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Paris-Saclay, 91190 Gif-Sur-Yvette, France8

Abstract9

Bimsoils, characterized by discrete blocks within a finer-grained matrix, pose10

challenges in evaluating the bearing capacity of shallow foundations due to their11

spatial variability. To address this, a binary random field coupled with a Finite-12

Element model is used to simulate the variability of bimsoils. This study focuses13

on investigating the effect of the blocks spatial fraction (γ), the isotropic and14

anisotropic spatial correlations, and the undrained shear strength (cu) ratio15

between the matrix and the blocks. The results reveal that the coefficients16

of variation (CV) for the bearing capacity (qu), at a given γ, reach nearly17

20% due to the diverse spatial configurations. This dispersion is attributed18

to the development of distinct failure mechanisms. However, optimizing the19

local average area used to evaluate γ can help reduce these CV values. The20

average qu for a given γ can be accurately determined using the Bruggeman21

symmetric effective medium (BEM) equation, ensuring safe design compared to22

traditional homogenization techniques. The BEM equation considers γ and the23

cu ratio, providing an accurate estimation of bearing capacity for an equivalent24

homogeneous model suitable for probabilistic analyses.25

Keywords: Bimsoils, Spatial variability, Binary random fields, Bearing26

capacity, Homogenization theories, Finite element model27

1. INTRODUCTION28

Bimsoils (Block-in-Matrix soils), consisting of geotechnically complex forma-29

tions, present unique challenges in civil engineering due to their heterogeneous30

nature and spatial variability of mechanical parameters (Napoli et al., 2022).31

The interaction between the blocks and the matrix, along with their contrast-32

ing geotechnical parameters, necessitates the development of appropriate ho-33

mogenization techniques to accurately evaluate the bearing capacity of these34

soils.35
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Conventional geotechnical analyses often oversimplify bimsoils by assuming36

homogeneity, disregarding the inherent complexities arising from the presence37

of discrete blocks within the matrix. Some authors have suggested using only38

the shear strength parameters derived from the weaker matrix when the spatial39

fraction of blocks is small (Medley, 2001; Medley and Sanz Rehermann, 2004).40

This simplified approach can lead to inaccurate predictions, excessively conser-41

vative designs and compromised safety margins. Lindquist (1994) and Sonmez42

et al. (2009), among others, proposed statistical relationships to adjust the val-43

ues of uniaxial compressive strength, friction angle and cohesion for bimsoils by44

utilizing their matrix values as a function of the spatial fraction. The mechanical45

influence of increasing the spatial fraction primarily arises from the formation46

of tortuous failure surfaces that circumnavigate the blocks. The following has47

been studied on the effect of slope stability by Medley and Sanz Rehermann48

(2004) and Montoya-Araque et al. (2020), among others. Bearing capacity anal-49

ysis on bimsoils, however, remains limited, with only a few examples available50

(Campos-Muñoz et al., 2018; Schmüdderich et al., 2021).51

In probabilistic studies, the effects of spatial variability are often compared52

to homogeneous models. However, most comparisons rely on traditional homog-53

enization techniques such as arithmetic or harmonic averages, which generally54

fail to consider the effects of heterogeneous counterparts. Therefore, probabilis-55

tic analyses are necessary. While significant progress has been made in numerical56

optimization and random field generation, accurate homogenization techniques57

can provide valuable insights into the behavior of heterogeneous deposits from58

an engineering perspective. Studies on the random heterogeneity of soil proper-59

ties assert that phenomena governed by highly non-linear constitutive laws are60

affected the most. Nobahar and Popescu (2000), Griffiths and Fenton (2001),61

Li et al. (2015) Popescu et al. (2005a), among others, have studied the effects62

of inherent random soil heterogeneity on the bearing capacity (qu) of shallow63

foundations. All of them have used Monte Carlo Simulation (MCS) considering64

a continuous heterogeneous field. However, bimsoils consist of two very different65

soil types hence spatial variability effects could be better understood if binary66

random fields are considered. These fields have already been utilized to analyze67

the effects of settlement on structures founded on improved liquefiable soils by68

Montoya-Noguera and Lopez-Caballero (2016).69

This paper presents a comprehensive comparative study of homogenization70

techniques for evaluating the bearing capacity of bimsoils under shallow foun-71

dations. The study specifically examines three aspects: (1) the effect of the72

spatial fraction of the blocks, (2) the influence of isotropic and anisotropic spa-73

tial correlations, and (3) the impact of the contrast on the block and the matrix74

mechanical properties. These aspects are crucial in understanding the behavior75

of bimsoils and their implications for geotechnical design. By considering dif-76

ferent block arrangements, sizes, and mechanical properties, the study provides77

insights into the effects of spatial variation on the bearing capacity of shal-78

low foundations. Furthermore, the investigation explores the use of different79

homogenization theories to account for the average effects of spatial variation.80
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2. Models and Theories81

This section presents first the model for generating binary random fields to82

simulate bimsoils, followed by the different homogenisation theories used in this83

paper. Finally the numerical model for the assessment of bearing capacity is84

shown.85

2.1. Binary random field (BRF)86

The binary random field (BRF) is generated with the homogeneous auto-87

logistic model derived by Bartlett and Besag (1969). It is a nearest-neighbor88

model defined as a conditional probability, instead of a joint probability distri-89

bution as done with the Gaussian Markov random field models (Whittle, 1963).90

That means it treats dependence directly through the so-called autocovariate,91

which is a function of the observations themselves. The one-sided approxima-92

tion of the conditional autoregressive binary model in two dimensions under93

the assumption of homogeneity was derived from the Ising model to a 1st or-94

der Markov serie by Honjo (1985). The assumption of homogeneity implies95

that the underlying spatial process is stationary, meaning that the probability96

of a material being at a particular location is constant across the entire study97

area. According to Hughes et al. (2011), this model is straightforward to imple-98

ment and fast to compute as the probability of a material at a specific location99

depends on the presence or absence of the material in only two nearest neighbor-100

ing locations. The model will be briefly discussed; however, more information101

can be found in Bartlett and Besag (1969); Besag (1972); Honjo (1985) and102

Montoya-Noguera and Lopez-Caballero (2016).103

The binary mixture used to model the heterogeneous zone is defined by104

three parameters: the spatial fraction (γ) and the auto-regressive coefficients105

in the horizontal and vertical directions, respectively (βH and βV ). Under the106

condition of homogeneity, γ is equal to the expectation of xij , a value of the107

binary random variable Xij where i and j denote the position in the horizontal108

and vertical direction, respectively, in a 2D coordinate system. Following the109

one-sided approximation, this expectation is given by:110

E[xij |xi−1,j , xi,j−1] =

[
1− 1

2
(βH + βV )

]
· γ +

1

2
(βH · xi−1,j + βV · xi,j−1) (1)

Thus, the probability of which material is in the position (i, j) depends on111

the nearest-neighboring binary variables xi−1,j (left neighbor) and xi,j−1 (upper112

neighbor). This one-sided approximation approach assumes that the conditional113

probabilities depend only on the states of two neighboring variables, not on114

the states of the variables in the opposite direction. This allows for a more115

tractable computation of the expectation. Which makes the model easy and116

quick to compute. The spatial fraction is defined as the areal ratio of blocks117

with respect to the total area, i.e. γ = Nblocks/(Nblocks + Nmatrix) where Nm118

is the number of elements of material m. Thus, a γ value of 0 indicates a pure119
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matrix soil while a value of 1 indicates only blocks. For engineering applications,120

γ is related to the areal block proportion in two dimensions; hence, it can be121

calculated from the sum of the areas occupied by blocks with respect to the122

total area. Napoli et al. (2020) showed that the areal block proportions may123

vary significantly for a given volume of bimsoil under analysis. However, since a124

2D analysis is carried out for the practical application, the spatial fraction will125

be used herein.126

Because of the simple derivation of the autocorrelation function (ρ). Honjo127

(1985) stated that the one-sided approximation is preferred to the general case.128

Thus, ρ is equal to βi
H · βj

V , where βH and βV have a direct physical interpre-129

tation as they give the one-step correlation of the process in the horizontal and130

vertical direction, respectively. Note that the auto-regressive coefficients are131

dimensionless, as they depend on the spatial discretization, i.e. the total size of132

the finite element model divided by the number of elements. Figure 1 shows ρ133

for different β values with βH equal to βV . Note that the correlation structure134

shows an exponential decay, which is expected as it was assumed the Markov135

definition of order 1.136
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Figure 1: Autocorrelation function (ρ) for different isotropic correlations (βH=βV ).

For each element, the generated probability is not a binary number, so it is137

compared to a random number (uij) that follows a uniform distribution function138

between 0 and 1, where each element is independent. This process, known as139

binarization, makes use of MCS to converge to a given γ value, thus preserving140

the underlying probability without being too sensitive to outliers. This model141

offers valuable insights into spatial dependence and binary outcomes, however142

it has some limitations. Due to the one-sided approximation, the model is143

sensitive to boundary effects thus the obtained spatial fraction may differ from144

the target one. Honjo (1985) stated that this limitation is negligible if the size145

of the model is large enough. To avoid this, a tolerance error was set to 1%146

between the target and the obtained spatial fraction. In addition, as βH and βV147

define an exponential correlation structure, the field is highly sensitive even for148

lower values (as shown in Figure 1 (Honjo, 1985). In this regard, the number of149

simulations required to achieve convergence will be higher for higher correlations150
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and for anisotropy. This aspect will be evaluated in the next section.151

Contrary to other algorithms used for modeling bimsoils (e.g. Suarez-Burgoa152

et al. (2019) and Schmüdderich et al. (2021), the blocks do not have circular153

shapes. Due to the spatial correlation, the bimsoils generated correspond to154

polydisperse 2D block distributions where the block sizes are nonuniform. In155

bimsoils not only the block area proportion (spatial fraction) but also the size156

distribution plays an important role. When the isotropic correlation increases,157

the binary soil tends to show a more concentrated spatial distribution in clusters.158

The mean equivalent block size ratio (BSReq) was evaluated for the different159

isotropic correlations and the different spatial fractions and the results are shown160

in Figure 2. As defined by Schmüdderich et al. (2021), the BSR value is the161

ratio between the block diameter and the footing width for a monodisperse162

distribution of spherical blocks. However, as the model generates nonuniform163

blocks, the equivalent diameter was obtained by clustering analysis using the164

code for connected components in binary image from the Image Processing165

Toolbox in Matlab named bwconncomp. Then, the mean value of all clusters166

for 100 distributions was determined. The results range from 0.08 to 0.2 for a γ167

value of 0.1 and increases to 0.3 for γ=0.5, where the BSReq value increases with168

the spatial correlation. But, for γ values above 0.5, the size of the block clusters169

increases exponentially and is higher for lower spatial correlations. For instance,170

for γ=0.9, the BSReq value is 1.76 for βH=βV =0.9 and 3.35 for βH=βV =0.1.171
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Figure 2: Equivalent block size ratio (BSReq) for different isotropic correlations (βH=βV ).

Lastly, the BRF model simulates only welded bimsoils, thus no difference172

in strength is assumed for the interface between the matrix and the blocks.173

Napoli et al. (2022) avoided the classification between welded and unwelded174

bimrocks, used for example by Sonmez et al. (2009), as it can be extremely175

difficult to estimate the interface strength. However, Schmüdderich et al. (2021)176

evaluated numerically this effect on the bearing capacity and found lower results177

for unwelded bimsoils, compared to welded ones, because the lower strength at178

the interface conditions the failure surface to pass through these weaker areas.179

For welded bimsoils, the failure surface is only conditioned by the location of180

the blocks for a given γ value. Hence more variability will be expected for γ181
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values near 0.5. This aspect will be explored in the next section.182

2.2. Homogenisation theories183

Traditional homogenisation theories are often used to describe geotechni-184

cal properties. For example, the work on spatial variability effect on bearing185

capacity of Popescu et al. (2005a) often compares the average results of the het-186

erogeneous soil models with the “corresponding homogeneous soil”. According187

to the authors, the homogenisation is the mean value of the Monte Carlo sim-188

ulations; although this is only true for vertically layered materials (i.e. parallel189

to the bearing capacity) described by classical homogenisation theories. If, on190

the contrary, the layers are horizontal (i.e perpendicular or serial) the effective191

properties of the homogeneous model would be a harmonic average. It is clear192

that for random fields, these are only extreme cases which are known as Wiener193

(1912) bounds. The bearing capacity (qu) of the equivalent homogeneous model194

will be described as:195

• Parallel (arithmetic average) :

qu || = (1− γ) · qumatrix + γ · qu block (2)

• Serial (harmonic average):

qu⊥ =
1

(1−γ)
qumatrix

+ γ
qu block

(3)

where qumatrix and qu block are the bearing capacity values for a pure matrix soil196

(i.e. when the spatial fraction γ=0) or a pure block soil (i.e. γ=1), respectively.197

Among the common types of averages, there is also the geometric average, which198

lies between the arithmetic and harmonic ones. It favours low values, although199

not as drastically as does a harmonic average. Griffiths and Fenton (2001) eval-200

uated these averages for a lognormally distributed random field of soil strength201

over a domain of about the size of the plastically deformed bearing failure region.202

According to these authors, the geometric average showed the best agreement.203

However, an empirical adjustment for the mean value was used in the Prandtl’s204

formula.205

Another case that can be exactly modelled as homogeneous consists of206

concentric-shell structures, i.e. one material coating the other like spheres of207

different size. In this case, the properties can be described by the Hashin and208

Shtrikman (1962) equation:209

quHS+ = qu block +
1− γ

1
qumatrix−qu block

+ γ
d·qu block

(4)

quHS− = qumatrix +
γ

1
qu block−qumatrix

+ 1−γ
d·qumatrix

(5)
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where d is the dimensionality. This parameter binds the model to fluctuate210

between the Wiener bounds; hence, when d is equal to unity, they become the211

parallel bound and as it tends to infinity they approach the perpendicular one.212

Actually, HS bounds are narrower than the Wiener bounds and are often used as213

they are simple and intuitive. However, they still give wide predictions, specially214

if the ratio between the material properties is big.215

Besides these traditional homogenisation theories, another approach consists216

in identifying an effective property -in this case qu eff - for which the average be-217

haviour of the heterogeneous model remains unchanged. Among them, probably218

the most common is the Bruggeman (1935) effective medium (BEM) equation,219

which is a classical theory of conduction in mixtures also known as the symmet-220

ric effective medium approximation. When the properties of both materials are221

of similar magnitude, the BEM equation is:222

(1−γ)
qumatrix − qu eff

qumatrix + (dBEM − 1) · qu eff
+γ

qu block − qu eff

qu block + (dBEM − 1) · qu eff
= 0 (6)

where dBEM is equal to half the mean number of bonds presented at any site223

of the network (Kirkpatrick, 1973). The BEM equation gives a more precise224

solution as it accounts for each material independently. An important aspect of225

this equation is the adaptability of the dBEM parameter for each bimsoil. Thus,226

contrary to the geometric average recommended by Fenton and Griffiths (2002),227

the BEM equation can be fitted to different bimsoils as will be seen later on.228

2.3. Numerical model229

A finite element model (FEM) is used to evaluate the bearing capacity of230

a shallow foundation. Two-dimensional plane-strain analyzes are performed231

with the general purpose finite element code GEFDyn (Aubry and Modaressi,232

1996). The numerical model uses quadrilateral isoparametric elements with233

eight nodes. A rigid perfectly plastic model is implemented to simulate the be-234

havior of purely cohesive soils. While the Young modulus (E) and the Poisson’s235

ratio (ν) influence the computed settlement, the bearing capacity of a footing236

depends primarily on the undrained shear strength (cu) (Griffiths et al., 2002).237

Thus in the present study, to simplify the analyses, E and ν are kept constant238

and equal to 100MPa and 0.3, respectively. Each simulation of the binary ran-239

dom field is used as input for cu at each element on the model. Hence, for240

binary value (xij) equal to 0, the matrix is used with, initially, cumatrix equal241

to 20kPa; and for xij=1, block is used with cu block = 100 kPa.242

Bimsoils are characterized by discrete blocks within a finer-grained matrix.243

As stated by Medley and Zekkos (2011), the term “geotechnically significant244

blocks” means that there is a mechanical contrast between blocks and matrix245

that forces a tortuous failure surface around the blocks. Limiting values to define246

that mechanical contrast are given for types of failure and different parameters247

as shown in Table 1. The authors also state that relatively modest block-matrix248

mechanical contrast is necessary for a block-in-matrix mass to be considered.249
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Failure Criterion Value
Triaxially induced shears Eblock/Ematrix ≥ 2.0
Deflect failure surfaces tanϕblock/ tanϕmatrix ≥ 1.5 - 2.0

Unconfined Compressive Strength UCSblock/UCSmatrix ≥ 1.5

Table 1: Block-matrix strength contrast using estimates of weakest block and matrix mechan-
ical parameters (Medley and Zekkos, 2011; Kalender et al., 2014)

Below these values, the failure surface would have an increased tendency to250

pass through the blocks rather than around them. If the bearing capacity is251

assumed to be controlled by the failure on undrained conditions, i.e. the loading252

rate of the foundation’s construction is higher than the pore water pressure253

dissipation, the cu value is equal to half the Unconfined Compressive Strength254

(UCS). Results will be presented first for a strength contrast of 5 and in section255

4.3 lower and higher contrast ratios will be tested.256

A schema of the model is shown in Figure 3. The dimensions are given by the257

width of the base (B), in this case 4m, and are taken from the recommendations258

of Griffiths and Fenton (2001): a depth of 2B (8m) and a width of 5B (20m).259

The size of the elements is 0.25 m in both directions which corresponds to B/16,260

which was also used by Chen et al. (2012). A rigid bedrock underlies the soil261

hence no vertical displacements are allowed on the bottom of the model and262

as only vertical loads are applied, horizontal displacements are inhibited on the263

lateral boundaries, as shown by equations 7 and 8.264

Figure 3: Schema of the numerical model

u · ey =0 ∀x ∈ (Γ1 ∪ Γ2 ∪ Γ3) (7)

u · ez =0 ∀x ∈ Γ1 (8)
265

The test consists of applying an increasing vertical displacement (uz) at266

the center of the foundation (i.e. at one node) with free rotations allowed for267

the foundation. As the latter is rigid, a uniform displacement is considered in268

this interface. The ultimate bearing capacity is taken when uz/B = 2.5% (10269

cm) and is equal to the sum of the nodal forces (Qi) in the interface between270

the soil and the structure’s foundation divided by the width of the base (i.e.271

qu = (
∑

Qi)/B).272

For a homogeneous weightless soil, the bearing capacity is given by the273

Prandtl’s solution as qu = Nc ·cu, where Nc is the dimensionless bearing capacity274
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factor and equals 2 + π or 5.14 (Prandtl, 1921). The finite element analysis of275

the homogeneous cases, specifically when considering only the matrix or only276

the blocks, revealed a relative difference of 6.85% and 14.7%, respectively, in277

comparison to Prandtl’s solution. The former is one percentual point lower than278

the results of Chen et al. (2012) with the same properties and mesh size and279

similar to those of Popescu et al. (2005b). These differences are due to the280

assumptions in the model, for example, concentration of shear stresses at the281

soil-structure interface, gradual development of plastic zones, as well as inherent282

approximations induced by the numerical methods which are further explained283

by Nobahar (2003).284

Furthermore, the difference with respect to Prandtl’s solution depends on the285

mesh size. Refining the mesh can assist in reducing these differences, albeit they286

cannot be entirely eliminated. However, this refinement comes at the expense287

of increased computational resources needed for the subsequent random-field288

simulations. Other researchers have evaluated the impact of increasing mesh289

discretization, i.e., the number of elements in each direction. For instance,290

Chen et al. (2012) demonstrated an approximately 50% decrease in numerical291

error when the mesh discretization was increased by a factor of 4.292

Another factor of mesh discretization in the accuracy of predicting qu, is293

capturing the concentration of plastic strain within narrower zones. As the294

footing is assumed rigid, the vertical stress distribution is non-uniform and295

stress concentrates near the edges of the footing, resulting in higher plastic296

strains. However, considering this effect would introduce additional complexity297

to the generation of the random field, which is beyond the scope of this study.298

Considering the extensive number of random field simulations performed, the299

chosen mesh size was deemed both efficient and suitable for the purposes of this300

study.301

3. Coupling the binary random field with FEM302

The spatial discretization is used to analyse the heterogeneous deposit. The303

spatial fraction (γ) is varied from 0.1 to 0.9 (9 values) and 50 spatial distributions304

per value were done. Different auto-regressive coefficients on both directions305

were tested to analyse the effect of the correlation length.306

As an example, the deformed mesh at failure of two spatial distributions307

for the same spatial fraction (γ = 0.5) and the same auto-regressive coefficients308

(βH = βV = 0.9) are shown in Figure 4. The deformation is scaled by a factor309

of 100 to improve visualization. They correspond to the extreme values of310

bearing capacity found for this set of values: the minimum shown in Figure 4a311

(qu=148 kPa) and the maximum, in Figure 4b (qu=287 kPa). The soil matrix,312

which has a smaller cu, is in red color and the blocks are in blue. Similar313

to the results of Fenton and Griffiths (2002); Schmüdderich et al. (2021), the314

failure surfaces are certainly not symmetric and only approximately follow a315

log-spiral on different sides. It is clear that for the mesh that presented the316

minimum qu the soil matrix is mostly concentrated near the foundation which317

has triggered a non-symmetric failure mechanism; while for the other one, the318
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blocks under the foundation interconnect from the surface to the deeper zone.319

The spatial variability is not simply affecting the value of the bearing capacity320

but it modifies the basic form of the failure mechanism. These two distributions321

presented very different qu value, thus a convergence analysis was performed to322

choose the sufficient number of simulations per γ value.323

(a) (b)

Figure 4: Deformed mesh at failure for two distribution of bimsoils with γ = 0.5 and βH =
βV = 0.9: a) minimum qu (148 kPa) and b) maximum qu (287 kPa). The matrix is depicted
in red (cumatrix=20kPa) and the blocks in blue (cu block=100kPa). The deformation is scaled
by a factor of 100.

The convergence of both the mean and the standard deviation of the bearing324

capacity is shown for one case (γ = 0.7 and βH = βV = 0.9) in Figure 5. The325

average values are shown in red and the confidence intervals, in dotted blue326

lines. The latter are obtained with the t-student and χ2 statistical models327

with 5% confidence level for the mean and standard deviation, respectively. 200328

spatial distributions were tested; although, after approximately 50 the statistical329

convergence appears to be stable hence is sufficient for the application considered330

in this work. As expected the mean value converges more easily and presents331

less variation than the standard deviation. In contrast, the standard deviation332

has more variation and wider confidence intervals. Here on, a maximum of 50333

simulations are performed for each case.334

335

3.1. Effect of the spatial fraction of blocks336

The evolution of qu as a function of γ is shown in Figure 6 for different337

correlation values. For the sake of brevity only four cases are presented: the un-338

correlated model (i.e. βH = βV = 0) and 3 other values of isotropic correlation.339

The box-and-whiskers plot is useful to show scalar-value statistics because of340

the large amount of uncertainty information compared to mean and standard341

deviations. Additionally, due to its flattened shape, box plots are better when it342

is desired to compare the uncertainties in a number of related variables (Helton343

et al., 2006). The box is composed of 3 quartiles, corresponding to 25, 50 and344

75% of data and the whiskers are the lowest and highest values within 1.5IQR345

(Inter-quartile range). Values outside the whiskers are outliers and are drawn346

as blue dots. The mean values are in red and joined by the curve.347

It is seen in Figure 6a that when no correlation is used less dispersion is348

presented. Whereas, when a high correlation is used, like shown in Figure349
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Figure 5: Convergence of the a) mean and b) standard deviation of the bearing capacity (qu)
for γ = 0.7 and βH = βV = 0.9. The average values are shown in red and the confidence
intervals, in dotted blue lines.
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Figure 6: Models with different spatial fraction γ and different isotropic correlations
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6d, the dispersion increases. Additionally, the dispersion is higher for spatial350

fractions around 0.5; though, it seems that the spatial configuration is of key351

importance when a similar fraction of both materials is used. This could be352

explained by the higher interaction between the mixture and the blocks and353

the resulting failure surfaces. When the isotropic correlation increases, the soils354

are “packed” in clusters and therefore each distribution will have a different355

behaviour.356

The dispersion in mechanical properties is commonly quantified by the coef-357

ficient of variation (CV) and defined as the ratio between the standard deviation358

and the mean value. Thus, CV is a normalized quantity and it is of great use359

in probabilistic analysis. Representative values of CV can be found in the liter-360

ature based on laboratory data, in-situ tests or engineering judgement (Phoon361

and Kulhawy, 1999). Typical CV values are around 10 to almost 60 % for362

site-specific undrained shear strength in clays and below 40 % for normalized363

strength (i.e. divided by the vertical effective stress) (ISSMGE-TC304, 2021).364

In this analysis, the CV of the bearing capacity (qu), due to discrete spatial365

variability was calculated for the different spatial fractions and isotropic corre-366

lations.367

Figure 7 shows the CV value as a function of the spatial fraction for each368

correlation and for all the distributions tested. It is interesting to note how369

CV increases with the degree of correlation and it is more important for spatial370

fractions near 0.5. In general, compared to the ranges given by ISSMGE-TC304371

(2021), the values are very low (i.e. below 20%). This is due to the fact that the372

variability measured is only induced by the spatial variability, referred by other373

authors as inherent random heterogeneity, and it does not take into account the374

measurement errors and uncertainty in physical parameters, present in experi-375

mental data (Wang et al., 2016). According to these values, thus, it seems that376

uncertainties due to spatial variability are lower to those related to the strength377

values (induced by measurement, statistical and transformation errors). Note378

that the compared ranges are for material properties and the one calculated is379

for the structure response. However, as for this case the relation between the380

initial property (i.e. cu) and the response (qu) is only a constant value, this381

comparison is still valid.382

3.2. Effect of anisotropic correlation383

An important effort is evidenced in geotechnical engineering in order to384

quantify the correlation length in the spatial variability. Jones et al. (2002) and385

more recently ISSMGE-TC304 (2021) present a literature review of the scale of386

fluctuation in horizontal and vertical direction mostly from in-situ tests, however387

the amount of information concerning these values is limited in comparison to388

the CV of inherent variability. In general, the correlation length in the horizontal389

direction is between 10 and 20 times larger than in the vertical one. The degree390

of anisotropy in bimsoils is influenced by various factors, including the processes391

involved in their formation, as well as the superposition and interaction of these392

processes (Napoli et al., 2022). At the moment, very little information can be393

found hence a parametric analysis was performed for different correlations. For394
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Figure 7: Coefficient of variation (CV) of the bearing capacity (qu) in bimsoils as a function
of the spatial fraction (γ) for different isotropic correlations

a spatial fraction of 0.4, only one correlation was changed from 0.1 to 0.9 while395

the other one was fixed and equal to 0.1. The mean and CV of the bearing396

capacity are shown in Figure 8. It appears that the anisotropic correlation is397

inversely related to the mean and directly related to the CV results. However,398

the effect of the correlation is more important for the CV value (e.g. for β = 1,399

CV is twice the one without correlation; while the decrease in the mean value is400

only 2%). For this case, the vertical correlation presents in general higher values401

for both mean and CV. For the sake of brevity, the results are only shown for402

one spatial fraction, nevertheless other values were tested and they presented403

the same trends.404

4. Homogeneous equivalent models405

Homogeneous equivalent models and their effective properties are interesting406

from an engineering point of view. With the aid of widely used computer soft-407

ware such as Microsoft Excel, performing Monte Carlo Simulation (MCS)-based408

probabilistic analysis for geotechnical applications is becoming more convenient409

and straight-forward (Wang and Huang, 2012; Wang et al., 2016). Is it possible410

to obtain the same probability density functions (PDF) of the bearing capacity411

using binary random fields (BRF) and homogeneous MCS?412

4.1. Monte-Carlo simulations413

To develop the homogeneous equivalent model, three steps are performed.414

A flowchart of this procedure is shown in Figure 9. First, the results from the415

BRF analysis are used to generate the empirical cumulative density function416

(CDF) of the bearing capacity (qu). Second, the CDF of the effective strength417

(ceffu (γ) is linearly calculated from the previous results considering the Prandtl418

solution. The third step consists of using the obtained CDF of ceffu to generate419

multiple homogeneous fields with Monte Carlo simulations and evaluate the420

13



0 0.2 0.4 0.6 0.8 1
196

198

200

202

204

206

β [1]

µ
q

u

 [
k
P

a
]

 

 

β
H

β
V

(a)

0 0.2 0.4 0.6 0.8 1
3

3.5

4

4.5

5

5.5

6

6.5

7

C
V

  
=

 σ
/µ

 [
%

]

β [1]

(b)

Figure 8: Anisotropic correlation effect on the a) mean and b) CV of the bearing capacity for
bimsoils with a spatial fraction of 0.4. The coefficient in the horizontal (βH) or vertical (βV )
correlation is varied while the other correlation is fixed to 0.1.

resulting statistical properties of the bearing capacity. Hence, addressing the421

question regarding the feasibility of achieving identical mean and dispersion422

using homogeneous models that can faithfully replicate the effect of the spatial423

variability on the bearing capacity observed in bimsoils. The procedure is shown424

in detail for different spatial fractions and isotropic correlations.425

4.1.1. CDF of the bearing capacity from BRF results426

First, the results from the spatial variability simulated with BRF are used427

to calculate the empirical CDF. Figure 10 shows the normalized CDF of the428

bearing capacity for γ of 0.1, 0.5 and 0.9 and all different correlations. As it429

is seen once more, the isotropic correlation plays an important role in the CV430

(refer to the steepness in the CDF in figures 10b and 10c). Additionally, for γ431

of 0.9, the type of the distribution changes; though, for instance, the results for432

β of 0.9 have a lognormal distribution -as it presents a positive skewness- while433

for β of 0.1, a normal distribution could be more adequate.434

Jones et al. (2002) summarized the inherent variability on strength charac-435

teristics given by in-situ and laboratory measurements and suggest a lognormal436

PDF for undrained shear strength (cu) in clays and a normal one for cu in437

silty-clays. Hence, as the cu decreases, the distribution shifts from lognormal to438

normal, as it does with the results for γ of 0.9. An accurate probability func-439

tion could be very useful to construct fragility curves that take into account the440

spatial variability uncertainty in bimsoils. However the success of this kind of441

analysis requires an accurate safety limit or threshold related to the determinis-442

tic properties. In the next section, an effort to find an homogeneous equivalent443

model will be presented.444
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Figure 9: Flowchart of the procedure to generate the homogeneous equivalent model with the
same probability distribution
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Figure 10: Experimental cumulative density function (CDF) of the bearing capacity for : a)
γ=0.1, b) γ=0.5 and c) γ=0.9
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Figure 11: Comparison of the normalized CDF of qu obtained from the homogeneous Monte
Carlo simulations (MCS) and the one obtained from the initial binary random field (BRF)
for γ of 0.5 and βH and βV equal to 0.8

4.1.2. CDF of the equivalent undrained shear strength for homogeneous models445

Second, as qu depends only on the undrained shear strength, the effective446

property (ceffu ) is equal to µqu(γ)/5.14, where µ, indicates the mean value of447

all the qu values resulting of the spatially variable models for a specified γ. It448

is reasonable to believe that the same numerical error - i.e. 10% in average449

- with respect to the Prandtl solution is present in all cases; therefore, for the450

homogeneous model the error is deducted from the effective property (otherwise451

it would be counted twice). Thus, the resulting CDF of qu from the first step452

is divided by 5.14 and corrected due to numerical errors to obtain the CDF for453

ceffu that will be used as input in the next step.454

4.1.3. CDF of the bearing capacity from homogeneous MCS455

Monte Carlo simulations involve generating a large number of random sam-456

ples from a known probability distribution to approximate various statistical457

properties of a system. In this context, the CDF of the ceffu is used to simulate458

200 homogeneous fields. The results of the MCS are used to obtain the CDF459

of qu. Figure 11 compares the empirical CDF of qu from the BRF models (step460

1) and from the homogeneous MCS (step 3). For the sake of brevity, results461

are only shown for one set of spatial fraction and correlations. It corresponds462

to γ of 0.5 and βH and βV equal to 0.8. The resulting CDF from the MCS463

matches very well the one from the BRF analysis. Hence the effect of spatial464

variability can be included in homogeneous analysis with the use of probability465

functions. Now, the question relies on how to describe such function in a general466

case according to the soil parameters.467

4.2. Homogenisation theories468

In engineering practice, it is common to use deterministic homogenisation469

theories to simplify the average effects of spatial variation. Figure 12a shows470
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Figure 12: Input and Output of the homogeneous equivalent model : a) Effective property

(ceffu = µqu (γ)/5.14) for all isotropic correlations and average corrected value (ceff
∗

u ), in
black, used as input and resulting b) Bearing capacity qu as a function of the spatial fraction
(γ) in black compared to the average of the heterogeneous models

the mean of ceffu as a function of γ for all the different correlations. As in471

the previous analysis, the undrained shear strength is corrected from the FE472

error. The average corrected effective property (ceff
∗

u ), shown in the figure in473

black, was used for the deterministic homogeneous equivalent model. In Figure474

12b, the results are compared with the qu mean values of all the correlations.475

As expected, the homogeneous models have the same behaviour and could be476

described by an equation. It is important to note that the homogeneous model477

takes into account all the correlations tested and their respective dispersion;478

however the general behaviour with respect to the spatial fraction (i.e. the479

shape of the function) is the same for all cases hence the equation should be480

similar.481

The traditional homogenisation theories are compared to the numerical re-482

sults in Figure 13a. It shows the mean qu values normalized by the qu block as483

a function of γ and the Wiener and HS bounds. As it is shown, if the homoge-484

neous models take the upper Wiener bound described by the arithmetic average485

(i.e. diagonal straight line in Figure 13a) as the effective property, the heteroge-486

neous model will always present lower resistance (i.e. lower qu values). Overall,487

results are inside the HS bounds with a d value of 2. However, for lower spatial488

fractions (γ < 0.4) the mean values are even lower than the HS− bound and489

almost similar to the lower Wiener bound described by the harmonic average.490

Nonetheless, this harmonic average is significantly lower than the numerical491

results for higher γ values.492

In contrast, as it can be seen in Figure 13b, the mean values are well fitted493

by the BEM equation in which, for the case tested, dBEM was found by a root-494

mean-square fit to a value of 1.5. Though if an homogeneous equivalent model495

should be compared with discrete spatial heterogeneous models, BEM should496
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Figure 13: Heterogeneous mean normalized qu values compared to a) traditional homogeni-
sation and b) Bruggeman symmetric effective medium theories (dBEM = 1.5)

be used.497

4.3. Effect of the contrast in the matrix and block properties498

The spatial variability effect depends on the matrix and block soil properties;499

hence, seven more strength ratios (cu block/cumatrix) were used and the normal-500

ized mean and CV values are shown in Figure 14. No correlation was introduced,501

which was found to increase the variability, and its effects have been formerly502

addressed. The undrained shear strength (cu) of each set and the respective503

ratios are shown in Table 2. In Figure 14a, the lower and upper quartiles (i.e.504

25 and 75%) are also shown however the dispersion is very low compared to the505

mean value. Note that as the ratio increases, the shape of the model changes506

thus it could only be represented by an equation with an additional parameter,507

such as the dBEM of equation 6. Moreover, for the last two cases, where the508

ratios are repeated but with different cu values, the normalized behavior does509

not change. Hence, it depends more on the contrast between the materials and510

not on the values used.511

Figure 14b shows the CV values of all the cu ratios tested. In general, as512

the contrast between the block and matrix strength increases, there is a corre-513

sponding increase in dispersion, akin to what is observed with higher levels of514

isotropic correlation. This phenomenon is expected because a greater difference515

in strength implies a more pronounced change in the failure surface. Notably,516

the CV values tend to be higher for spatial fractions near 0.5, with the exception517

of the two cases with a contrast ratio of 20. The increase in dispersion nearing518

equal fractions of blocks and matrix might be related to the clustering effect that519

produces an increase in equivalent block size as shown in Figure 2. As for the520

cases of a cu ratio of 20, the largest CV values are observed for spatial fractions521

of about 0.2 possibly because when the blocks occupy only a small portion of522

the material, the strength of the matrix dominates the bearing capacity in the523
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Figure 14: Different bimsoils cu ratios tested: a) mean and percentiles 25 and 75% and b)
CV values

ratio cumatrix [kPa] cu block [kPa]
2 20 40
3 20 60
4 20 80
5 20 100
10 10 100
20 10 200
2 30 60
20 5 100

Table 2: Sets of parameters tested

model thus inducing more intricate failure surfaces. Nevertheless, it is worth524

highlighting that for all cases, the CV remains below 6%, which is less than half525

of the maximum value attributable to isotropic correlation, of almost 16% as526

depicted in Figure 7.527

Finally, the BEM equation was used to fit the bearing capacity of the differ-528

ent sets of soils tested. The parameter dBEM was found by the minimization of529

the root-mean-square error. The results are shown in Figure 15. It is interesting530

to note that the changes in the shape of the curves from the bearing capacity531

ratio as function of the spatial fraction, shown in Figure 15a, for the different532

cu ratios, agree very well with the dBEM proposed. Figure 15b shows the re-533

lationship between the proposed values for dBEM and the cu ratio. A power534

equation appears to fit the data with a R2=0.99, as following:535

dBEM = (cumatrix/cu block)
0.28 (9)
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Figure 15: BEM equation for the different cu ratios tested: a) bearing capacity ratio as
function of the spatial fraction and b) dBEM values as a function of the cu ratio.

4.4. Effect of the effective loaded zone536

As depicted in Figure 4, it becomes evident that not the entire strength of537

the soil deposit is crucial when evaluating the bearing capacity (qu) of the foun-538

dation. Instead, there appears to be a defined region for which the average shear539

strength is related the most with the qu value. The existence of an equivalent540

homogeneous soil deposit that could reproduce (statistically) the same response541

as a spatially variable deposit is encouraging for practical purposes. Pioneering542

work by Vanmarcke (1977) stated that the performance of geotechnical struc-543

tures is controlled by the average over a certain size of line, area or volume,544

referred as the Local Average (LA), rather than by the soil parameter value at545

a single point. In fact, LA is recommended in practical design codes, such as546

Eurocode 7 (CEN, 2004), to determine characteristic values of geotechnical pa-547

rameters. LA applications in the assessment of the bearing capacity have been548

studied by Asaoka and Matsuo (1983), Griffiths and Fenton (2001) , Kasama549

et al. (2012) and Honjo and Otake (2013), among others. The former proposed550

appropriate sizes of local averages to evaluate the effects of spatial variability551

for various geotechnical structures. Concerning the bearing capacity of shallow552

foundation in cohesive soils, a size of Ly × Lz=2B × 0.7B was suggested. It553

corresponds to the rectangle where is located the majority of the plastic zone554

obtained by the Prandtl-type ultimate bearing capacity equation. This size was555

said to be independent of the random field characteristics and of the absolute556

undrained strength of the soils. Thus, the averaging area size purely depends557

on the mechanism controlling the limit state, but not on the spatial variability558

properties of the soil.559

For the binary random field used to simulate bimsoils presented in this analy-560

sis, an optimization procedure was established to find the LA area. For the sake561

of brevity, only the case of maximum variation is presented, i.e. βH = βV = 0.9;562

however, the other cases were also analysed and the results were similar. The563
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Figure 16: Bearing capacity as a function of the γeff : a) evaluated in all the deposit (5B×2B)
, b) at the suggested area by Honjo and Otake (2013) (2B × 0.7B) and c) the optimized area
(2.4B ×B).

optimization consisted in maximizing the coefficient of determination (R2) of564

the data fitted to the previously obtained BEM equation. In the fit, the bearing565

capacity values are related to the effective spatial fraction (γeff ), calculated566

at the area below the foundation of size Ly × Lz. The distances Ly/2 and Lz567

were varied every element size (B/16). As an example, three cases are shown568

in Figure 16 : a) evaluated in all the deposit (5B × 2B) , b) at the suggested569

area from Honjo and Otake (2013) (2B×0.7B) and c) the optimized area found570

(2.4B × 1.1B). Globally, the dispersion is reduced when using an appropriate571

γeff , although some dispersion is still present for the optimized area. Concern-572

ing the mean values evaluated at different bins, the BEM equation is in general573

appropriate for the three cases, except for higher γeff as shown in Figure 16b.574

A summary of the optimization is shown in Figure 17. The R2 values for575

each area tested are mapped in the mesh. As the results are vertically sym-576

metric, only half of the mesh is shown. Even if the R2 value for the area of577

2B × 0.7B, shown in dashed box, is high (R2 = 0.916), it is improved for the578

optimized area (R2 = 0.959), as shown in the solid box. The remaining box,579

in dash-dot, corresponds to the entire plastic zone of the Prandtl-type ulti-580

21



0 2 4 6 8 10
−8

−6

−4

−2

0  

Ly/2 [m]

 

L
z
 [

m
]

R
2
 [

1
]

0.75

0.8

0.85

0.9

0.95

1

(a)

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

C
V

 q
u
 [

%
]

γ
eff

 [1]

0 5 10
−8

−6

−4

−2

0

Ly/2 [m]

L
z
 [

m
]

(b)

Figure 17: Optimization summary results: a) Half mesh for the coefficient of determination
R2 values of varying LA area and b) CV reduction due to LA area in bimsoils

mate bearing capacity equation and presented a smaller R2 value. Figure 17b581

demonstrates that optimizing the LA area leads to a significant reduction in582

the coefficient of variation (CV), nearly halving its value. The CV reduction583

was also evaluated for the other isotropic correlations tested; however it was584

smaller and is not shown here to avoid repetition. While the CV is reduced585

when the optimized area is used, there is still a remaining dispersion due to the586

different failure mechanisms induced by the spatial variability. Compared to587

the initial CV values, from Figure 7, the maximum value is still higher for this588

isotropic correlation. In other words, the variation due to the spatial correlation589

in bimsoils is more important than that of the local average.590

5. Conclusions591

Homogeneous equivalent models can present the same qu values when the592

accurate cu value of bimsoils is taken as input. Because of its capability to593

account for the contrast in matrix and block mechanical properties, the Brugge-594

man effective medium (BEM) equation appears to accurately predict the mean595

bearing capacity for varying spatial fractions (γ). On the contrary, traditional596

homogenisation techniques, such as the arithmetic or harmonic averages, will597

either overestimate or underestimate the resistance of bimsoils. However, for598

a given γ and a given correlation, the spatial distribution affects the qu with599

coefficients of variation (CV) up to almost 20%. This CV can be reduced if the600

optimized LA area is taken into account, although it can not be avoided as it is601

due to the radically different failure mechanisms (surfaces) that are developed.602

Lastly, these variations can be also obtained with Monte Carlo simulations on603

homogeneous models which could be of great use to account for the effects of604

bimsoils spatial variability on the bearing capacity in a simple reliability-based605

design.606

The results shown in this analysis have taken into account the results dif-607

ference with the Prandtl’s solution. First, it has been measured as the ability608
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of the finite element method to reflect the actual behaviour of an homogeneous609

(ideal) soil and it has been subtracted before applying the Prandtl’s formula.610

It has been assumed that both the finite element method and the theoretical611

formula are sufficiently reasonable approximations to the behaviour of soils to612

allow the investigation of the major features of stochastic bimsoils behaviour613

under loading from a rigid foundation. Note that the effects of the spatial vari-614

ability in the CV of qu have been evaluated independently of these assumptions615

and are associated with traditional usage of this engineering problem.616

The numerical model of binary spatial variability applied in a probabilistic617

framework appears to properly include heterogeneity on the bimsoils. Other618

cases of discrete spatial variability, such as soil-mixing for liquefaction mitiga-619

tion, have been also analyzed with this model in order to identify homogeneous620

equivalent models (Montoya-Noguera and Lopez-Caballero, 2016). Homoge-621

neous equivalent models with the BEM equation were successfully calibrated622

for eight sets of contrast between matrix and block undrained shear strength623

values to evaluate the bearing capacity under undrained conditions. For fur-624

ther research, other values for contrast in strength and stiffness properties be-625

tween the blocks and matrix may be tested evaluating also the settlement and626

other engineering demand parameters. Also, other constitutive models may627

be implemented, representing for example a purely frictional matrix as done628

by Schmüdderich et al. (2021). Additionally, a continuous random field model629

could be included in order to account for inherent variability in the matrix and630

the block behavior. Bimsoils were simulated with a binary random field (BRF)631

model and a uniform mesh was used. Employing adaptively refined meshes such632

as that presented by Schmüdderich et al. (2021) may bypass the computational633

resources while at the same time enhancing accuracy by utilizing a smaller total634

number of elements. This technique is of even greater importance in scenarios635

where irregularly shaped blocks can impede the development of regular fail-636

ure surfaces. This could be an improvement for further studies. The BRF637

model produced polydispersed clusters with irregular shapes of different sizes638

controlled partly by the correlation coefficients, although the model could be639

enhanced to produce regular shapes of fixed sizes. Finally, the results presented640

are limited to welded bimsoils but unwelded bimsoils could be also studied with641

this numerical model and with adaptively refined meshes.642
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