Microscopic optical potentials for medium-mass isotopes derived at the first order of the Watson multiple scattering theory - Archive ouverte HAL
Article Dans Une Revue Phys.Rev.C Année : 2024

Microscopic optical potentials for medium-mass isotopes derived at the first order of the Watson multiple scattering theory

Matteo Vorabbi
  • Fonction : Auteur
Carlo Barbieri
  • Fonction : Auteur
Paolo Finelli
  • Fonction : Auteur
Carlotta Giusti
  • Fonction : Auteur

Résumé

We perform a first-principle calculation of optical potentials for nucleon elastic scattering off medium-mass isotopes. Fully based on a saturating chiral Hamiltonian, the optical potentials are derived by folding nuclear density distributions computed with ab initio self-consistent Green's function theory with a nucleon-nucleon $t$ matrix computed with a consistent chiral interaction. The dependence on the folding interaction as well as the convergence of the target densities are investigated. Numerical results are presented and discussed for differential cross sections and analyzing powers, with focus on elastic proton scattering off Calcium and Nickel isotopes. Our optical potentials generally show a remarkable agreement with the available experimental data for laboratory energies in the range 65-200 MeV. We study the evolution of the scattering observables with increasing proton-neutron asymmetry by computing theoretical predictions of the cross section and analyzing power over the Calcium and Nickel isotopic chains.

Dates et versions

hal-04229983 , version 1 (05-10-2023)

Identifiants

Citer

Matteo Vorabbi, Carlo Barbieri, Vittorio Somà, Paolo Finelli, Carlotta Giusti. Microscopic optical potentials for medium-mass isotopes derived at the first order of the Watson multiple scattering theory. Phys.Rev.C, 2024, 109 (3), pp.034613. ⟨10.1103/PhysRevC.109.034613⟩. ⟨hal-04229983⟩
23 Consultations
0 Téléchargements

Altmetric

Partager

More