Esteban Restrepo 
  
Senior Member, IEEE Dimos V Dimarogonas 
  
On Asymptotic Stability of Leader-Follower Multi-agent Systems Under Transient Constraints

Keywords: Multi-agent systems, distributed control, Lyapunov methods

We address the agreement-based coordination of first-order multi-agent systems interconnected over arbitrary connected undirected graphs and under transient and steady-state constraints. The system is in a leaderfollower configuration where only a part of the agents, the leaders, are directly controlled via an external control input, in addition to the agreement protocol. We propose a control law for the leaders, based on the gradient of a potential function, that achieves consensus and guarantees that the trajectories of the inter-agent distances of the entire system remain bounded by a performance function. Relying on the edge-agreement framework and Lyapunov's first method, we establish strong stability results in the sense of asymptotic stability of the consensus manifold and, in the leaderless case, nonuniform-in-time input-to-state stability with respect to additive disturbances. A numerical simulation illustrates the effectiveness of the proposed approach.

I. INTRODUCTION

M ULTI-AGENT systems are commonly subject to inter- agent and output constraints such as, e.g., (local) connectivity maintenance, collision and obstacle avoidance [START_REF] Chen | On the control of multi-agent systems: A survey[END_REF]. Besides these, in many applications the transient and steadystate behavior of the trajectories of the multi-agent system must also satisfy some performance specifications in terms of time of convergence, overshoot, etc. For this purpose, since the seminal paper of [START_REF] Bechlioulis | Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[END_REF] in which the evolution of the system's output is prescribed within some predefined region, numerous prescribed-performance-and funnel-control approaches have been developed for multi-agents systems. In [START_REF] Macellari | Multi-agent second order average consensus with prescribed transient behavior[END_REF] a controller is proposed that achieves agreement of second-order systems and guarantees that the evolution of the consensus error satisfies a performance bound. A similar result is presented in [START_REF] Karayiannidis | Multi-agent average consensus control with prescribed performance guarantees[END_REF] for average consensus of agents modeled by single-integrator dynamics. Funnel-control approaches for multi-agent systems are proposed, e.g., in [START_REF] Kimura | Funnel control in multi-agent systems with communication limitations[END_REF]- [START_REF] Lee | Utility of edge-wise funnel coupling for asymptotically solving distributed consensus optimization[END_REF].

In these Lyapunov-based design methods, a nonlinear transformation is applied on the system's output or on the errors so that the constrained system is transformed into an unconstrained one. Then, the analysis of the closed-loop system reduces to showing that the trajectories of the unconstrained system are bounded, implying that the trajectories of the original (constrained) system satisfy the performance bounds. From the latter, it is then concluded that the trajectories of the system ultimately converge to a small region defined by the steady-sate values of the performance functions. Hence, most of the works in the literature only establish convergence of the multi-agent system to a small neighborhood of the agreement manifold rather than asymptotic stability.

A workaround to the latter has been achieved by making the performance bounds asymptotically converge to the origin [START_REF] Ilchmann | Asymptotic tracking with prescribed transient behaviour for linear systems[END_REF]- [START_REF] Lee | Asymptotic tracking via funnel control[END_REF]. However, this might result in undesirable large inputs. Indeed, the funnel-and prescribed-performancecontrol approaches rely on the magnitude of the input growing unbounded as the trajectories go near the bounds of the performance function. Moreover, although establishing boundedness of the trajectories is sufficient for guaranteeing practical convergence to consensus, in the presence of uncertainties or disturbances this property alone does not guarantee that, without violating the constraints, the trajectories do not oscillate or asymptotically converge to the performance bounds, making the control inputs grow unbounded at steady-state. Therefore, when considering more complex high-order and nonlinear systems and/or disturbances and uncertainties, stronger stability properties are usually needed in order to guarantee consensus while guaranteeing the fulfillment of the transient constraints. Asymptotic stability under prescribed performance constraints has been established in [START_REF] Verginis | Asymptotic stability of uncertain lagrangian systems with prescribed transient response[END_REF], [START_REF] Kanakis | Guaranteeing global asymptotic stability and prescribed transient and steady-state attributes via uniting control[END_REF], albeit for single-agent systems. In [START_REF] Lee | Synchronization with prescribed transient behavior: Heterogeneous multi-agent systems under funnel coupling extended arXiv version[END_REF] asymptotic synchronization is established for heterogeneous multi-agent systems, with bounded inputs at steady state, using asymptotically convergent bounds.

From an implementation perspective, in the works mentioned above the funnel-and prescribed-performance-control laws are applied by all the agents in the system and a single leader, if existent, is given as reference to the followers. However, a more general and less costly approach is to consider that only one or more agents, selected as leaders, are directly controlled via external inputs in addition to the firstorder agreement protocol; the remaining agents are followers evolving only under the agreement protocol. In this setting, the objective is to design the control inputs of the leaders so that the performance bounds for the entire system are satisfied. Leader-follower relative-position-based formation control under prescribed performance constraints is addressed in [START_REF] Chen | Leader-follower formation control with prescribed performance guarantees[END_REF] for first-and second-order systems, using the edge-agreement transformation, albeit for tree graphs, and only convergence to a neighborhood of the consensus manifold is established.

In this letter we address the problem of leader-follower consensus-based control of multi-agent systems interacting over arbitrary connected (fixed) undirected graphs and under transient inter-agent constraints. For that purpose, our control design and analysis rely on the edge-agreement framework introduced in [START_REF] Zelazo | Agreement via the edge Laplacian[END_REF], which allows us to recast the consensus problem as one of stabilization of the origin and constitutes a more natural setting to consider inter-agent constraints.

With respect to the existing literature, our contribution is to propose a control design for the problem of leaderfollower consensus-based coordination of multi-agent systems under transient and steady-state constraints, establishing strong stability results. Although restricted to first-order systems, we establish asymptotic stability of the consensus manifold in the leader-follower case, via Lyapunov's direct method. Then, in the leaderless (homogeneous) case, that is, when all the agents apply the funnel-based control law, we establish robustness in the sense of nonuniform-in-time input-to-state stability in addition to asymptotic stability. This differs from the existing results where only ultimate boundedness and practical convergence to a neighborhood of the consensus manifold is guaranteed. Establishing asymptotic stability and disposing of a strong Lyapunov function, even for just first-order linear systems, is an important step towards extending our results to networks of complex high-order nonlinear systems and considering disturbances or uncertainties.

The remainder of this letter is organized as follows. In Section II the model and the problem statement are presented. The main results are presented in Section III and are illustrated via numerical simulations in Section IV. Finally, some concluding remarks are given in Section V.

II. MODEL AND PROBLEM STATEMENT

In this work we present an approach to the control design and stability analysis for the consensus-based control of a multi-agent system, in a leader-follower configuration, subject to transient and steady-state performance bounds.

The agents interact over a topology described by an undirected graph G(V, E) where the set of nodes V := {1, 2, . . . , N } corresponds to the labels of the agents and the set of edges, E ⊆ V × V, of cardinality M , represents the communication between a pair of nodes, that is, an edge e k := (i, j) ∈ E, k = {1, . . . , M }, is an unordered pair indicating that agent j has access to information from node i and vice-versa. Moreover, we consider that the multi-agent system is composed of leader and follower agents. Without loss of generality, suppose that the first N F < N agents are followers while the last N L < N are leaders with

V F := {1, . . . , N F } ⊂ V and V L := {N F + 1, . . . , N L + N F } ⊂ V, with N = N F + N L .
All the agents are governed by a consensus-based protocol-cf. [START_REF] Mesbahi | Graph theoretic methods in multiagent networks[END_REF], but only the leader agents, i.e., i ∈ V L can be directly controlled via an additional control input. More precisely, we have that for each agent i ∈ V its evolution is governed by the first-order system

1 ẋi = -c j∈Ni (x i -x j ) -(x d i -x d j ) + b i u i , (1) 
where (x d ix d j ) is a desired displacement between agents i and j, u i is an external input and b

i = 1 if i ∈ V L and b i = 0 otherwise.
Let us define an edge state as

z k := (x i -x j ) -(x d i -x d j ) ∀k ≤ M, e k ∈ E. (2) 
Then the coordination problem under transient and steady-state constraints consists in guaranteeing that the edge-variables defined in (2) remain bounded by a positive smooth performance function

ρ k : [t 0 , ∞) → R >0 , k ≤ M , i.e., |z k (t)| < ρ k (t), ∀k ≤ M, (3) 
that satisfies the following assumption.

Assumption 1: For each edge e k ∈ E, there exists constants ρk > ρ k > 0 and φk > 0 such that the performance function ρ k : [t 0 , ∞) → R >0 and its derivative satisfy

ρ k ≤ ρ k (t) ≤ ρk , | ρk (t)| ≤ φk , ∀t ≥ t 0 . ( 4 
)
The goal is to design the inputs of the leaders u i , i ∈ V L , so that the agents reach consensus and fulfill the inter-agent performance bounds given by (3). Mathematically, the consensus problem translates into making

(x i -x j ) -(x d i -x d j )
→ 0, or equivalently, z k → 0 in the relative coordinates, while respecting the performance bounds (3).

To address the problem at hand we use a modified version of the control-design and analysis methodology for consensus under constraints presented in [START_REF] Restrepo | Stability and robustness of edge-agreement-based consensus protocols for undirected proximity graphs[END_REF] based on the edgeagreement framework. In an edge-based representation we consider the states of the interconnection edges in the graph at each mode, instead of those of the nodes. Let us denote the so-called incidence matrix of the graph by E ∈ R N ×M , which is a matrix with rows indexed by the nodes and columns indexed by the edges. Its (i, k)-th entry is defined as follows:

[E] ik := -1 if i is the terminal node of edge e k , [E] ik := 1 if i is the initial node of edge e k , and [E] ik := 0 otherwise. Then, the edge states in (2) satisfy

z := E ⊤ (x -x d ) (5) 
where

x ⊤ = [x 1 • • • x N ] ∈ R N , x d⊤ = x d 1 • • • x d N ∈ R N , and z ⊤ := [z 1 . . . z M ] ∈ R M .
Now, let us decompose the incidence matrix into the rows corresponding to the followers and the rows corresponding to the leaders, i.e., E = E ⊤ F E ⊤ L ⊤ . Then, collecting the inputs of the leaders into the vector

u ⊤ = [u N F +1 • • • u N L +N F ] ∈ R N L
and taking the time derivative of (5), using (1), the edge dynamics take the form

ż = -cE ⊤ Ez + E ⊤ L u. (6) 
As observed in [START_REF] Zelazo | Agreement via the edge Laplacian[END_REF], the dynamics of the whole system is captured by that of a spanning tree G T ⊂ G. Specifically, using an appropriate labeling of the edges, the incidence matrix is expressed as

E = [E T E C ], where E T ∈ R N ×(N -1)
denotes the full-column-rank incidence matrix corresponding to an arbitrary spanning tree G T and E C ∈ R N ×(M -N +1) represents the incidence matrix corresponding to the remaining edges not contained in G T . Then, defining

R := [I N -1 T ] , T := E ⊤ T E T -1 E ⊤ T E C , (7) 
one obtains a relation between the incidence matrix of G and that of the spanning tree G T as

E = E T R. (8) 
Moreover, from the row decomposition into leaders and followers, the incidence matrix is partitioned as

E = E F T E F C E LT E LC . (9) 
Then, from (8), the following identities hold:

E F = E F T R, E L = E LT R. ( 10 
)
The identities ( 8) and ( 10) are useful to derive a reducedorder dynamic model. Indeed, the edges' states may also be split as

z = z ⊤ T z ⊤ C ⊤ , z T ∈ R N -1 , z C ∈ R M -N +1 (11) 
where z T are the states corresponding to the edges of an arbitrary spanning tree G T and z C denotes the states of the remaining edges, e k ∈ G\G T . Thus, from [START_REF] Lee | Utility of edge-wise funnel coupling for asymptotically solving distributed consensus optimization[END_REF] and [START_REF] Verginis | Asymptotic stability of uncertain lagrangian systems with prescribed transient response[END_REF], we obtain

z = R ⊤ z T . (12) 
Using the identities ( 8) and ( 12) into ( 6) we obtain the reducedorder system

żT = -cE ⊤ T E T RR ⊤ z T + E ⊤ LT u, (13) 
where E ⊤ T E T is positive definite [START_REF] Zelazo | Agreement via the edge Laplacian[END_REF]. Note that, asymptotic stability for the origin of (13) implies asymptotic stability for the origin of [START_REF] Shim | A preliminary result on synchronization of heterogeneous agents via funnel control[END_REF]. Therefore, the consensus objective is achieved if the origin is asymptotically stabilized for the reduced-order system [START_REF] Lee | Synchronization with prescribed transient behavior: Heterogeneous multi-agent systems under funnel coupling extended arXiv version[END_REF].

III. MAIN RESULT

A. Control approach

To address the problem at hand we propose a control law based on the gradient of a potential function encoding the performance constraints [START_REF] Macellari | Multi-agent second order average consensus with prescribed transient behavior[END_REF]. For that purpose let us rewrite, for each k ≤ M , the inter-agent constraints using the set

D k := {z k (t) ∈ R : |z k (t)| < ρ k (t)}. (14) 
Then, for each k ≤ M , we define a positive function W k :

R ≥0 × D k → R ≥0 , of the form W k (t, z k ) = 1 2 ln ρ k (t) 2 ρ k (t) 2 -z 2 k , ( 15 
) that satisfies W k (t, 0) = 0 and W k (t, z k ) → ∞ as |z k | → ρ k (t)
, and denote

∇W k (t, z k ) := ∂W k (t, z k ) ∂z k = z 2 k ρ k (t) 2 -z 2 k , (16) 
which satisfies ∇W k (t, 0) = 0 and

∇W k (t, z k ) → ∞ as |z k | → ρ k (t)
, for all t ≥ t 0 . Moreover, from the properties of the logarithm function, the bounds

1 2ρ 2 k z 2 k ≤ W k (t, z k ) ≤ ρ2 k 2 |∇W k (t, z k )| 2 , (17) 
hold for all z k (t) ∈ D k and for all t ≥ t 0 .

In order to satisfy the prescribed performance constraints (3), the leaders' inputs are set to

u i := -c k≤M [E L ] ik ∇W k (t, z k ), i ∈ V L , (18) 
where c > 0 is a control gain and [E L ] ik denotes the (i, k)th entry of E L . Now, denote E L as the set of edges that are connected to at least a leader node. That is,

E L := {e k = (i, j) ∈ E : i ∈ V L ∨ j ∈ V L }. Moreover, denote M L ≤ M the cardinality of E L .
Similarly, denote E F as the set of edges that are not connected to any leader node, and denote M F ≤ M the cardinality of E F , where M L + M F = M . Then, in compact form, using [START_REF] Karafyllis | Nonuniform in time input-to-state stability and the small-gain theorem[END_REF], the leader inputs are rewritten as

u := -cE L ∇W L (t, z), (19) 
where

W L (t, z) = M F +M L k=M F +1 W k (t, z k ), e k ∈ E L . (20) 
Recalling the identity [START_REF] Kanakis | Guaranteeing global asymptotic stability and prescribed transient and steady-state attributes via uniting control[END_REF], denote ∇W L (t, z T ) := ∂W L t, R ⊤ z T /∂z T . Using the chain rule, we have that

∇W L (t, z T ) = ∂z ∂z T ⊤ ∂W L (t, z) ∂z = R∇W L (t, z). (21) 
Replacing ( 19) into (13) and using ( 8) and ( 21) we obtain

żT = -cE ⊤ T E T RR ⊤ z T -cE ⊤ LT E LT ∇W L (t, z T ). (22) 

B. Main result

Theorem 1: Consider the leader-follower multi-agent system (1) interconnected over a connected undirected graph and in closed loop with the control law [START_REF] Karafyllis | Nonuniform in time input-to-state stability and the small-gain theorem[END_REF]. Then, given performance functions ρ k (t), k ≤ M , satisfying Assumption 1, for all initial conditions such that z k (t 0 ) ∈ D k , k ≤ M , where z k and D k are defined, respectively, in (2) and ( 14), if the following condition holds

γ ≥ κ c =: 1 c max k φk ρ k , ( 23 
)
where γ is the largest value of γ that ensures that the symmetric matrix

Γ := γE ⊤ T E T 1 2 E ⊤ T E T -γ (RR ⊤ ) -1 -E ⊤ LT E LT ⋆ E ⊤ LT E LT (24)
is positive semi-definite, i.e., Γ ≥ 0, then the trajectories of the closed-loop system satisfy the performance bounds (3), ∀k ≤ M , ∀t ≥ t 0 , and the origin of the closed-loop system (22) is asymptotically stable with domain of attraction D := k≤M D k . □ Proof: First let us denote a potential function for all the edges e k ∈ E

W (t, z) = M k=1 W k (t, z k ). ( 25 
)
Let a candidate Lyapunov function be given by

V 1 (t, z T ) = γ 2 z ⊤ T RR ⊤ z T + W (t, z T ), (26) 
where, with a slight abuse of notation, we have written W as a function of z T since W (t, z) = W (t, R ⊤ z T ). From the definition of W in ( 25) and ( 17), V 1 satisfies the bounds

α 1 |z T | 2 ≤ V 1 (t, z T ) ≤ β|∇W (t, z T )| 2 , α 1 , β > 0. ( 27 
)
Note that, from the structure of E LT , ( 22) may be equivalently written as

żT = -cE ⊤ T E T RR ⊤ z T -cE ⊤ LT E LT ∇W (t, z T ). (28) 
Then, the derivative of (26) yields

V1 (t, z T ) = -cγz ⊤ T RR ⊤ E ⊤ T E T RR ⊤ z T -cγz ⊤ T RR ⊤ E ⊤ LT E LT ∇W (t, z T ) -c∇W (t, z T ) ⊤ E ⊤ LT E LT ∇W (t, z T ) -c∇W (t, z T ) ⊤ E ⊤ T E T RR ⊤ z T + k≤M z k ∇W k (t, z k )ϕ k (t), (29) 
where

ϕ k (t) := - ρk (t) ρ k (t) and |ϕ k (t)| ≤ φk ρ k . ( 30 
)
Adding and subtracting cγz ⊤ T RR ⊤ ∇W (t, z T ) to the righthand side of (29), choosing γ = γ satisfying (23), and defining

y ⊤ = z ⊤ T RR ⊤ ∇W (t, z T ) ⊤ , (29) becomes V1 (t, y) = -cy ⊤ Γy ≤ 0, (31) 
with Γ given in (24). Now, we establish invariance of the set D. We proceed by contradiction. Assume that there exists T > t 0 such that for all t ∈ [t 0 , T ),

z k (t) ∈ D k and z k (T ) / ∈ D k . More precisely, we have |z k (t)| → ρ k (t) as t → T for at least one k ≤ M . From the definition of W k in (15), this implies that V 1 (t, z T (t)) → ∞ as t → T which is in contradiction with (31). Indeed, (31) implies that V 1 (t, z T (t)) is bounded, i.e., V 1 (t, z T (t)) ≤ V (t 0 , z T (t 0 )) < ∞
for all t ≥ t 0 . Therefore, D k , and consequently, D is forward invariant, which in turn implies that (3) is satisfied for all t ≥ t 0 and all k ≤ M . Now, from the forward invariance of D we know that |z k (t)| ≤ ρ k (t) for all t ≥ t 0 and all k ≤ M , hence, it is possible to deduce the boundedness of żT (t). Then, from the boundedness of ρ k (t), ρk (t) we have that V1 (t, z T (t)) is bounded. The latter implies uniform continuity of V1 (t, z T (t)), which in turn, applying Barbȃlat's Lemma, implies that V 1 (t, z T ) → 0 as t → ∞. Hence, convergence to consensus is achieved.

In order to show that the origin of ( 22) is asymptotic stable, let us define the Lyapunov function

V 2 (t, z T ) = 1 2 z ⊤ T RR ⊤ z T , (32) 
satisfying

1 2 |z T | 2 ≤ V 2 (t, z T ) ≤ λ max (RR ⊤ ) 2 |z T | 2 . ( 33 
)
Its derivative yields

V2 (t, z T ) = -c z ⊤ T RR ⊤ E ⊤ T E T RR ⊤ z T -c z ⊤ T RR ⊤ E ⊤ LT E LT ∇W L (t, z T ). ( 34 
)
Denote z L ∈ R M as the vector with zeros in the position of the edges is 12), [START_REF] Lee | Asymptotic tracking via funnel control[END_REF], and the structure of E L , we have that the right-hand side of (34) may be rewritten as

E F , i.e., [z L ] k = z k if e k ∈ E L and [z L ] k = 0 otherwise. Then, from (
V2 (t, z T ) = -c z ⊤ T RR ⊤ E ⊤ T E T RR ⊤ z T -c z ⊤ L E ⊤ L E L ∇W L (t, z L ). ( 35 
)
Hence, from the definition of W k (t, z k ) and the forward invariance of D, we have that

V2 (t, z T ) ≤ -c z ⊤ T RR ⊤ E ⊤ T E T RR ⊤ z T ≤ -c ′ V 2 (t, z T ) < 0, (36) 
where c ′ := 2cλ min (E ⊤ T E T ), and c ′ > 0 from [START_REF] Zelazo | Agreement via the edge Laplacian[END_REF]. Then, from (33), (36), and forward invariance of D it follows that the origin of ( 22) is asymptotically stable with domain of attraction D.

Remark 1: A direct consequence of Theorem 1 is that the fulfillment of the bounds (3) depends on the topology of the leader-follower network. Indeed, the condition (23) implies that, for a fixed control gain c, given the matrices E T and E LT , or equivalently, a graph topology, there exists a maximum rate φk /ρ k , characterizing the performance functions, so that the entire system satisfies the transient constraints. •

C. Homogeneous case

We now show that, in the homogeneous configuration, that is, when all agents are directly controlled by the external input given in [START_REF] Karafyllis | Nonuniform in time input-to-state stability and the small-gain theorem[END_REF], stronger stability properties are established following the same analysis as in the main statement.

Let us consider that all the agents are labeled as leaders, that is, V = V L . Therefore, we have that E L = E. Moreover, defining the function

W (t, z) = k≤M 1 2 z 2 k + W k (t, z k ), e k ∈ E, (37) 
the closed-loop system becomes

żT = -cE ⊤ T E T ∇ W (t, z T ). (38) 
Then, we have the following result.

Theorem 2: Consider the multi-agent system (1) interconnected over a connected undirected graph with V = V L and in closed loop with the control law [START_REF] Karafyllis | Nonuniform in time input-to-state stability and the small-gain theorem[END_REF]. Then, given performance functions ρ k (t), k ≤ M , satisfying Assumption 1, for all initial conditions such that z k (t 0 ) ∈ D k , k ≤ M , where z k and D k are defined, respectively, in (2) and ( 14), the consensus manifold is asymptotically stable with domain of attraction D := k≤M D k and the trajectories of the closed-loop system satisfy (3), ∀t ≥ t 0 . □ Proof: Let a candidate Lyapunov function be given by

V 1 (t, z T ) = γ 2 z ⊤ T (E ⊤ T E T ) -1 z T + W (t, z T ), (39) 
where, with an abuse of notation, we write W as a function of z T since W (t, z) = W (t, R ⊤ z T ). Note that, akin to (27), from (37) and ( 17), V 1 in (39) satisfies the bounds

α ′ 1 |z T | 2 ≤ V 1 (t, z T ) ≤ β ′ |∇ W (t, z T )| 2 , α ′ 1 , β ′ > 0.
(40) Now, the derivative of (39) yields

V1 (t, z T )=-cγ z ⊤ T ∇ W (t, z T ) + k≤M z k W k (t, z k )ϕ k (t) -c∇ W (t, z T ) ⊤ E ⊤ T E T ∇ W (t, z T ), (41) 
where ϕ k was defined in (30). Therefore, setting γ ≥ κ/c, where κ := max{ φk /ρ k }, we obtain

V1 (t, z T ) ≤ -(cγ -κ) k≤M z k W k (t, z k ) -cλ min (E ⊤ T E T )|∇ W (t, z T )| 2 ≤ -c V 1 (t, z T ) < 0 (42) 
with c :=

cλmin(E ⊤ T E T ) 2α ′ 1 β ′ > 0.
Forward invariance of D follows from (42) and from the same arguments as in the proof of Theorem 1.

Next, note that V 1 (t, z T ) is positive definite on D and it satisfies the bounds (40). This means that V 1 (t, z T ) → 0 as z T 0. Therefore, from (40) and (42) it follows that all trajectories of (38) starting in D converge to the origin. Hence, the origin is attractive for all trajectories z T (t) starting in D. It follows from the attractivity of the origin and the forward invariance of D that the origin of the closed-loop system (38) is (non-uniformly) asymptotically stable with domain of attraction D.

Corollary 1: Consider the closed-loop system (38) under an additive essentially bounded disturbance d(t), i.e.,

żT = -cE ⊤ T E T ∇ W (t, z T ) + E ⊤ T d(t). (43) 
Then, under the same assumptions of Theorem 2, (43) is nonuniformly-in-time input-to-state stable. □ Proof: The time derivative of the Lyapunov function V 1 in (39) along (43) yields

V1 (t, z T )=-cγ z ⊤ T ∇ W (t, z T ) + k≤M z k W k (t, z k )ϕ k (t) -c∇ W (t, z T ) ⊤ E ⊤ T E T ∇ W (t, z T ) +∇ W (t, z T ) ⊤ E ⊤ T d(t) + cγ z ⊤ T d(t). ( 44 
) Let c := (c-δ1) 2 max ρ 2 k -γδ2 2 
and δ := 1 2δ1 + γ 2δ2 , where δ 1 , δ 2 are small positive constants so that c > 0. Then, setting γ ≥ κ/c, applying Young's inequality to the last two terms of the right-hand side of (44), and using (42) and (40), we have that

V1 (t, z T ) ≤ -c V 1 (t, z T ) + δ|d(t)| 2 . ( 45 
)
To assert the fulfillment of the performance bounds in the presence of additive disturbances, we show that in the proximity of the limits imposed by the performance function, the first term on the right-hand side of (45) dominates over the bounded disturbance. To that end, let d := sup t≥0 |d(t)| and let ε(t) ∈ (0, ρ k (t)) be a small constant to be determined. Without loss of generality, let z T be such that for at least one edge e k we have |z

k (t)| ≥ ρ k (t) -ε(t). Then, |z T (t)| ≥ ρ k (t) -ε(t) and since V 1 is continuous, non-decreasing, and V 1 (t, s) → ∞ as s → ρ k (t)
, for all t, it follows that there exists ε * (t, d) such that if ε(t) ≤ ε * (t, d), V1 (t, z T ) < 0. The latter holds along trajectories starting from any initial condition z T (t 0 ) ∈ D which implies that z T (t) cannot approach the boundary of D so the performance bounds are fulfilled for all t. Now, note that from ( 16) and (40), and for all z T (t) ∈ D, it holds that

α ′ 1 |z T | 2 ≤ V 1 (t, z T ) ≤ α 2 (µ(t)|z T |), (46) 
where α ′ 1 > 0, α 2 (s) = κs 2 , with κ > 0, and µ(•) is a continuous positive function µ : R ≥0 → R >0 given by

µ(t) = 1 min k {ρ k } max k 1 1 -ς k (t) 2 , ς k (t) := z k (t) ρ k (t) . 
Therefore, from (45) and (46), invoking [18, Proposition 3.1], it follows that the closed-loop system (43) is nonuniformly-in-time input-to-state stable.

IV. NUMERICAL SIMULATION

We illustrate the theoretical results via a numerical example. The simulation involves the formation control of six agents evolving in two dimensions and modeled by (1) in closed-loop with [START_REF] Karafyllis | Nonuniform in time input-to-state stability and the small-gain theorem[END_REF], where the desired displacements z

d k := E ⊤ ⊗ I 2 (x d i -x d j )
, for each k ≤ 7, are set to (0.6, 0.3), (-0.6, 0.9), (-0.6, 0.3), (0, 0.6), (-0.6, 0.9), (0, -0, 6), and (-0.6, 0.3). The interconnection topology is given by the connected undirected graph in Fig. 1. The set of leaders is given by V L = {2, 4, 6}, represented in gray in Fig. 1. The objective is for the agents to reach the desired formation in a prescribed time, that is, the formation errors must satisfy the performance constraints in (3) with

ρ k (t) = 4.6 e -(0.5t) 2 + 0.2, ∀k ≤ 7,
where only the leaders apply the control law in [START_REF] Karafyllis | Nonuniform in time input-to-state stability and the small-gain theorem[END_REF]. The initial conditions of the six agents in the simulation are presented in Table I. The controller gain is set to c = 1.2.

It is also assumed that the leader agents are subject to an essentially bounded disturbance modeled as a smoothed vanishing step, that is,

θ i (t) = -σ i (t) [0.2 0.3] ⊤ , i ≤ V L σ i (t) = -tanh(2(t - 5 
)) -1. It can be seen from Figs. 2 and 3 that the agents successfully reach the desired formation while satisfying the inter-agent performance bounds. Moreover, as seen in Fig. 3, the formation errors converge to the origin as soon as the disturbance vanishes. Although not proven in this letter, it may be conjectured, from the simulation results, that the input-tostate stability properties established in Corollary 1 may be extended to the leader-follower case under the assumptions of Theorem 1. The proof of this claim is under research.

TABLE I: Initial conditions

V. CONCLUSIONS

Strong Lyapunov stability and robustness results for multiagent systems under consensus-based controllers and with transient and steady-state constraints are considered in this letter. We propose a gradient-based agreement controller for leader-follower multi-agent systems that ensures the satisfaction of inter-agent transient constraints for all pairs of agents. We establish asymptotic stability of the agreement manifold in the leader-follower and, in the homogeneous case, nonuniform-in-time input-to-state stability. Although restricted to first-order systems, we argue that our preliminary results pave the way towards considering complex high-order nonlinear systems and more general cooperative tasks, which is the focus of our current research.
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 712 Fig. 1: Connected undirected graph representing the network topology with the leaders in gray.

7 Fig. 3 :

 73 Fig. 3: Trajectories of the formation errors. The dashed line represents the performance bound.

Throughout this note we consider 1-dimensional agents. However we note that the results presented herein hold also for n-dimensional agents using the properties of the Kronecker product.
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