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Abstract

In this paper we study the performance of a two-stage approach to scheduling
under uncertainty making use of sequences of groups of permutable operations.
Given a sample set of uncertainty realization scenarios, the goal is to compute
a sequence of groups of permutable operations representing a partial scheduling
decision in the first-stage, that yields the best possible score in the second-stage,
when, for a specific scenario, a full operation sequence is obtained via a second-
stage decision policy. This approach is described for a single machine problem and
the jobshop problem with stochastic and robust optimization, as well as several
commonly studied objectives. We propose new constraint programming models as
well as a genetic algorithm meta-heuristic to compute such two-stage solutions. We
also investigate a warm-start scheme to work around the difficult search space of
sequences of permutable operations. Experiments are carried out to characterize
when this two-stage approach yields better results. We also compare the introduced
methods with existing ones. Theoretical extensions of the known methods are also
described and evaluated.
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1 Introduction

Scheduling problems remain relevant today due to their numerous real life applications
and their difficult nature. Furthermore Goldratt (1997) showed that the disregard for
uncertainty of deterministic scheduling can lead to poor performances in practice. As a
result, an abundance of works can be found tackling the problem of scheduling under
uncertainty (Aytug, Lawley, McKay, Mohan, & Uzsoy, 2005; Daniels & Kouvelis, 1995;
Davari & Demeulemeester, 2019; Herroelen & Leus, 2005; Li & Ierapetritou, 2008;
Mohring, Radermacher, & Weiss, 1984; M. Pinedo & Schrage, 1982). Among all these
approaches, we are interested in the two-stage setting where proactive decisions are
taken off-line when uncertainty prevails while reactive decisions are taken on-line in
a second stage when uncertainty is revealed. Two-stage optimization is challenging
especially when the deterministic counterpart of the scheduling problem is NP-hard.
This paper presents a novel two-stage stochastic/robust optimization approach for
scheduling problems under discrete uncertainty scenarios.

In term of scheduling context, we consider two different settings to illustrate the
relative generality of this approach : the single machine scheduling problem (1-P) and
the job-shop problem (JS-P). In the 1-P, a set of jobs has to be scheduled on a single
machine such that each job is characterized by a processing time and a release date.
A schedule assigns a start time to each job such that no two job overlap, and each job
starts after its release date. A schedule can be evaluated by two different criteria to be
minimized, either the the maximum lateness criterion (i.e the maximum for all jobs of
the difference between the completion time of the job and its due date), or the sum of
completion times criterion.

The JS-P considers a set of jobs and a set of machines. Each job is defined as a chain
of tasks, each of them being defined by its processing time and its assigned machine.
A schedule assigns a start time of each task such that each task is scheduled after its
predecessor in its job chain and the tasks do not overlap on the machines. We also
consider two scheduling criteria: the makespan and the sum of completion times.

The deterministic variants of the 1-P and JS-P (for the considered criteria) have been
widely studied and all four problems are know to be strongly NP-hard (M. L. Pinedo,
2012). In this paper, we aim at solving uncertain variants of these problems. For the
1-P, the release dates are assumed to be known only in the form of discrete scenarios.



A scenario provides a release date for each job. Such an uncertainty may come for
supplier lead-time uncertainty as a typical example (C. W. Wu, Brown, & Beck, 2005).
For the JS-P, we consider discrete scenario sets for a more classical processing time
uncertainty, where a scenario provides a processing time for each task of each job. We
assume that the set of scenario comes from a distribution that is unknown to the decision
maker. These scenarios can be sampled from previous executions of the problem (for
example previous delivery dates or run-time of tasks). In such an uncertain context,
assigning in advance a precise start time to each task is unlikely to lead to an acceptable
solution. Indeed, as either the release dates or the processing times are unknown,
ensuring schedule feasibility would require extremely conservative estimates, resulting
in detrimental costs.

Instead of precise start times, our solutions of uncertain scheduling problems takes
the form of a scheduling policy (Mohring et al., 1984) that prescribes during the
execution of the schedule and scenario realization which task to execute at each decision
time, i.e. times where a machine is free and some tasks are ready for scheduling.

Some scheduling policies are purely dynamic, and make the decision only using the
information on the schedule execution and scenario realization. For the 1-P, the earliest
release date (ERD) policy (Bachtler, Krumke, & Le, 2020), selects at each decision time,
the ready task with the earliest release date. Its equivalent policy for the JS-P is the
first-in first-out (FIFO) policy which schedules at each decision time, on an available
machine, the tasks that are ready the earliest on this machine. On the opposite side of the
spectrum from purely reactive scheduling policies, we find the earliest start (ES) policies
(Mohring et al., 1984). They require the addition of precedence constraints such that all
resource conflicts are eliminated, which constitutes a static part of the decision, before
any information on realized scenario is known. In the 1-P and the JS-P (where resources
are unary) this amounts to order all tasks in a sequence on each machine, leaving only
the starting dates to be set for each job. We call it the ”’job sequence” (J-SEQ) policy.
Hence each time a machine becomes free, the J-SEQ policy schedules the next task in
the sequence at the earliest possible start time.

We can now associate to a scheduling policy a cost equal to the average value of the
objective function on the set of scenarios in the context of stochastic scheduling, or the
maximum value of the objective function on the set of scenarios in the context of robust
scheduling. The problem of finding the optimal J-SEQ policy according to this cost can
be defined as a two-stage stochastic/robust optimization problem, where the first stage
(here-and-now) variables define the task sequences while the recourse (wait-and-see)
variables define the starting times. This problem has been considered in a number of
papers in the literature (Akker, Blokland, & Hoogeveen, 2013; Ghasemi, Ashoori, &
Heavey, 2021; Gu, Gu, & Gu, 2009; Hao, Lin, Gen, & Ohno, 2013; Horng & Lin, 2015;
Kouvelis & Yu, 1997; Wang, Wang, Lan, & Pan, 2018; Wang, Wang, & Xie, 2019).

It can be noticed that the ERD/FIFO policy is purely dynamic in the sense there
is no anticipation that would preconstrain the output schedule. On the positive side, it
fully adapts to the realized scenario. Its drawback is that it can lead to solutions with
high costs. Applied to a deterministic problem, it is equivalent to a simple priority-rule
heuristic which is likely to give poor solutions on the considered NP-hard scheduling
problems. On the contrary, the JSEQ policy can be considered as mainly static as the
off-line computed sequence is strictly followed for any realized scenario. An advantage



is that the sequence can be optimized according to the above-defined stochastic or robust
cost. However there is little adaptation to the realized scenario and the cost of the
schedule on some individual scenarios can be high even if the average or maximum cost
has been minimized.

In this paper, we consider the group-of-permutable-task (G-SEQ) policy that requires,
on each machine, the definition of a partial order of tasks in the form of an ordered
partition of the tasks, or sequence of groups of tasks. The G-SEQ policy uses the
ERD/FIFO policy within each groups, but always schedules the tasks in the first group
before scheduling the tasks in the second group etc. The G-SEQ policy dominates both
the ERD/FIFO policy and the J-SEQ policy as defining only one group on each machine
gives the FIFO policy and defining one group per task gives the J-SEQ policy. Moreover,
a compromise between off-line and online decisions can be obtained. We now consider
the two-stage robust/stochastic scheduling problem that aims at finding the optimal
G-SEQ policy. Even though the solution dominates both J-SEQ and ERD/FIFO policies,
it remains to prove that under a limited CPU time a solution method for the G-SEQ
two-stage problem is able to find better solutions than the ERD/FIFO policy and than
the solution to the J-SEQ two-stage problem. We are also interested in answering the
question of how a G-SEQ/J-SEQ solution optimized for a scenario set issued from a
distribution adapts to a larger scenario set issued from the same distribution.

Related works are presented in Section 2. The studied problems (1-P, JS-P) are
presented in Section 3. Then the J-SEQ and G-SEQ solution schemes are detailed in
section 4. Section 5 gives the constraint programming models and the warm-start heuris-
tics for the G-SEQ scheme. Section 6 describes the methods used for the J-SEQ scheme
and that both serve as reference methods for comparison with the G-SEQ methods
and generate initial solutions for the G-SEQ warm start methods. The computational
experiments carried-out are described in Section 7, while the computational results and
method comparison are given in Section 8. Concluding remarks are drawn in Section 9.

2 Related work on proactive-reactive scheduling with
flexible solution approaches

Among ways to deal with uncertainty, the most complete approaches are certainly
“proactive-reactive” approaches. Such methods try to generate a solution in the proactive
“offline” phase, that allows a good reaction to perturbances in the reactive “online”
phase. This results in an overall better schedule. We call these two phases the first-stage
and second-stage decisions.
One such proactive-reactive approach, introduced in (Erschler & Roubellat, 1989),
makes use of the sequences of permutable operation groups (G-SEQ). The idea is to
produce, in the first-stage, a compact representation of a set of schedules by deciding
on a partial order of the tasks to schedule, then allow the second-stage to settle the
remaining decisions in order to obtain the final schedule. This second-stage decision
can be informed by additional data obtained after first-stage decisions were made.
Although this approach was integrated in an industrial software named ORDO
(Billaut & Roubellat, 1996), few works investigate the empirical gain obtained by using



group solutions for problems with uncertainty in lieu of sequences. In (Cardin, Mebarki,
& Pinot, 2013; Pinot, Cardin, & Mebarki, 2007), the authors investigate the impact of
uncertainty on C, . for group sequences when compared to purely predictive or purely
proactive approaches. They first compute an optimal schedule for the deterministic
problem, then they use the greedy heuristic defined by Esswein (2003) to generate
group sequences, aiming to maximise flexibility while guaranteeing an upper bound
on solution scores. For the second-stage decisions, they order groups using the FIFO
heuristic, starting available tasks first. The permutable operation group models can be
defined as a more flexible alternative to sequences. Indeed, only a partial order of jobs is
fixed on each machine at first-stage, in the form of a sequence of permutable operations
groups (G-SEQ), while both the full job sequences and start times are set depending on
the realized scenario at the second-stage.

The approach by S. D. Wu, Byeon, and Storer (1999) can be seen as a pioneering
work following these scheme. The authors use group scheduling for minimization of
weighted tardiness in a jobshop problem. They use a Branch-and-bound approach to
generate G-SEQ, but limit themselves to 2 groups, they schedule the jobs using the
ATC heuristic proposed by Vepsalainen and Morton (1987) in the second-stage. In
these previous works investigating sequences of permutable jobs for scheduling under
uncertainty (Cardin, Mebarki, & Pinot, 2013; Pinot, Cardin, & Mebarki, 2007; S. D. Wu,
Byeon, & Storer, 1999), the authors aim in the proactive phase for the most flexible
or best bounded solution, the goal being to provide a decision-maker with different
options for the reactive phase. In experiments they use a decision heuristic such as FIFO
ordering or ATC mentioned earlier.

Artigues, Jean-Charles, Cheref, Mebarki, and Yahouni (2016); Cheref, Artigues,
and Billaut (2016a, 2016b) introduce for the single-machine problem a MILP approach
to the computation of optimal group sequences w.r.t. the worst-case maximum lateness
for a discrete set of scenarios given that the second-stage schedules the jobs according
to the earliest release date first policy. A greedy algorithm and a tabu heuristic are
proposed for both the J-SEQ and G-SEQ model. The authors provide, for the single
machine scheduling problem and on the robust setting only, a partial yet positive answer
to the question whether given a limited given computational time, the G-SEQ approach
can indeed provide more robust solutions than the standard J-SEQ approach despite the
higher problem hardness. The MILP and Tabu approaches searched for the best task
or group sequences in terms of worst-case maximum lateness according to a training
scenario set. Then J-SEQ and G-SEQ sequences were compared in terms of worst-case
maximum lateness on a larger scenario set.

One interest of this paper is to quantify what can be gained if the use of the FIFO
decision heuristic is anticipated during the first-stage decision process. More precisely,
the goal is not to obtain the most flexible sequence of permutable groups, but instead
to reach the solution that will best behave when combined with the given second-stage
heuristic (namely FIFO dispatching).

As stated in the introduction, these previous work proposed a framework and presented
first results comparing J-SEQ and G-SEQ approaches. There were however several
limitations. The MILP proposed for the G-SEQ model in (Artigues et al., 2016; Cheref
et al., 2016a, 2016b) is only able to solve very small problems and a single tabu search
heuristic was proposed for the G-SEQ approach. Only the robust setting in the 1-P



problem was studied. No comparison with flexibility maximization approaches was
carried out. In (Cardin, Mebarki, & Pinot, 2013; Pinot, Cardin, & Mebarki, 2007), only
the JS-P is studied, and the first stage decision does not account for the second stage
decision. It rather guides the search by maximising solution flexibility, or minimizing
the worst-case score.

Building on previous works, the present paper aims at consolidating the comparison
between J-SEQ and G-SEQ approaches with several new contributions:

A new constraint programming model is introduced the G-SEQ schemes.

A new tabu search and a genetic algorithm are proposed for the G-SEQ scheme,
that can be used in a warm-start setting to improve a initial J-SEQ solution.

The approach is extended to more complex scheduling problems (job-shop), to
other objective functions (sum of completion times and C,,,, ), and to different
uncertainty context (stochastic vs robust)

An alternative definition of a group sequence is proposed, which does not require
each compatible sequence to be valid.

A comparison with previously proposed flexibility maximization methods is
carried out.

Extensive computational experiments are carried out to compare the new J-SEQ
and G-SEQ approaches in a stochastic and robust setting.

List of Notations
Acronyms/stand-ins  Description
1-P Single machine problem
cc Connected component
CcP Constraint programming
CPO IBM’s CP Optimizer
ERD Earliest release date
EW Greedy heuristic
FIFO First in first out
GA Genetic algorithm
G- SEQ Sequence of permutable groups scheme/solution
INIT Time allocated to J-SEQ solver in warm-start heuristics.
J—-SEQ Sequence of tasks scheme/solution
JS —P Job shop problem
MILP Mixed integer linear programming
TAB Tabu method
TPI Tolerating partially invalid solution parameter
wc Worst case optimization parameter
wCaG Worst case graph
WCG* Worst case graph with no intra-group arcs




3 The 2-stage robust/stochastic scheduling problems

In this paper, we are interested in scheduling problems under uncertainty where the
uncertainty is modeled as a set .S of discrete scenarios. In the following, we will focus
on two general problems: a single machine problem with precedence constraints, and
a jobshop problem. For each of those problems, we study both a robust optimization

Symbol  Description

d; €D Due dates

E Precedence constraints

G Precedence graph

Gz(m) The ith permutable group of a G-SEQ
M Machines

N Jobs

pgs) € P Process times

r € R Release dates

ses Scenarios

v Velocity

A Variability parameter

0% Objective type

7(m) a G-SEQ

1T Density of the precedence graph

o Objective aggregator among scenarios
< Precedes

scheme and a stochastic one, with several objectives.

3.1 Single machine problem

The single machine problem consists in scheduling a set of jobs N given uncertain
release dates described by a set of discrete scenarios S. We define a problem with | V|

jobs and |S| scenarios as a tuple 1-P = (P, R, D, E, 0,~) where

p; € P is the duration of job 1.
r; € R is the release date of job ¢ in scenario s.
d; € D is the due date of job 1.

E is the set of precedence constraints ((,j) € E iff job ¢ must be scheduled
before job j).

Parameter o € {max, avg} is the “objective aggregator” amongst scenarios. Clas-
sically ¢ = max corresponds to robust optimization while o = avg corresponds
to stochastic optimization.



Job || m; | p; | d; Job || vy | p; | d

A 0 2 3 A 0 2 3

B 3 3 5 B 2 3 5

C 2 3 5 C 3 3 5
(a) Scenario 1 (b) Scenario 2

(c) Precedence graph

Fig. 1 Example single machine problem with 2 scenarios: P1

o v € {>_C, Laz} is the objective type. Objective > C; corresponds to the sum
of completion dates of tasks while L,,,4, corresponding to maximum task lateness
(max(0, mag C; — dy)).

1€

In Figure 1, an problem example P1 with three jobs and two scenarios is given. In
the precedence graph, full edges represent precedence constraints, while dotted lines
represent undecided order relation between tasks. Examples of first-stage and second-
stage decisions in a solution of P1 are given in the J-SEQ setting in Fig. 4 and in the
G-SEQ setting in Fig. 6.

3.2 Jobshop problem

The jobshop problem consists in scheduling a set of jobs N on several machines M
given uncertain task duration described by a set of discrete scenarios S. Each job is
composed of | M| tasks that must run on the machines. Only tasks of a job are subject to
precedence constraints. Jobshop problems are defined as a tuple JS-P = (P, M, o, ~)
where

* p; ; € P is the duration of task j of job ¢ in scenario s.

* m;,; € M is the machine on which task j of job 7 must run.
* 0 € {max,avg} is the same scenario aggregator.

LIS {%%cci, >~ C;} is the objective type.

Figure 2 gives an example with three jobs, three machines and two scenarios. Machines
are depicted with colors and dotted lines.
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(c) Precedence graph

Fig. 2 Example jobshop problem with 2 scenarios: P2

3.3 Generic 2-stage problem statement

In both cases, we consider a 2-stage robust or stochastic scheduling problem where X is
the set of first-stage decisions while ) (z, s) is the set of second-stage decisions given a
scenario s that actually occurs and a first-stage decision x. Then the problem can be
stated as follows:

MR s, Sy Y
where o € {avg,mazx} and v € {Lpaz, >, C;} for the 1-machine problem and
v € {Chaz, y_ C;} for the job-shop problem. This gives us 8 different scheduling
problems with discrete uncertainty scenarios.
The definition of the first-stage decisions X and second-stage decisions ) are
slightly different in the J-SEQ and G-SEQ models. They will be defined in the following
sections.

4 First-stage solution representations and second-stage
policy

Solutions to scheduling problems are usually schedules, i.e a start time for each job. But
with uncertain parameters, such solutions might either be invalid or too conservative.
That is why we study 2-stage solution methods. In the first-stage, a flexible solution is
found, then when a scenario occurs, the second-stage policy adjusts the schedule.

We consider two different settings for the first-stage decision X': respectively job
sequences (J-SEQ) and sequences of groups of permutable jobs (G-SEQ). For both
first-stage solution representations, we define a valid sequence. The definition is rather



straightforward for J-SEQ but can have multiple meanings for G-SEQ.

The valid first-stage J-SEQ and G-SEQ are defined in sections 4.1 and 4.2, respectively.
The second-stage decision policy, i.e. the way a first-stage decision is extended to a
second-stage decision via a scheduling policy ) upon progressive scenario realization
in real-time is presented in section 4.3.

4.1 Valid job sequences

A job sequence (J-SEQ) is a total ordering of the jobs on each machine, i.e a | M |-vector
of job sequences. This allows to use the same terminology for the single-machine
problem and the job-shop problem. The set of first-stage decisions X is the set of job
sequences. A J-SEQ is valid if its associated left-shifted schedule satisfies all constraints.
To define formally a valid J-SEQ both in the single-machine and job-shop setting, the
disjunctive graph is a convenient representation (Balas, 1969; Roy & Sussmann, 1964).
The disjunctive graph contains a node for each job, plus dummy source and sink nodes.
It is composed of directed and undirected arcs. It can be used to represent both the
single machine and job-shop scheduling problem as follows:

* The source node is connected to each task node by a directed arc valuated by the
task release date for the single-machine case, and by 0 for the job shop.

* Each task node is connected to the sink node by a directed arc valuated by p; — d;
for the single machine case and by p; for the job shop.

* For each precedence constraint (7, j) there is an arc directed from node ¢ to node
J, valuated by p;.

* For each pair of task sharing the same machine there is an undirected arc linking
the two task node.

Such undirected arcs are also called disjunctive arcs as each of them represents the
disjunction between two possible precedence constraints linked to machine usage.

A partial selection is an orientation of a part of the disjunctive arcs. Each directed
arc issued from a disjunctive arc is valuated by the duration of the origin task node.
A complete selection is an orientation of all disjunctive arcs. A selection is acyclic
if it does not induce a cycle in the graph made of the original directed arcs plus the
directed arcs issued from the selection. A J-SEQ defines a unique complete selection
by orientating each disjunctive arc as prescribed by the job sequence. The following
definition of the validity of a J-SEQ is well-known:

Definition 1. A J-SEQ is valid iff its associated complete selection is acyclic.

Note that on the single machine problem, this simply amounts to verify that for any
pair (4,7) € E, i < j in the sequence.

Given a J-SEQ and a scenario, the corresponding left-shifted schedule is among
the best possible schedule for regular objectives (Kouvelis & Yu, 1997). It is easily
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Fig.3 Example of an invalid J-SEQ

A B C

0 2 5 8

(a) Realisation under scenario 1

A B C

0 3 6 9

(b) Realisation under scenario 2

Fig.4 The 2 stage J-SEQ solution A|B|C on problem P1 (Figure 1)

obtained since the earliest start time of a task compatible with the J-SEQ is equal to the
longest path length between the source node and the task node in the graph issued from
the associated complete selection (Balas, 1969), with the particular case of the longest
path length between the source and the sink node being equal to the C,,, for the
job-shop problem and the maximum lateness for the one-machine problem. Therefore,
the second-stage decision simply follows the J-SEQ and starts tasks as soon as they are
ready in that scenario.

Figure 4 displays a solution for the problem P1. In the first scenario, task C is the
latest, yielding a maximum lateness of 3, while in the second scenario, task C is also
the latest with a maximum lateness of 4. It can be verified that sequence A|B|C' is
the optimal first-stage solution in the J-SEQ framework as it minimizes the maximum
lateness over the the two scenarios, which yield second stage schedules (a) and (b) for
scenarios 1 and 2, respectively.

4.2 Valid group sequences
4.2.1 Definitions

A sequence of groups of permutable jobs (G-SEQ) is constituted on each machine
m € M of an ordered partition of the set of jobs to be scheduled on this machine 7™ =
GP|GY| ... |Gy with G € N forallm € Mandg = 1,...,k™; G NG} = ) for
alme M,q=1,...,k™—1landq¢ = 1,...,Ifm,q;«éq’;Uq:LkaZ’L = N, where

11



k™ denotes the number of groups on machine m € M and G7* withg = 1,..., k™
denotes the gth group on machine m. In this model, the set of first-stage decisions X’ is
the set of group sequences. It can also be understood as a set of partial orders of the
tasks represented by groups on each machine. A G-SEQ represents a potentially large
set of job sequences.

In previous approaches based on G-SEQ (Artigues, Billaut, & Esswein, 2005;
Artigues, Jean-Charles, Cheref, Mebarki, & Yahouni, 2016; Billaut & Roubellat, 1996;
Cheref, Artigues, & Billaut, 2016a, 2016b; Erschler & Roubellat, 1989), a G-SEQ is a
valid solution iff any J-SEQ constructed by ordering the tasks within a group is valid in
the sense of Definition 1. For the single machine problem, that means that a G-SEQ is
valid iff for any pair (i, j) € F, the group of job i is ordered strictly before the group
of job j in the G-SEQ. However we extend the usual validity definition to distinguish
more special cases:

Definition 2. A G-SEQ is

* fully valid if it represents only valid J-SEQ,

e fully invalid if it represents no valid J-SEQ,

e partially valid if it represents at least one valid J-SEQ,

e partially invalid if it represents at least one invalid J-SEQ,
where a J-SEQ is valid or invalid in the sense of definition 1.

Note that when the G-SEQ is fully valid, it represent IL,,,c psI1,=1. 1m |G |! different
valid J-SEQs (i.e. complete selections).

4.2.2 Necessary and sufficient conditions

In Artigues, Billaut, and Esswein (2005), a so-called worst-case graph (WCG) is defined
for a given G-SEQ and a scenario. The graph contains a source node, a sink node and
two nodes ¢ and ¢’ for each task 7, representing the start and the completion of the task,
respectively. For each task ¢, there is an arc between the source node and 7 valuated
by r;, an arc from ¢ to ¢’ valuated by p; and an arc from ¢’ to the sink node, valuated
by p; — d;. For each precedence constraint between ¢ and j there is an arc from i’ to j
valuated by 0. For any ordered pair of tasks 7, j that belong to two consecutive groups,
there is an arc from ¢’ to j valuated by 0. Finally, for any pair of distinct tasks 7 and
J belonging to the same group G, there is an arc from i to j" valuated by >, - p.
This worst-case graph can be used to compute worst-case completion times for a given
G-SEQ and a given scenario as it will be recalled in section 4.2.3. However, from
(Artigues, Billaut, & Esswein, 2005) its non valued variant can be used to establish in
polynomial time the full validity of a G-SEQ independently of the scenario set, as stated
below.

Theorem 1. (from (Artigues, Billaut, & Esswein, 2005)) A G-SEQ is fully valid iff its
non-valued worst-case graph is acyclic.

12



Cycle check can be performed by a simple depth first search in the worst-case graph.
Note that, by contraposition, the worst-case graph has a cycle iff the G-SEQ is partially
invalid.

In the next section we present the second-stage policy that exploit either a fully valid
or a partially valid G-SEQ to obtain a schedule compatible with the realized scenario.
This will also give us a polynomial algorithm to check whether a given G-SEQ is
partially valid.

Theorem 2. A G-SEQ is fully invalid iff its worst-case graph, with intra-group arcs
removed (WCG?*) is cyclic.

—:

Proof. Removing intra-group arcs in the WCG associated with a G-SEQ 7 leaves only
the machine-wise precedence decided by the G-SEQ (the partial selectino) 7, the job-
wise precedences, and the arcs between nodes 7 and ¢’. If there is a cycle in this graph,
there is a cycle in the associated disjunctive graph without disjunctive arcs. Hence, no
selection of the disjunctive arcs can be acyclic. Therefore 7 is fully invalid. O

=

Proof. Let the G-SEQ 7 be fully invalid. Assume the associated WCG* is acyclic. We
will show a contradiction. As stated before, if the WCG* is acyclic, the disjunctive
graph (without disjunctive arcs) is acyclic. Furthermore, it is always possible to orient
an arc in a graph without introducing a first cycle. Indeed, when orienting arc (4, j), if
there is a path from ¢ to 7, orienting the arc from ¢ to j doesn’t add a cycle unless there
is a path from j to ¢ (which would mean the graph already had a cycle, which it doesn’t).
Otherwise, orienting the arc from j to ¢ doesn’t introduce a cycle. Finally, we saw that
an acyclic orientation of the disjunctive arcs corresponds to a valid J-SEQ. So m would
be partially valid, a contradiction. O

By contraposition, the modified worst-case graph is acyclic iff the G-SEQ is partially
valid.

4.2.3 Worst-case score of valid G-SEQ

One of the interesting properties of G-SEQ solutions is the ability to find, for each
task, its worst case starting time in a given scenario. Indeed, Artigues, Billaut, and
Esswein (2005) show that it is possible, using a polynomial algorithm, to find out the
largest starting time of a task that can be obtained by left-shifting the task in a J-SEQ
represented by the G-SEQ on this scenario. In turn, this allows to find the worst case
objectives for max-type regular objectives (such as the maximum lateness L, or the
makespan Cy,,x) or an upper bound of the worst case sum-type objective (such as the
sum of completion times )  C; or the total tardiness > 7).

This algorithm is based on finding longest paths in the worst-case graph: the longest
path from the source node to node ¢’ is the largest end time of task ¢ in any semi-active
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schedule represented by the G-SEQ. This algorithm no longer functions in the case of
partially invalid G-SEQs that can be encountered in the jobshop problem (as cycles get
introduced in the worst-case graph). To address this issue, we next describe an upper
bound algorithm for the worst case starting time of jobs.

Algorithm 1 Generalized Worst-case algorithm

1: Get the precedence graph G associated with 7
if G has a cycle then
return L {7 is fully invalid}
end if
Add the bidirectional arcs corresponding to the groups of 7 to G
Get the connected components C' of G
Modify C by splitting each connected component ¢ € C'C' containing only tasks of
the same group in |c| elements
Build a worst-case graph W using 7 and C.
9: return the worst-case start times in W as in (Artigues, Billaut, & Esswein, 2005)

*®

Algorithm 1 starts with the construction of the precedence graph G associated
with the G-SEQ 7. G contains only the precedence constraints that are necessarily
present in 7, hence the tasks within a group are not linked by any arc. G contains
a cycle iff 7 is fully invalid (Theorem 2). Otherwise, the algorithm can move for-
ward. Bidirectional arcs are added to GG between all tasks of the same group, yield-
ing the corresponding disjunctive graph. Tarjan’s algorithm is then used to get the
list C' of the connected components in G. An example of this step is given in fig-
ure 5a which represents the disjunctive graph associated with the G-SEQ solution
7 = [7Y = O1|By, Ay, w! = A3|B1|Cs, 72 = Ay, Cs| B3] for some jobshop problem
with 3 machines and 3 jobs (some job-wise precedence arcs were omitted for clarity).
The connected component analysis yields two components: C'Cy and C'Cs.

List C is then modified to only keep the connected components that contain tasks
belonging to at least two different machines (in our example, only C'C remains). If,
after this split, list C' contains only single-task components, the G-SEQ is fully valid (In
our case, we have a partially invalid G-SEQ). Finally, the WCG is contructed using the
components in C (see Figure 5) by considering all tasks in a component c as a single
task that inherits all the precedence constraints of the tasks in ¢, which by construction
shall not yield any cycle. Worst case end times for tasks within a cluster are all set to the
worst case end time of the cluster, and the process time of the cluster of tasks is set to
the sum of the durations of the tasks contained therein. It is interesting to note that some
tightness can be lost when grouping tasks together, but none is lost if the solution does
not require grouping (i.e. the solution is fully valid). The complexity of this algorithm
remains in O(n?).

Further generalisation is required to compute the worst case starting times for our
multi-scenario problem. Hence, the above described worst case algorithm is applied
for every scenario, yielding worst case objective in every scenario, that can then be
evaluated using aggregator o, with overall complexity O(S.n?).
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(a) Disjunctive graph and connected component (simplified) for =
[[C1]B2, As], [As| B1|Cs3], [A1, C2| Bs]]

(b) Aggregated worst-case graph

Fig. 5 [Illustration for Algorithm 1
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Whether finding the worst case starting time of a task is NP-Hard when the G-SEQ
can be partially invalid is an interesting open problem.

4.3 Second-stage policy

Scheduling is a multi-stage process where uncertainty is generally revealed progressively
over time. In this paper, two types of uncertain parameters are considered: the task
release dates for the single-machine problem and the task processing times for the
job-shop problem. We assume that the release dates are never revealed in advance,
but only revealed as soon as the task is released (e.g in scenario s, release date of task
t is revealed at time ¢ = 77, the release date of that task in scenario). Similarly, the
processing time is revealed only at the completion time of each task. It follows that
the task start times (i.e. the second-stage variables) can only be assigned via an on-line
scheduling policy that prescribes what must be done at each completion time and release
date event.

For the J-SEQ model, the on-line scheduling policy simply follows the prescribed
sequences, as in a majority of previous works on stochastic or robust job-shop scheduling
problems (Akker, Blokland, & Hoogeveen, 2013; Ghasemi, Ashoori, & Heavey, 2021;
Gu, Gu, & Gu, 2009; Hao, Lin, Gen, & Ohno, 2013; Horng & Lin, 2015; Kouvelis & Yu,
1997; Wang, Wang, Lan, & Pan, 2018; Wang, Wang, & Xie, 2019). At each time ¢ where
a task is completed on a machine, the next planned task in the sequence is scheduled
immediately if it is already available, or the machine waits for its earliest availability
(i.e. its realized release date for the single machine problem or the realized completion
time of its job predecessor for the job-shop problem). For J-SEQ, the second-stage
decision set Y(z, s) is the set of operation start time compatible with the job sequence
x and scenario s. Each start time assigned by this policy is equal to the length of the
longest path between the source node and the task node in the graph issued from the
complete selection induced by the J-SEQ.

For the G-SEQ model, the on-line policy is slightly more complex and is called
FIFO policy (Algorithm 2). The second-stage decision set J(z, s) is the set of job
sequences and operation start times compatible with the group sequence x, obtained
as follows. At each time ¢ where a task ¢ is completed, the next selected task is either
the earliest available task in the same group as i, or, if all tasks in that group were
scheduled already, the earliest available task in the next planned group. The selected
task is scheduled as early as possible.

In Figure 6, for the example problem P1, a G-SEQ solution provides as a first stage
decision a sequence of two groups, the first one contains only one task, A, and the
second one contains B and C'. So, for the second stage task A is scheduled in the first
position at time 0 for both scenarios. At time 2 task A completes. As there are no
more tasks in the group of A, the earliest available task in group { B, C'} is started next,
at its earliest availability time. This differs according to the scenario. In scenario 1,
task B is released next, at time 2, which yields the first displayed schedule issued from
sequence "ABC”. On scenario 2, it is task C that is released next, at time 2, which
yields the second displayed schedule issued from sequence "ACB”. Compared to the
J-SEQ solution of figure 4, this allows to improve the max L, objective from 4 to 3.
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0 2 5 8

(a) Realisation under scenario 1

A C B

0 2 5 8

(b) Realisation under scenario 2

Fig. 6 The 2 stage G-SEQ solution 7 = A|B, C on problem P1 (Figure 1)

Algorithm 2 FIFO policy
1: for ¢t = 0 and every following time ¢ when a task finishes do
2:  for Each idle machine m € M do

3: Gather the set of tasks A = R N G that can run on m.
4: Schedule the task of A that was ready first (if any).

5. end for

6: end for

We notice that J-SEQs constitute a special case of G-SEQs, where each group
contains a single job only. As such, G-SEQs in theory dominate J-SEQs, but due to
the much larger search space, in a limited computational time, it is not easy to predict
which approach will give the best results for practical purposes.

We will show next that iff a G-SEQ contains at least one valid J-SEQ (it is partially
valid), the second-stage heuristic will yield a valid J-SEQ. Previously, we have described
how a cycle in the precedence graph can lead to an infeasible solution. During the online
phase, this manifests by the inability to run any task without violating either the task
order within a job, or the task order within planned sequence. Note that this infeasibility
happens regardless of the scenario, it is purely dependent on the sequence.

At any given moment during the online phase, let D be the set of tasks that are com-
pleted, let R be the set of job-wise ready tasks (i.e they are the first tasks in a job or their
predecessors are in D). Let also G be the set of current groups, i.e, for each machine
the earliest group such that some tasks in the group are not in D (planning-wise ready
tasks). Let G~ and G be the set of groups sequenced before and after the groups in
G. Let H : (G-SEQ, s) — J-SEQ be a second-stage heuristic such that if a task ¢ is
both ready to run precedence-wise and planning-wise (i.e. t € RN G), H schedules
t in finite time. Note that the FIFO policy defined in Algorithm 2 possesses this property.

Proposition A G-SEQ 7 is partially valid iff Vs € S, H(w, s) is valid.

Proof. Suppose s € S is a scenario such that H (7, s) is invalid, i.e at one point H
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cannot decide of a task to be scheduled (because there is a cycle). It must mean that
RN G = (no task is ready), else H would eventually launch a task. This implies that
there is a task in every current group that has a predecessor in a group not yet ready:
Vg € G,3t; € gsuchthat 3t; € G*,j < i. The existence of a set G satisfying this
property makes H (7, s) invalid Vs. Moreover, because all the tasks in a group share the
same precedence w.r.t tasks outside the group on the same machine, no ordering of the
groups of G can lead to a valid sequence, hence there is no valid J-SEQ in 7 (7 is fully
invalid). By contraposition, we have that a partially valid G-SEQ always yields a valid
J-SEQ through H. U

5 G-SEQ solution approaches

In this section, we describe the methods used to compute G-SEQ and J-SEQ-based
solutions to the 8 different scheduling problems with discrete uncertainty scenarios
described in section 3.3.

For the sake of conciseness, we mainly describe methods used to solve the single
machine problem, and only stress briefly the differences in method for the jobshop
problem.

5.1 Constraint programming models

In this section we present a constraint programming (CP) model for each problem. For
both the G-SEQ and the J-SEQ models, we let each job have a different start time in
each scenario, but all start times must be consistent with a unique J- or G-SEQ across
all scenarios. The following CP models (Algorithm 3) describes the key constraints in
the CP model used for G-SEQ computation using IBM CP Optimizer (CPO) modeling
(respectively for 1-P and JS-P). Expressions and constraints specific to the CPO lan-
guage are typeset in small capitals.

In model (CP-G-SEQ-1P), variable g; is an integer denoting the index of the group
that contains task 4; Job[i, s] is an interval variable embedding the schedule time of task
i in scenario s; and u is a boolean variable symbolizing that a group index g is used.
Lines (2-12) create a CPO model for each scenario. For a given scenario, uncertain data
is known, allowing to set usual release date constraints (2). All Tasks (the set of all tasks
of a scenario s is referred to as Job[:, s])) are added to a SEQUENCE variable and the
NOOVERLAP constraint is applied on the SEQUENCE to enforce task sequencing on
the machine (3). Then, every pair of task is considered. If a precedence constraint links
them, the predecessor is forced to be in a group of smaller index than the successor (5).
If a task ¢ is in a group of smaller index than the group of another task j, implication
constraint (6) enforce the precedence constraint ¢ < j. This synchronizes all scenarios
models according to the group sequence represented by variables g. If two tasks are
in the same group, the task with the smallest release date in the considered scenario is
scheduled first (7-10), as prescribed by the FIFO policy.

Because only the order of groups is a relevant information, and not their indices, we can
break a symmetry by forcing the group with the smallest index to be used first. In order
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Algorithm 3 CP model for G-SEQ computation in the single machine problem

1: for s € Sdo

2. STARTOF(Job[i, s]) > r{ Vi

3:  NOOVERLAP(SEQUENCE(Job[:, g]))

4. for (i,j) € N?do

5 (i,j) € E — g; < g; {g; is the group number of job i}
6

7

8

9

gi < g; — ENDBEFORESTART(Jobl[i, s], Joblj, s])
if Release(i, s) < Release(j, s) then
g; == g; — ENDBEFORESTART(Job]i, s], Job[j, s])

: else
10: ¢; == g; — ENDBEFORESTART(Joblj, s], Jobli, s])
11: end if
12:  end for
13: end for

14: for g € N do
158 ug = V(9; ==g,Vi € N) { ug marks a group as “used”}
16:  if g > 0 then

17: Ug—1 = Ug
18:  endif
19: end for

to enforce that, lines (14—18) use the boolean variable u,. Line (15) makes u,, take the
value of 17 iff the group is used, that is if any task is in group g. Then constraints (16—
18) allow a group to be used (u, value of ”1”) only if it is the group O or if the previous
group is used. As aresult, if k& groups are used, they must be the £ first groups (0 to k—1).

The job-shop structure makes the CP model more complex than for the single

machine problem. It is described in (Algorithm 4):
A variable g[" gives the group index of each job 7 on each machine m. As previously, a
model is defined for each scenario, each model being synchronized via the g variables.
Constraints (2) are the precedence constraints between operations of the same jobs
are enforced. A SEQUENCE variable is created for each machine and a NOOVERLAP
constraint on each SEQUENCE ensures full sequencing of the tasks on the corresponding
machine (3). Additional "ready date” integer variables Ready[m, i, s] are needed. They
keep track of the time at which a task’s predecessor is completed, as enforced by
constraints (4-5). For each machine m and each pair of jobs {i, j}, FIFO sequencing
of the operations of these jobs on machine m is enforced depending on group indices
g;" and g}", as for the single machine case via constraints (6—15). Note that, in contrast
to the single machine problem, in the jobshop problem ready dates variables are used
instead of the release dates to enforce order of operations within groups..

Constraints (16—18) are needed to enforce operations left-shifting. Otherwise the
solver would be allowed to delay running tasks in order to influence ready dates and,
in turn, future order decisions of tasks within a group, which goes against the non-
anticipation hypothesis in stochastic and robust frameworks, as stated by the following
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Algorithm 4 CP model for G-SEQ computation in the jobshop problem

1: for s € S do

2:  STARTOF(Job[m; j_1,1,5]) > EndOf(Joblm, ;,i,s]) Vi e N,Vj e M\
{0}

3:  NOOVERLAP(SEQUENCE(Job[m,:, s]))Vm € M

4 Readylm;o,i,s]==0 VieN

5. Ready[m; j,i,s] ==ENDOF(Job[m; j_1,i,s] Vie N,Vje M\ {0}

6: form c M do

7

8

9

for (i,7) € N? do
gi" < gj* — ENDBEFORESTART(Job[m, i, s], Job[m, j, s])
if Ready(m,i,s) < Ready(m, j,s) then

10: g9;" == g — ENDBEFORESTART(Job[m, i, s], Job[m, j, s])
11: else

12: g;" == g7" — ENDBEFORESTART(Job[m, j, s, Job[m, i, 5])
13 end if

14: end for

15:  end for

t6: form € M do

17: STARTOF(Jobs[m, i, s]) ==MAX(ENDOFPREV(SEQUENCE[m],
Jobs[m, i, s]), Ready[m, i, s]),Vi € N

18:  end for

19: end for

20: for m € M do

21:  for g™ € N do

22: ugt = V(g* == g™, Vi € N)
23: if g™ > 0 then

24: u;";l > u;’”

25: end if

26:  end for

27: end for
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theorem:

Theorem 3. Given a G-SEQ solution and the FIFO policy inside each group, semi-
active schedules are not dominant for C,, ., minimization.

Proof. Figure 7 shows off the unwanted behavior that can occur when constraints
(16-18) are missing. Figure 7a displays expected behavior when considering solution
m = [[A1|Cs, Bs], [B1]|C2|As], [C1| Az, Bs]] for a problem with 3 jobs and 3 machines:
tasks A; and B; are started without delay, hence task A; finishes first, and when
considering the group G3 = [As, Ba], the FIFO heuristic schedules A first. However,
this turns out to be detrimental for the objective, running task Bj first allows for a better
Cinaz- Knowing this, the solver left unchecked will delay task A; as in figure 7b such
that it finishes after By, and allowing the FIFO heuristic to launch By before A in order
to reach the better C,,, 4. O

In the policy associated to real time decision making, delaying tasks in order to
improve the solution, as described above, requires the knowledge of the whole scenario
data. This clearly violates the non-anticipation hypothesis : task processing times are
only revealed upon operation completion. The ENDOFPREV expression represents
the completion time interval variable that precedes the job given in parameter in the
SEQUENCE variable also given in parameter. Hence, constraints (17) set the start time
of each operation to the maximum between the completion time of its predecessor on
its machine and the completion time of its predecessor in the jobs, which amounts to a
“manual” left shift.

1 e [

[ w ] m ]
0
19
(a) Semi-active schedule schedule
(& [ 5]
| €1 | B [ 4 |
0

(b) Non semi-active schedule

Fig.7 Non dominance of semi-active schedules for G-SEQ solutions
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Note that both models encapsulate the online scheduling policy associated with
selected G-SEQ solutions.

5.2 Warm start heuristics

As we will see in section 8, even though G-SEQs are better in theory, results show that
in limited time, for larger instances, CPO gets much better results using the J-SEQ
model than the G-SEQ model. In order to take advantage of the good performance of
the J-SEQ solver, but still retaining some of the possible gain and flexibility of G-SEQs,
we then introduce heuristic G-SEQ methods based on a good J-SEQ starting solution.
We will compare the J-SEQ solution at timeout with several heuristics, all of which
consist in running the J-SEQ solver for part of the time limit, and then using the best
found J-SEQ solution so far as an input to a G-SEQ heuristic.

We compare 3 warm start methods:

¢ The greedy heuristic of Esswein (2003) (EW-G-SEQ).

¢ The tabu search algorithm of Artigues, Jean-Charles, Cheref, Mebarki, and Ya-
houni (2016) (TAB-G-SEQ).

* A new genetic algorithm (GA-G-SEQ).
Additionally, we compare those methods when combined with the following parameters:

* Worst-case optimization (WC=True): when optimizing using the worst-case, the
methods aim to find the G-SEQ solutions such that the worst J-SEQ it represents
has the best score over all training scenarios (the more common approach in liter-
ature (Cardin, Mebarki, & Pinot, 2013; Esswein, 2003; Pinot, Cardin, & Mebarki,
2007)). Recall that the worst-case objective of a fully valid group sequence on
a given scenario can be computed exactly for the C,,,4, and Ly,.x objectives
or approximately for the Y C; criterion in polynomial time using longest path
computations the worst-case graph (Artigues, Billaut, & Esswein, 2005). For
partially valid group sequences, the worst case objective is approximated using the
algorithm described in section 4.2.3. Optimizing without worst-case (WC=False)
instead takes into account the second-stage heuristic and aims to find the G-SEQ
solution that will have the best score over all training scenarios, when using the
second-stage heuristic ( as in (Cheref, Artigues, & Billaut, 2016b)).

* Tolerating partially invalid solutions: For the jobshop problem, we also study
the impact of allowing (TPI=true) or not (TPI=false) partially invalid solutions,
which are usually not allowed as solutions in the literature.

e Init time (INIT): The time allocated to the initial run of the J-SEQ solver. The
remaining time is the running time of the warm start method, starting from the
J-SEQ solution.
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5.2.1 Tabu search algorithm : TAB-G-SEQ

We used a variant of the tabu search method proposed by Artigues, Jean-Charles, Cheref,
Mebarki, and Yahouni (2016); Cheref, Artigues, and Billaut (2016b) in which we start
from a J-SEQ solution (instead of a G-SEQ solution computed by a greedy heuristic
as in (Artigues, Jean-Charles, Cheref, Mebarki, & Yahouni, 2016; Cheref, Artigues, &
Billaut, 2016b)). The method explores at each step 4 neighborhoods:

» Group swap: swaps the content of two groups (all task in a group ¢ now belong to
group j and vice versa)

* Group insert: moves a single task from one group to another

« Group split: splits a group G into two groups G~ and G™. There are 2/! ways
to split a group into two, hence for efficiency, we define a split factor for a group
and only the |G| splits where tasks in G~ have a smaller average split factor over
all scenarios than tasks in G are considered. Because of our problem uncertain
data, we compute the split factor as the average release date on the 1-P and the
average sum of predecessors running time on JS-P. The idea being that having the
tasks likely to be ready first in the first group G~ should introduce less idle time.

* Group fusion: merges two consecutive groups.

A tabu list of length 10 * N is used but experiments (Artigues, Jean-Charles, Cheref,
Mebarki, & Yahouni, 2016) showed it had little impact on the performance of the
heuristic. The procedure stops at the time limit.

5.2.2 Greedy heuristic : EW-G-SEQ

The greedy heuristic EW-G-SEQ, named EBG]J in (Esswein, 2003), starts from a J-SEQ.
Then, only the merging of consecutive groups is considered. Groups are merged trying
to minimize the score (or not increase it in the case of worst case score) and prioritizing
the merging of smaller groups. The procedure stops when no merge can be done without
increasing the score, or at timeout (see Algorithm 5).

Algorithm 5 Overview of the greedy heuristic EW-G-SEQ
1: From a starting solution x
2: while there are non-worsening neighbors and within time limits do
3:  Compute the set N of valid “group merge” neighbors.
4. x becomes the best neighbour in A (by minimal score, then minimal size of the
largest group).
end while
6: Return x

4

5.2.3 Genetic algorithm : GA-G-SEQ

The genetic algorithm implemented is described in Algorithm 6.
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Algorithm 6 Overview of Genetic algorithm GA-G-SEQ

1: Population < InitPopulation(PopSize)

2. while (time < MaxTime) A (stagnate < MaxStagnate) do
3: A, B« Select2(Population)

4: C « Crossover(A, B)

5: if Invalid(C) A (random() < RepairRate) then
6 C < Repair(C)

7. endif

8. if random() < MutateRate then

9: C + Mutate(C)

10:  end if

11:  if random() < EducateRate then

12: C « Educate(C)

13:  end if

14:  Population < Population + C'

15:  if PopulationLimit < Population then

16: Population < SelectSurvivors(Population)
17:  endif

18: end while

First, an initial population is created (line 1). It contains the good starting J-SEQ
solution, as well as PopSize — 1 randomly generated G-SEQ solutions. Second, two
individuals are selected at random and crossed using an extension of the usual 1 point
crossover for sequences (lines 3-4)(see Fig. 8: 71 s groups are kept intact until crossover
point X, remaining tasks are added with 75’s precedences). Third, the resulting solution
is repaired if it is invalid (6) with some probability Repair Rate. The repair procedure
tries to make an invalid solution into a valid one while retaining some of its charac-
teristics, that is, the order prescribed by the solution. For the 1-P problem, iterating
over tasks in order, any task that is involved in a conflicting precedence constraint is
pushed back until it can be scheduled. For the JS-P problem, the repair procedure
works in the following way: groups at the same index on every machine are merged
into one big “mega-group” of tasks, then, for each group, for each occurrence of a
job’s task in the group, the job’s next task is inserted into the corresponding machine
current group. After a “mega-group” is fully scheduled, groups on all machines are
closed, before scheduling the next mega-group. Because the tasks of a job are inserted
in increasing order, this repair method can never lead to a fully infeasible solution.
Fourth, the solution is mutated (9) with some probability Mutate Rate, performing a
random move from the neighborhoods described in 5.2.1. Fifth it is educated (12) with
some probability E'ducate Rate, and added to the population. The education procedure
repeatedly applies the first improving “Group insert” move until no more improving
moves are found, or up to a maximum of 100 moves. Finally in the sixth step, if the size
of the population is more than PopulationLimit, the worst half of the population is
removed. Steps 2 to 6 are repeated until the time limit is reached or until the algorithm
stagnates too much.
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AG’s meta-parameters were set empirically using grid testing. The implemented pa-
rameters are (PopSize, PopLimit, Mutate Rate, EducationRate, Repair Rate) =
(10,20, 0.5,0.01, 0.5) for both problems.

X
A B,C D, E
Ty
3! A B,C D E
mo: B A C,D E

Fig. 8 The G-SEQ 1 point crossover

6 J-SEQ solution approaches

Literature review on the stochastic job-shop scheduling reveals that local search or
metaheuristics approaches are mostly used (Ghasemi, Ashoori, & Heavey, 2021; Gu,
Gu, & Gu, 2009; Hao, Lin, Gen, & Ohno, 2013; Horng & Lin, 2015). In (Akker,
Blokland, & Hoogeveen, 2013), local search approaches that use simulation on a
discrete scenario set are shown to outperform approaches that use surrogate measures by
replacing the stochastic parameters either by some distribution percentile, or by some
weighted expected value.

In line with these findings, we designed a genetic algorithm GA-J-SEQ and a tabu
search method TAB-J-SEQ based on the one used for the G-SEQ scheme presented in
sections 5.2.1 and 5.2.3, respectively, while restricting the search space to J-SEQ. The
algorithm remains essentially the same, except for the absence of some neighborhoods
(inserting a task in an other group, merging groups, splitting groups) .

We also use an exact approach in the form of a Constraint Programming model for
the J-SEQ scheme: CP-J-SEQ. The model is directly taken from IBM CP Optimizer’s
”stochastic jobshop” example, which uses the IlloSameSequence() global constraint to
enforce sequence unity across all scenarios (see ”CP-Optimizer 20.1.0 User Manual”).
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7 Experiments

7.1 Instances

The methods have been tested on a custom benchmark of instances generated using the
following parameters:

¢ N The number of jobs
e M The number of machines (only for the jobshop problem).

¢ S The number of scenarios drawn for training

A The variability of the release dates for 1-P and of the processing times for JS-P
around a baseline value for each scenario .

* II The density of the precedence graph (only for the single machine problem).
This density is measured as the ratio of the number of precedence constraints over
the maximum possible number of precedence constraints.

We first define a default parameter set (N = 100, S = 25, A = 0.3, 7 = 0.01
for the 1-P and N = 10, M = 10, S = 25, A = 0.5 for the JS-P). We chose these
parameters such that they allow to observe the limits where our approach is useful. Then,
in order to describe the relative variations in performance of the evaluated methods
depending on the instance parameters, we generate 3 instance sets for the 1-P and 4
instances sets for the JS-P by keeping the default values for all parameters except for
one that varies inside a given range.

Instance sets 1-P-IV and JS-P-N M, contain instances of varying numbers of tasks
(jobs/machine for the JS-P). Instance sets 1-P-S and JS-P-S gather instances of varying
numbers of scenarios,. Instance sets 1-P-A and JS-P-A contain instances of varying
scenario variability. Instance 1-P-II contain instances of varying precedence constraints
density. Note that inside each set 5 instances are randomly generated with the same
set of parameters. In particular, in each set there are exactly 5 instances having the
default parameter values. It follows that there are 20 instances having exactly the default
parameter values for the 1-P and 15 instances having the default parameter values for
the JS-P. These instances are gathered into sets 1-P-A and JS-P-A, respectively. Tables
1 and 2 give a summary of the instance set characteristics.

Inside each set, here is how the 5 instances are generated for each fixed set of
parameters: 5 baseline scenarios are first generated in the following way: for each task,
we chose a random base duration p; € [50, 100], a random release date r; € [0, > P/2],
and a random due date d; € [Y_ P/2,>" P]. Precedence constraints are generated for
each baseline scenario as follows: starting from an empty precedence set £, a random
precedence constraint is added, using the lexicographical order to ensure feasibility, and
the transitive closure of the matrix is performed. At each step, if the precedence density
reaches or exceeds the desired density I1, the process stops.

Each baseline scenario is associated with a probability density: for each uncertain
release date, a normal law A (r;, 7; * A) is used and the S scenarios from the training set
as well as the 1000 scenarios of the test set are drawn from each baseline scenario. The
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Set N 11 S A #inst.

1-P-N [10, 20, 0.01 25 0.3 30
50, 100,
150, 200]
1-P-II 100 [0, 0.001, 0.01, 30 0.3 25
0.05, 0.1, 0.2]
1I-P-S 100 0.01 [2,5,10,15, 0.3 45
20, 25, 35,
50, 100]
I-P-A 100 0.01 25 [0, 0.1, 0.3, 30
0.5,0.7, 1]
1-P-A 100 0.01 25 0.3 20

Table 1: Instance sets for the single machine problem

Set N M S A #inst.
JS-P-NM  [5,10,20] [2,5,10] 25 0.5 45
JS-P-S 10 10 [2, 5, 10, 15,20, 0.5 45
25, 35, 50, 100]
JS-P-A 10 10 25 [0, 0.1, 0.3, 30
0.5,0.7, 1]
JS-P-A 10 10 25 0.5 15

Table 2: Instance sets for the jobshop problem

training set is used as the input scenario list for all methods while the solution obtained
by each method is evaluated on the test set.

The instances are created for the jobshop problem in a similar fashion. For each fixed
set of parameter in JS-P-N M, JS-P-S and JS-P-A, 5 baseline scenarios are generated
while 15 baseline scenarios are generated for set JS-P-A. In each baseline scenario the
duration of each task is generated randomly in p! € [50, 100]. Variations around the
baseline duration are generated using an exponential law pZ +& (A.p‘g ).

7.2 Evaluated methods

All instances are solved using the training scenario set by the different methods within
a time limit set to 2 hours, for the 4 described objectives and with different parameter
combinations (WCe{false,true}, TPIe{false, true} and TINIT either equal
to 0 when the method is not used in the warm start mode, or to a value in minutes
for warm start. Table 3 gives a summary of the configurations that were tested on the
described benchmark. C1 corresponds to the methods without warm-start. C2 evaluates
the warm-start methods (indicated with a ‘*”) for different starting times. C3 evaluates
the same methods for starting time at 90 minutes, with or without parameters WC and
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TPI (only in the case of JS-P).

Note that we also use the FIFO fully reactive heuristic as a comparison point, which
can be assimilated to a single, fully permutable G-SEQ solution: the methods makes no
anticipation and only react to the realized scenario by applying the FIFO priority rule.
A total of 43 method variants are compared (37 for 1-P).

Conf.(#) X-SEQ Method Parameter values
wC TPI (JS-P) TINIT
C1(7)  {CP-G,CP-J,AG-G,AG-J, false true 0
TAB-G,TAB-J,FIFO-G}
C2 (24) {AG-G*EW-G* TAB-G*} false true {1,2,5,10,30

60,90, 110}
C3(12) {AG-G*EW-G* TAB-G*} {true,false} {true,false} 90

Table 3: Evaluated Methods for both 1-P and JS-P

Note that we define a default method parameter configuration used for all G-SEQ
methods unless stated otherwise to =WC and TPI, INIT at 90 minutes. The TPI
parameter is set to false for 1-P.

7.3 Performance criteria
The methods are analysed and compared using the following metrics:

* Score is the average objective function value obtained by the method over the
training set of instances at the maximum cutoff time of 2 hours.

* Generalized score is the average objective function value obtained by the solution
obtained by the method during the training phase on the test set of instances.
When o = maz, we use the 90% quantile instead of the actual maximum score
to evaluate the solutions on the testing set.

* Performance (or generalized performance) is computed as the ratio of the best
found (generalized) score among all methods to the (generalized) score of the
evaluated method on an instance.

* Generalization loss is computed as the ratio of generalized score over the score.

Results are averaged across all 4 objectives. When investigating the impact of a
parameter, methods are run on the set that make the considered parameter vary (e.g
set 1-P-N when investigating the variation of /V on the one machine problem). When
investigating the impact of objectives, methods are run on the A sets.

8 Results

All methods were run on a single worker (Xeon E5-2695 v4 @ 2.10GHz processor).
The CP models were solved by IBM CP Optimizer 20.1. For warm start heuristics
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(indicated by ”*”), the output of the J-SEQ CP model after TINIT seconds was used as
starting point for the heuristic for the remaining time.

Note that the warm start heuristics were implemented using Python, while CP methods
used the python API of CPO.

Tables 4, 5, 6, 7, 8, 9 and 10 display the generalized scores of a selection of methods
with varying instance parameters. Tables 11,12,13,14,15,16, and 17 display the impact
of the WC method parameter in function of instance parameters, and tables 18 and 19
displays the impact of TPI method parameter for different values of A (only for the
job-shop problem). The following sections provide a detailed analysis on these results.

8.1 Comparing the J-SEQ methods

Tables 4, 5, 6, 7, 8, 9 and 10 allow us to compare the generalized performance of
the J-SEQ CP solver with the GA and Tabu algorithms restricted to J-SEQ solutions
(columns CP-J-SEQ, AG-J-SEQ and TAB-J-SEQ). Figure 9 summarizes the evolution
over time of the generalized score of the three methods.

We can see from the Figure 9 and the different tables that the CP J-SEQ method
performs overall better than the GA J-SEQ and TAB J-SEQ methods, both on the 1-P
and JS-P problems. This performance gap likely does not come from the methods
implementation, but rather to the lack of diversification of the methods. Indeed, figure 9
shows that they seem to on average reach some local optimum before the cutoff time.
The performance gap seems rather insensitive to the scenario variability (Tables 4 and
5) but is particularly noticed when the instance size increases (Tables 6 and 7), which
emphasises CP optimizer’s performances on these problems. We also notice that the
GA-J-SEQ method performs much better than the TAB-J-SEQ method on average.
Distinguishing the objectives reveal that for 1-P, The CP-J-SEQ method is really more
effective for the L., 4, objective, while things are more mitigated for the Y C; objective
(Table 8). For the JS-P however, the CP-J-SEQ method is consistently superior for all
objectives (Table 9). When precedence density increases, the gap between GA-J-SEQ
and CP-J-SEQ gets narrow but still in favor of the latter for high densities (Table 10).

Therefore CP-J-SEQ is selected in the remaining as the reference two-phase method
based on job sequences.

8.2 Comparing the CP-J-SEQ and CP-G-SEQ solvers

Tables 4, 5, 6, 7, 8, 9 and 10 also allows us to compare the performances of G-SEQ and
J-SEQ CP methods relatively to each others. The data shows that overall the CP-J-SEQ
method performs much better than it’s G-SEQ counterpart. The exception being on the
1-P problem, on very small instances, where the G-SEQ solver is able to find better
solutions (see columns CP-G-SEQ and CP-J-SEQ in table 6 for N = 10). This is
consistent with the theory as the G-SEQ problem is solved to optimality, the G-SEQ
solutions should always be at least as good as the best J-SEQ solutions. This is not
reproduced for the JS-P as either the problem could not be solved to optimality (even for
some small instances), or the instances are so small that there is little gain to be made
(see columns CP-G-SEQ and CP-J-SEQ in Table 7). We also notice in Tables 4 and 5
that when there is more variability among scenarios (A gets large) there is a point at
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Fig.9 Average generalized performance over time of J-SEQ methods for all objectives
on the A sets

which the CP-G-SEQ solver performs better than the J-SEQ solver (A = 0.5 for the
1-P and A = 0.7 for the JS-P). As shown by the good performance at the same points
of the FIFO method, this it is due to the fact that when there is too much variability, the
purely reactive method performs better. Indeed, the CP-G-SEQ method usually starts
with a very flexible solution and rarely manages to improve it by reducing the number
of groups. Hence, another interest of the group approach lies in its ability to detect an
excessive variability in the training scenarios that makes anticipation useless.

Considering the different objectives (Tables 8 and 9), the CP-G-SEQ solver is
outperformed by the CP-J-SEQ solver except for the maz >, C; objective where CP-G-
SEQ is significantly better both for 1-P and JS-P. Also for this objective, the pure FIFO
heuristic performs remarkably well. This underlines a particular difficulty in producing
proactive schedules for the robust sum-of-completion-time problem.

For the 1-P, the density of the precedence constraints (Table 10) has a high impact
on the relative performance of CP-G-SEQ and CP-J-SEQ: when the density is close to
0, CP-G-SEQ outperforms GP-J-SEQ but the performance of CP-G-SEQ monotonely
decreases with the density while the reverse is true for CP-J-SEQ. Section 8.7 makes an
attempt to explain this behavior.

As a synthesis of this comparison, despite the theoretical dominance of the G-SEQ
model over the J-SEQ model, the CP-G-SEQ solvers manages to get better results than
the CP-J-SEQ solver only in a few cases. More research on improving CP models for
group sequences is needed.

8.3 Comparing the CP-J-SEQ and the warm start G-SEQ methods
with standard parameters

Figure 10 shows the average behavior of the different warm start G-SEQ methods with
standard parameters and of the CP-J-SEQ method on the training and test A instances.
The results on the test A set are also detailed in Tables 4, 5, 6, 7, 8, 9 and 10.

We can observe in Figure 10 that starting from a good J-SEQ solution computed
by the J-SEQ CP solver at TINIT=90, the warm start G-SEQ heuristics (AG-G-SEQ*,
EW-G-SEQ* and TAB-G-SEQ*) rapidly boost the solutions’ performances by adding
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flexibility and significantly improving the score, which is also observed in the testing
phase. Tables 4 and 5 show that using the warm start G-SEQ methods, we are able to
improve marginally the solution quality of the J-SEQ methods even when A is low,
but much more noticeably when the variability increases. However, for the 1-P, when
variability is too high, the warm start methods are not able to provide a better solution
than the purely reactive approach. The impact of variability reveals that TAB-G-SEQ*
is almost always dominated by AG-G-SEQ* and EW-G-SEQ* while EW-G-SEQ*
is competitive with AG-G-SEQ*except for large variability where its performance
collapses. The problem size (Tables 6 and 7) does not seem to influence significantly
the relative performance of the warm start methods. On the contrary, Tables 8 show
that the objective function has an impact on the warm start method performance on
the 1-P: the GA-G-SEQ is the best over CP-J-SEQ and EW-G-SEQ for all objectives
except max Lp,ax Where EW-G-SEQ outperforms GA-G-SEQ and CP-J-SEQ. No such
behavior is observed for the JS-P (Table 9). Finally Table 10 shows that the warm start
solver performance is less deteriorated by the precedence constraint density increase
than that of the CP-G-SEQ solver and they remain consistently better than CP-J-SEQ.
This is to be expected as their solutions are built upon the sequence solutions provided
by CP-J-SEQ.

It follows from the analysis of these results that the G-SEQ warm start methods
offers a superior alternative to purely sequencing methods in the majority of cases.
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Fig. 10 Average performance and generalized performance over time for all objectives
of the G-SEQ methods with default parameters on the A sets

8.4 Generalisation score

Because solutions are computed using a training set of scenarios, one might worry that
the computed solutions do not generalize well to the actual distribution of the data.
Figure 11 shows that the average generalization loss reduces very quickly with the
number of training scenarios for all methods, for both the 1-P and the JS-P.

Note that for the max objective, the generalisation loss seems to converge to a value
smaller than 1. That is because even though “max” scores are computed over all
scenarios during training, when evaluating we use the 90th percentile.
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8.5 Impact of TINIT

Figure 12 compares generalized performance over time of the AG-G-SEQ and EW-
G-SEQ methods starting from a CP-J-SEQ solution. The analysis shows that the EW
method benefits greatly from starting after the J-SEQ solver reaches a plateau, while the
AG method is able to diversify its solutions more effectively and is less sensitive to the
quality of the given initial solution. For any TINIT value, the improvement brought over
the J-SEQ solution is always significant. However, because it takes more time to reach a
local optimum, launching it with too little remaining time leads to a smaller gain. When
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dealing with limited time, even if there is no time for J-SEQ to reach a plateau, it might
be beneficial to divide appropriately the available time and launch a warm start method.
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Fig. 12 Impact of TINIT values for warm start methods with default parameters on
the average generalized performance over time on the A sets

8.6 Impact of the ’worst-case’” parameter

We next study the impact of the “worst-case” (WC) parameter. That is, we try to assert
whether it is more beneficial during the training phase to evaluate candidate G-SEQ
solutions using the FIFO heuristic on training scenarios, or to evaluate them using the
worst-case (WC) bound algorithm described in section 1. Table 11 and 12 describes
the average generalized performances for different variability A. Results show that
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the more variable the training scenarios are, the more preferable it is to use the FIFO
heuristic during the optimization process. Table 13 shows that for the 1-P, less relative
gain is made using the FIFO heuristic for larger instances. However, the instance size
does not have so much impact on the JS-P. Table 17 also shows that more precedence
constraints reduces the gain made by using the FIFO heuristic, due to more sequential
solutions reducing the gap between both evaluation score. Interestingly, Table 15 shows
that for max L, 4. objective on the 1-P, it is beneficial to use worst-case optimization.

8.7 Impact of tolerating partially invalid solutions.

We showed earlier that when using our heuristic to schedule tasks from a G-SEQ
solution, a valid sequence would be generated as long as the G-SEQ is partially valid.
However, tolerating partially valid solutions might hinder the search by modifying the
search space.

Results on the jobshop problem (see Table 18) show that for most warm start heuristics
it is better on average to tolerate partially valid solutions when A is high, and slightly
worse when it is small. And Table 19 shows that the )  C; objective benefits from TPI
but C,,,4. does not.

So, globally, tolerating partially invalid solutions for the JS-P appears beneficial
when the variability increases. This could explain the already mentioned collapse of
the CP-G-SEQ method when the density of precedence constraint increases for the
1-P (Table 10). Indeed as the TPI feature was not implemented for the one-machine
problem, imposing that all job sequences represented by the G-SEQ are valid is maybe
too restricting when there are many precedence constraints. This is why the flexibility
brought by the pure FIFO heuristic pays more in this case.

9 Concluding remarks

In this work, new methods for computing G-SEQ solutions were introduced, namely an
exact methods using constraint programming, and meta-heuristics (Genetic algorithm
and tabu method) with mitigated results. Extensive experiments were run to characterize
when and how computing G-SEQ could improve on a J-SEQ solution in limited time.
Results show that the G-SEQ approach is most effective when variability is moderate,
while J-SEQ methods outperform them when variability is very low and the purely
reactive FIFO method outperforms the other methods when scenarios become very
unpredictable. Among the warm start heuristics, the simpler greedy heuristic (EW
method) is most of the time very effective.

Because the greedy heuristic can only merge groups together, the explored space is
very restricted, and the fact that this method is one of, if not the best method shows
how difficult it is to search the G-SEQ solution space (at least using the proposed
neighborhoods). However, even with current search methods, results show that some
improvement over regular J-SEQ solutions can be made in almost all cases provided
the available computation time is adequately divided between the J-SEQ solver, and the
G-SEQ warm start heuristics.

We identify several areas for further research to improve the presented approach and
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expand its scope. The first point of improvement lies in the quality of the G-SEQ
solutions computed. Exact CP approaches could benefit from the creation of dedicated
constraint propagation algorithm or branching heuristics to accelerate the search. Other
heuristic approaches can also be investigated, such as large neighborhood searche using
constraint programming for example. The theoretical results that were established in
this paper could help in exploring the search space. The second point of improvement
lies in the capabilities of the presented framework. Indeed, an ideal two stage approach
would map for each scenario its optimal corresponding J-SEQ. Our approach is limited
both by the representative capabilities of G-SEQs (they cannot represent arbitrary sets
of sequences), and by the matching capabilities of the FIFO heuristics. As such, future
work should investigate the usage of other flexible structures as first-stage decision
frameworks (e.g. partial orders, AND/OR-trees, decision diagrams) and of other second-
stage decision policies (possibly using more information than FIFO). Finally, the method
could be extended to more general scheduling problems such as the RCPSP.
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A Appendix: results of all methods

A AG-G- |AG-J- |CP-G- |CP-J- |FIFO-G-|TAB-G- | TAB-J-
SEQ |SEQ |[SEQ |SEQ |SEQ |[SEQ |SEQ

0.0000{0.9828 {0.9931 |0.8406 |0.9997 |0.4613 |0.3950 |0.4242
0.1000 [ 0.9467 |0.8868 |0.7496 [0.9124 |0.5013 |0.4340 |0.4537
0.3000(0.9152 |0.8796 |0.8600 [0.9164 |0.7300 |0.5631 |0.5533
0.5000 {0.8461 |0.7880 |0.8133 [0.8024 |0.9239 |0.5876 |0.5807
0.7000 {0.8104 |0.7397 |0.7801 |0.7527 |0.9852 |0.5833 [0.5780
1.0000 {0.7284 |0.6721 |0.7500 |0.6919 |1.0000 |0.5921 |0.5784

A AG-G- |EW-G- |TAB-G-
SEQ* |[SEQ* |SEQ*

0.0000 {0.9998 ]0.9998 |0.9997
0.1000 [ 0.9424 ]0.9836 |0.9298
0.3000 {0.9524 ]0.9487 |0.9319
0.5000 {0.8345 ]0.8349 |0.8207
0.7000 [ 0.7874 ]0.7762 |0.7738
1.0000|0.7244 |0.7123 |0.7110

Table 4: Impact of scenario variability on the average generalized performance of the
methods with default parameters on the 1-P-A set

39



A AG-G- |AG-J- |CP-G- |CP-J- |FIFO-G-| TAB-G- | TAB-J-
SEQ |SEQ |SEQ |SEQ |SEQ [SEQ |SEQ

0.0000{0.9594 |0.8984 |0.9579 |[1.0000 |0.8689 |0.9396 |0.5415
0.1000{0.9672 |0.9055 |0.8757 [0.9974 |0.8697 |0.9389 |0.6536
0.3000{0.9738 |0.9189 |0.9036 |0.9841 |0.9139 |0.9504 |0.6910
0.5000 {0.9734 |0.9120 |0.9460 |0.9687 |0.9446 |0.9631 |0.7171
0.7000 [ 0.9828 |0.9083 |0.9607 [0.9605 |0.9626 |0.9738 |0.7049
1.0000|0.9872 10.8956 |0.9721 |0.9422 10.9721 |0.9789 |0.7135

A AG-G- |EW-G- |TAB-G-
SEQ* |SEQ* |SEQ*

0.0000 | 1.0000 | 1.0000 |1.0000
0.1000 {0.9975 ]0.9921 |0.9975
0.3000 [ 0.9882 ]0.9841 |0.9863
0.5000 [ 0.9828 ]0.9823 |0.9756
0.7000 {0.9802 |0.9755 |0.9685
1.0000 [ 0.9803 |0.9689 |0.9529

Table 5: Impact of scenario variability on the average generalized performance of the
methods with default parameters on the JS-P-A set

N |AG-G- |AGJ- |CP-G- |CP-J- |FIFO-G-|TAB-G- |TAB-J-
SEQ |SEQ |SEQ |SEQ |SEQ [SEQ |SEQ

10 109812 [0.9075 |0.9802 |0.9142 [0.6853 |0.9665 |0.9086
20 10.9624 10.8351 |0.9497 |0.8380 |0.6500 |0.9138 |0.8031
50 10.9230 [0.8876 |0.8644 |0.9229 |0.5786 |0.8522 |0.8059
100 0.9366 |0.8883 |0.8714 |0.9151 |0.7297 |0.5991 |0.5764
150/0.8455 [0.8829 |0.7308 |0.9305 |0.7714 |0.4419 |0.4585
200/0.6829 |0.8672 |0.6754 |0.9128 |0.7980 |0.4123 |0.4234

N |AG-G- |EW-G- |TAB-G-
SEQ* |[SEQ* |SEQ*

10 {0.9857 |0.9919 |0.9836
20 |10.9579 |0.9549 |0.9061
50 10.9662 |0.9635 |0.9369
100/0.9525 |0.9654 |0.9319
15010.9380 |0.9247 |0.9137
200/0.9226 |0.9368 |0.9180

Table 6: Impact of instance size on the average generalized performance of the methods
with default parameters on the 1-P-V set
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N |M |AG-G- |AG-J- |CP-G- |CP-J- |FIFO-G-|TAB-G- | TAB-J-
SEQ |SEQ |SEQ |SEQ |[SEQ |SEQ |SEQ

512 109952 10.9941 [0.9917 |0.9997 ]0.9463 |0.9909 |0.9543
5 10.9844 |0.9553 |0.9856 |0.9865 |0.9520 [0.9789 |0.8918
1010.9916 [0.9579 ]0.9851 |0.9700 |0.9785 |0.9873 |0.8006
1012 [0.9937 [0.9767 |0.9842 [0.9928 [0.9113 |0.9808 |0.9637
0.9817 |0.9549 |0.9305 |0.9848 |0.9462 [0.9742 |0.8791
10]0.9819 |0.9198 |0.9543 |0.9745 |0.9528 [0.9742 |0.7095
202 |0.9898 [0.9709 |0.8193 |0.9966 |0.8711 |0.9771 |0.9590
5 10.9835 |0.9443 |0.8598 |0.9880 |0.9009 ]0.9595 |0.8705
10109714 [0.9072 ]0.9399 |0.9825 [0.9525 |0.9753 |0.5795

N |M|AG-G- |EW-G- |TAB-G-
SEQ* |SEQ* |SEQ*

5 {2 109997 ]0.9998 |0.9997
0.9917 |0.9908 |0.9873
10]0.9906 |0.9857 |0.9806
10{2 |0.9965 [0.9970 |0.9928
0.9897 10.9917 |0.9852
10{0.9878 |0.9841 |0.9809
20(2 10.9983 ]0.9983 |0.9964
5 109911 |0.9915 |0.9898
10{0.9863 |0.9888 |0.9857

Table 7: Impact of instance size on the average generalized performance of the methods
with default parameters on the JS-P-N M set

o |v |AG-G- |AG-J- |CP-G- |CP-J- |FIFO-G-|TAB-G- | TAB-I-
SEQ |SEQ |[SEQ |[SEQ |SEQ |[SEQ |SEQ

avg | Limaz [0.9043 |0.8351 |0.6450 |0.8836 |0.3317 |0.3743 |0.3417
>C;10.9891 [0.9289 [0.9662 |0.9265 |0.9736 |0.8203 |0.8390
max | Lyq, | 0.8854 |0.8626 |0.8630 |0.9229 |0.6477 |0.3819 |0.3957
>>C; 109584 |0.8926 [0.9694 |0.8953 |0.9997 |0.7286 |0.6688

o |y |AG-G- |EW-G- |TAB-G-
SEQ* |[SEQ* |SEQ*

avg | Lyaz |0.9593 |0.9567 |0.9166
>>C; 109813 |0.9566 [0.9618
max | Limae |0.9214 10.9818 |0.9229
>2C;10.9332 09154 |0.9056

Table 8: Impact of the objective on the average generalized performance of the methods
with default parameters on the 1-P-A set
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o |y AG-G- |AG-J- |CP-G- |CP-J- |FIFO-G-| TAB-G- | TAB-J-
SEQ |SEQ |SEQ |SEQ |SEQ [SEQ |SEQ

avg | Chae | 0.9851 109432 10.9291 |0.9834 |0.9251 |0.9736 |0.8594
>2C; 109925 109198 [0.9473 [0.9664 |0.9475 |0.9788 |0.7984
max | Cpae |0.9555 09214 |0.9406 [0.9772 |0.9413 [0.9384 |0.5632
>C; 109817 [0.8862 |0.9712 [0.9581 |0.9714 |0.9736 |0.6511

o |y AG-G- |EW-G- |TAB-G-
SEQ* |SEQ* |SEQ*

avg | Cpae 09932 10.9902 |0.9916
>>C; 10.9887 10.9824 |0.9799
max | Cpyeq |0.9789 10.9821 |0.9782
>>C; 10.9818 |0.9795 |0.9635

Table 9: Impact of the objective on the average generalized performance of the methods
with default parameters on the JS-P-A set

I AG-G- |AG-J- |CP-G- |CP-J- FIFO-G-| TAB-G- | TAB-J-
SEQ SEQ SEQ SEQ SEQ SEQ SEQ

0.0000{0.9201 |0.8272 |0.8590 |[0.8369 |0.6246 |0.6385 |0.5033
0.0010{0.9183 |0.8209 |0.8567 |0.8586 |0.6559 |0.6767 |0.5507
0.0100(0.9522 |0.8726 |0.8496 [0.8953 |0.7545 |0.5796 |0.5539
0.0500{0.9079 |0.8933 |0.7137 [0.8969 |0.8396 |0.6083 |0.6196
0.1000 [ 0.8907 |0.8886 |0.7120 |0.8975 |0.8629 |0.6543 |0.6660
0.2000{0.9196 |0.9178 |0.7302 [0.9189 |0.8909 |0.7103 |0.7409

Il AG-G- |EW-G- |TAB-G-
SEQ* |SEQ* |SEQ*

0.0000 [ 0.8866 |0.9467 |0.8497
0.0010 {0.9070 ]0.9476 |0.8765
0.01000.9515 ]0.9510 |0.9256
0.050010.9222 ]0.9148 |0.9154
0.1000 {0.9123 ]0.9137 |0.9095
0.2000 [ 0.9245 ]0.9294 |0.9245

Table 10: Impact of precedence density on the average generalized performance of the
methods with default parameters on the 1-P-II set
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B Appendix: WC results

solver
WwC
A

AG-G-SEQ*
False | True

EW-G-SEQ*

False

True

TAB-G-SEQ*

False

True

0.0000
0.1000
0.3000
0.5000
0.7000
1.0000

0.9998 | 0.9997
0.9424 10.9126
0.952410.9150
0.8345(0.8032
0.7874 10.7531
0.724410.6913

0.9998
0.9836
0.9487
0.8349
0.7762
0.7123

0.9997
0.9380
0.9295
0.8139
0.7588
0.6980

0.9997
0.9298
0.9319
0.8207
0.7738
0.7110

0.9997
0.9126
0.9150
0.8032
0.7531
0.6915

Table 11: Impact of the WC parameter on the average generalized performance of

warm-start methods for different scenario variabilities on the 1-P-A set

solver
wC
A

AG-G-SEQ*
False | True

EW-G-SEQ*

False

True

TAB-G-SEQ*

False

True

0.0000
0.1000
0.3000
0.5000
0.7000
1.0000

1.0000 | 1.0000
0.997510.9974
0.988210.9833
0.9828 [ 0.9678
0.9802 [ 0.9596
0.9803 [ 0.9422

1.0000
0.9921
0.9841
0.9823
0.9755
0.9689

1.0000
0.9979
0.9840
0.9691
0.9611
0.9438

1.0000
0.9975
0.9863
0.9756
0.9685
0.9529

1.0000
0.9974
0.9833
0.9678
0.9596
0.9422

Table 12: Impact of the WC parameter on the average generalized performance of

warm-start methods for different scenario variabilities on the JS-P-A set

solver| AG-G-SEQ* EW-G-SEQ* TAB-G-SEQ*
wWC False | True | False | True | False | True
N

10 0.985710.914210.9919 | 0.9158 | 0.9836 | 0.9142
20 0.9579|0.8380 | 0.9549 | 0.8464 | 0.9061 | 0.8380
50 0.9662 | 0.9230 | 0.9635|0.9471 | 0.9369 | 0.9229
100 |0.9525]0.9140|0.9654 | 0.9325|0.9319|0.9141
150 |0.9380(0.9022 (0.924710.9030 | 0.9137|0.9024
200 [0.9226(0.9109|0.9368 | 0.9109(0.9180|0.9112

Table 13: Impact of the WC parameter on the average generalized performance of
warm-start methods for different instance size on the 1-P-V set
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solver | AG-G-SEQ*  EW-G-SEQ¥* TAB-G-SEQ*
WC | False | True | False | True | False | True

5 2 10.999710.9997 | 0.9998 | 0.9998 | 0.9997 | 0.9997
5 10.9917]0.9851|0.9908 | 0.9862 | 0.9873 | 0.9851
10 10.9906 | 0.9700 | 0.9857 {0.9713 | 0.9806 | 0.9700
10| 2 ]0.9965|0.9928 |0.9970|0.9972]0.9928 | 0.9928
5 10.9897]0.983810.9917|0.9861 | 0.9852 | 0.9838
10 [0.9878|0.9746 |0.9841|0.9761|0.9809 | 0.9746
200 2 ]0.9983|0.9964 |0.9983|0.9982|0.9964 | 0.9964
5 10.9911]0.9883]0.9915|0.9889 |0.9898 | 0.9883
10 {0.9863|0.9819|0.9888 | 0.9829|0.9857|0.9818

Table 14: Impact of the WC parameter on the average generalized performance of
warm-start methods for different instance size on the JS-P-N M set

solver| AG-G-SEQ* EW-G-SEQ* TAB-G-SEQ*
WwC False | True | False | True | False | True
o Y
avg | Lyax |0.9593(0.875710.9567 | 0.8868 | 0.9166 | 0.8757
>C; 10.9813]0.9262 0.9566|0.9262 | 0.9618 | 0.9262
max | Lmax [0.921410.922910.9818 |0.9751|0.9229 | 0.9229
> C;10.9332(0.8954 | 0.9154 | 0.8952 | 0.9056 | 0.8953

Table 15: Impact of the WC parameter on the average generalized performance of
warm-start methods for different objectives on the 1-P-A set

solver| AG-G-SEQ* EW-G-SEQ* TAB-G-SEQ*
WwC False | True | False | True | False | True
o Y
avg | Crax |0.993210.982310.9902 | 0.9824 | 0.9916 | 0.9823
> C;10.9887|0.9664 | 0.9824 | 0.9664 | 0.9799 | 0.9664
max | Cax [0.9789]0.9765]0.9821|0.9818 | 0.9782 | 0.9765
> C;10.9818]0.9581[0.9795 | 0.9581 | 0.9635 | 0.9581

Table 16: Impact of the WC parameter on the average generalized performance of
warm-start methods for different objectives on the JS-P-A set
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solver | AG-G-SEQ* EW-G-SEQ* TAB-G-SEQ*
wC False | True | False | True | False | True
II

0.0000 | 0.8866 [ 0.8391 [ 0.9467 | 0.8654 | 0.8497 | 0.8389
0.0010 {0.9070 | 0.8563 [ 0.9476 | 0.8817 | 0.8765 | 0.8564
0.0100 [ 0.9515]0.8953 1 0.9510 | 0.9070 | 0.9256 | 0.8953
0.0500 | 0.92220.8974 [ 0.9148 | 0.9042 | 0.9154 | 0.8974
0.1000 {0.9123 {0.8974 | 0.9137|0.9018 | 0.9095 | 0.8976
0.2000 [ 0.924510.9187 [ 0.9294 | 0.9218 | 0.9245 | 0.9188

Table 17: Impact of the WC parameter on the average generalized performance of
warm-start methods for different precedence densities on the 1-P-II set

C Appendix: TPI results

solver | AG-G-SEQ* EW-G-SEQ* TAB-G-SEQ*
TPI False | True | False | True | False | True
A

0.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
0.1000 | 0.9977 | 0.9975 1 0.9936 | 0.9921 | 0.9975 | 0.9975
0.3000 | 0.9893 1 0.9882 1 0.9850 | 0.9841 | 0.9863 | 0.9863
0.5000 | 0.9807 [ 0.9828 [0.9811 | 0.9823 | 0.9753 | 0.9756
0.7000 | 0.9743 1 0.9802 | 0.9760 | 0.9755 | 0.9683 | 0.9685
1.0000 [ 0.9582 {0.9803 [0.9613 | 0.9689 | 0.95320.9529

Table 18: Impact of the TPI parameter on the average generalized performance of
warm-start methods for different scenario variabilities on the JS-P-A set

solver| AG-G-SEQ* EW-G-SEQ* TAB-G-SEQ*
TPI False | True | False | True | False | True
o Y
avg | Chpax 0.9940(0.993210.9915(0.9902|0.9916 | 0.9916
> C; 10.9812]0.9887 [0.9797 | 0.9824 | 0.9798 | 0.9799
max | Chax [0.9810]0.9789 | 0.9865|0.9821 [ 0.9782]0.9782
> C;10.9687(0.9818 | 0.9699 | 0.9795 | 0.9635 | 0.9635

Table 19: Impact of the TPI parameter on the average generalized performance of
warm-start methods for different objectives on the JS-P-A set
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