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Superpixels through Iterative CLEarcutting (SICLE) is a recently proposed framework for superpixel segmentation. SICLE consists of three steps: (i) seed oversampling; (ii) superpixel generation; and (iii) seed removal; such that, after step (i), steps (ii) and (iii) are repeated until a desired number of superpixels is obtained. Such pipeline showed effective and efficient multiscale superpixel segmentation. Furthermore, if an object is desired, it is possible to improve delineation by providing its probable location, often called saliency. While classical methods estimate object saliency by contrast-based criteria, recent ones use deeplearning strategies for accurate estimation. SICLE shows robustness for low-quality saliency estimations, but it struggles to effectively take advantage of the high-quality ones. In this work, we propose a generalization of its path-cost function and seed removal criterion (steps (ii) and (iii), respectively), adapting SICLE to a given saliency map. By choice of a binary parameter, SICLE can take advantage of low-and high-quality saliency maps for better segmentation. Results show that, by exploiting the accurate information of the saliency map, our improved SICLE version surpasses state-of-the-art methods in traditional delineation metrics while requiring only two iterations for segmentation, being significantly faster than its predecessor and SLIC.

Introduction

Superpixels represent homogeneous regions that contain a perceptual meaning and provide more information than pixels. Although some authors raise compactness and regularity as indicators of high-quality superpixel segmentation, boundary adherence, efficiency, and controllable quantity of superpixels, are indispensable for any method [START_REF] Stutz | Superpixels: An evaluation of the state-of-theart[END_REF][START_REF] Wang | Superpixel segmentation: A benchmark[END_REF]. From that, several applications such as object tracking [START_REF] Conze | Unsupervised learning-based long-term superpixel tracking[END_REF], semantic segmentation [START_REF] Zhao | An improved image semantic segmentation method based on superpixels and conditional random fields[END_REF], and image classification [START_REF] Sellars | Superpixel contracted graph-based learning for hyperspectral image classification[END_REF] exploit their properties.

Classical approaches differ in their strategy for superpixel generation and generally consider only color and spatial position to measure superpixel similarity, without any prior information. We may cite Simple Linear Iterative Clustering (SLIC) [START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF] as an example of a clustering-based method given its adapted K-means strategy in a 5-dimensional feature space. Conversely, graph-based approaches, such as Entropy Rate Superpixels (ERS) [START_REF] Liu | Entropy rate superpixel segmentation[END_REF], have higher boundary adherence but they are often slow. Also, Superpixel Hierarchy (SH) [START_REF] Wei | Superpixel hierarchy[END_REF] and Waterpixels [START_REF] Machairas | [END_REF] are effective hierarchical graph-based examples whose drawback is error propagation to coarser scales. Finally, Dynamic and Iterative Spanning Forest (DISF) [START_REF] Belém | Superpixel segmentation using dynamic and iterative spanning forest[END_REF] is a path-based method that applies oversampling and iteratively generates superpixels on refined seed sets.

Using local information without any prior or high-level knowledge may be insufficient to obtain a good delineation in images with complex characteristics, such as textured or noisy images [START_REF] Wu | Texture-aware and structure-preserving superpixel segmentation[END_REF]. More recent approaches circumvent this drawback with Deep Learning architectures [START_REF] Yang | Superpixel segmentation with fully convolutional networks[END_REF][START_REF] Jampani | Superpixel sampling networks[END_REF] or by including highlevel information, such as texture [START_REF] Yuan | Superpixels with content-adaptive criteria[END_REF] and gradient mask [START_REF] Wu | Texture-aware and structure-preserving superpixel segmentation[END_REF]. However, they present moderate delineation, and their constraints are the regular grid shape on standard convolution operations for deep-learning-based methods, high computational time, and the lack of superpixel groundtruth [START_REF] Yang | Superpixel segmentation with fully convolutional networks[END_REF].

Although using saliency in segmentation is not a novel strategy [START_REF] Fehri | Prior-based hierarchical segmentation highlighting structures of interest[END_REF], it has not been thoroughly exploited for generating superpixels until recently. In [START_REF] Zhang | Dynamic spectral residual superpixels[END_REF], the authors proposed a SLIC-based algorithm that uses a saliency map based on the Fourier Transform for generating more superpixels in textured regions. The Object-based DISF (ODISF) [START_REF] Belém | Towards a simple and efficient object-based superpixel delineation framework[END_REF] method is another example that extends DISF for incorporating object saliency maps. However, since the map's influence is not controllable in both, higher-quality saliency may not promote higher-quality delineation. Conversely, Object-based ISF (OISF) [START_REF] Belém | Superpixel segmentation by object-based iterative spanning forest[END_REF][START_REF] Belém | Superpixel generation by the iterative spanning forest using object information[END_REF] overcomes this issue by allowing user control over the saliency influence during delineation, but it is slow and highly sensitive to incorrect estimations.

A recent proposal named Superpixels through Iterative CLEarcutting (SICLE) [START_REF] Belém | Efficient multiscale object-based superpixel framework[END_REF] generalizes ODISF for allowing user control over the number of iterations for segmentation, being more efficient than SLIC at generating superpixels in different experiments. The SICLE pipeline is composed of three steps: (i) seed oversampling; (ii) superpixel generation by the Image Foresting Transform (IFT) [START_REF] Falcão | The image foresting transform: Theory, algorithms, and applications[END_REF]; and (iii) object-based seed removal. After step (i), steps (ii) and (iii) are performed until obtaining a desired number of superpixels. By using object information only in the last step, SICLE delineation performance Original Saliency Map [START_REF] Qin | U2-net: Going deeper with nested u-structure for salient object detection[END_REF] SICLE [START_REF] Belém | Efficient multiscale object-based superpixel framework[END_REF] Our proposal Original Saliency Map [START_REF] Qin | U2-net: Going deeper with nested u-structure for salient object detection[END_REF] SICLE [START_REF] Belém | Efficient multiscale object-based superpixel framework[END_REF] Our proposal Original Saliency Map [START_REF] Qin | U2-net: Going deeper with nested u-structure for salient object detection[END_REF] SICLE [START_REF] Belém | Efficient multiscale object-based superpixel framework[END_REF] Our proposal Original Saliency Map [START_REF] Qin | U2-net: Going deeper with nested u-structure for salient object detection[END_REF] SICLE [START_REF] Belém | Efficient multiscale object-based superpixel framework[END_REF] Our proposal Original Saliency Map [START_REF] Qin | U2-net: Going deeper with nested u-structure for salient object detection[END_REF] SICLE [START_REF] Belém | Efficient multiscale object-based superpixel framework[END_REF] Our proposal Original Saliency Map [START_REF] Qin | U2-net: Going deeper with nested u-structure for salient object detection[END_REF] SICLE [START_REF] Belém | Efficient multiscale object-based superpixel framework[END_REF] Our proposal Original Saliency Map [START_REF] Qin | U2-net: Going deeper with nested u-structure for salient object detection[END_REF] SICLE [START_REF] Belém | Efficient multiscale object-based superpixel framework[END_REF] Our proposal Saliency Map [START_REF] Qin | U2-net: Going deeper with nested u-structure for salient object detection[END_REF] Our proposal Saliency Map [START_REF] Qin | U2-net: Going deeper with nested u-structure for salient object detection[END_REF] Our proposal Saliency Map [START_REF] Qin | U2-net: Going deeper with nested u-structure for salient object detection[END_REF] Our proposal

Saliency Map [START_REF] Qin | U2-net: Going deeper with nested u-structure for salient object detection[END_REF] Our proposal

Saliency Map [START_REF] Qin | U2-net: Going deeper with nested u-structure for salient object detection[END_REF] Our proposal Saliency Map [START_REF] Qin | U2-net: Going deeper with nested u-structure for salient object detection[END_REF] Our proposal is robust to incorrect estimations, contrasting with OISF. However, similarly to ODISF, it cannot improve its delineation performance for higher-quality saliency maps.

One may argue that an object-based method should exploit the prior object location information with respect to its quality. For high-quality information, the approximation to the object boundaries can assist its delineation. Conversely, although low-quality information poorly estimates the object boundaries, it presents valuable information on its location. Therefore, in this work, we propose a generalization of SICLE's path-cost function and object-based seed removal criteria (i.e., steps (ii) and (iii), respectively) for exploiting lowand high-quality saliency maps to improve segmentation results by choice of a binary parameter. Experimental results show that our proposal, named SICLE α , is robust to low-quality maps and improves delineation in the case of high-quality ones, as exemplified in Figure 1. Moreover, by exploiting the accurate estimation of the object boundaries, SICLE α achieves higher precision in step (iii), thus requiring only two iterations for effective object delineation. Given both, our method surpasses state-of-the-art methods in terms of efficiency and effectiveness, considering classical evaluation metrics. This paper is organized as follows. The related definitions are presented in Section 2 and our proposal is described in Section 3. Section 4 presents the experiments, with an ablation study, and qualitative and quantitative evaluation. Finally, the conclusion and future work are presented in Section 5.

Theoretical Background

In this section, we present the theoretical background for our work. In Section 2.1, we discuss basic concepts in image and graphs and, subsequently, in Section 2.2, we present the Image Foresting Framework (IFT) [START_REF] Falcão | The image foresting transform: Theory, algorithms, and applications[END_REF].

Image and Graphs

An image I is a pair ⟨P, F⟩ in which F(p) ∈ R m maps the features of every picture element (i.e., pixel) p ∈ P ⊂ Z 2 , given m ∈ N * . I is either colored or grayscale whenever m > 1 or m = 1, respectively. An object saliency map O = ⟨P, O⟩ is an instance of the latter in which O(p) ∈ [0, 1] maps p to its probability of belonging to an object of interest (i.e., saliency). Finally, for a set of pixels X ⊆ P, we may compute its mean feature

F(X) = x∈X F(x)/|X| and mean saliency O(X) = x∈X O(x)/|X|.
From I, we may build a directed graph (i.e., digraph) G = ⟨V, A⟩ so that V ⊆ P contains its vertices and A ⊂ V 2 its arcs. The existence of an arc ⟨x, y⟩ ∈ A indicates that x is adjacent to y. Often, A is defined by the 8adjacents of every pixel x ∈ P, such that A = ⟨x, y⟩ : ∥x -y∥ 2 ≤ √ 2 . In this work, A holds no self-loops nor parallel edges (i.e., G is a simple graph).

A (directed) path ρ = ⟨v 1 , . . . , v k ⟩ is a sequence of k ∈ N * distinct adjacent vertices (i.e., ⟨v i , v i + 1⟩ ∈ A for i < k). If k = 1,
ρ is said to be trivial, and nontrivial otherwise. In ρ, we term v i as the predecessor of v i+1 and the successor v i-1 given 1 < i < k. Moreover, we may exhibit the root v 1 and the terminus v k of ρ either by ρ v1⇝v k or by ρ v k whenever v 1 is irrelevant for the context. For instance, ρ y = ρ x ⊙ ⟨x, y⟩ denotes the path ρ y resultant from concatenating ρ x with ⟨x, y⟩.

Image Foresting Transform

The Image Foresting Transform (IFT) [START_REF] Falcão | The image foresting transform: Theory, algorithms, and applications[END_REF] is a framework whose effectiveness in object delineation has been reported in several works [START_REF] Galvão | RISF: recursive iterative spanning forest for superpixel segmentation[END_REF][START_REF] Belém | Superpixel segmentation using dynamic and iterative spanning forest[END_REF][START_REF] Belém | Towards a simple and efficient object-based superpixel delineation framework[END_REF][START_REF] Borlido | Towards interactive image segmentation by dynamic and iterative spanning forest[END_REF]. When a set of representative vertices (i.e., seeds) S ⊂ V is provided, the algorithm builds trees with optimum path-cost from their seed s ∈ S to any p ∈ V \ S through path concatenation.

We can estimate the cost of an arc ⟨x, y⟩ ∈ A by an arc-cost function w * (x, y) ∈ R and, likewise, the cost of any path ρ x can be computed by an path-cost function f * (ρ x ) ∈ R + . As an example, the f max (Equation 1) is commonly used in IFT-based methods due to its effectiveness [START_REF] Belém | Towards a simple and efficient object-based superpixel delineation framework[END_REF][START_REF] Belém | Superpixel segmentation using dynamic and iterative spanning forest[END_REF] in delineating objects:

f max (⟨x⟩) = 0, ifx ∈ S +∞, otherwise f max (ρ x ⊙ ⟨x, y⟩) = max {f max (ρ x ), w * (x, y)} (1)
If f * (ρ x ) ≤ f * (τ x ), considering τ x ∈ P to be any other path reaching x within the set P of all possible paths in G, then ρ x is optimum.

The IFT minimizes a cost map C(x) = min ρx∈P {f * (ρ x )} by assigning an optimum path ρ x from a seed to x ∈ V \ S. Simply put, the method builds trees whose paths to non-seed vertices are more closely connected to its seed than to any other using a generalization of the Dijkstra's shortest-path algorithm. Even if f * is not smooth, it still exhibits properties suitable for segmentation [START_REF] Mansilla | Oriented image foresting transform segmentation: Connectivity constraints with adjustable width[END_REF]. While minimizes C, the algorithm builds an acyclic map P (i.e., predecessor map) which assigns x either to its predecessor defined in ρ x or to a distinctive marker ▲ ̸ ∈ V, whenever x is the root of ρ x and, thus, of P. As one may see, it is possible to map x to its root R(x) ∈ S recursively through P. Furthermore, by assuming s = R(x), we can map every vertex to its optimum-path tree T(s) ⊂ V by T(s) = {t : R(t) = s}. In this work, every superpixel is an optimum-path tree rooted in a seed.

Methodology

In this section, we review Superpixels through Iterative CLEarcutting (SICLE) [START_REF] Belém | Efficient multiscale object-based superpixel framework[END_REF] alongside our proposed evolutions to better take advantage of high quality saliency estimations. Briefly, each section refers to a specific SICLE step, given that our contributions reside on the last ones: (i) seed oversampling; (ii) superpixel generation; and (iii) object-based seed removal (i.e., Sections 3.1, 3.2 and 3.3, respectively).

Seed Oversampling

Being a seed-based method, the first SICLE step consists in selecting a set S ⊂ V of N 0 initial seeds for generating N f superpixels, given N 0 , N f ∈ N * . However, differently from most approaches, it oversamples (i.e., N 0 ≫ N f ) for improving the probability of selecting the seeds that promote accurate object delineation (i.e., relevant). In this strategy, the aim is to remove the irrelevant ones until reaching N f seeds in the final iteration (see Section 3.3). In this work, we argue no need for seed selection improvement given the reported loss of efficiency when object saliency maps are considered [START_REF] Belém | The importance of object-based seed sampling for superpixel segmentation[END_REF] and the seed relevance redundancy premise [START_REF] Belém | Efficient multiscale object-based superpixel framework[END_REF]. Consequently, the central strategy for delineation improvement relies on maintaining the relevant seeds throughout the iterations.

Superpixel Generation

For generating superpixels, SICLE uses the seed-restricted IFT version. Furthermore, although several path-cost and arc-cost functions have been proposed [START_REF] Borlido | Towards interactive image segmentation by dynamic and iterative spanning forest[END_REF][START_REF] Vargas-Muñoz | An iterative spanning forest framework for superpixel segmentation[END_REF][START_REF] Belém | Superpixel segmentation using dynamic and iterative spanning forest[END_REF], it opts for the f max and a root-based arc-cost estimation w root (x, y) = ∥F(R(x)) -F(y))∥ 2 due to its reported effectiveness in superpixel delineation [START_REF] Belém | Efficient multiscale object-based superpixel framework[END_REF].

As one may note, such arc-cost function does not consider any object information. The authors in [START_REF] Belém | Efficient multiscale object-based superpixel framework[END_REF] justify such option in SICLE mainly on the existence of incorrect estimations in the map, deteriorating the object delineation. And although it resulted in a more robust performance for any map, it also led to the inability to improve its delineation for state-of-the-art estimators. First, let α ∈ {0, 1} be a user-defined "trustiness" switch of the saliency map's object boundary approximation. When α = 1, the user judges that the map's borders are sufficiently accurate for assisting in delineation, due to its closeness to the object's boundaries. Otherwise, it may set α = 0 for avoiding incorrect estimations within the map, preventing segmentation degradation, while still exploiting the object location information for improving the SICLE performance. For both cases, it is expected that the object is known beforehand and it was properly located by the saliency estimator. Then, to achieve each property when desired, we propose a generalization w α * (x, y) = (w * (x, y)) 1+α•∥O(R(x))-O(y)∥ 1 . Note that, aside from not requiring optimization, w α * = w * when α = 0 since it discards the influence of the saliency difference. Finally, in contrast to the arc-cost function proposed in [START_REF] Belém | Superpixel segmentation by object-based iterative spanning forest[END_REF], the magnitude of the saliency influence in w α * is significantly smaller, leading to a lighter impact by eventual incorrect estimations.

Seed Removal

In SICLE, N f superpixels are obtained after successively removing N 0 -N f seeds from S, requiring at most Ω ∈ N * > 1 iterations. At each iteration i ∈ N < Ω, M(i) = max{(N 0 ) 1-ω•i , N f }, given ω = 1/ (Ω -1), most irrelevant seeds are removed, while the remaining ones are perpetuated for testing their relevance in the next iteration i + 1.

For each seed s ∈ S, its relevance V * (s) ∈ R + is estimated based on the characteristics of its superpixel T(s) resultant from the last IFT execution. As an example, one may opt for a size-and contrast-based criterion V sc (s) for accurate selection of relevant seeds irrespective of whether a map is provided [START_REF] Belém | Efficient multiscale object-based superpixel framework[END_REF]. First, we define the color gradient between two superpixels rooted in s, t ∈ S by G F (s, t) = F(T(s)) -F(T(t)) 2 . Moreover, it is possible to define the adjacents of s by A(s) = {t : ∃ ⟨x, y⟩ ∈ A} considering t ∈ S, x ∈ T(s), y ∈ T(t) and s ̸ = t. Finally, from both, we can compute the relevance of s by V sc (s) =

|T(s)| |V| • min ∀ t∈A(s) {G F (s, t)} using the aforementioned criterion.
However, when a saliency map is given, the seed relevance is linked to its object proximity: the farther the superpixel, the more irrelevant it is, even though it is considered relevant by its non-object-based criterion [START_REF] Belém | Efficient multiscale object-based superpixel framework[END_REF]. Thus, in SICLE, every criterion is subjected to an object-based weighting factor. Similarly to G F (s, t), we define G O (s, t) = O(T(s)) -O(T(t)) 2 as the saliency gradient between the superpixels of s and t. Then, the object-based relevance of s is measured by V obj (s) = V * (s) • max{O(T(s)), max ∀ t∈A(s) {G O (s, t)}}.

One can see that such function favors seeds near the object border depicted on the map, promoting competition in crucial regions for delineation. Moreover, by favoring those within it, SICLE populates the regions incorrectly estimated as object parts, diminishing the influence of such error through competition. However, when a high-quality map is provided, not only are its borders more accurate but promoting competition in internal object borders minimally impacts its exterior boundaries. In such case, one may favor the seeds nearby the object rather than those within it. Thus, and similarly to w α * , we generalize SICLE's objectbased seed relevance function for assessing such properties whenever one of them is requested:

V α obj = V * (s)•max{(1-α)•O(T(s)), max ∀ t∈A(s) {G O (s, t)}}.
Similarly to w α obj , when α = 0, the tree's saliency is also considered as a relevant feature, resulting in V α obj = V obj . Otherwise, only the trees near the saliency borders are favored in the computation.

Experimental Results

In this section, we present the experimental framework for analyzing and evaluating the proposed method. We first describe the experimental setup in Section 4.1 and subsequently perform an ablation study in Section 4.2. Lastly, we present a quantitative and qualitative analysis in Section 4.3.

Experimental Setup

We selected three datasets for assessing the performance of all methods. Given that the most used segmentation evaluation dataset [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF] is contour-driven, it is not applicable when a single object is desired. Conversely, our selection tries to assess different delineation difficulties for distinct objects, while offering a broad perspective on the methods' performance in their primary goal: generating superpixels. For handling different objects, we opt for the popular Extended Complex Saliency Scene Dataset (ECSSD) [START_REF] Shi | Hierarchical image saliency detection on extended cssd[END_REF], which contains 1000 natural images with complex objects and backgrounds. On the other hand, the thin object legs in Insects [START_REF] Mansilla | Oriented image foresting transform segmentation: Connectivity constraints with adjustable width[END_REF] (130 images) offers a proper delineation challenge. Similarly, the Liver [START_REF] Vargas-Muñoz | An iterative spanning forest framework for superpixel segmentation[END_REF] dataset contains 40 CT slices of the human liver whose smooth boundaries are difficult to detect. We selected, by random, 30% and 70% of each dataset for optimization and testing, respectively. Finally, we considered the U 2 -Net [START_REF] Qin | U2-net: Going deeper with nested u-structure for salient object detection[END_REF], fine-tuned with its default parameters, for generating the object saliency maps.

As baselines, we chose the following state-of-the-art methods based on their speed and accuracy: (i) SLIC [START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF] 4 ; (ii) SH [START_REF] Wei | Superpixel hierarchy[END_REF] 5 ; (iii) ERS [START_REF] Liu | Entropy rate superpixel segmentation[END_REF] 6 ; (iv) OISF [START_REF] Belém | Superpixel generation by the iterative spanning forest using object information[END_REF] 7 . By selecting such baselines, we assess the major properties for superpixel segmentation: speed and object delineation. Thus, although deep-learning-based methods with promising results have been proposed, more research is required for surpassing the performance of classical algorithms [START_REF] Wu | Texture-aware and structure-preserving superpixel segmentation[END_REF][START_REF] Yu | Edge-aware superpixel segmentation with unsupervised convolutional neural networks[END_REF][START_REF] Zhu | Learning the superpixel in a non-iterative and lifelong manner[END_REF][START_REF] Kang | Dynamic random walk for superpixel segmentation[END_REF][START_REF] Belém | Efficient multiscale object-based superpixel framework[END_REF]. As initial setting for SICLE α , we used the default recommendation [START_REF] Belém | Efficient multiscale object-based superpixel framework[END_REF]:(i) random oversampling with N 0 = 3000; (ii) f max ; (iii) V * = V sc ; and (iv) Ω = 5. Our code is publicly available online8 . For measuring their performances, we used the Boundary Recall (BR) [START_REF] Stutz | Superpixels: An evaluation of the state-of-theart[END_REF] and the Under-segmentation Error (UE) [START_REF] Neubert | Superpixel benchmark and comparison[END_REF] due to their expressiveness [START_REF] Stutz | Superpixels: An evaluation of the state-of-theart[END_REF]. While the former measures the ratio between object boundaries and superpixel borders (i.e., higher is better), the latter estimates errors from superpixel "leakings" (i.e., lower is better).

Ablation Study

We first analyzed the impacts of the saliency map quality on SICLE α , as shown in Figure 2. In this experiment, we considered a representative of a poor, a stateof-the-art, and an ideal estimator: (i) object's minimum bounding box (BB); (ii) U 2 -Net (U); and (iii) ground-truth (GT); respectively. We highlight that the GT is only considered in this experiment. By setting α = 1, our improved SICLE improves its segmentation proportionally to the saliency map quality (i.e., the better the map, the better the delineation). Note that SICLE α performance deteriorates when changing from GT to U maps, indicating that although highly accurate, the latter is not ideal. Still, by improving the saliency incorporation, our approach significantly improves when α = 1, especially considering UE. Finally, by simply setting α = 0 when a poor quality map is provided, SICLE α becomes robust against saliency errors. Number of Superpixels

Ω =2 Ω =3 Ω =5 Ω =7 Ω =10
Fig. 3. Impacts of the maximum number of iterations on SICLE α considering α = 1 and the U 2 -Net estimator.

Our second experiment analyses if the proposed method assists in reducing the number of iterations for segmentation. From the curves in Figure 3, we see that SICLE α manages to achieve its top performance requiring only two iterations and increasing Ω does not lead to improvements when α = 1. We argue that our improved seed relevance criteria accurately select N f relevant seeds in only one iteration, requiring one more for promoting effective object delineation. For that, we set Ω = 2 whenever α = 1.

Quantitative and Qualitative Analysis

Our last experiment (Figure 4) compared our improved SICLE α against the baselines. In terms of BR, SICLE α managed to surpass all methods significantly, especially for N f = 200 superpixels. Given its discrepant performance compared to OISF, we can argue that our approach best exploits the saliency information for segmentation. Moreover, SICLE α presented better delineations in Insects than ERS, the best method known in such dataset. Regarding UE, our improvements reduced the superpixel leaking significantly, leading to on par results with OISF, which often presents the lowest values in several works [START_REF] Belém | Superpixel segmentation by object-based iterative spanning forest[END_REF][START_REF] Belém | Superpixel generation by the iterative spanning forest using object information[END_REF][START_REF] Belém | Towards a simple and efficient object-based superpixel delineation framework[END_REF].

Table 1 shows the average speed performance of all methods in the ECSSD dataset on a 64-bit Intel(R) Core(TM) i7-4790S PC with CPU speed of 3.20GHz. As one can see, even though SICLE α is O (|V| log |V|), it is the fastest method amongst all. For instance, SLIC and SH are O (|V|), but they perform burdensome operations for obtaining a single segmentation. While the former executes a strict number of iterations (e.g., 10), the latter computes the whole hierarchy. In contrast, SICLE α surpasses both speed and delineation by benefitting from our improvements, leading to only two iterations. Lastly, it is straightforward to obtain an object-based multiscale segmentation on the fly from SICLE α [START_REF] Belém | Efficient multiscale object-based superpixel framework[END_REF].

Finally, the superior performance of SICLE α can be exemplified by Figure 5. Note that, by setting α = 1, our improved method can correct the errors for α = 0, achieving top object delineation and surpassing all baselines. As indicated by the yellow rectangles, SICLE α best exploits the saliency information and best approximates the object borders, especially when compared to other objectbased methods like OISF.

Conclusion and Future Work

This work proposes SICLE α , an improved version of the state-of-the-art objectbased method Superpixels through Iterative CLEarcutting (SICLE) by generalizing its path-cost function and seed removal criterion. Our proposal may promote robustness for low-quality saliency maps or may improve its effectiveness and efficiency in delineation for high-quality ones through a single and intuitive parameter. Results show that SICLE α surpasses state-of-the-art methods regarding popular metrics while being the fastest one in all datasets considered. For future work, we intend to extend SICLE α for video supervoxel segmentation and study its performance for interactive image segmentation.
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 1 Fig. 1. Comparison between SICLE and our improved version for accurate maps considering 25 superpixels. Red lines indicate object boundaries, whereas cyan ones, superpixel borders. Yellow rectangles indicate delineation errors that our approach overcame.
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 82 Fig. 2. Impacts of object saliency map quality on SICLE α .
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 5 Fig. 5. Comparison between SICLE α and state-of-the-art methods considering 100 superpixels. Red lines indicate object boundaries, whereas cyan ones, superpixel borders. Yellow rectangles indicate delineation errors that our approach overcame.
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. Performance comparison between our approach, considering α = 1 against state-of-the-art methods.
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