N

N

Two-stage stochastic/robust scheduling based on
permutable operation groups

Louis Riviere, Christian Artigues, Hélene Fargier

» To cite this version:

Louis Riviere, Christian Artigues, Hélene Fargier. Two-stage stochastic/robust scheduling based on
permutable operation groups. Annals of Operations Research, In press, 10.1007/s10479-023-05639-1 .
hal-04229958

HAL Id: hal-04229958
https://hal.science/hal-04229958
Submitted on 5 Oct 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-04229958
https://hal.archives-ouvertes.fr

Two-stage stochastic/robust scheduling based on
permutable operation groups

Louis Riviere*(iriviere @laas.fr) 23, Christian Artigues®3

and Hélene Fargier!

HRIT, Université de Toulouse, CNRS, UPS, Toulouse, France
2LLAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France

3 Artificial and Natural Intelligence Toulouse Institute, Université de
Toulouse, France

Keywords: Stochastic and robust 2-stage scheduling, permutable operation groups,
Constraint programming.

Abstract

In this paper we study the performance of a two-stage approach to scheduling
under uncertainty making use of sequences of groups of permutable operations.
Given a sample set of uncertainty realization scenarios, the goal is to compute
a sequence of groups of permutable operations representing a partial scheduling
decision in the first-stage, that yields the best possible score in the second-stage,
when, for a specific scenario, a full operation sequence is obtained via a second-
stage decision policy. This approach is described for a single machine problem and
the jobshop problem with stochastic and robust optimization, as well as several
commonly studied objectives. We propose new constraint programming models as
well as a genetic algorithm meta-heuristic to compute such two-stage solutions. We
also investigate a warm-start scheme to work around the difficult search space of
sequences of permutable operations. Experiments are carried out to characterize
when this two-stage approach yields better results. We also compare the introduced
methods with existing ones. Theoretical extensions of the known methods are also
described and evaluated.

Statements and Declarations

Funding

Our work was supported by the Al Interdisciplinary Institute ~Artificial and Natural
Intelligence Toulouse Institute” (ANITI). ANITT is funded by the French Investing for
the Future — PIA3” program under the Grant agreement n°ANR-19-PI3A-0004.

Availability of data and materials

Algorithms, instances and raw results presented in this paper are available at :
[https://gitlab.laas.fr/roc/louis-riviere/two-stage-scheduling-using-pogs]
or upon request to the corresponding author.

Other competing interests

The authors have no other relevant financial or proprietary interests in any material
discussed in this article.

1 Introduction

Scheduling problems remain relevant today due to their numerous real life applications
and their difficult nature. Furthermore Goldratt (1997) showed that the disregard for
uncertainty of deterministic scheduling can lead to poor performances in practice. As a
result, an abundance of works can be found tackling the problem of scheduling under
uncertainty (Aytug, Lawley, McKay, Mohan, & Uzsoy, 2005; Daniels & Kouvelis, 1995;
Davari & Demeulemeester, 2019; Herroelen & Leus, 2005; Li & Ierapetritou, 2008;
Mohring, Radermacher, & Weiss, 1984; M. Pinedo & Schrage, 1982). Among all these
approaches, we are interested in the two-stage setting where proactive decisions are
taken off-line when uncertainty prevails while reactive decisions are taken on-line in
a second stage when uncertainty is revealed. Two-stage optimization is challenging
especially when the deterministic counterpart of the scheduling problem is NP-hard.
This paper presents a novel two-stage stochastic/robust optimization approach for
scheduling problems under discrete uncertainty scenarios.

In term of scheduling context, we consider two different settings to illustrate the
relative generality of this approach : the single machine scheduling problem (1-P) and
the job-shop problem (JS-P). In the 1-P, a set of jobs has to be scheduled on a single
machine such that each job is characterized by a processing time and a release date.
A schedule assigns a start time to each job such that no two job overlap, and each job
starts after its release date. A schedule can be evaluated by two different criteria to be
minimized, either the the maximum lateness criterion (i.e the maximum for all jobs of
the difference between the completion time of the job and its due date), or the sum of
completion times criterion.

The JS-P considers a set of jobs and a set of machines. Each job is defined as a chain
of tasks, each of them being defined by its processing time and its assigned machine.
A schedule assigns a start time of each task such that each task is scheduled after its
predecessor in its job chain and the tasks do not overlap on the machines. We also
consider two scheduling criteria: the makespan and the sum of completion times.

The deterministic variants of the 1-P and JS-P (for the considered criteria) have been
widely studied and all four problems are know to be strongly NP-hard (M. L. Pinedo,
2012). In this paper, we aim at solving uncertain variants of these problems. For the
1-P, the release dates are assumed to be known only in the form of discrete scenarios.

A scenario provides a release date for each job. Such an uncertainty may come for
supplier lead-time uncertainty as a typical example (C. W. Wu, Brown, & Beck, 2005).
For the JS-P, we consider discrete scenario sets for a more classical processing time
uncertainty, where a scenario provides a processing time for each task of each job. We
assume that the set of scenario comes from a distribution that is unknown to the decision
maker. These scenarios can be sampled from previous executions of the problem (for
example previous delivery dates or run-time of tasks). In such an uncertain context,
assigning in advance a precise start time to each task is unlikely to lead to an acceptable
solution. Indeed, as either the release dates or the processing times are unknown,
ensuring schedule feasibility would require extremely conservative estimates, resulting
in detrimental costs.

Instead of precise start times, our solutions of uncertain scheduling problems takes
the form of a scheduling policy (Mohring et al., 1984) that prescribes during the
execution of the schedule and scenario realization which task to execute at each decision
time, i.e. times where a machine is free and some tasks are ready for scheduling.

Some scheduling policies are purely dynamic, and make the decision only using the
information on the schedule execution and scenario realization. For the 1-P, the earliest
release date (ERD) policy (Bachtler, Krumke, & Le, 2020), selects at each decision time,
the ready task with the earliest release date. Its equivalent policy for the JS-P is the
first-in first-out (FIFO) policy which schedules at each decision time, on an available
machine, the tasks that are ready the earliest on this machine. On the opposite side of the
spectrum from purely reactive scheduling policies, we find the earliest start (ES) policies
(Mohring et al., 1984). They require the addition of precedence constraints such that all
resource conflicts are eliminated, which constitutes a static part of the decision, before
any information on realized scenario is known. In the 1-P and the JS-P (where resources
are unary) this amounts to order all tasks in a sequence on each machine, leaving only
the starting dates to be set for each job. We call it the ”’job sequence” (J-SEQ) policy.
Hence each time a machine becomes free, the J-SEQ policy schedules the next task in
the sequence at the earliest possible start time.

We can now associate to a scheduling policy a cost equal to the average value of the
objective function on the set of scenarios in the context of stochastic scheduling, or the
maximum value of the objective function on the set of scenarios in the context of robust
scheduling. The problem of finding the optimal J-SEQ policy according to this cost can
be defined as a two-stage stochastic/robust optimization problem, where the first stage
(here-and-now) variables define the task sequences while the recourse (wait-and-see)
variables define the starting times. This problem has been considered in a number of
papers in the literature (Akker, Blokland, & Hoogeveen, 2013; Ghasemi, Ashoori, &
Heavey, 2021; Gu, Gu, & Gu, 2009; Hao, Lin, Gen, & Ohno, 2013; Horng & Lin, 2015;
Kouvelis & Yu, 1997; Wang, Wang, Lan, & Pan, 2018; Wang, Wang, & Xie, 2019).

It can be noticed that the ERD/FIFO policy is purely dynamic in the sense there
is no anticipation that would preconstrain the output schedule. On the positive side, it
fully adapts to the realized scenario. Its drawback is that it can lead to solutions with
high costs. Applied to a deterministic problem, it is equivalent to a simple priority-rule
heuristic which is likely to give poor solutions on the considered NP-hard scheduling
problems. On the contrary, the JSEQ policy can be considered as mainly static as the
off-line computed sequence is strictly followed for any realized scenario. An advantage

is that the sequence can be optimized according to the above-defined stochastic or robust
cost. However there is little adaptation to the realized scenario and the cost of the
schedule on some individual scenarios can be high even if the average or maximum cost
has been minimized.

In this paper, we consider the group-of-permutable-task (G-SEQ) policy that requires,
on each machine, the definition of a partial order of tasks in the form of an ordered
partition of the tasks, or sequence of groups of tasks. The G-SEQ policy uses the
ERD/FIFO policy within each groups, but always schedules the tasks in the first group
before scheduling the tasks in the second group etc. The G-SEQ policy dominates both
the ERD/FIFO policy and the J-SEQ policy as defining only one group on each machine
gives the FIFO policy and defining one group per task gives the J-SEQ policy. Moreover,
a compromise between off-line and online decisions can be obtained. We now consider
the two-stage robust/stochastic scheduling problem that aims at finding the optimal
G-SEQ policy. Even though the solution dominates both J-SEQ and ERD/FIFO policies,
it remains to prove that under a limited CPU time a solution method for the G-SEQ
two-stage problem is able to find better solutions than the ERD/FIFO policy and than
the solution to the J-SEQ two-stage problem. We are also interested in answering the
question of how a G-SEQ/J-SEQ solution optimized for a scenario set issued from a
distribution adapts to a larger scenario set issued from the same distribution.

Related works are presented in Section 2. The studied problems (1-P, JS-P) are
presented in Section 3. Then the J-SEQ and G-SEQ solution schemes are detailed in
section 4. Section 5 gives the constraint programming models and the warm-start heuris-
tics for the G-SEQ scheme. Section 6 describes the methods used for the J-SEQ scheme
and that both serve as reference methods for comparison with the G-SEQ methods
and generate initial solutions for the G-SEQ warm start methods. The computational
experiments carried-out are described in Section 7, while the computational results and
method comparison are given in Section 8. Concluding remarks are drawn in Section 9.

2 Related work on proactive-reactive scheduling with
flexible solution approaches

Among ways to deal with uncertainty, the most complete approaches are certainly
“proactive-reactive” approaches. Such methods try to generate a solution in the proactive
“offline” phase, that allows a good reaction to perturbances in the reactive “online”
phase. This results in an overall better schedule. We call these two phases the first-stage
and second-stage decisions.
One such proactive-reactive approach, introduced in (Erschler & Roubellat, 1989),
makes use of the sequences of permutable operation groups (G-SEQ). The idea is to
produce, in the first-stage, a compact representation of a set of schedules by deciding
on a partial order of the tasks to schedule, then allow the second-stage to settle the
remaining decisions in order to obtain the final schedule. This second-stage decision
can be informed by additional data obtained after first-stage decisions were made.
Although this approach was integrated in an industrial software named ORDO
(Billaut & Roubellat, 1996), few works investigate the empirical gain obtained by using

group solutions for problems with uncertainty in lieu of sequences. In (Cardin, Mebarki,
& Pinot, 2013; Pinot, Cardin, & Mebarki, 2007), the authors investigate the impact of
uncertainty on C, . for group sequences when compared to purely predictive or purely
proactive approaches. They first compute an optimal schedule for the deterministic
problem, then they use the greedy heuristic defined by Esswein (2003) to generate
group sequences, aiming to maximise flexibility while guaranteeing an upper bound
on solution scores. For the second-stage decisions, they order groups using the FIFO
heuristic, starting available tasks first. The permutable operation group models can be
defined as a more flexible alternative to sequences. Indeed, only a partial order of jobs is
fixed on each machine at first-stage, in the form of a sequence of permutable operations
groups (G-SEQ), while both the full job sequences and start times are set depending on
the realized scenario at the second-stage.

The approach by S. D. Wu, Byeon, and Storer (1999) can be seen as a pioneering
work following these scheme. The authors use group scheduling for minimization of
weighted tardiness in a jobshop problem. They use a Branch-and-bound approach to
generate G-SEQ, but limit themselves to 2 groups, they schedule the jobs using the
ATC heuristic proposed by Vepsalainen and Morton (1987) in the second-stage. In
these previous works investigating sequences of permutable jobs for scheduling under
uncertainty (Cardin, Mebarki, & Pinot, 2013; Pinot, Cardin, & Mebarki, 2007; S. D. Wu,
Byeon, & Storer, 1999), the authors aim in the proactive phase for the most flexible
or best bounded solution, the goal being to provide a decision-maker with different
options for the reactive phase. In experiments they use a decision heuristic such as FIFO
ordering or ATC mentioned earlier.

Artigues, Jean-Charles, Cheref, Mebarki, and Yahouni (2016); Cheref, Artigues,
and Billaut (2016a, 2016b) introduce for the single-machine problem a MILP approach
to the computation of optimal group sequences w.r.t. the worst-case maximum lateness
for a discrete set of scenarios given that the second-stage schedules the jobs according
to the earliest release date first policy. A greedy algorithm and a tabu heuristic are
proposed for both the J-SEQ and G-SEQ model. The authors provide, for the single
machine scheduling problem and on the robust setting only, a partial yet positive answer
to the question whether given a limited given computational time, the G-SEQ approach
can indeed provide more robust solutions than the standard J-SEQ approach despite the
higher problem hardness. The MILP and Tabu approaches searched for the best task
or group sequences in terms of worst-case maximum lateness according to a training
scenario set. Then J-SEQ and G-SEQ sequences were compared in terms of worst-case
maximum lateness on a larger scenario set.

One interest of this paper is to quantify what can be gained if the use of the FIFO
decision heuristic is anticipated during the first-stage decision process. More precisely,
the goal is not to obtain the most flexible sequence of permutable groups, but instead
to reach the solution that will best behave when combined with the given second-stage
heuristic (namely FIFO dispatching).

As stated in the introduction, these previous work proposed a framework and presented
first results comparing J-SEQ and G-SEQ approaches. There were however several
limitations. The MILP proposed for the G-SEQ model in (Artigues et al., 2016; Cheref
et al., 2016a, 2016b) is only able to solve very small problems and a single tabu search
heuristic was proposed for the G-SEQ approach. Only the robust setting in the 1-P

problem was studied. No comparison with flexibility maximization approaches was
carried out. In (Cardin, Mebarki, & Pinot, 2013; Pinot, Cardin, & Mebarki, 2007), only
the JS-P is studied, and the first stage decision does not account for the second stage
decision. It rather guides the search by maximising solution flexibility, or minimizing
the worst-case score.

Building on previous works, the present paper aims at consolidating the comparison
between J-SEQ and G-SEQ approaches with several new contributions:

A new constraint programming model is introduced the G-SEQ schemes.

A new tabu search and a genetic algorithm are proposed for the G-SEQ scheme,
that can be used in a warm-start setting to improve a initial J-SEQ solution.

The approach is extended to more complex scheduling problems (job-shop), to
other objective functions (sum of completion times and C,,,,), and to different
uncertainty context (stochastic vs robust)

An alternative definition of a group sequence is proposed, which does not require
each compatible sequence to be valid.

A comparison with previously proposed flexibility maximization methods is
carried out.

Extensive computational experiments are carried out to compare the new J-SEQ
and G-SEQ approaches in a stochastic and robust setting.

List of Notations
Acronyms/stand-ins Description
1-P Single machine problem
cc Connected component
CcP Constraint programming
CPO IBM’s CP Optimizer
ERD Earliest release date
EW Greedy heuristic
FIFO First in first out
GA Genetic algorithm
G- SEQ Sequence of permutable groups scheme/solution
INIT Time allocated to J-SEQ solver in warm-start heuristics.
J—-SEQ Sequence of tasks scheme/solution
JS —P Job shop problem
MILP Mixed integer linear programming
TAB Tabu method
TPI Tolerating partially invalid solution parameter
wc Worst case optimization parameter
wCaG Worst case graph
WCG* Worst case graph with no intra-group arcs

3 The 2-stage robust/stochastic scheduling problems

In this paper, we are interested in scheduling problems under uncertainty where the
uncertainty is modeled as a set .S of discrete scenarios. In the following, we will focus
on two general problems: a single machine problem with precedence constraints, and
a jobshop problem. For each of those problems, we study both a robust optimization

Symbol Description

d; €D Due dates

E Precedence constraints

G Precedence graph

Gz(m) The ith permutable group of a G-SEQ
M Machines

N Jobs

pgs) € P Process times

r € R Release dates

ses Scenarios

v Velocity

A Variability parameter

0% Objective type

7(m) a G-SEQ

1T Density of the precedence graph

o Objective aggregator among scenarios
< Precedes

scheme and a stochastic one, with several objectives.

3.1 Single machine problem

The single machine problem consists in scheduling a set of jobs N given uncertain
release dates described by a set of discrete scenarios S. We define a problem with | V|

jobs and |S| scenarios as a tuple 1-P = (P, R, D, E, 0,~) where

p; € P is the duration of job 1.
r; € R is the release date of job ¢ in scenario s.
d; € D is the due date of job 1.

E is the set of precedence constraints ((,j) € E iff job ¢ must be scheduled
before job j).

Parameter o € {max, avg} is the “objective aggregator” amongst scenarios. Clas-
sically ¢ = max corresponds to robust optimization while o = avg corresponds
to stochastic optimization.

Job || m; | p; | d; Job || vy | p; | d

A 0 2 3 A 0 2 3

B 3 3 5 B 2 3 5

C 2 3 5 C 3 3 5
(a) Scenario 1 (b) Scenario 2

(c) Precedence graph

Fig. 1 Example single machine problem with 2 scenarios: P1

o v € {>_C, Laz} is the objective type. Objective > C; corresponds to the sum
of completion dates of tasks while L,,,4, corresponding to maximum task lateness
(max(0, mag C; — dy)).

1€

In Figure 1, an problem example P1 with three jobs and two scenarios is given. In
the precedence graph, full edges represent precedence constraints, while dotted lines
represent undecided order relation between tasks. Examples of first-stage and second-
stage decisions in a solution of P1 are given in the J-SEQ setting in Fig. 4 and in the
G-SEQ setting in Fig. 6.

3.2 Jobshop problem

The jobshop problem consists in scheduling a set of jobs N on several machines M
given uncertain task duration described by a set of discrete scenarios S. Each job is
composed of | M| tasks that must run on the machines. Only tasks of a job are subject to
precedence constraints. Jobshop problems are defined as a tuple JS-P = (P, M, o, ~)
where

* p; ; € P is the duration of task j of job ¢ in scenario s.

* m;,; € M is the machine on which task j of job 7 must run.
* 0 € {max,avg} is the same scenario aggregator.

LIS {%%cci, >~ C;} is the objective type.

Figure 2 gives an example with three jobs, three machines and two scenarios. Machines
are depicted with colors and dotted lines.

Q| D[=
N | N

— D W] =
| [|| €D
ot |t [|| €D

—_
[\S]

(c) Precedence graph

Fig. 2 Example jobshop problem with 2 scenarios: P2

3.3 Generic 2-stage problem statement

In both cases, we consider a 2-stage robust or stochastic scheduling problem where X is
the set of first-stage decisions while) (z, s) is the set of second-stage decisions given a
scenario s that actually occurs and a first-stage decision x. Then the problem can be
stated as follows:

MR s, Sy Y
where o € {avg,mazx} and v € {Lpaz, >, C;} for the 1-machine problem and
v € {Chaz, y_ C;} for the job-shop problem. This gives us 8 different scheduling
problems with discrete uncertainty scenarios.
The definition of the first-stage decisions X and second-stage decisions) are
slightly different in the J-SEQ and G-SEQ models. They will be defined in the following
sections.

4 First-stage solution representations and second-stage
policy

Solutions to scheduling problems are usually schedules, i.e a start time for each job. But
with uncertain parameters, such solutions might either be invalid or too conservative.
That is why we study 2-stage solution methods. In the first-stage, a flexible solution is
found, then when a scenario occurs, the second-stage policy adjusts the schedule.

We consider two different settings for the first-stage decision X': respectively job
sequences (J-SEQ) and sequences of groups of permutable jobs (G-SEQ). For both
first-stage solution representations, we define a valid sequence. The definition is rather

straightforward for J-SEQ but can have multiple meanings for G-SEQ.

The valid first-stage J-SEQ and G-SEQ are defined in sections 4.1 and 4.2, respectively.
The second-stage decision policy, i.e. the way a first-stage decision is extended to a
second-stage decision via a scheduling policy) upon progressive scenario realization
in real-time is presented in section 4.3.

4.1 Valid job sequences

A job sequence (J-SEQ) is a total ordering of the jobs on each machine, i.e a | M |-vector
of job sequences. This allows to use the same terminology for the single-machine
problem and the job-shop problem. The set of first-stage decisions X is the set of job
sequences. A J-SEQ is valid if its associated left-shifted schedule satisfies all constraints.
To define formally a valid J-SEQ both in the single-machine and job-shop setting, the
disjunctive graph is a convenient representation (Balas, 1969; Roy & Sussmann, 1964).
The disjunctive graph contains a node for each job, plus dummy source and sink nodes.
It is composed of directed and undirected arcs. It can be used to represent both the
single machine and job-shop scheduling problem as follows:

* The source node is connected to each task node by a directed arc valuated by the
task release date for the single-machine case, and by 0 for the job shop.

* Each task node is connected to the sink node by a directed arc valuated by p; — d;
for the single machine case and by p; for the job shop.

* For each precedence constraint (7, j) there is an arc directed from node ¢ to node
J, valuated by p;.

* For each pair of task sharing the same machine there is an undirected arc linking
the two task node.

Such undirected arcs are also called disjunctive arcs as each of them represents the
disjunction between two possible precedence constraints linked to machine usage.

A partial selection is an orientation of a part of the disjunctive arcs. Each directed
arc issued from a disjunctive arc is valuated by the duration of the origin task node.
A complete selection is an orientation of all disjunctive arcs. A selection is acyclic
if it does not induce a cycle in the graph made of the original directed arcs plus the
directed arcs issued from the selection. A J-SEQ defines a unique complete selection
by orientating each disjunctive arc as prescribed by the job sequence. The following
definition of the validity of a J-SEQ is well-known:

Definition 1. A J-SEQ is valid iff its associated complete selection is acyclic.

Note that on the single machine problem, this simply amounts to verify that for any
pair (4,7) € E, i < j in the sequence.

Given a J-SEQ and a scenario, the corresponding left-shifted schedule is among
the best possible schedule for regular objectives (Kouvelis & Yu, 1997). It is easily

10

Fig.3 Example of an invalid J-SEQ

A B C

0 2 5 8

(a) Realisation under scenario 1

A B C

0 3 6 9

(b) Realisation under scenario 2

Fig.4 The 2 stage J-SEQ solution A|B|C on problem P1 (Figure 1)

obtained since the earliest start time of a task compatible with the J-SEQ is equal to the
longest path length between the source node and the task node in the graph issued from
the associated complete selection (Balas, 1969), with the particular case of the longest
path length between the source and the sink node being equal to the C,,, for the
job-shop problem and the maximum lateness for the one-machine problem. Therefore,
the second-stage decision simply follows the J-SEQ and starts tasks as soon as they are
ready in that scenario.

Figure 4 displays a solution for the problem P1. In the first scenario, task C is the
latest, yielding a maximum lateness of 3, while in the second scenario, task C is also
the latest with a maximum lateness of 4. It can be verified that sequence A|B|C' is
the optimal first-stage solution in the J-SEQ framework as it minimizes the maximum
lateness over the the two scenarios, which yield second stage schedules (a) and (b) for
scenarios 1 and 2, respectively.

4.2 Valid group sequences
4.2.1 Definitions

A sequence of groups of permutable jobs (G-SEQ) is constituted on each machine
m € M of an ordered partition of the set of jobs to be scheduled on this machine 7™ =
GP|GY| ... |Gy with G € N forallm € Mandg = 1,...,k™; G NG} =) for
alme M,q=1,...,k™—1landq¢ = 1,...,Ifm,q;«éq’;Uq:LkaZ’L = N, where

11

k™ denotes the number of groups on machine m € M and G7* withg = 1,..., k™
denotes the gth group on machine m. In this model, the set of first-stage decisions X’ is
the set of group sequences. It can also be understood as a set of partial orders of the
tasks represented by groups on each machine. A G-SEQ represents a potentially large
set of job sequences.

In previous approaches based on G-SEQ (Artigues, Billaut, & Esswein, 2005;
Artigues, Jean-Charles, Cheref, Mebarki, & Yahouni, 2016; Billaut & Roubellat, 1996;
Cheref, Artigues, & Billaut, 2016a, 2016b; Erschler & Roubellat, 1989), a G-SEQ is a
valid solution iff any J-SEQ constructed by ordering the tasks within a group is valid in
the sense of Definition 1. For the single machine problem, that means that a G-SEQ is
valid iff for any pair (i, j) € F, the group of job i is ordered strictly before the group
of job j in the G-SEQ. However we extend the usual validity definition to distinguish
more special cases:

Definition 2. A G-SEQ is

* fully valid if it represents only valid J-SEQ,

e fully invalid if it represents no valid J-SEQ,

e partially valid if it represents at least one valid J-SEQ,

e partially invalid if it represents at least one invalid J-SEQ,
where a J-SEQ is valid or invalid in the sense of definition 1.

Note that when the G-SEQ is fully valid, it represent IL,,,c psI1,=1. 1m |G |! different
valid J-SEQs (i.e. complete selections).

4.2.2 Necessary and sufficient conditions

In Artigues, Billaut, and Esswein (2005), a so-called worst-case graph (WCG) is defined
for a given G-SEQ and a scenario. The graph contains a source node, a sink node and
two nodes ¢ and ¢’ for each task 7, representing the start and the completion of the task,
respectively. For each task ¢, there is an arc between the source node and 7 valuated
by r;, an arc from ¢ to ¢’ valuated by p; and an arc from ¢’ to the sink node, valuated
by p; — d;. For each precedence constraint between ¢ and j there is an arc from i’ to j
valuated by 0. For any ordered pair of tasks 7, j that belong to two consecutive groups,
there is an arc from ¢’ to j valuated by 0. Finally, for any pair of distinct tasks 7 and
J belonging to the same group G, there is an arc from i to j" valuated by >, - p.
This worst-case graph can be used to compute worst-case completion times for a given
G-SEQ and a given scenario as it will be recalled in section 4.2.3. However, from
(Artigues, Billaut, & Esswein, 2005) its non valued variant can be used to establish in
polynomial time the full validity of a G-SEQ independently of the scenario set, as stated
below.

Theorem 1. (from (Artigues, Billaut, & Esswein, 2005)) A G-SEQ is fully valid iff its
non-valued worst-case graph is acyclic.

12

Cycle check can be performed by a simple depth first search in the worst-case graph.
Note that, by contraposition, the worst-case graph has a cycle iff the G-SEQ is partially
invalid.

In the next section we present the second-stage policy that exploit either a fully valid
or a partially valid G-SEQ to obtain a schedule compatible with the realized scenario.
This will also give us a polynomial algorithm to check whether a given G-SEQ is
partially valid.

Theorem 2. A G-SEQ is fully invalid iff its worst-case graph, with intra-group arcs
removed (WCG?*) is cyclic.

—:

Proof. Removing intra-group arcs in the WCG associated with a G-SEQ 7 leaves only
the machine-wise precedence decided by the G-SEQ (the partial selectino) 7, the job-
wise precedences, and the arcs between nodes 7 and ¢’. If there is a cycle in this graph,
there is a cycle in the associated disjunctive graph without disjunctive arcs. Hence, no
selection of the disjunctive arcs can be acyclic. Therefore 7 is fully invalid. O

=

Proof. Let the G-SEQ 7 be fully invalid. Assume the associated WCG* is acyclic. We
will show a contradiction. As stated before, if the WCG* is acyclic, the disjunctive
graph (without disjunctive arcs) is acyclic. Furthermore, it is always possible to orient
an arc in a graph without introducing a first cycle. Indeed, when orienting arc (4, j), if
there is a path from ¢ to 7, orienting the arc from ¢ to j doesn’t add a cycle unless there
is a path from j to ¢ (which would mean the graph already had a cycle, which it doesn’t).
Otherwise, orienting the arc from j to ¢ doesn’t introduce a cycle. Finally, we saw that
an acyclic orientation of the disjunctive arcs corresponds to a valid J-SEQ. So m would
be partially valid, a contradiction. O

By contraposition, the modified worst-case graph is acyclic iff the G-SEQ is partially
valid.

4.2.3 Worst-case score of valid G-SEQ

One of the interesting properties of G-SEQ solutions is the ability to find, for each
task, its worst case starting time in a given scenario. Indeed, Artigues, Billaut, and
Esswein (2005) show that it is possible, using a polynomial algorithm, to find out the
largest starting time of a task that can be obtained by left-shifting the task in a J-SEQ
represented by the G-SEQ on this scenario. In turn, this allows to find the worst case
objectives for max-type regular objectives (such as the maximum lateness L, or the
makespan Cy,,x) or an upper bound of the worst case sum-type objective (such as the
sum of completion times) C; or the total tardiness > 7).

This algorithm is based on finding longest paths in the worst-case graph: the longest
path from the source node to node ¢’ is the largest end time of task ¢ in any semi-active

13

schedule represented by the G-SEQ. This algorithm no longer functions in the case of
partially invalid G-SEQs that can be encountered in the jobshop problem (as cycles get
introduced in the worst-case graph). To address this issue, we next describe an upper
bound algorithm for the worst case starting time of jobs.

Algorithm 1 Generalized Worst-case algorithm

1: Get the precedence graph G associated with 7
if G has a cycle then
return L {7 is fully invalid}
end if
Add the bidirectional arcs corresponding to the groups of 7 to G
Get the connected components C' of G
Modify C by splitting each connected component ¢ € C'C' containing only tasks of
the same group in |c| elements
Build a worst-case graph W using 7 and C.
9: return the worst-case start times in W as in (Artigues, Billaut, & Esswein, 2005)

*®

Algorithm 1 starts with the construction of the precedence graph G associated
with the G-SEQ 7. G contains only the precedence constraints that are necessarily
present in 7, hence the tasks within a group are not linked by any arc. G contains
a cycle iff 7 is fully invalid (Theorem 2). Otherwise, the algorithm can move for-
ward. Bidirectional arcs are added to GG between all tasks of the same group, yield-
ing the corresponding disjunctive graph. Tarjan’s algorithm is then used to get the
list C' of the connected components in G. An example of this step is given in fig-
ure 5a which represents the disjunctive graph associated with the G-SEQ solution
7 = [7Y = O1|By, Ay, w! = A3|B1|Cs, 72 = Ay, Cs| B3] for some jobshop problem
with 3 machines and 3 jobs (some job-wise precedence arcs were omitted for clarity).
The connected component analysis yields two components: C'Cy and C'Cs.

List C is then modified to only keep the connected components that contain tasks
belonging to at least two different machines (in our example, only C'C remains). If,
after this split, list C' contains only single-task components, the G-SEQ is fully valid (In
our case, we have a partially invalid G-SEQ). Finally, the WCG is contructed using the
components in C (see Figure 5) by considering all tasks in a component c as a single
task that inherits all the precedence constraints of the tasks in ¢, which by construction
shall not yield any cycle. Worst case end times for tasks within a cluster are all set to the
worst case end time of the cluster, and the process time of the cluster of tasks is set to
the sum of the durations of the tasks contained therein. It is interesting to note that some
tightness can be lost when grouping tasks together, but none is lost if the solution does
not require grouping (i.e. the solution is fully valid). The complexity of this algorithm
remains in O(n?).

Further generalisation is required to compute the worst case starting times for our
multi-scenario problem. Hence, the above described worst case algorithm is applied
for every scenario, yielding worst case objective in every scenario, that can then be
evaluated using aggregator o, with overall complexity O(S.n?).

14

(a) Disjunctive graph and connected component (simplified) for =
[[C1]B2, As], [As| B1|Cs3], [A1, C2| Bs]]

(b) Aggregated worst-case graph

Fig. 5 [Illustration for Algorithm 1

15

Whether finding the worst case starting time of a task is NP-Hard when the G-SEQ
can be partially invalid is an interesting open problem.

4.3 Second-stage policy

Scheduling is a multi-stage process where uncertainty is generally revealed progressively
over time. In this paper, two types of uncertain parameters are considered: the task
release dates for the single-machine problem and the task processing times for the
job-shop problem. We assume that the release dates are never revealed in advance,
but only revealed as soon as the task is released (e.g in scenario s, release date of task
t is revealed at time ¢ = 77, the release date of that task in scenario). Similarly, the
processing time is revealed only at the completion time of each task. It follows that
the task start times (i.e. the second-stage variables) can only be assigned via an on-line
scheduling policy that prescribes what must be done at each completion time and release
date event.

For the J-SEQ model, the on-line scheduling policy simply follows the prescribed
sequences, as in a majority of previous works on stochastic or robust job-shop scheduling
problems (Akker, Blokland, & Hoogeveen, 2013; Ghasemi, Ashoori, & Heavey, 2021;
Gu, Gu, & Gu, 2009; Hao, Lin, Gen, & Ohno, 2013; Horng & Lin, 2015; Kouvelis & Yu,
1997; Wang, Wang, Lan, & Pan, 2018; Wang, Wang, & Xie, 2019). At each time ¢ where
a task is completed on a machine, the next planned task in the sequence is scheduled
immediately if it is already available, or the machine waits for its earliest availability
(i.e. its realized release date for the single machine problem or the realized completion
time of its job predecessor for the job-shop problem). For J-SEQ, the second-stage
decision set Y(z, s) is the set of operation start time compatible with the job sequence
x and scenario s. Each start time assigned by this policy is equal to the length of the
longest path between the source node and the task node in the graph issued from the
complete selection induced by the J-SEQ.

For the G-SEQ model, the on-line policy is slightly more complex and is called
FIFO policy (Algorithm 2). The second-stage decision set J(z, s) is the set of job
sequences and operation start times compatible with the group sequence x, obtained
as follows. At each time ¢ where a task ¢ is completed, the next selected task is either
the earliest available task in the same group as i, or, if all tasks in that group were
scheduled already, the earliest available task in the next planned group. The selected
task is scheduled as early as possible.

In Figure 6, for the example problem P1, a G-SEQ solution provides as a first stage
decision a sequence of two groups, the first one contains only one task, A, and the
second one contains B and C'. So, for the second stage task A is scheduled in the first
position at time 0 for both scenarios. At time 2 task A completes. As there are no
more tasks in the group of A, the earliest available task in group { B, C'} is started next,
at its earliest availability time. This differs according to the scenario. In scenario 1,
task B is released next, at time 2, which yields the first displayed schedule issued from
sequence "ABC”. On scenario 2, it is task C that is released next, at time 2, which
yields the second displayed schedule issued from sequence "ACB”. Compared to the
J-SEQ solution of figure 4, this allows to improve the max L, objective from 4 to 3.

16

0 2 5 8

(a) Realisation under scenario 1

A C B

0 2 5 8

(b) Realisation under scenario 2

Fig. 6 The 2 stage G-SEQ solution 7 = A|B, C on problem P1 (Figure 1)

Algorithm 2 FIFO policy
1: for ¢t = 0 and every following time ¢ when a task finishes do
2: for Each idle machine m € M do

3: Gather the set of tasks A = R N G that can run on m.
4: Schedule the task of A that was ready first (if any).

5. end for

6: end for

We notice that J-SEQs constitute a special case of G-SEQs, where each group
contains a single job only. As such, G-SEQs in theory dominate J-SEQs, but due to
the much larger search space, in a limited computational time, it is not easy to predict
which approach will give the best results for practical purposes.

We will show next that iff a G-SEQ contains at least one valid J-SEQ (it is partially
valid), the second-stage heuristic will yield a valid J-SEQ. Previously, we have described
how a cycle in the precedence graph can lead to an infeasible solution. During the online
phase, this manifests by the inability to run any task without violating either the task
order within a job, or the task order within planned sequence. Note that this infeasibility
happens regardless of the scenario, it is purely dependent on the sequence.

At any given moment during the online phase, let D be the set of tasks that are com-
pleted, let R be the set of job-wise ready tasks (i.e they are the first tasks in a job or their
predecessors are in D). Let also G be the set of current groups, i.e, for each machine
the earliest group such that some tasks in the group are not in D (planning-wise ready
tasks). Let G~ and G be the set of groups sequenced before and after the groups in
G. Let H : (G-SEQ, s) — J-SEQ be a second-stage heuristic such that if a task ¢ is
both ready to run precedence-wise and planning-wise (i.e. t € RN G), H schedules
t in finite time. Note that the FIFO policy defined in Algorithm 2 possesses this property.

Proposition A G-SEQ 7 is partially valid iff Vs € S, H(w, s) is valid.

Proof. Suppose s € S is a scenario such that H (7, s) is invalid, i.e at one point H

17

cannot decide of a task to be scheduled (because there is a cycle). It must mean that
RN G = (no task is ready), else H would eventually launch a task. This implies that
there is a task in every current group that has a predecessor in a group not yet ready:
Vg € G,3t; € gsuchthat 3t; € G*,j < i. The existence of a set G satisfying this
property makes H (7, s) invalid Vs. Moreover, because all the tasks in a group share the
same precedence w.r.t tasks outside the group on the same machine, no ordering of the
groups of G can lead to a valid sequence, hence there is no valid J-SEQ in 7 (7 is fully
invalid). By contraposition, we have that a partially valid G-SEQ always yields a valid
J-SEQ through H. U

5 G-SEQ solution approaches

In this section, we describe the methods used to compute G-SEQ and J-SEQ-based
solutions to the 8 different scheduling problems with discrete uncertainty scenarios
described in section 3.3.

For the sake of conciseness, we mainly describe methods used to solve the single
machine problem, and only stress briefly the differences in method for the jobshop
problem.

5.1 Constraint programming models

In this section we present a constraint programming (CP) model for each problem. For
both the G-SEQ and the J-SEQ models, we let each job have a different start time in
each scenario, but all start times must be consistent with a unique J- or G-SEQ across
all scenarios. The following CP models (Algorithm 3) describes the key constraints in
the CP model used for G-SEQ computation using IBM CP Optimizer (CPO) modeling
(respectively for 1-P and JS-P). Expressions and constraints specific to the CPO lan-
guage are typeset in small capitals.

In model (CP-G-SEQ-1P), variable g; is an integer denoting the index of the group
that contains task 4; Job[i, s] is an interval variable embedding the schedule time of task
i in scenario s; and u is a boolean variable symbolizing that a group index g is used.
Lines (2-12) create a CPO model for each scenario. For a given scenario, uncertain data
is known, allowing to set usual release date constraints (2). All Tasks (the set of all tasks
of a scenario s is referred to as Job[:, s])) are added to a SEQUENCE variable and the
NOOVERLAP constraint is applied on the SEQUENCE to enforce task sequencing on
the machine (3). Then, every pair of task is considered. If a precedence constraint links
them, the predecessor is forced to be in a group of smaller index than the successor (5).
If a task ¢ is in a group of smaller index than the group of another task j, implication
constraint (6) enforce the precedence constraint ¢ < j. This synchronizes all scenarios
models according to the group sequence represented by variables g. If two tasks are
in the same group, the task with the smallest release date in the considered scenario is
scheduled first (7-10), as prescribed by the FIFO policy.

Because only the order of groups is a relevant information, and not their indices, we can
break a symmetry by forcing the group with the smallest index to be used first. In order

18

Algorithm 3 CP model for G-SEQ computation in the single machine problem

1: for s € Sdo

2. STARTOF(Job[i, s]) > r{ Vi

3: NOOVERLAP(SEQUENCE(Job[:, g]))

4. for (i,j) € N?do

5 (i,j) € E — g; < g; {g; is the group number of job i}
6

7

8

9

gi < g; — ENDBEFORESTART(Jobl[i, s], Joblj, s])
if Release(i, s) < Release(j, s) then
g; == g; — ENDBEFORESTART(Job]i, s], Job[j, s])

: else
10: ¢; == g; — ENDBEFORESTART(Joblj, s], Jobli, s])
11: end if
12: end for
13: end for

14: for g € N do
158 ug = V(9; ==g,Vi € N) { ug marks a group as “used”}
16: if g > 0 then

17: Ug—1 = Ug
18: endif
19: end for

to enforce that, lines (14—18) use the boolean variable u,. Line (15) makes u,, take the
value of 17 iff the group is used, that is if any task is in group g. Then constraints (16—
18) allow a group to be used (u, value of ”1”) only if it is the group O or if the previous
group is used. As aresult, if k& groups are used, they must be the £ first groups (0 to k—1).

The job-shop structure makes the CP model more complex than for the single

machine problem. It is described in (Algorithm 4):
A variable g[" gives the group index of each job 7 on each machine m. As previously, a
model is defined for each scenario, each model being synchronized via the g variables.
Constraints (2) are the precedence constraints between operations of the same jobs
are enforced. A SEQUENCE variable is created for each machine and a NOOVERLAP
constraint on each SEQUENCE ensures full sequencing of the tasks on the corresponding
machine (3). Additional "ready date” integer variables Ready[m, i, s] are needed. They
keep track of the time at which a task’s predecessor is completed, as enforced by
constraints (4-5). For each machine m and each pair of jobs {i, j}, FIFO sequencing
of the operations of these jobs on machine m is enforced depending on group indices
g;" and g}", as for the single machine case via constraints (6—15). Note that, in contrast
to the single machine problem, in the jobshop problem ready dates variables are used
instead of the release dates to enforce order of operations within groups..

Constraints (16—18) are needed to enforce operations left-shifting. Otherwise the
solver would be allowed to delay running tasks in order to influence ready dates and,
in turn, future order decisions of tasks within a group, which goes against the non-
anticipation hypothesis in stochastic and robust frameworks, as stated by the following

19

Algorithm 4 CP model for G-SEQ computation in the jobshop problem

1: for s € S do

2: STARTOF(Job[m; j_1,1,5]) > EndOf(Joblm, ;,i,s]) Vi e N,Vj e M\
{0}

3: NOOVERLAP(SEQUENCE(Job[m,:, s]))Vm € M

4 Readylm;o,i,s]==0 VieN

5. Ready[m; j,i,s] ==ENDOF(Job[m; j_1,i,s] Vie N,Vje M\ {0}

6: form c M do

7

8

9

for (i,7) € N? do
gi" < gj* — ENDBEFORESTART(Job[m, i, s], Job[m, j, s])
if Ready(m,i,s) < Ready(m, j,s) then

10: g9;" == g — ENDBEFORESTART(Job[m, i, s], Job[m, j, s])
11: else

12: g;" == g7" — ENDBEFORESTART(Job[m, j, s, Job[m, i, 5])
13 end if

14: end for

15: end for

t6: form € M do

17: STARTOF(Jobs[m, i, s]) ==MAX(ENDOFPREV(SEQUENCE[m],
Jobs[m, i, s]), Ready[m, i, s]),Vi € N

18: end for

19: end for

20: for m € M do

21: for g™ € N do

22: ugt = V(g* == g™, Vi € N)
23: if g™ > 0 then

24: u;";l > u;’”

25: end if

26: end for

27: end for

20

theorem:

Theorem 3. Given a G-SEQ solution and the FIFO policy inside each group, semi-
active schedules are not dominant for C,, ., minimization.

Proof. Figure 7 shows off the unwanted behavior that can occur when constraints
(16-18) are missing. Figure 7a displays expected behavior when considering solution
m = [[A1|Cs, Bs], [B1]|C2|As], [C1| Az, Bs]] for a problem with 3 jobs and 3 machines:
tasks A; and B; are started without delay, hence task A; finishes first, and when
considering the group G3 = [As, Ba], the FIFO