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THE PERFECT R-NARCISSISTIC NUMBERS

René-Louis Clerc (september 2023) ((*))

ABSTRACT-A brief definition of perfect r-narcissistic numbers (or rppdi), a natural extension of the 
classic Armstrong numbers (or perfect narcissistic numbers or ppdi), a demonstration of their finiteness 
and the list of 15 rppdi greater than 1 currently calculated.

- DEFINITION.
Given a k-digit number m (k > 0), we note:
m = ∑i=1

i=k ai 10k-i, Sp(m) = ∑i=1
i=k ai

p, p >= 1.
A k-digit number m is perfect r-narcissistic (or rppdi) if there exists an integer r > 1 such that the sum of 
the powers k of the digits of mr is equal to m.
The case r = 1 corresponds to the classic perfect narcissistic numbers or Armstrong numbers, or ppdi 
([1]); we know that there are 88 such numbers.
An rppdi is still a k-digit fixed point of the Sk

r transformation ([2])

m ---> Sk
r(m) = Sk(mr) 

We showed in [2] that these Sk
r transformations are pleasant (cf. Remark 1 below), that is to say they are 

everywhere convergent and have a finite number of attractors and in particular a finite number of fixed 
points with k digits (let us observe that Sk

r has a finite number of fixed points, some of which have 
exactly k digits, cf. Remark 2 below).
There is therefore a finite number of rppdi, each of these numbers being defined by a unique r greater 
than 1; however, there can theoretically be r-narcissistic numbers for several different values of r (but we 
can reasonably conjecture that this is not the case).
For the 15 calculated rppdi (numbers from 1 to 10 digits) greater than 1, the corresponding r (> 1) is 
unique; only the trivial solution 1 is r-narcissistic for all r.
For example, note 7(4) to indicate that 7 is 4-narcissistic.
- PROPERTY.
There are a finite number of perfect r-narcissistic numbers.
The 15 smallest perfect r-narcissistic numbers (r >= 2) greater than 1 are:
7(4), 8(3), 9(2),
180(6), 205(2),
38998(2), 45994(2), 89080(2),
726191(2),
5540343(3), 7491889(2), 8690141(3),
167535050(3), 749387107(4).
9945245922(3).
-REMARK 1: demonstration of Sk

r pleasant transformation for any (k, r).

Any p-digit number being strictly less than 10p, it comes 
Sk

r(m) <= rp9k 

For any pair (k, r) of strictly positive and finite integers, there exists an upper bound M = r9k such that for
any integer m with p digits we have the increase 
Sk

r(m) <= pM.

Consequently, as soon as the number pM has strictly less than p digits, the transformation Sk
r cannot have

a fixed point at p or more than p digits (since we cannot ensure Sk
r(f) = f ); nor can it then have a cycle 

with elements with p or more than p digits (iteration by Sk
r would not make it possible to find an element 

of strictly more than p digits).
This is ensured as soon as p satisfies the inequality 10p-1/p > M and there obviously always exists a 
smallest p having this property for any pair (k, r).
We will note p* = p*(k, r) the smallest p such that 10p-1/p > M.
The function 10p-1/p being increasing, for all p > = p*, we always have p M < 10p-1 and the iteration by 
S< sub>kr of a number with such p digits always provides a number with at most p-1 digits (each iteration
causes the transform to lose at least one digit).



Let us observe that for all k and all r strictly positive, we will always have p* >= 3.
It follows that all the attractors of Sk

r are necessarily made up of numbers contained in the finite interval 

[0, 10p*-1[, since this p* is still the smallest p such that the upper bound p M is strictly less than 10p-1 (i.e.
again, has at most (p-1) digits).
The transformations Sk

r are everywhere convergent in N towards a finite number of attractors and are 
therefore all pleasant transformations, the convergence interval being [0, 10< sup>p*-1[; any number it 
contains has all its iterations in it and any number outside it ends up there after a finite number of 
iterations.
It follows that it is enough to seek the convergence of all integers strictly less than 10p*-1 to determine all 
the attractors of Sk

r.

The pleasant nature of Sk
r transformations implies in particular that there are only a finite number of 

rppdi.
- REMARK 2: examples of fixed points of Sk

r.

We will observe that if the transformations Sk
r, k >= 1, r >= 2, have many fixed points with strictly more 

than k digits, they have quite few with exactly k digits ...
S3

6 has the 6-narcissistic number 180 but also the fixed point 3172;

S5
2 has the three 2-narcissistic numbers 38998, 45994, 89080 but also the fixed points 128230 and 

244353;
S5

3 no 5-digit 3-narcissistic number, but the fixed points 137023, 163451, 192412, 233722; 

S3
4 no 3-digit 4-narcissistic number, but the fixed point 2110;

S2
4 no 2-digit 4-narcissistic number, but fixed points 130 and 235...
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