
HAL Id: hal-04229847
https://hal.science/hal-04229847v1

Submitted on 5 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Development Efforts for Reproducible Research:
Platform, Library and Editorial Investment

Miguel Colom, José Armando Hernández, Bertrand Kerautret, Benjamin
Perret

To cite this version:
Miguel Colom, José Armando Hernández, Bertrand Kerautret, Benjamin Perret. Development Efforts
for Reproducible Research: Platform, Library and Editorial Investment. RRPR 2022: Reproducible
Research in Pattern Recognition, Aug 2022, Montréal, Canada. pp.3-21, �10.1007/978-3-031-40773-
4_1�. �hal-04229847�

https://hal.science/hal-04229847v1
https://hal.archives-ouvertes.fr

Development Efforts for Reproducible Research:
Platform, Library and Editorial Investment⋆

Miguel Colom1[0000−0003−2636−0656], José Armando
Hernández1[0000−0002−6692−8640], Bertrand Kerautret2[0000−0001−8418−2558], and

Benjamin Perret3

1 Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, F-91190
Gif-sur-Yvette, France miguel.colom-barco@ens-paris-saclay.fr

2 Univ Lyon, Univ Lyon 2, CNRS, INSA Lyon, UCBL, LIRIS, UMR5205, F-69676
Bron, France bertrand.kerautret@univ-lyon2.fr

3 LIGM, Univ Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallee, France
benjamin.perret@esiee.fr

Abstract. Reproducible research in pattern recognition can be viewed
from a number of angles, including code execution, platforms that pro-
mote reproducibility, code sharing, or the release of libraries providing
access to relevant algorithms in the corresponding disciplines. In this
work, after recalling the motivation and classic definitions of reproducible
research, we propose an updated overview of the main platforms that
might be used for reproducible research. We then review the different
libraries that are commonly used by the pattern recognition, computer
vision, imaging and geometry processing communities, and we share our
experience of developing a research library. In the third part, new ad-
vanced editorial investments will be presented, such as the IPOL journal
or other IPOL-inspired new initiatives like OVD-SaaS.

1 Introduction

In general, research publications first highlight new theoretical or methodological
advances related to scientific problems, while reproducibility is rather considered
as a secondary point. While these academic distinctions and measures seem
natural from an innovation perspective, the emphasis on reproducibility should
also be a key point in avoiding the credibility crisis denounced by Donoho [1].
Reproducibility also has an impact on long-term research, such as simplifying
comparisons to make research results more meaningful.

The Figure 1 shows the evolution of the ratio of publications mentioning the
words “Reproducible” or “Reproducibility” in general and engineering topics
(graphics (a) and (b) respectively). During the last 30 years, the mention of the

⋆ This research was made possible by support from the French National Research
Agency, in the framework of the projects WoodSeer, ANR-19-CE10-011, ULTRA-
LEARN, ANR-20-CE23-0019, and by the SESAME’s OVD-SaaS project from Région
Île de France and BPI France, and Ministry of Science, Technology and Innovation
of Colombia (Minciencias), call 885 of 2020.

2 M. Colom, J.A. Hernández, B. Kerautret and B. Perret

reproducible research (RR) topic remains almost constant in the general domains
while it steadily increased in the engineering domain. This increasing interest is
also visible through the development of platforms for reproducible research [2].
For instance, since the publication date of this latter review, new major platform
appeared like the ReproducedPapers.org platform [3] that allows researchers to
share reproduction experience on papers especially in the machine learning field.
Such a new platform reaches also educational purpose with, for instance, the
integration of reproducibility into fairness, accountability, confidentiality and
transparency in artificial intelligence [4]. Another example of new advance is the
development of the ReproServer [5] that follows the previous ReproZip tools [6].
ReproServer is an open source web application allowing to reproduce experiments
from a web browser and based on the ReproZip tool. The REusable ANAlyses
system called REANA [7] is also another example started after the review on
reproducible research platform [2]. This initiatives answer to the need of the
reuse, re-validation, and re-interpretation of research works.

The platform evolution is not the only point that contributes to RR, since the
development of libraries is also a meaningful ingredient if we consider the al-
gorithm implementation point of view. It also contributes to the diffusion of
scientific contents and also simplify code review in a editorial process where not
only the classical paper is reviewed but also the associated source code. To put
these efforts in perspective with reproducible research, the following section re-
views new platforms that have been recently proposed. Then, the investment in
libraries will be detailed by several examples taken from the pattern recognition
domain and the experience of creating a new library will be shared by the Higra
library creator (section 3). Finally, in section 4, the investment on advanced ed-
itorial initiative will be detailed with the recent progress around IPOL journal
and a related new service oriented project OVDSaaS useful for the deployment
of reproducible industrial applications.

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

2
0
2
2

2
0
2
0

2
0
1
8

2
0
1
6

2
0
1
4

2
0
1
2

2
0
1
0

2
0
0
8

2
0
0
6

2
0
0
4

2
0
0
2

2
0
0
0

1
9
9
8

1
9
9
6

1
9
9
4

1
9
9
2

R
a
tio

 o
f
re
s
e
a
rc
h

 p
a
p
e
rs

 o
n

 r
e
p
ro
d
u
c
ib
ili
ty

year

Ratio of research papers on reproducibility

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

2
0
2
2

2
0
2
0

2
0
1
8

2
0
1
6

2
0
1
4

2
0
1
2

2
0
1
0

2
0
0
8

2
0
0
6

2
0
0
4

2
0
0
2

2
0
0
0

1
9
9
8

1
9
9
6

1
9
9
4

1
9
9
2

R
a
tio

 o
f
re
s
e
a
rc
h

 p
a
p
e
rs

 o
n

 r
e
p
ro
d
u
c
ib
ili
ty

year

Ratio of research engineering papers on reproducibility

(a) (b)

Fig. 1. Evolution of the Reproducible Research ratio of publications from the general
(a) and engineering (b) topics. The data were extracted from ScienceDirect 5database
on August 29, 2022.

Development Efforts for Reproducible Research 3

2 Reproducible Research Platform Updates

In the previous work [2], we have classified the major reproducible research
platforms into three broad categories. The first group is the online execution
platforms. It includes platforms like RunMyCode, CodeOcean or Jupyter, all of
which allow to directly run code on a distant web server. The other group called
dissemination platforms, is more focused on hosting source code archive package
with a referencing system. In this category, we can mention RunMyCode which
also proposes to host source code, DataHub or ResearchCompendia. The last
category is the peer-reviewed journals, composed of three main journals: IPOL,
ReScience and Insight Tool Kit.

Proof of the growing interest in reproducible research, new platforms have ap-
peared since the previous publication and several of them such as DagsHub, Pa-
per with code, Replicate or Hugging Face Spaces are now referenced from arXiv
open access platforms.

ReproducedPapers.org [3] - Dissemination Platforms -

This platform was introduced in the context of ma-
chine learning reproducibility and teaching activities at
a master level degree. The main ideas of the platform
are the following. First, a researcher suggests on the platform a paper to be
reproduced. Then, from the proposed paper, different types of contributions can
be submitted: (i) a replication including re-implementation from scratch, (ii)
a reproduction where existing code is evaluated, (iii) hyper-parameters check
including sensitivity of parameters, (iv) new data to test the result on other
contexts, (v) new algorithm variant, (vi) new code variant including improved
implementation, (vii) ablation study. A resulting pdf paper or web page de-
scribing the new contribution is then made freely available to the community,
including source code (for (i) and (vi)) or new data (for (iv)). When the submis-
sion is proposed, a review is conducted to ensure that the main contributions
match those that have been announced.

Figure 2 presents the evolution of the number of papers proposed for reproduc-
tion as well as the number of reproduction published since the platform was
created. Both the research papers proposed for reproduction and the reproduc-
tion attempts are increasing. In average, there are around two reproductions per
proposed article. This trend looks positive for the future of the platform.

Replicability.graphics [8] - Dissemination Platforms -

The aim of this platform focused on computer graphics is to evaluate the replica-
bility of the papers published at the SIGGRAPH conference. The evaluation is
presented in the form of a light review describing the difficulty of the reproduc-
tion. This evaluation can result from the direct code execution, when available,

5 https://www.sciencedirect.com

http://reproducedpapers.org
https://replicability.graphics
https://www.sciencedirect.com

4 M. Colom, J.A. Hernández, B. Kerautret and B. Perret

 0

 20

 40

 60

 80

 100

 120

 140

2
0
2
0

2
0
2
1

2
0
2
2

N
u
m
b
e
r
o
f
re
p
ro
/s
u
b
m
is
s
io
n
s

year

research papers proposed for reproduction
reproduction published

Fig. 2. Evolution of the activity of the https://reproducedPapers.org

platform.

or from the re-implementation of the article. The ease of re-implementation is
usually evaluated by the platform reviewers who have a strong experience in the
computer graphics domain. In total, 454 papers were reviewed on the platform,
covering SIGGRAPH events from 2014 to 2021, with 192 papers proposing code
and 146 papers were evaluated as replicable. The remaining papers (25% with
116 papers) were evaluated difficult to replicate.

PapersWithCode [9] - Dissemination Platforms -

Introduced by Meta in 2018, this platform references papers associated with
source code theoretically enabling the replication of the paper. It can be consid-
ered as a dissemination platform since only the paper and the source code are
referenced. The platform can be useful to researchers interested to reuse the re-
lated proposed methods. However, unlike the previous two platforms, no details
are provided on the potential difficulty of reproduction or conformity between
source code and algorithms. With a total of more than 126 000 papers6, it covers
various domains with different portals like Machine Learning (76.2%), Computer
Science (8.8%), Physics (6,0%), Astronomy (3.3%), Mathematics (3.3%), Statis-
tics (2.4%). Papers can also be associated with datasets, methods and evaluation
tables. Users can submit a paper and its implementation from a free user account.

Dagshub.com - Dissemination Platforms -

This platform is specialized in the machine learning domain with an experi-
ence comparable to GitHub but integrating specialized tools for the visualiza-
tion of models and machine learning pipelines. It allows users to manage experi-
ments,retrieve the best data or parameters, and is therefore useful for optimizing

6 Data extracted from https://portal.paperswithcode.com on 15 May 2023

https://reproducedPapers.org
https://paperswithcode.com
https://dagshub.com
https://portal.paperswithcode.com

Development Efforts for Reproducible Research 5

results and sharing experiences with other users. It contributes to facilitate the
reproducibility, in particular with an easy configuration of automation pipelines
running on GitHub actions or other web-hooks. The platform is free for public
and limited private repositories and chargeable for more intensive use with pri-
vate cloud or enterprise access. In 2023, the platform was used by 23,000 data
scientists and 400 organizations. The Figure 3 shows the evolution of user regis-
tration (graphic (a)) and update activities over the last four years with the focus
on repositories, datasets or models (graphic (b)). These measures highlight the
rapid success of the platform which is experiencing positive growth and are a
promising sign of future user uptake.

0

5k

10k

15k

20k

2019 2020 2021 2022 2023*

n
u
m
b
e
r
o
f
n
e
w

 u
s
e
r
re
g
is
tr
a
tio
n

registration date

new users

 0

 20

 40

 60

 80

 100

4 years 3 years 2 years 1 year < 1 year

n
u
m
b
e
r
o
f
d
a
ta
s
e
t/
m
o
d
e
ls

last update date

dataset updates /10
model updates

repository updates /100

(a) (b)

Fig. 3. Evolution of user registration (a) and update activities (b) of the dagshub.com
platform. The graphic (b) displays update over time of datasets, models, or reposito-
ries. The data were obtained from the page listing the different ressources from the
dagshub.com explore page. ∗For the 2023 year, the number of user registrations was
interpolated by taking the double of registrations of the 6 first months of 2023.

HuggingFace.co - Online Dissemination & Execution Platforms -

Originally launched in 2016 as a company developing a chat bot application for
teenagers, the Hugging Face Hub can now be seen as straddling the line be-
tween dissemination and online execution platforms. Based on a git repository
whose main structure is comparable to that of GitHub, it focuses on models
and datasets, with a section called Space containing a playground allowing users
to run the model directly online. The platform integrates various models with
custom configurations and weights fine tuned on specific training sets. The dis-
semination part is advertised as forever free while the computational ressources
is limited according to the subscription chosen by the user (free for two basic
CPUs and chargeable for more advanced GPUs).

Reana [7] - Online Execution Platforms -

Oriented toward reproducible research and data analysis, this platform is de-
signed to create workflows by using external sources (like GitHub, GitLab). This
platform can play a main role in reproducible research, however it is actually

https://dagshub.com
https://dagshub.com/explore/repos?
https://huggingface.co
https://reanahub.io

6 M. Colom, J.A. Hernández, B. Kerautret and B. Perret

reserved to CERN (European Organization for Nuclear Research) users which
limits its potential impact.

ReproZip [5] - Online Execution Platforms -

At the origin ReproZip was first an open source tool designed to bundle all the
necessary contents to reproduce research results. Then a ReproServer was asso-
ciated to ReproZip enabling to extract and run the resulting program. Actually
as mentioned by the authors the full construction of the platform is in progress.
The main idea of such a platform appears promising for the future. Unlike the
previous Reana platform, the current project is more oriented towards open
access and unrestricted use which could be an important factor for its future
growth.

(a) (b) (c)

Fig. 4. Illustration of the Replicate.com: (a) overview, (b) parameter setting before
online execution and (c) link appearing from the arXiv platform highlighted in red.

Replicate.com - Online Execution Platforms -

The main motivation of this platform is to apply machine learning to real world
problem without complex code installation. It can be considered as mainly a
machine learning code replication platform. User can construct and upload their
package allowing the reproduction of their research results based on their own
machine learning models. The platform proposes three ways to reproduce results:
by using a direct online execution process, by running a platform API or by
running the code directly on the user computer. The Figure 4 illustrates this
platform from the front page (image (a)), the main page allowing to set the
parameters of a particular demonstration (image (b)) and the arXiv referencing
this platform (image (c)). Unfortunately this platform is not free (users can try
it for free with a limited processor time allocation).

The Table 1 shows the recent platform comparison using the criteria defined
in [2]. In order to complete the comparison context, the result of the platform
best covering the different criteria is reported on the last line of the table with
the IPOL platform. This platform still leads the ranking with eight validated

https://server.reprozip.org
https://replicate.com
https://replicate.com

Development Efforts for Reproducible Research 7

criteria and is now followed by Reproduced Papers and Replicate.com, which
satisfied seven criteria.

3 Reproducible Research Through Libraries

In addition to RR platforms, efforts to contribute to reproducible research are
also visible through the development of libraries offering implementations of
algorithms and tools. To give an overview of the library development types,
we first review different initiatives in the discrete geometry and mathematical
morphology community before detailing an example of an author initiative with
the development of the Higra library (Hierarchical Graph Analysis) which could
help new researchers to understand and anticipate the important steps to create,
publish and maintain a new library.

3.1 Library Experiences from Pattern Recognition, Image and
Geometry Domains

The Table 2 lists some of the major libraries in the domains of pattern recog-
nition, image and geometry processing. A first group gathers libraries initiated
and financed by private companies. The ITK medical imaging library, created
and still managed by Kitware, is an example. On another popular topic of com-
puter vision, the OpenCV library presents a mean of 60 contributing authors by
year. As for the PCL library, the private company Willow Garage supports the
development. As mentioned in our previous work, insides the development of the
ITK library the Insight Journal aims to contribute to reproducible research by
publishing algorithm descriptions together with its implementation.

Another group of libraries is composed of academic initiatives, including also the
open source community. The older referenced in Table 2 is the CGal library cre-
ated with the help of European project funding. The economic model was then
supported by the commercialization of the research results obtained through the
company GeometryFactory thus ensuring the continuation of the development of
the library while contributing to the promotion of academic research. Initiated
from individual initiative, the libraries CImg (David Tschumperlé, GREYC),
Geogram (Bruno Levy, LORIA), Olena (Thierry Geraud, LRDE), Tulip (David
Auber, LaBRI) and Vigra (Ullrich Koethe, HCI) were also contributing in help-
ing the diffusion and reproduction of research results. Like other libraries such
as OpenMVG, TTK or Higra, the DGtal library was also created from a French
initiative gathering five laboratories.

If we measure the development of certain libraries over time, we can easily high-
light the libraries that have been supported by or associated with private com-
panies, as shown by the CGal library with a continuous investment during 25
years (Figure 5 (a)). On the contrary, the OpenMVG library shows a slowdown
since the moment the library started to be based on the open source develop-
ment mode only (Figure 5 (a)). The impact of the development of such a library

8 M. Colom, J.A. Hernández, B. Kerautret and B. Perret

Platform (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Reproduced Papers ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ –

Replicability.graphics ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ – ✗ –

Papers With Code ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ – ✗ –

Dagshub.com (A) ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✗ –

HuggingFace.co (A∗) ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ –

reana ✗ ✗ ✓ – ✗ ✓ ✓ ✓ – ✗ –

ReproZip – – ✓ – ✓ ✓ – – – ✗ –

Replicate.com (A∗) ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗

IPOL (B) (C) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

Criteria:
(1) Free to use
(2) No mandatory registration
(3) Several programming languages allowed
(4) Peer-reviewed code and data
(5) Easy to use by the non-expert
(6) General scope
(7) Possibility to upload user data
(8) Interaction through a web interface
(9) Access to a public and persistent archive of experiments
(10) Design of automatic demonstration from textual description or visual tool
(11) Allow to modify the source code before execution

Legend:
– Not Applicable.

(A) Partially free (paid for non entreprise or restricted private projects).
(A∗) Limited time free demonstration or basic CPU (then paid by time usage of

CPU/GPU usage).
(B) True for demonstrations using a sample learning dataset. To use the plat-

form as a service, the user needs to be connected with a role authorizing
this usage.

(C) The demonstrations are free to use up to some limits (say, size of the data or
computation time), but industrial use of demonstrations and applications
requires payment.

Table 1. Recent platform comparisons using the eleven criteria introduced in previous
work [2].

Development Efforts for Reproducible Research 9

Library ref domain langage version #auth. date funding
OpenCV [10] Comp. Vision C++ 4.5.5 1,383 1999 Willow Garage

ITK [11] Image Processing C++/Pyt. 5.2.1 265 2000 Kitware
PCL [12] Point clouds C++ 1.12.1 464 2010 Willow Garage
CGal [13] Geometry proc. C++ 5.4 123 1996 Acad./GeometryFactory
CImg [14] Image processing C++ 3.1.2 72 1999 Acad.

Geogram [15] Geometric algorith. C++ 1.7.8 7 1998 Acad./INRIA/ERC
Olena [16] Image processing C++/Pyt. 2.1 50 2001 Acad. / Project
Tulip [17] huge graph visualiz C++/Pyt. 5.6.2 9 2001 Acad./private
Vigra [18] Comp. Vision C++ 1.11 50 2008 Acad.
DGtal [19] Digital geometry C++/Pyt. 1.2 27 2011 Acad. / Project

OpenMVG[20] Mult. View Geom. C++ 2.0 86 2013 Acad./Mikros/Foxel
TTK [21] Topology ToolKit C++ 1.0 36 2017 Acad. / Project
Higra [22] Graph analysis C++/Pyt. 0.6.5 4 2018 Acad. / Project

Table 2. Example of librairies related to the pattern recognition, image and geometry
domains. The three first libraries are mainly supported from private company including
open-source community (highlighted in gray inside horizontal lines and light gray above
the dashed horizontal line for mixt of private/academic).

on the research world can be measured by citations in research publications or
the number of research projects that rely on the library. Graph (c) in Figure 5
shows one such example measured on the Geogram library. The number of re-
search papers referencing the library appears to be stable over time, while the
number of project mentioning is increasing over the years.

This rapid overview shows that outside the benefit for reproducibility, the library
development has impact on sharing results both on research publications and
projects. In order to give the main steps of library development, we show an
experience feedback on the main steps of the Higra library.

(a) Commits measure from 25 years of the CGal

library. (source GitHub accessed in 28 June 2022)

(b) Commits measure from 10 years of the Open-

MVG library.

 0

 2

 4

 6

 8

 10

 12

2
0
2
2

2
0
2
0

2
0
1
8

2
0
1
6

2
0
1
4

2
0
1
2

2
0
1
0

2
0
0
8

2
0
0
6

2
0
0
4

2
0
0
2

2
0
0
0

1
9
9
8

publications
projects

(c) Example of publications number mention-

ning Geogram library.

Fig. 5. Example of developer investissement from two libraries (a,b) and evolution of
publications and project exploiting the Geogram library (c).

https://github.com/opencv/opencv
https://github.com/InsightSoftwareConsortium/ITK
https://github.com/PointCloudLibrary/pcl
https://github.com/CGAL/cgal
https://github.com/dtschump/CImg
https://github.com/BrunoLevy/geogram
https://gitlab.lrde.epita.fr/olena
https://tulip.labri.fr
https://github.com/ukoethe/vigra
https://github.com/DGtal-team/DGtal
https://github.com/openMVG/openMVG
https://github.com/topology-tool-kit/ttk
https://github.com/higra/Higra
https://github.com/CGAL/cgal

10 M. Colom, J.A. Hernández, B. Kerautret and B. Perret

3.2 Higra Library Development Feedback

Higra – Hierarchical Graph Analysis – is a C++/Python library for efficient
sparse graph analysis with a special focus on hierarchical methods: construction
of hierarchical representations (agglomerative clustering, mathematical morphol-
ogy hierarchies, etc.), the analysis and processing of such representations (filter-
ing, clustering, characterization, etc.), and their assessment. The development
of Higra started in 2018 and is still a quite young project of moderate size. It is
now extensively used for research and teaching purpose in our laboratory and is
also used by researchers and practitioners in several other places in the world.
The purpose of this section is to explain the different steps of this project in
order to help researchers interested in creating their own libraries to enhance
and facilitate the reproducibility of their work.

Deciding and starting the project

Project prequel Before starting the Higra project, our researches on hierarchical
graph processing were essentially supported by two mostly internal libraries: 1)
a pure C library called SM (Saliency Map) which was fast but lacked flexibility;
and 2) a pure Python library called HiPy (Hierachies in Python) which was
flexible but slow. Although both libraries are available online, neither was really
designed for distribution to an external audience: there was mostly no documen-
tation, no tests, and, in a general way, no project management. This approach
also started to be detrimental for the research activity of our own group: at
some point, we had about a dozen of forked versions of the SM library on our
computation server, developed by various researchers of our team, without any
documentation on the modifications made. In practical terms, this resulted in
lost changes, wasted effort, and overall reduced reusability and reproducibility
of our work.

Motivations The aim of the Higra project was to overcome the limitations and
solve the problems described in the previous section. The idea was to have a
unified place for our developments that would enable us to better integrate
all the contributions of the team and to attract external users and developers.
This goal can only be achieved with a good level of project management which
includes notably using a source version control system with a versioning scheme,
writing tests to ensure correctness and non regression, and writing an extensive
documentation. Another goal of the new library was to be easy to install and
to naturally integrate into the rich Python ecosystem for machine learning and
computer vision, which essentially meant supporting Numpy arrays [23] and the
ability to be installed by the standard package-management system for python
pip.

All these would enable us to achieve a more efficient use of our resources, a better
dissemination of our contributions, and ease the reproducibility of our research.

Development Efforts for Reproducible Research 11

Getting started The start of such project can be intimidating and requires some
planning as several choices have to be made regarding 1) the project organiza-
tion (code and documentation hosting, build-system, CI/CD pipelines) and 2)
the technical development aspects (languages, external dependencies, software
architecture). Many researchers are not familiar with all these aspects that are
not part of their main area of expertise. Fortunately, today, we can rely on the
many tools developed by the open source community and the many examples
available online to make wise choices and implement them. We recommend to
not neglect this initial planning and configuration phase, even if it takes a little
time, because it will save a lot more time in the following phases of the project
and help to deliver features quickly.

In the following, we describe the most important choices made for the library
Higra and the motivations behind them. Of course, there are no absolute best
choices and, in the end, this depends on many factors such as the objective of
the projects and the developer preferences.

Technical choices of the Library Structures

Languages, architecture and dependencies We opted for a relatively classical
organization for a data analysis project in Python with a front-end, compris-
ing essentially high-level functions, written in Python and a core, with data-
structures and critical algorithms, written in C++. We decided that the C++
core should also be usable without Python which would allow us to use these
functions in another context, for example to build web demos using Emscripten7

which allows compiling C/C++ code to javascript. This is quite different from
many Python packages such as Numpy, Scikit-learn or Scipy whose back-ends
rely heavily on the C-Python API. One other possibility would have been to
write a pure Python package with Numba [24] which can perform just in time
compilation of a subset of the Python language to improve the execution time.
Numba manages to obtain excellent performances, but it complicates debugging
and was, at the time we started the project, quite an experimental project.

The bridge between C++ and Python is made thanks to the Pybind11 li-
brary [25] which is a header only C++ library which enables to easily create
Python module from C++ and export C++ functions in this module. Pybind11
is a very popular library used in many large projects. In order to integrate with
Numpy arrays we chose to rely on the XTensor8 C++ header only library which
aims at providing a C++ substitution of Numpy with a seamless integration with
Numpy arrays (C++ tensors can be converted seamlessly into Numpy arrays and
conversely).

Build tools, unit testing The main build system of the project is CMake which
is frequently used for C++ projects. It is available on most systems and can

7 https://emscripten.org/
8 https://github.com/xtensor-stack/xtensor

https://emscripten.org/
https://github.com/xtensor-stack/xtensor

12 M. Colom, J.A. Hernández, B. Kerautret and B. Perret

be installed through many package managers, including pip (even if it is not
a Python package). Such tools become nearly mandatory when one wants to
compile cross-platform projects in a reliable and reproducible way: they help
to deal with platform specific options and with dependency management. We
have never heard about a pleasant build system and CMake is no exception,
but it gets the job done and as it is used in many projects it is easy to find
examples covering many use cases. A secondary build system, setuptools, is used
to generate Python wheels (python packages which can be installed with pip).
This consists of a single Python script which is merely a wrapper around the
CMake project.

The unit tests are written in C++ using the library Catch29 and in Python
with the standard unittest package. Using a library such as Catch2 for unit tests
provides many benefit such as easy test generations for template functions and
types, easy logging, selective test execution and debugging, and are supported
by advanced IDEs (execute/debug specific tests directly from the GUI).

Hosting and CI/CD pipelines We naturally opted for Git as source version con-
trol which is very well adapted for open source development and decided to use
Github for hosting. The documentation is hosted by Read the Docs10 which is
commonly used by python packages but can also be used with C++. Python
wheels are hosted by PyPi11 which is the standard python package repository
used by pip.

Continuous integration (CI) pipelines are managed by Github. The idea is that
any pull request made on the repository first goes through automated testing on
multiple platforms before being merged into the main branch. Our CI pipelines
cover several versions of Python and 3 platforms: Linux, MacOS, and Windows.
Each pipeline validates that the project can be built and that unit tests pass in
a fresh new environment. Setting the CI pipelines is quite difficult at first if the
user is not familiar with them, but it is really worth it by drastically reducing the
risk of regressions in a cross-platform environment. The CI pipeline also includes
a coverage test which measures how much of the code is really covered by the
unit tests, the results are hosted by Codecov12 and an error will be raised if the
overall coverage is decreased by a pull request.

The CI pipelines are complemented by Continuous Delivery (CD) pipelines,
which automatically build new Python wheels and send them to PyPI when
a new version tag is pushed on the repository. CD pipelines are similar to CI
pipelines, but are more constrained: they must provide release/optimized code
which can be distributed. This is in particular a constraint for Linux environ-
ment where PyPi requires using a specific Linux Image, called manylinux, with

9 https://github.com/catchorg/Catch2
10 https://readthedocs.org/
11 https://pypi.org/
12 https://about.codecov.io/

https://github.com/catchorg/Catch2
https://readthedocs.org/
https://pypi.org/
https://about.codecov.io/

Development Efforts for Reproducible Research 13

a limited set of libraries that are expected to be found in any Linux environ-
ment. Finally, the documentation host is also part of the CD pipeline as it will
automatically rebuild and publish a new version of the documentation when a
new version tag is pushed.

Strategy and Roadmap From the previous technical choices describing the
project, several key strategies were put in place.

Adding new features Our strategy was to ship new features as fast as possible to
quickly get users feedback. In practice, coding represents only about 25% of the
time required to propose a new feature. The rest of the work corresponds to an
investment of about 35% for writing tests and debugging, 30% for documentation
and examples (notebooks), and 10% for the management of the project (updating
libraries, updating CI/CD...).

Getting users Initially, the library project was shared with a few close users,
which had the advantage of quick feedback, numerous bug fixes, and fairly fre-
quent breaking changes. After this start-up period, we started to use the library
extensively in courses, tutorial and research projects. We also took the habit to
systematically publish companion notebooks based on the library to advertise
and enhance the reproducibility of our research papers. Today the library is used
in several labs, by researchers from the community and from other communities,
essentially for some image processing methods that do not exist in more standard
packages. In the future, we hope that some of these new users will contribute to
the development of the library itself.

Global feedback The creation and the diffusion of this library is a very positive
experience. In the same way as reported in the previous section, the library
greatly eased several research projects within and outside our laboratory, as it
saved a lot of time for interns and PhD students. It also greatly facilitates the
dissemination of code and the reproducibility of our research papers.

4 Advanced Editorial Efforts

In this section, we discuss two RR platforms, which are managed by some of the
authors of this article, showing the last editorial efforts to improve reproducible
publications. These platforms do not consider the article itself as the sole output
of the research work, but also include source code, rich interactive interfaces for
demonstration, or even advanced system which go beyond the concept of simple
and isolated demonstrators.

The two platforms we review are: a mature journal, IPOL, and a starting project
which can be considered as its spin-off for industrial applications on machine
learning (ML) algorithms, OVD-SaaS.

14 M. Colom, J.A. Hernández, B. Kerautret and B. Perret

4.1 Improvements in the IPOL journal

IPOL is a research journal on reproducible algorithms, focusing on their mathe-
matical details [26]. It started as an image-processing journal, but soon it added
other data types, such as video or audio, among others, as well as other appli-
cations, including remote sensing [27] or even biomedical [28], among others.

IPOL has continued to advance in making the system more adapted to the needs
of authors and demo editors. Here we focus on three aspects and present what
was done to improve the journal: the possibility to use a git repository to develop
the code and see the results immediately in the online demonstration website, the
use of containers for better reproducibility and maintenance, and new datatypes
such as interactive maps for remote sensing applications.

Fast development after integrating git One request made to IPOL by
authors was the possibility of fast code edition. Indeed, the IPOL editor or
advanced users usually had to package their sources in a single file and upload
it to some server; the IPOL’s demo system would then download it, compile
it, and run the updated version. The editors and authors felt that this was too
time-consuming and preferred a solution more suited to their rapid development
needs. Ideally, they wanted to use their own git repositories (for example, hosted
in Github or Gitlab) and that the system fetched the last changes before each
execution. This is now implemented in the system.

This brings up the question of reproducibility, given that, as authors are the
owners of their repositories, they can change the published code at any moment.
The solution adopted by IPOL is to let authors use their own repository, and at
the moment of the publication, their repository is forked in a repository owned
by IPOL. The code is then frozen at the particular revision which passed the
peer review.

This is an example on how the source code is now specified in the demo descrip-
tion:

"build": {

"url": "git@github.com:mlbriefs/88.git",

"rev": "42252c0a84771c9abb141d0eacb6e9d54f44e9e5",

"dockerfile": ".ipol/Dockerfile"

}

It specifies the git repository, a particular revision, and a Dockerfile. The use of
Docker container in the demos is explained in the following section.

Execution in Docker containers When IPOL was started in 2009, C and
C++ were some of the few accepted languages, along MATLAB. Authors were
given strict coding guidelines and were limited to use a small subset of libraries
known for their stability and backward compatibility. Indeed, most of the demos
of that time are still running without major problems.

Development Efforts for Reproducible Research 15

However, it was complicated to run MATLAB with a unique version of the frame-
work, especially when authors actually used different versions, not necessarily
the one accepted by IPOL. At the same time, Python gained a wide popular-
ity in scientific research, and with the rise of machine learning and associated
frameworks and libraries (PyTorch, TensorFlow, and others) it became the de
facto standard.

Each MATLAB program could be designed to run on its own MATLAB ver-
sion, and Python’s virtual environments were not enough to ensure long term
reproducibility. Indeed, it could happen that after a major update of the Debian
distribution of the IPOL servers, some packages in PyPI were not yet available,
among other causes that prevented reconstructing the same environment.

The solution that we adopted was to run the demos inside Docker containers. To
make them reproducible, we maintain the complete instructions to re-create the
container. Now all new IPOL demos are containerized, and we actively port the
old ones to the new execution environment, now well-defined. We also expect
that the use of containers will make it easier to run demos on the cloud in the
future, combined with Infrastructure as Code techniques.

Interactive map GeoJSON demos The opening of IPOL to more diverse
research fields required to improve its underlying infrastructure to support new
data types, especially in the web interface. In particular, IPOL has already pub-
lished several articles on remote sensing, along with the associated demos [27].
One request from users and authors was the possibility to draw one or more
polygonal regions on a map and to save them in the standard GeoJSON format
(standardized by the IETF as RFC 7946).

A good library to render maps on websites was started by the Mapbox company
in 2010, initially under a BDS license. On December 2021, the BSD license used
in Mapbox GL JS was changed to a proprietary one. The community forked
the project and started a free-software alternative, Maplibre, under BSD license
again. Both projects have a very similar API. In 2023 we implemented the in-
teractive map feature in IPOL, with Maplibre as the preferred option, to keep
the project free software, although Mapbox is technically viable. Figure 6 shows
a detail of an IPOL demo with this new feature.

The latitude and longitude of the polygon vertices is encoded in the GeoJSON
response without further processing needed from the IPOL’s side. It is also simple
to obtain both the pixel locations and their corresponding longitude and latitude.

Perpetual archiving Software as a fundamental artifact of the research must
be perpetually preserved. Especially in the case of IPOL publication, where we
consider the article, associated data, and source code as a whole.

Until 2020, IPOL simply stored in their own infrastructure the source code pack-
age which was accepted by the editors. The compromise of IPOL is to make the

https://geojson.org/
https://www.ietf.org/
https://www.rfc-editor.org/rfc/rfc7946
https://www.mapbox.com/

16 M. Colom, J.A. Hernández, B. Kerautret and B. Perret

Fig. 6. A detail of an IPOL demo with a new feature: interactive map. In this example,
one region has been already completed, and the second is being drawn. The feature is
based on Maplibre and it allows to draw one or more regions as polygons on the map,
and return them encoded in GeoJSON format.

sources available forever, or at least for all the lifetime of the journal. However,
the role of IPOL is not being a perpetual archive of source code. Note that, even
large source code repositories such as Github, should be considered development
tools, without that perpetual archiving commitment.

Fortunately, the Software Heritage project [29], supported by UNESCO, is de-
voted to the long-term preservation of software artifacts. Moreover, Software
Heritage is able to point to the artifacts at different levels, such as package, git
project, a particular commit, or even a specific line of the source code, thanks to
the SWHID (SoftWare Hash IDentifier). The SWHID are intrinsic, persistent,
and decentralized identifiers.

Since June 2020, IPOL systematically submits the source code of all published
articles to Software Heritage13, in an alliance in favor for Open Science and
reproducibility.

4.2 OVD-SaaS, a Spin-off of IPOL for Industrial Applications

OVD-SaaS (Online Verifiable Datascience Software as a Service) is a new project
at Centre Borelli which can be considered as the extension of IPOL to industrial
applications. This project takes advantage of the 12 years of experience with the
current computing infrastructure of IPOL to develop a new general platform for
artificial intelligence (AI), including machine learning (ML) applications.

13 https://www.softwareheritage.org/2020/06/11/ipol-and-swh/?lang=es

https://www.softwareheritage.org/2020/06/11/ipol-and-swh/?lang=es

Development Efforts for Reproducible Research 17

OVD-SaaS aims at integrating diverse domains such as academic research, sci-
entific publishers, and industry through the seamless end-to-end deployment of
scalable, secure, reproducible industrial applications. This is expected to high-
light the value of ML/AI research applied to different scientific fields, as for
example finance, health, transportation, or commerce.

The most important features are:

– Easy comparison of algorithms on user data to establish the state of the art
on diverse applications and datasets with a high level of confidentiality.

– A step to certification (badges) or at least granting a label of quality to
algorithms, thus allowing for a better recognition and reputation for authors.

– High degree of specialization and standardization in peer-reviews of code for
ML/AI scientific journals and conferences.

– Use of advanced cloud computing platform for end-to-end deployment of
agile ML-Ops applications, from their publication in the scientific journal to
their implementation at the operational level.

– Code provenance traceable, reproducible, citable (using SWHIDs) function-
ality by chaining algorithms to develop complete pipelines that provide sup-
port solutions to business problems across application domains.

The two main possible business models are:

– Sharing the responsibilities in reproducibility of scientific results, facilitat-
ing contracts between research laboratories, faculties and companies. This
allows to develop specific algorithms which are relevant to their business or
to benefit from the experience of the laboratory when jointly developing a
complete pipeline.

– Spin-off projects (startups or incubated within larger companies) which
would design tailor-made software solutions for SMEs based on particular
chains of algorithms optimized for specific businesses. It can be understood
as an accelerator for the development of business ideas in startups by fa-
cilitating agile cycles providing proofs of concept, sandbox, and minimum
viable products (MVP).

OVD-SaaS Applications The OVD-SaaS application differs from the IPOL
demo system in that it allows for applications whose lifetime is much larger
compared to the short execution of an online demo. In the case of an online
demonstration, the input data is loaded, the algorithm is run, the results are
displayed, and the execution of the demonstration finishes. However, in the case
of OVD-SaaS applications, they run continuously, listening for events to wake up
and processes more data if needed. We shall generically call these new long-lived
processes Applications. The architecture of the OVD-SaaS system has not been
written from scratch, but new modules are added to the IPOL’s architecture to
build OVD-SaaS.

18 M. Colom, J.A. Hernández, B. Kerautret and B. Perret

The main advantages of OVD as a SaaS system are the scalability of the ap-
plication (permitting to spawn effortlessly new processing instances as needed)
and the modularity of the resulting pipeline (permitting to replace any block
with ease). The developer of an algorithm does not license its use to a client,
instead it sells the service of processing the data, or a final application, as in our
proposal.

5 Conclusion

Reproducible research is necessary for the advancement of science and the val-
idation of research results. It requires efforts covering various fields including
platforms to demonstrate and reproduce results, libraries to directly exploit re-
search artifacts, and editorial work, publishing not only source code, but even
complete services. We have surveyed different platforms which can be helpful in
reproducible research, recent image-processing libraries such as Higra, and even
journals such as IPOL. The IPOL was one of the first requesting that the article,
the software and the associated data artifacts should be part of the same publi-
cation. IPOL is constantly adapting to the needs of its users with the inclusion
of new data types and interactive visualizations. Inspired by IPOL, OVD-SaaS
is an extension which intends to be a nexus between academy, industry, and
publishers to provide an answer to the reproducibility problems in the context
of industrial applications.

Strong efforts are needed from the different actors involved in the research com-
munity, such as authors, editors, and publishers. As we showed in this short
survey, fortunately several tools, libraries, and services are available to help per-
form reproducible research.

Acknowledgement

The authors would like to thank Burak Yildiz from Delft University of Technol-
ogy for providing statistics on reproducedpapers.org platform and Dean Pleban
from the Dagshub platform for helping and orienting the authors to measure
user activity. They also thank the reviewers for their valuable comments and
corrections.

References

1. David L. Donoho, Arian Maleki, Inam Ur Rahman, Morteza Shahram, and Victoria
Stodden. Reproducible research in computational harmonic analysis. Computing
in Science & Engineering, 11(1):8–18, 2009.

2. M. Colom, B. Kerautret, and A. Krähenbühl. An Overview of Platforms for Repro-
ducible Research and Augmented Publications. In RRPR, volume 11455 of LNCS,
pages 25–39. Springer, 2018.

https://reproducedpapers.org
https://dagshub.com

Development Efforts for Reproducible Research 19

3. B. Yildiz, H. Hung, J. H Krijthe, C. Liem, M. Loog, G. Migut, F. A Oliehoek,
A. Panichella, P. Pawe lczak, S. Picek, et al. Reproducedpapers. org: Openly teach-
ing and structuring machine learning reproducibility. In International Workshop
on Reproducible Research in Pattern Recognition, pages 3–11. Springer, 2021.

4. Ana Lucic, Maurits Bleeker, Sami Jullien, Samarth Bhargav, and Maarten de Rijke.
Reproducibility as a Mechanism for Teaching Fairness, Accountability, Confiden-
tiality, and Transparency in Artificial Intelligence. 2022.

5. Remi Rampin, Fernando Chirigati, Vicky Steeves, and Juliana Freire. ReproServer:
Making Reproducibility Easier and Less Intensive. 2018. eprint: 1808.01406.

6. R. Rampin, F. Chirigati, D. Shasha, J. Freire, and V. Steeves. ReproZip: The
Reproducibility Packer. Journal of Open Source Software, 1(8):107, 2016.

7. Tibor Šimko, Lukas Heinrich, Harri Hirvonsalo, Dinos Kousidis, and Diego
Rodŕıguez. REANA: A system for reusable research data analyses. In EPJ web of
conferences, volume 214, page 06034. EDP Sciences, 2019.

8. Nicolas Bonneel, David Coeurjolly, Julie Digne, and Nicolas Mellado. Code Repli-
cability in Computer Graphics. ACM Transactions on Graphics, 39(4), July 2020.

9. R. Stojnic and R. Taylor. Papers with code—a facebook AI project, 2018. https:
//paperswithcode.com last accessed: August. 30, 2022.

10. G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.
11. Matthew McCormick, Xiaoxiao Liu, Julien Jomier, Charles Marion, and Luis

Ibanez. ITK: enabling reproducible research and open science. Frontiers in neu-
roinformatics, 8:13, 2014.

12. Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library (PCL).
In IEEE Int. Conference on Robotics and Automation (ICRA). IEEE, 2011.

13. The CGAL Project. CGAL User and Reference Manual. 5.4.1 edition, 2022.
14. David Tschumperlé. The CIMG library. In IPOL 2012 Meeting on Image Process-

ing Libraries, pages 4–pp, 2012.
15. Geogram: A programming library with geometric algorithms. https://github.

com/BrunoLevy/geogram.
16. Michaël Roynard, Edwin Carlinet, and Thierry Géraud. An image processing li-

brary in modern c++: Getting simplicity and efficiency with generic programming.
In RRPR, pages 121–137. Springer, 2018.

17. David Auber. Tulip—a huge graph visualization framework. In Graph drawing
software, pages 105–126. Springer, 2004.

18. Vigra: Vision with generic algorithms. https://ukoethe.github.io/vigra last
access on May 2022.

19. Dgtal: Digital geometry tools and algorithms library. http://dgtal.org.
20. P. Moulon, P. Monasse, R. Perrot, and R. Marlet. OpenMVG: Open multiple view

geometry. In RRPR, pages 60–74. Springer, 2017.
21. Julien Tierny, Guillaume Favelier, Joshua A. Levine, Charles Gueunet, and Michael

Michaux. The Topology ToolKit. IEEE Trans. on Visualization and Computer
Graphics (Proc. of IEEE VIS), 2017. https://topology-tool-kit.github.io/.

22. B. Perret, G. Chierchia, J. Cousty, S.J. F. Guimarães, Y. Kenmochi, and L. Na-
jman. Higra: Hierarchical graph analysis. SoftwareX, 10:1–6, 2019. https:

//github.com/higra/Higra.
23. Charles R. Harris et al.. Array programming with NumPy. Nature, 585(7825):357–

362, September 2020.
24. Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-based python

jit compiler. In Proceedings of the Second Workshop on the LLVM Compiler In-
frastructure in HPC, pages 1–6, 2015.

https:// paperswithcode.com
https:// paperswithcode.com
https://github.com/BrunoLevy/geogram
https://github.com/BrunoLevy/geogram
https://ukoethe.github.io/vigra
http://dgtal.org
https://topology-tool-kit.github.io/
https://github.com/higra/Higra
https://github.com/higra/Higra

20 M. Colom, J.A. Hernández, B. Kerautret and B. Perret

25. Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. pybind11 — seamless op-
erability between c++11 and python, 2016. https://github.com/pybind/pybind11.

26. A. Nicoläı, Q. Bammey, M. Gardella, T. Nikoukhah, O. Boulant, I. Bargiotas,
N. Monzón, C. Truong, B. Kerautret, P. Monasse, and M. Colom. The approach
to reproducible research of the image processing on line (ipol) journal. Informatio,
27(1):76–112, 2022.

27. M. Colom, T. Dagobert, C. d. Franchis, R. G. v. Gioi, C. Hessel, and J. M. Morel.
Using the ipol journal for online reproducible research in remote sensing. IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
13:6384–6390, 2020.

28. Anne-Flore Baron, Olivier Boulant, Ivan Panico, and Nicolas Vayatis. A Compart-
mental Epidemiological Model Applied to the Covid-19 Epidemic. Image Process-
ing On Line, 11:105–119, 2021. https://doi.org/10.5201/ipol.2021.323.

29. Roberto Di Cosmo and Stefano Zacchiroli. Software heritage: Why and how to
preserve software source code. In iPRES 2017-14th International Conference on
Digital Preservation, pages 1–10, 2017.

https://doi.org/10.5201/ipol.2021.323

	Development Efforts for Reproducible Research: Platform, Library and Editorial Investment

