be a selection effect as the ideal simulation(s)
ntered a ‘quiet’ phase with few perturbations to the disc structure, 
ut it is interesting this does not happen for the resistive case.
o we ver, in light of recent finding by the Event Horizon Telescope
ollaboration (EHTC et al. 2022b ), where was pointed out that 

he (ideal) GRMHD simulations produce too variable emission 
ignatures, one can draw the tentative conclusion that the variability 
ould be even more significant for resistive GRMHD simulations. 
dditionally, the physical interpretation of resistivity is that it is 
 proxy for kinetic effects, which are simulated self-consistently 
ith PIC methods, but to assess what is the ‘correct’ resistivity for
ur physical scenario is a non-trivial question (Selvi et al. 2023 ). A
igorous (GRMHD) study including several resisitivities is therefore 
eeded to make more robust claims, but this is rather computationally 
 xpensiv e as one needs to assure that the current sheets are
ell-resolved. 

.5 Misidentification 

or the approach outlined in this work, we are indiscriminate as to
hat properties the plasmoid should contain, except that it should 

orrespond to a circular magnetic field geometry. Even though this 
llows us to get a rather complete distribution, it is slightly sensitive
o misclassifications, which happens mainly for o v erly dense re gion.
his is explained by the sensitivity of both the local extrema finder
nd the watershed algorithm – even though it is only a minor deviation 
rom the background, it is treated as if it is a plasmoid. Overall,
his happens only rarely. What occurs more often is that plasmoids
hat are in close vicinity to each other are grouped as they have
ery similar � B signatures. Except that this diminishes the detected 
lasmoid count, it does not influence the surface-averaged quantities 
and distributions) as they still probe the plasmoid structure. As with 
ll identification problems, the difficulty lies in finding a strategy that 
s able to bridge the various length-scales while not picking up on
rroneous features. This is largely determined by the blurring layer, 
hich dictates the minimal size-scale to which one is sensitive and 
ives a handle on how much fine-structure one wants to include. 
s the large plasmoids tend to have a lot of fine-structure, one

hould apply a more aggressively blurring strategy. Even though our 
lgorithm is accurate, it is by no means computationally fast, even 
espite parallelization attempts that will be intensified in the future. 
t present, we do not give an exact number of misclassifications, but
e are able to find a few in most snapshots while the vast majority (of
(100)) is classified correctly. The number of plasmoids that were 

ot classified is also of order O(1) and are predominantly caused by
umerical instabilities in the contour-finding step of the algorithm 

hat typically occur for relatively unclear ‘plasmoid’ structures. 
.6 Flaring potential 

hile we started this paper by talking about plasmoids as a
otential source for flares, it is nevertheless difficult to make direct
mission interpretations. The main reason for this is that the emission
roperties of plasmoids in the BH accretion environment are still 
nknown, especially as one would expect a significant non-thermal 
ontribution. The utilization of a thermal synchrotron proxy (as 
tilized in, e.g. Porth et al. 2019 ) would therefore likely give an
nrealistic picture. Ripperda et al. ( 2020 ) gave estimates of the
ynchrotron emission and its potential to explain flares and our 
stimates are of the same order. Nevertheless, it would be beneficial to
onduct a full radiative transfer study to accurately assess the flaring
otential of plasmoids including a non-thermal electron population 
r reconnection-dedicated electron temperature description (Rowan, 
ironi & Narayan 2017 ). This is an interesting avenue to pursue in

he future, as it is possible to track the plasmoid’s location with the
lgorithm. 

 C O N C L U S I O N S  

e have been able to identify plasmoids in highly turbulent accretion
iscs surrounding SMBHs with a higher fidelity than has been 
chieved before, which allows for creating complete time-series and 
istributions with sufficiently large numbers to assess the statistics. 
dditionally, we have verified our methodology with a set of previ-
usly well-investigated Harris current sheet simulations and found 
hey are consistent with findings from previous studies (Uzdensky 
t al. 2010 ; Huang & Bhattacharjee 2012 ; Loureiro et al. 2012 ; Sironi
t al. 2016 ). Interestingly, the scaling laws (outlined in Sections 4.1.3
nd 4.2.3 ) for both the Harris sheet and the GRMHD simulations are
ery similar, which indicates that plasmoid formation in the more 
omplex accretion disc environment does not differ fundamentally 
rom the Harris sheet picture. Utilization of the newly developed 
lgorithm has enabled us to better study the plasmoid population 
ithin MAD accretion discs, and has clearly laid bare discrepancies 

n plasmoid occurrence rates between ideal and resistive (GR)MHD 

hat warrant further investigation with a more systemic study that 
ncludes other accretion scenarios (e.g. SANEs). 

The typical plasmoid in a MAD GRMHD simulation is equally 
ense and somewhat undermagnetized with respect to their sur- 
ounding, mo v es with its surroundings, and is likely to be unbound
ccording to the Bernoulli criterion. Nevertheless, this behaviour 
escribes the averages of distributions and does not describe the de-
iations which occur frequently. Especially for the orbital velocities 
nd boundedness of the plasmoids, one finds large spreads in the
istributions. This indicates that plasmoids can both occur as super- 
r sub-Keplerian features, which is currently still an active point of
nvestigation within the community. Magnetic saturation at the BH 

vent horizon produces flux tubes in violent events that (partially) 
ush back the accretion flow for MAD simulations. Even though this
s one of the leading theories to explain flares around SMBHs (Dexter
t al. 2020 ; Porth et al. 2021 ), they are established to orbit with
trongly sub-Keplerian velocities, which is at odds with some obser- 
ations. The formation of plasmoids is, therefore, still a candidate 
or explaining both Keplerian (Gravity Collaboration 2018b , 2020a ) 
nd super-Keplerian (Matsumoto, Chan & Piran 2020 ) near-infrared 
bservation of flares around Sgr A 

∗. More specifically, we regularly
eco v er plasmoid sizes that are comparable to the hotspots that were
sed to interpret flares at both NIR- and mm-wavelengths (Gravity 
ollaboration 2020a , b ; Vos et al. 2022 ; Wielgus et al. 2022a ).
lso, as outlined in Section 4.2.4 , flux eruptions (corresponding 
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o a decrease in horizon-penetrating magnetic flux � B ) and plasmoid
ormation are likely strongly correlated with one another, indicating
hat flux eruptions can act as an instigator of magnetic reconnection.
oth the flux tube and plasmoid (or flux rope) pictures do therefore
ot have to be mutually exclusive, but rather have a complementary
o-existence. 

Lastly, we w ould lik e to point out that the identification algorithm
s much more universally applicable as its function can be well-
haracterized as a ‘closed contour-detector around local extrema’.
o, in the future, we are planning to apply our methodology to

nvestigate the 3D structure of plasmoids, flux ropes, and flux tubes
n SMBH accretion scenarios. It would also lend itself well to other

HD or PIC identification applications, such as shearing or turbulent
ox simulations. 
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PPENDI X  A :  R E S O L U T I O N  C O N V E R G E N C E  

O R  G R M H D  SI MULATI ONS  

e have performed our simulations at three ef fecti ve resolution
e vels, from lo west to highest; 2048 × 2048 ( iM3 and rM3 ),
096 × 4096 ( iM4 and rM4 ), and 8192 × 8192 ( iM5 and rM5 ).
hese correspond to the third, fourth, and fifth AMR level, which
e will use for reference. In principle, the current sheet are well-

esolved starting from the fourth level, which is consistent with the
lasmoid number findings in Fig. 11 . Nevertheless, it is important
o note that only relatively short periods, of 1000 r g / c , have been
un at the fourth and fifth level. These simulations have been started
rom the third level snapshot at 2900 r g / c , but then the resolution is
ncreased up to the desired level. After a period where the simulation
dapts to the new resolution level, we start evaluating the window T
 [3000, 4000] r g / c . Next to the analysis described in the main text,

t would be interesting to see how the structure changes as a function
f resolution level. Therefore, we have calculated the time-averaged 
rofiles o v er the aforementioned time-window for � B , density ρ,
nd magnetization σ for all cases where we are especially interested 
n the difference with respect to the highest resolution case. 

Figs A1 and A2 display the magnetic flux function � B and the
bsolute relative difference (ARD) between the various resolution 
evels of the ideal and resistive simulations. Starting with the ideal
imulations, we predominantly find differences in the jet regions. 
he inner jet region, near the axis, is dominated by numerical floor
iolations and does therefore not have a physical origin. In the jet
heath, the transition regions between disc and jet, we do find most
f the activity and difference between the various resolution levels. 
nterestingly, for the ideal cases, most of the variability occurs in
he upper ( x > 0 r g ) region, while the bottom jet-sheath acshows
ittle variability. This once again confirms that the e v aluated ideal
ase is atypically quiet. For the resistive cases, we find a similar
tructure with the highest values within the disc equatorial plane that
hen drops off the further you mo v e a way. Ho we ver, the jet sheath
oes have relatively higher flux function values. The most striking 
ifference is the gigantic plasmoid that lies at x ≈ 45 r g on the
quatorial plane. This is likely a remnant of the initial poloidal loop
t initialization. Overall, we find much variability and differences 
etween the various resolution cases, which indicates more activity 
 v erall (as was established throughout the main text). It is also
mportant to note that the maximal differences are � 6 per cent ,
hich is quite small and reasonable when compared to the other
uantities. This once again confirm that the flux function is a very
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Figure A1. Time-averaged magnetic flux function � B o v er time interval T 
∈ [3000, 4000] r g / c for the iM5 (top left), iM4 (top middle), and iM3 (top 
right) cases. The bottom panels show the absolute relative difference (ARD) 
between the iM5 and the cases in the panels abo v e. 

Figure A2. The description of Fig. A1 applies here as well, except here we 
show the resistive cases; rM5 , rM4 , and rM3 . 

Figure A3. The description of Fig. A1 applies here as well, except here we 
show the density ρ. 

Figure A4. The description of Fig. A1 applies here as well, except here we 
show the density ρ for the resistive cases; rM5 , rM4 , and rM3 . 
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uitable choice in identification medium as it is not very variable, 
hich makes identification difficult. 
That leaves the time-averaged density ( ρ) results in Figs A3 and

4 . We point out that the ARDs go up to 20 per cent, which signifies
hat the differences are considerably larger. This is in part due to the
ature of the density itself as it tends to be small. Nevertheless,
e find that the results are consistent with what is shown for

he � B maps. For the resistive cases, we find a lot of activity in
oth the equatorial plane (up to and concentrated around the giant 
lasmoid) and the jet sheath. When compared to the ideal cases, 
e find that especially the equatorial current sheet activity is low. 
his further outlines the clear differences between the ideal and 

esisti ve cases. Ne vertheless, we should be wary to take this as a
2024 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. This is an Open
 https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and rep
eneral result, as it could very well be subject to selection effects.

e already noted that the ideal cases come across as atypically
uiet, which may have been the result of an unfortunate choice
n time window . Additionally , it is likely coincidental that a large
quatorial plasmoid was created for the resistive cases, which has 
robably enhanced the resistive simulations’ variability. So, in the 
uture, it would be worthwhile to undertake a more systematic study
f resistive GRMHD simulations to see if the equatorial plasmoid is
 common occurrence. Nevertheless, it is likely (partially) related to 
he confining nature of 2D simulations, as we commented before. 
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