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Abstract. Superpixels through Iterative CLEarcutting (SICLE) is a re-
cently proposed framework for superpixel segmentation. SICLE consists
of three steps: (i) seed oversampling; (ii) superpixel generation; and (iii)
seed removal; such that, after step (i), steps (ii) and (iii) are repeated
until a desired number of superpixels is obtained. Such pipeline showed
effective and efficient multiscale superpixel segmentation. Furthermore,
if an object is desired, it is possible to improve delineation by provid-
ing its probable location, often called saliency. While classical methods
estimate object saliency by contrast-based criteria, recent ones use deep-
learning strategies for accurate estimation. SICLE shows robustness for
low-quality saliency estimations, but it struggles to effectively take ad-
vantage of the high-quality ones. In this work, we propose a generaliza-
tion of its path-cost function and seed removal criterion (steps (ii) and
(iii), respectively), adapting SICLE to a given saliency map. By choice of
a binary parameter, SICLE can take advantage of low- and high-quality
saliency maps for better segmentation. Results show that, by exploiting
the accurate information of the saliency map, our improved SICLE ver-
sion surpasses state-of-the-art methods in traditional delineation metrics
while requiring only two iterations for segmentation, being significantly
faster than its predecessor and SLIC.

Keywords: Superpixel Segmentation · Object Saliency Map · Image
Foresting Transform.
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1 Introduction

Superpixels represent homogeneous regions that contain a perceptual meaning
and provide more information than pixels. Although some authors raise com-
pactness and regularity as indicators of high-quality superpixel segmentation,
boundary adherence, efficiency, and controllable quantity of superpixels, are in-
dispensable for any method [23,25]. From that, several applications such as object
tracking [10], semantic segmentation [33], and image classification [21] exploit
their properties.

Classical approaches differ in their strategy for superpixel generation and gen-
erally consider only color and spatial position to measure superpixel similarity,
without any prior information. We may cite Simple Linear Iterative Clustering
(SLIC) [1] as an example of a clustering-based method given its adapted K-means
strategy in a 5-dimensional feature space. Conversely, graph-based approaches,
such as Entropy Rate Superpixels (ERS) [16], have higher boundary adherence
but they are often slow. Also, Superpixel Hierarchy (SH) [26] and Waterpix-
els [17] are effective hierarchical graph-based examples whose drawback is error
propagation to coarser scales. Finally, Dynamic and Iterative Spanning Forest
(DISF) [6] is a path-based method that applies oversampling and iteratively
generates superpixels on refined seed sets.

Using local information without any prior or high-level knowledge may be
insufficient to obtain a good delineation in images with complex characteris-
tics, such as textured or noisy images [28]. More recent approaches circumvent
this drawback with Deep Learning architectures [29,14] or by including high-
level information, such as texture [31] and gradient mask [28]. However, they
present moderate delineation, and their constraints are the regular grid shape
on standard convolution operations for deep-learning-based methods, high com-
putational time, and the lack of superpixel groundtruth [29].

Although using saliency in segmentation is not a novel strategy [12], it has
not been thoroughly exploited for generating superpixels until recently. In [32],
the authors proposed a SLIC-based algorithm that uses a saliency map based on
the Fourier Transform for generating more superpixels in textured regions. The
Object-based DISF (ODISF) [3] method is another example that extends DISF
for incorporating object saliency maps. However, since the map’s influence is
not controllable in both, higher-quality saliency may not promote higher-quality
delineation. Conversely, Object-based ISF (OISF) [4,5] overcomes this issue by
allowing user control over the saliency influence during delineation, but it is slow
and highly sensitive to incorrect estimations.

A recent proposal named Superpixels through Iterative CLEarcutting
(SICLE) [8] generalizes ODISF for allowing user control over the number
of iterations for segmentation, being more efficient than SLIC at generating
superpixels in different experiments. The SICLE pipeline is composed of three
steps: (i) seed oversampling; (ii) superpixel generation by the Image Foresting
Transform (IFT) [11]; and (iii) object-based seed removal. After step (i), steps
(ii) and (iii) are performed until obtaining a desired number of superpixels. By
using object information only in the last step, SICLE delineation performance
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Fig. 1. Comparison between SICLE and our improved version for accurate maps con-
sidering 25 superpixels. Red lines indicate object boundaries, whereas cyan ones, super-
pixel borders. Yellow rectangles indicate delineation errors that our approach overcame.

is robust to incorrect estimations, contrasting with OISF. However, similarly
to ODISF, it cannot improve its delineation performance for higher-quality
saliency maps.

One may argue that an object-based method should exploit the prior object
location information with respect to its quality. For high-quality information,
the approximation to the object boundaries can assist its delineation. Con-
versely, although low-quality information poorly estimates the object bound-
aries, it presents valuable information on its location. Therefore, in this work,
we propose a generalization of SICLE’s path-cost function and object-based
seed removal criteria (i.e., steps (ii) and (iii), respectively) for exploiting low-
and high-quality saliency maps to improve segmentation results by choice of a
binary parameter. Experimental results show that our proposal, named SICLEα,
is robust to low-quality maps and improves delineation in the case of high-quality
ones, as exemplified in Figure 1. Moreover, by exploiting the accurate estima-
tion of the object boundaries, SICLEα achieves higher precision in step (iii),
thus requiring only two iterations for effective object delineation. Given both,
our method surpasses state-of-the-art methods in terms of efficiency and effec-
tiveness, considering classical evaluation metrics.

This paper is organized as follows. The related definitions are presented in
Section 2 and our proposal is described in Section 3. Section 4 presents the
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experiments, with an ablation study, and qualitative and quantitative evaluation.
Finally, the conclusion and future work are presented in Section 5.

2 Theoretical Background

In this section, we present the theoretical background for our work. In Sec-
tion 2.1, we discuss basic concepts in image and graphs and, subsequently, in
Section 2.2, we present the Image Foresting Framework (IFT) [11].

2.1 Image and Graphs

An image I is a pair ⟨P,F⟩ in which F(p) ∈ Rm maps the features of every
picture element (i.e., pixel) p ∈ P ⊂ Z2, given m ∈ N∗. I is either colored
or grayscale whenever m > 1 or m = 1, respectively. An object saliency map
O = ⟨P,O⟩ is an instance of the latter in which O(p) ∈ [0, 1] maps p to its
probability of belonging to an object of interest (i.e., saliency). Finally, for a set
of pixels X ⊆ P, we may compute its mean feature F(X) =

∑
x∈X F(x)/|X|

and mean saliency O(X) =
∑

x∈X O(x)/|X|.
From I, we may build a directed graph (i.e., digraph) G = ⟨V,A⟩ so that

V ⊆ P contains its vertices and A ⊂ V2 its arcs. The existence of an arc
⟨x, y⟩ ∈ A indicates that x is adjacent to y. Often, A is defined by the 8-
adjacents of every pixel x ∈ P, such that A =

{
⟨x, y⟩ : ∥x− y∥2 ≤

√
2
}
. In this

work, A holds no self-loops nor parallel edges (i.e., G is a simple graph).
A (directed) path ρ = ⟨v1, . . . , vk⟩ is a sequence of k ∈ N∗ distinct adjacent

vertices (i.e., ⟨vi, vi + 1⟩ ∈ A for i < k). If k = 1, ρ is said to be trivial, and non-
trivial otherwise. In ρ, we term vi as the predecessor of vi+1 and the successor
vi−1 given 1 < i < k. Moreover, we may exhibit the root v1 and the terminus
vk of ρ either by ρv1⇝vk or by ρvk whenever v1 is irrelevant for the context. For
instance, ρy = ρx ⊙ ⟨x, y⟩ denotes the path ρy resultant from concatenating ρx
with ⟨x, y⟩.

2.2 Image Foresting Transform

The Image Foresting Transform (IFT) [11] is a framework whose effectiveness
in object delineation has been reported in several works [13,6,3,9]. When a set
of representative vertices (i.e., seeds) S ⊂ V is provided, the algorithm builds
trees with optimum path-cost from their seed s ∈ S to any p ∈ V \ S through
path concatenation.

We can estimate the cost of an arc ⟨x, y⟩ ∈ A by an arc-cost function
w∗(x, y) ∈ R and, likewise, the cost of any path ρx can be computed by an
path-cost function f∗(ρx) ∈ R+. As an example, the fmax (Equation 1) is com-
monly used in IFT-based methods due to its effectiveness [3,6] in delineating
objects:

fmax(⟨x⟩) =
{

0, ifx ∈ S
+∞, otherwise

fmax(ρx ⊙ ⟨x, y⟩) = max {fmax(ρx),w∗(x, y)}
(1)
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If f∗(ρx) ≤ f∗(τx), considering τx ∈ P to be any other path reaching x within
the set P of all possible paths in G, then ρx is optimum.

The IFT minimizes a cost map C(x) = minρx∈P {f∗(ρx)} by assigning an
optimum path ρx from a seed to x ∈ V \ S. Simply put, the method builds trees
whose paths to non-seed vertices are more closely connected to its seed than to
any other using a generalization of the Dijkstra’s shortest-path algorithm. Even
if f∗ is not smooth, it still exhibits properties suitable for segmentation [18].
While minimizes C, the algorithm builds an acyclic map P (i.e., predecessor
map) which assigns x either to its predecessor defined in ρx or to a distinctive
marker ▲ ̸∈ V, whenever x is the root of ρx and, thus, of P. As one may see, it is
possible to map x to its root R(x) ∈ S recursively through P. Furthermore, by
assuming s = R(x), we can map every vertex to its optimum-path tree T(s) ⊂ V
by T(s) = {t : R(t) = s}. In this work, every superpixel is an optimum-path tree
rooted in a seed.

3 Methodology

In this section, we review Superpixels through Iterative CLEarcutting (SICLE) [8]
alongside our proposed evolutions to better take advantage of high quality
saliency estimations. Briefly, each section refers to a specific SICLE step,
given that our contributions reside on the last ones: (i) seed oversampling; (ii)
superpixel generation; and (iii) object-based seed removal (i.e., Sections 3.1, 3.2
and 3.3, respectively).

3.1 Seed Oversampling

Being a seed-based method, the first SICLE step consists in selecting a set S ⊂ V
of N0 initial seeds for generating Nf superpixels, given N0, Nf ∈ N∗. However,
differently from most approaches, it oversamples (i.e., N0 ≫ Nf ) for improving
the probability of selecting the seeds that promote accurate object delineation
(i.e., relevant). In this strategy, the aim is to remove the irrelevant ones until
reaching Nf seeds in the final iteration (see Section 3.3). In this work, we ar-
gue no need for seed selection improvement given the reported loss of efficiency
when object saliency maps are considered [7] and the seed relevance redundancy
premise [8]. Consequently, the central strategy for delineation improvement relies
on maintaining the relevant seeds throughout the iterations.

3.2 Superpixel Generation

For generating superpixels, SICLE uses the seed-restricted IFT version.
Furthermore, although several path-cost and arc-cost functions have been
proposed [9,24,6], it opts for the fmax and a root-based arc-cost estimation
wroot(x, y) = ∥F(R(x))− F(y))∥2 due to its reported effectiveness in superpixel
delineation [8].
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As one may note, such arc-cost function does not consider any object infor-
mation. The authors in [8] justify such option in SICLE mainly on the existence
of incorrect estimations in the map, deteriorating the object delineation. And
although it resulted in a more robust performance for any map, it also led to
the inability to improve its delineation for state-of-the-art estimators. First, let
α ∈ {0, 1} be a user-defined “trustiness” switch of the saliency map’s object
boundary approximation. When α = 1, the user judges that the map’s bor-
ders are sufficiently accurate for assisting in delineation, due to its closeness
to the object’s boundaries. Otherwise, it may set α = 0 for avoiding incorrect
estimations within the map, preventing segmentation degradation, while still ex-
ploiting the object location information for improving the SICLE performance.
For both cases, it is expected that the object is known beforehand and it was
properly located by the saliency estimator. Then, to achieve each property when
desired, we propose a generalization wα

∗ (x, y) = (w∗(x, y))
1+α·∥O(R(x))−O(y)∥1 .

Note that, aside from not requiring optimization, wα
∗ = w∗ when α = 0 since

it discards the influence of the saliency difference. Finally, in contrast to the
arc-cost function proposed in [4], the magnitude of the saliency influence in wα

∗
is significantly smaller, leading to a lighter impact by eventual incorrect estima-
tions.

3.3 Seed Removal

In SICLE, Nf superpixels are obtained after successively removing N0−Nf seeds
from S, requiring at most Ω ∈ N∗ > 1 iterations. At each iteration i ∈ N < Ω,
M(i) = max{(N0)

1−ω·i, Nf}, given ω = 1/ (Ω − 1), most irrelevant seeds are
removed, while the remaining ones are perpetuated for testing their relevance in
the next iteration i+ 1.

For each seed s ∈ S, its relevance V∗(s) ∈ R+ is estimated based on the
characteristics of its superpixel T(s) resultant from the last IFT execution. As
an example, one may opt for a size- and contrast-based criterion Vsc(s) for
accurate selection of relevant seeds irrespective of whether a map is provided [8].
First, we define the color gradient between two superpixels rooted in s, t ∈ S by
GF(s, t) =

∥∥F(T(s))− F(T(t))
∥∥
2
. Moreover, it is possible to define the adjacents

of s by A(s) = {t : ∃ ⟨x, y⟩ ∈ A} considering t ∈ S, x ∈ T(s), y ∈ T(t) and
s ̸= t. Finally, from both, we can compute the relevance of s by Vsc(s) =
|T(s)|
|V| ·min∀ t∈A(s) {GF(s, t)} using the aforementioned criterion.

However, when a saliency map is given, the seed relevance is linked to its
object proximity: the farther the superpixel, the more irrelevant it is, even though
it is considered relevant by its non-object-based criterion [8]. Thus, in SICLE,
every criterion is subjected to an object-based weighting factor. Similarly to
GF(s, t), we define GO(s, t) =

∥∥O(T(s))−O(T(t))
∥∥
2

as the saliency gradient
between the superpixels of s and t. Then, the object-based relevance of s is
measured by Vobj(s) = V∗(s) ·max{O(T(s)),max∀ t∈A(s) {GO(s, t)}}.

One can see that such function favors seeds near the object border depicted
on the map, promoting competition in crucial regions for delineation. Moreover,
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by favoring those within it, SICLE populates the regions incorrectly estimated as
object parts, diminishing the influence of such error through competition. How-
ever, when a high-quality map is provided, not only are its borders more accurate
but promoting competition in internal object borders minimally impacts its ex-
terior boundaries. In such case, one may favor the seeds nearby the object rather
than those within it. Thus, and similarly to wα

∗ , we generalize SICLE’s object-
based seed relevance function for assessing such properties whenever one of them
is requested: Vα

obj = V∗(s)·max{(1−α)·O(T(s)),max∀ t∈A(s) {GO(s, t)}}. Sim-
ilarly to wα

obj , when α = 0, the tree’s saliency is also considered as a relevant
feature, resulting in Vα

obj = Vobj . Otherwise, only the trees near the saliency
borders are favored in the computation.

4 Experimental Results

In this section, we present the experimental framework for analyzing and evaluat-
ing the proposed method. We first describe the experimental setup in Section 4.1
and subsequently perform an ablation study in Section 4.2. Lastly, we present a
quantitative and qualitative analysis in Section 4.3.

4.1 Experimental Setup

We selected three datasets for assessing the performance of all methods. Given
that the most used segmentation evaluation dataset [2] is contour-driven, it is
not applicable when a single object is desired. Conversely, our selection tries
to assess different delineation difficulties for distinct objects, while offering a
broad perspective on the methods’ performance in their primary goal: generating
superpixels. For handling different objects, we opt for the popular Extended
Complex Saliency Scene Dataset (ECSSD) [22], which contains 1000 natural
images with complex objects and backgrounds. On the other hand, the thin
object legs in Insects [18] (130 images) offers a proper delineation challenge.
Similarly, the Liver [24] dataset contains 40 CT slices of the human liver whose
smooth boundaries are difficult to detect. We selected, by random, 30% and 70%
of each dataset for optimization and testing, respectively. Finally, we considered
the U2-Net [20], fine-tuned with its default parameters, for generating the object
saliency maps.

As baselines, we chose the following state-of-the-art methods based on their
speed and accuracy: (i) SLIC [1] 4; (ii) SH [26] 5; (iii) ERS [16] 6; (iv) OISF [5] 7.
By selecting such baselines, we assess the major properties for superpixel seg-
mentation: speed and object delineation. Thus, although deep-learning-based
methods with promising results have been proposed, more research is required
for surpassing the performance of classical algorithms [27,30,34,15,8]. As initial
4 https://www.epfl.ch/labs/ivrl/research/slic-superpixels/
5 https://github.com/semiquark1/boruvka-superpixel
6 https://github.com/mingyuliutw/EntropyRateSuperpixel
7 https://github.com/LIDS-UNICAMP/OISF
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Fig. 2. Impacts of object saliency map quality on SICLEα.

setting for SICLEα, we used the default recommendation [8]:(i) random over-
sampling with N0 = 3000; (ii) fmax; (iii) V∗ = Vsc; and (iv) Ω = 5. Our code
is publicly available online 8. For measuring their performances, we used the
Boundary Recall (BR) [23] and the Under-segmentation Error (UE) [19] due to
their expressiveness [23]. While the former measures the ratio between object
boundaries and superpixel borders (i.e., higher is better), the latter estimates
errors from superpixel “leakings” (i.e., lower is better).

4.2 Ablation Study

We first analyzed the impacts of the saliency map quality on SICLEα, as shown
in Figure 2. In this experiment, we considered a representative of a poor, a state-
of-the-art, and an ideal estimator: (i) object’s minimum bounding box (BB); (ii)
U2-Net (U); and (iii) ground-truth (GT); respectively. We highlight that the GT
is only considered in this experiment. By setting α = 1, our improved SICLE
improves its segmentation proportionally to the saliency map quality (i.e., the
better the map, the better the delineation). Note that SICLEα performance
deteriorates when changing from GT to U maps, indicating that although highly
accurate, the latter is not ideal. Still, by improving the saliency incorporation,
our approach significantly improves when α = 1, especially considering UE.
Finally, by simply setting α = 0 when a poor quality map is provided, SICLEα

becomes robust against saliency errors.

8 https://github.com/LIDS-UNICAMP/SICLE
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Our second experiment analyses if the proposed method assists in reducing
the number of iterations for segmentation. From the curves in Figure 3, we
see that SICLEα manages to achieve its top performance requiring only two
iterations and increasing Ω does not lead to improvements when α = 1. We
argue that our improved seed relevance criteria accurately select Nf relevant
seeds in only one iteration, requiring one more for promoting effective object
delineation. For that, we set Ω = 2 whenever α = 1.

4.3 Quantitative and Qualitative Analysis

Our last experiment (Figure 4) compared our improved SICLEα against the
baselines. In terms of BR, SICLEα managed to surpass all methods signifi-
cantly, especially for Nf = 200 superpixels. Given its discrepant performance
compared to OISF, we can argue that our approach best exploits the saliency
information for segmentation. Moreover, SICLEα presented better delineations
in Insects than ERS, the best method known in such dataset. Regarding UE,
our improvements reduced the superpixel leaking significantly, leading to on par
results with OISF, which often presents the lowest values in several works [4,5,3].

Table 1 shows the average speed performance of all methods in the ECSSD
dataset on a 64-bit Intel(R) Core(TM) i7-4790S PC with CPU speed of 3.20GHz.
As one can see, even though SICLEα is O(|V| log |V|), it is the fastest method
amongst all. For instance, SLIC and SH are O(|V|), but they perform burden-
some operations for obtaining a single segmentation. While the former executes
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N0 SLIC ERS SH OISF SICLEα

25 0.537±0.028 0.913±0.085 0.758±0.028 1.987±0.367 0.279±0.037
100 0.540±0.029 0.952±0.093 0.756±0.026 1.252±0.236 0.279±0.030
750 0.541±0.029 1.027±0.109 0.756±0.027 0.849±0.163 0.296±0.037

Table 1. Average speed performance (in seconds) on the ECSSD dataset considering
α = 1 for SICLEα. The best value for each Nf is depicted in bold.

a strict number of iterations (e.g., 10), the latter computes the whole hierarchy.
In contrast, SICLEα surpasses both speed and delineation by benefitting from
our improvements, leading to only two iterations. Lastly, it is straightforward to
obtain an object-based multiscale segmentation on the fly from SICLEα [8].

Finally, the superior performance of SICLEα can be exemplified by Figure 5.
Note that, by setting α = 1, our improved method can correct the errors for
α = 0, achieving top object delineation and surpassing all baselines. As indicated
by the yellow rectangles, SICLEα best exploits the saliency information and best
approximates the object borders, especially when compared to other object-
based methods like OISF.

5 Conclusion and Future Work

This work proposes SICLEα, an improved version of the state-of-the-art object-
based method Superpixels through Iterative CLEarcutting (SICLE) by generaliz-
ing its path-cost function and seed removal criterion. Our proposal may promote



Superpixels using Accurate Saliency Estimation 11

Original

Saliency Map SICLEα=0 SICLEα=1 OISF

ERS SH SLIC

Original

Saliency Map SICLEα=0 SICLEα=1 OISF

ERS SH SLIC

Original

Saliency Map SICLEα=0 SICLEα=1 OISF

ERS SH SLIC

Original

Saliency Map SICLEα=0 SICLEα=1 OISF

ERS SH SLIC

Original

Saliency Map SICLEα=0 SICLEα=1 OISF

ERS SH SLIC

Original

Saliency Map SICLEα=0 SICLEα=1 OISF

ERS SH SLIC

Original

Saliency Map SICLEα=0 SICLEα=1 OISF

ERS SH SLIC

Original

Saliency Map SICLEα=0 SICLEα=1 OISF

ERS SH SLIC

Original

Saliency Map SICLEα=0 SICLEα=1 OISF

ERS SH SLIC

Original

Saliency Map SICLEα=0 SICLEα=1 OISF

ERS SH SLIC
Original

Saliency Map SICLEα=0 SICLEα=1 OISF

ERS SH SLIC

Original

Saliency Map SICLEα=0 SICLEα=1 OISF

ERS SH SLIC

Original

Saliency Map SICLEα=0 SICLEα=1 OISF

ERS SH SLIC

Original

Saliency Map SICLEα=0 SICLEα=1 OISF

ERS SH SLIC

Original

Saliency Map SICLEα=0 SICLEα=1 OISF

ERS SH SLIC

Original

Saliency Map SICLEα=0 SICLEα=1 OISF

ERS SH SLIC

Original

Saliency Map SICLEα=0 SICLEα=1 OISF

ERS SH SLIC

Original

Saliency Map SICLEα=0 SICLEα=1 OISF

ERS SH SLIC

Original

Saliency Map SICLEα=0 SICLEα=1 OISF

ERS SH SLIC

Fig. 5. Comparison between SICLEα and state-of-the-art methods considering 100 su-
perpixels. Red lines indicate object boundaries, whereas cyan ones, superpixel borders.
Yellow rectangles indicate delineation errors that our approach overcame.

robustness for low-quality saliency maps or may improve its effectiveness and
efficiency in delineation for high-quality ones through a single and intuitive pa-
rameter. Results show that SICLEα surpasses state-of-the-art methods regarding
popular metrics while being the fastest one in all datasets considered. For future
work, we intend to extend SICLEα for video supervoxel segmentation and study
its performance for interactive image segmentation.
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