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This article studies an inter-temporal optimization problem by using a criterion that is a combination of Ramsey's and Rawls's criteria. A detailed description of the saving behavior through time is provided. The optimization problem under α-maximin criterion is also considered, and the optimal solution is characterized.

Introduction

Motivation and concerns

Consensus has been reached that the main source of today's high living quality compared with other centuries is from the non-stop world economic growth that began 300 years ago. Nevertheless, the trade-off between efficiency and equality always causes debates among economists, politicians, and even historians. An extremist privilege could cause massive complications for human welfare. Especially in the context of climate change today, inter-generational inequality becomes one of the most important issues in economists' attention. So, the question is: how to justly reconcile these features?

This urges the need for ethnically accepted criteria evaluating inter-generational utilities. Chichilnisky, in seminal articles [11,[START_REF] Chichilnisky | What Is Sustainable Development?[END_REF], proposes to study Social Welfare Functions satisfying the no-dictatorship of the present and the no-dictatorship of the future, balancing the welfare of the present and of the future. 1 These criteria, weakening the anonymity in keeping Paretian property, rapidly become the inspiration source of a large range of contributions. This article follows an alternative approche, considering a criterion balancing efficiency and equality, with the axiomatic foundation can be established by adding a time invariance property to the -contamination configuration in Kopylov [START_REF] Kopylov | Subjective probability, confidence, and Bayesian updating[END_REF].

Precisely, given a discount rate β and a instataneous utility function u, the evaluation of a consumption stream (c 0 , c 1 , c 2 . . .) is:

U (c 0 , c 1 , c 2 , . . . ) = ∞ t=0 β t u(c t ) + a inf t≥0 u(c t ),
where the parameter a ≥ 0 captures the importance of equity in the inter-temporal generational evaluation in the choice of the economic agent. While the first term 1 A generalization of these properties, with the convex parameter between the close future and the distant future may change in function of their values, can be found in Drugeon and Ha-Huy [START_REF] Drugeon | A Not so Myopic Axiomatization of Discounting[END_REF].

is the usual discounted utilitarian criterion, the second one, well-known as Rawls' one, measures the utility value of consumption streams in respect of equality.

We consider also the possibility balancing pessimism and optimism, taking into account the worst generation and the best generation.2 This a a convex combination of the worst and the best:

U (c 0 , c 1 , . . . ) = α sup t≥0 u(c t ) + (1 -α) inf t≥0 u(c t ), (1.1) 
for some 0 ≤ α ≤ 1 that can be considered as the optimism degree of the economic agent.

Approach and results

We begin the analysis by considering the following modified optimization problem:

if we lower the value of the Rawls part to , what is the best we can make for the Ramsey part? By lowering the former, we have more room to improve the later.

The optimal can be considered as the efficiency-equality trade-off cost. This modification allows us to transform the initial problem into a classical optimization one with an additional constraint.

Beginning from a low level of capital accumulation, the utility of the early dates (or generations) has a tendency to be reduced as much as possible, for the sake of a rapid accumulation of capital. Nevertheless, because of the constraints imposed by the equality criteria of Rawls, the difference in utility between the early and later dates is not too high. In long term, the economy behaves as under the Ramsey criterion.

In the case of high capital accumulation, the economy converges to a higher steadystate than that of the Ramsey problem. In the long term, the economy behaves like a solution to the Ramsey problem with a higher discount factor, which is increasing with respect to the importance of the equality parameter a.

The α-MaxMin problem is studied using a similar idea. By lowering the infimum part, we describe the optimal path for the supremum part. We determine the existence of an optimal value trade-off and a detailed properties of the economy.

Beginning from an initial value that is smaller than the golden rule, there exists a threshold for the parameter α. If α is small, corresponding to the situation where Rawls part dominates in the criterion, the solution coincides with Rawls part's one. Otherwise, with a sufficiently large value of α, the economy has an infinite number of solutions. Every optimal path fluctuates between two different values determined by the fundamental parameters of the problem.

A similar property is observed if the economy begins from an initial capital that is higher than the golden rule but not too much. In the case the initial capital level is sufficiently high, there is a unique solution and this path takes a constant value (smaller than the golden rule) from the date t = 1.

Related literature

In recent decades, a vast literature has expanded the results in decision theory to study inter-temporal axiomatization. The introduction of Gilboa and Schmeidler [START_REF] Gilboa | Maxmin Expected utility with nonunique prior[END_REF] of the multiple priors approach gives the inception of numerous works not only in ambiguity literature but also in multiple discount rates of inter-temporal analysis. To name some contributions, Wakai [START_REF] Wakai | A Model of Utility Smoothing[END_REF] provides an account of smoothing behaviours where the optimal discount assumes an MaxMin recursive representation. Chambers and Echenique [START_REF] Chambers | On Multiple Discount Rates[END_REF] set an axiomatic approach to multiple exponential discount rates. Recently, in a similar axiomatic system as Chambers and Echanique [START_REF] Chambers | On Multiple Discount Rates[END_REF], Bich, Dong-Xuan and Wigniolle [7] establish a multiple discount rates configuration combining temporal bias phenomena.

This article follows an alternative line of thinking, the idea of -contamination, presented in Kopylov [START_REF] Kopylov | Subjective probability, confidence, and Bayesian updating[END_REF]. This configuration can be obtained by adding an -contamination structure to the set of priors in Gilboa and Schmeidler [START_REF] Gilboa | Maxmin Expected utility with nonunique prior[END_REF].

The evaluation of an act is measured by a convex combination between a mean expected utility and a maximin expected utility with a given set of priors. The case of complete ignorance, i.e. the set of priors is the whole set of probabilities, is studied in Eichberger and Kelsey [15] and Nishimura and Ozaki [START_REF] Nishimura | An axiomatic approach to -contamination[END_REF]. Kopylov [START_REF] Kopylov | Subjective probability, confidence, and Bayesian updating[END_REF] obtains the general case by substituting the certainty independence of Gilboa

and Schmeidler [START_REF] Gilboa | Maxmin Expected utility with nonunique prior[END_REF] by the ∆-independence, with ∆ is an information set of probabilities, given as a fundamental of the model. In our article, we add a supplementary condition, a weaker version of Koopmans's time invariance to obtain the Ramsey-Rawls presentation.

The contribution of Alvarez-Cuadrado and Van Long [START_REF] Alvarez-Cuadrado | A mixed Bentham -Rawls criterion for intergenerational equity: Theory and implications[END_REF] studies a similar criterion (called the mixed Bentham -Rawls criterion) under a continuous time configuration. Their analysis is based on a maximization problem where the infimum of utility streams is supposed to be greater than a certain value u, which is considered as a control parameter. The observation of the solution and the choice of the optimal parameter u provide the properties of the optimal path.

Many attempts have been made to study the solution of Rawls maximin critetion in [START_REF] Rawls | A Theory of Justice[END_REF]. The seminal contributions of Arrow [START_REF] Arrow | Rawls' Principle of Just Savings[END_REF], Calvo [START_REF] Calvo | Optimal Maximin Accumulation With Uncertain Future Technology[END_REF], Phelps and Riley [START_REF] Phelps | Rawlsian Growth: Dynamic Programming of Capital and Wealth for Intergeneration "Maximin" Justice[END_REF],

have been made to study the evolution of the economy by using this criterion to evaluate inter-temporal welfare. Arrow [START_REF] Arrow | Rawls' Principle of Just Savings[END_REF] assumes constant productivity. Calvo [START_REF] Calvo | Optimal Maximin Accumulation With Uncertain Future Technology[END_REF] studies under uncertain technology. Phelps and Riley [START_REF] Phelps | Rawlsian Growth: Dynamic Programming of Capital and Wealth for Intergeneration "Maximin" Justice[END_REF] study a dynamic programming structure. The result is pessimistic: if the initial accumulation of capital is low, the economy remains in this low capital accumulation situation forever.

In a surprising and fascinating article, Zuber and Asheim [START_REF] Zuber | Justifying social discounting: The rankdiscounted utilitarian approach[END_REF] establish an axiomatic foundation for what, in our opinion, could be called the "second Rawls criterion". They assume the anonymity, a condition such that the value of a utility stream does not change after any permutation of the generations' utilities.

Following the line of Koopmans [START_REF] Koopmans | Stationary Ordinal Utility and Impatience[END_REF]23], and restricting strong Pareto, separability between the present and the future and stationarity on the set of streams that are increasing or can be rearranged as increasing, the criterion becomes:

U (c 0 , c 1 , . . . ) = inf p∈Π (1 -β) ∞ t=0 β t u c p(t) ,
where Π represents the set of every permutation possible of the set of natural numbers {0, 1, 2, . . . }. Though the strong Pareto does not hold, 3 Zuber and Asheim (2012) prove that this criterion satisfies Chichilnisky's no-dictatorship properties.

They also apply it to a similar growth context as this article and prove that the solution coincides with Ramsey's one in the case where produc tivity is high and with the optimal solution under the Rawlsian criterion in the case where productivity is low. 2 Dynamics under Ramsey-Rawls criterion

As

Contents

Fundamentals

Let β ∈ (0, 1) be the discount factor of the discounted utilities part, and parameter a ≥ 0 representing the importance of equality in the criterion. Let f and u be correspondingly the production and the utility functions. For a given capital stock k 0 ≥ 0, the economic agent solves the following optimisation problem (P ):

V (k 0 ) = max ∞ t=0 β t u(c t ) + a inf t≥0 u(c t ) , s.c c t + k t+1 ≤ f (k t ), k t , c t ≥ 0, ∀ t.
Assumption A1. Utility function u is strictly concave, strictly increasing, satisfies Inada condition and bounded from below. The production function f is concave, strictly increasing, satisfying f (0) = 0 and f (0) > 1.

Let Π(k 0 ) be the set of feasible paths {k t } ∞ t=0 : 0 ≤ k t+1 ≤ f (k t ) for any t. Denote by k the solution to f (k) = 1, which maximizes f (k) -k. In the case f (k) > 1 for any k ≥ 0, let k = ∞. The value k is usually called the golden rule, the capital stock that maximizes the constant consumption.4 Let k s be the minimum

of value(s) k such that f (k) = 1 β . If f (k) > 1 β for every k ≥ 0, let k s = ∞. If f (k) < 1 β for every k ≥ 0, let k s = 0.
It is well known in the literature that under suitable conditions, with respect to the product topology, the Ramsey part and the Rawls part are upper semi-continuous and the set of feasible paths Π(k 0 ) is compact. To simplify the presentation, we assume directly this continuity property. Curious readers can refer to the classical book of Stokey, Lucas (with Prescott) [START_REF] Stokey | Recursive methods in Economic Dynamics[END_REF], or the article by Le Van and Morhaim [21] for the details of conditions that ensure this property.

Assumption A2. The following functions, being defined on the set of feasible paths Π(k 0 ),

∞ t=0 β t u (f (k t ) -k t+1 ) and inf t≥0 u (f (k t ) -k t+1 ) ,
are well defined and upper semi-continuous with respect to the product topology.

Under this assumption, (P ) has an optimal solution, which is unique, due to the strict concavity of utility function u. It is worth recall that in the case a = 0, there exists a strict increasing optimal policy function σ such that the optimal path {k * t } ∞ t=0 satisfies k * t+1 = σ(k * t ) for every t and this path converges to k s when t tends to infinity.

In another extreme, when the evaluation criterion contains merely the Rawls part: U (c 0 , c 1 , . . .) = inf t≥0 u(c t ), the long term behavior of solution depends strongly on the initial capital k 0 . Precisely, let ν be the value function of the problem under Rawls criterion. If k 0 ≤ k, then the unique optimal solution is (k 0 , k 0 , k 0 , . . .) and ν(k 0 ) = u (f (k 0 ) -k 0 ). Otherwise, if k 0 > k, there exists an infinite number of solution, all converge to k and ν(k 0 ) = u f (k) -k . The details are presented in Appendix 6.2.

The dynamics

The intuition for studying this problem runs as follows. The maximum value possible for the Rawls part is ν(k 0 ). Naturally, the following question arises: if we accept a lower value of the Rawls part up to , what is the best improvement we can obtain for the Ramsey part? And which is the optimal acceptable sacrifice level ? This optimal value may represent the cost of the trade-off between efficiency and equality.

Consider the following intermediary problem (P ), for a given k 0 :

W ( ) = max ∞ t=0 β t u(c t ) , s.c c t + k t+1 ≤ f (k t ), ∀ t ≥ 0, u(c t ) ≥ ν(k 0 ) -, ∀ t ≥ 0.
The optimal trade off value * is defined as:

* = argmax ≥0 [W ( ) + a (ν(k 0 ) -)] .
Let {k * t } ∞ t=0 be the optimal path of (P ) and (P * ). A careful analysis of the solution of (P ) gives us the characterization of the economy under Ramsey-Rawls criterion. The details are given in Appendix 6.3.

Let {k * t } ∞ t=0 the optimal path and c *

t = f (k * t ) -k * t+1 .
Proposition 2.1. Consider the case 0 < k 0 ≤ k s . For any a > 0, there exists T

such that i) For 0 ≤ t ≤ T , u(c * t ) = u f (k 0 ) -k 0 - * . ii) For t ≥ T + 1, u(c * t ) > u f (k 0 ) -k 0 - * .
iii) The sequence {k * t } ∞ t=T +1 is the solution to the Ramsey problem with initial state k * T +1 .

In the case where productivity is high, f (k 0 ) > 1 β , the utility of the early dates (or generations) are lowered as much as possible for the purpose of a rapid accumulation of capital. Sacrificing even a little bit the value of the equality part is worth it, to have a better accumulation level of capital.

Once the capital accumulation level is sufficiently high, the economy follows a Ramsey path that does not violate the equality constraints and converges to the steady-state k s . Because of the constraints imposed by the equality criterion of Rawls, the difference in utility between early dates and the later dates in the distant future is not too high. This difference depends negatively on the equality parameter a, which imposes a trade-off between equality and the speed of convergence to the steady-state.

The case of low productivity f (k 0 ) < 1 β , requires some considerations about threshold of parameter a. With a sufficiently high value of a, the equality part (if sufficiently high) causes the economy to converge to a higher steady-state than that of Ramsey problem. The difference between the lowest dates (in the distant future) and the highest dates (in present) is diminished. The optimal choice in long term behaves as if at a steady state of some Ramsey problem with a value of discount rate β * higher than β, which is defined as follows. Let k0 ≤ k be the capital accumulation that is solution to u f (k) -k = ν(k 0 ) - * . The new discount factor β * satisfies:

f ( k0 ) = 1 β .
Moreover, there exists a threshold for equality parameter a. Beyond this threshold, the optimal sequence remains the same and every date (or generation) has the same utility level. If the equality parameter a is too low, there is no change in the behavior of the economy, compared with the one under Ramsey criterion.

Let ˜ = u f (k) -k -u f (k s ) -k s .
By the strict concavity of u, the function W is strictly concave on [0, ˜ ]. In the Appendix, section 6.3, we prove that W (0)

is finite. This value serves is an important threshold for parameter a.

Proposition 2.2. Consider the case k 0 ≥ k s .

i) For W (˜ ) < a < W (0), the optimal * satisfies 0 < * < ˜ and there exists T such that:

a) For 0 ≤ t ≤ T , u(c * t ) > ν(k 0 ) - * . b) For t ≥ T + 1, u(c * t ) = ν(k 0 ) - * .
ii) For a ≥ W (0), the optimal * = 0 and

a) If k s ≤ k 0 ≤ k, for every t, k * t = k 0 . b) If k 0 ≥ k, for every t sufficiently big, k * t = k.
iii) For 0 ≤ a ≤ W (˜ ), * = ˜ and the solution of (P ) coincides with the solution of Ramsey problem.

We conclude this section by Corollary 2.1, which establishes the dependence of the new discount factor β * in function of a. Remark that, as W is strictly concave, and * is the solution to W ( ) = a, the trade-off between efficiency and equality depends negatively on the value of parameter a: d * da < 0. This implies that β * is increasing in respect to a. With a slight abuse of notation, if k t = k for every t big enough, we say that β * = 1.

Corollary 2.1. Assume that k 0 ≥ k s . In long term, the optimal path behaves as the solution of an economy under Ramsey criterion with a new discount factor

β * ≥ β, which is increasing in respect to a. Precisely, i) If 0 ≤ a ≤ W (˜ ), β * = β. ii) If a increases from W (˜ ) to W (0), β * increases from β to min {1/f (k 0 ), 1}. iii) If a ≥ W (0), β * = 1.

Dynamics under α-MaxMin criterion

Consider the following problem, balancing the worst and best generations: for a given k 0 ≥ 0,

V(k 0 ) = sup α sup t≥0 u(c t ) + (1 -α) inf t≥0 u(c t ) , s.c. c t + k t+1 ≤ f (k t ), c t , k t ≥ 0 for all t ≥ 0.
The idea to resolve this is similar to the one in the previous section. To determine the supremum value of the optimization problem, we consider the following sup-modified problem. For > 0, define

W( ) = max sup t≥0 u(c t ) , s.c c t + k t+1 ≤ f (k t ), for all t ≥ 0, u(c t ) ≥ ν(k 0 ) -, for all t ≥ 0.
We have

V(k 0 ) = max ≥0 [αW( ) + (1 -α) (ν(k 0 ) -)] .
With a careful analysis of the modified problem, we can solve the α-maximin one. Beginning from a low level of capital accumulation, for a small value of α, the infimum part dominates and the optimal solution coincides with the solution of Rawls problem. For a big value of α, the supremum part has effects and the solution depends strongly on the initial capital stock k 0 . If the initial capital is high, the supremum part always influences the result with every value α > 0. We assume that α > 0. Proposition 3.1. i) Consider the case k 0 < k. There exists α * ∈ (0, 1) such that a) If α > α * , then there exist an infinite number of solution and two values

x < k 0 < x such that every optimal path satisfies lim inf

t→∞ k * t = x, lim sup t→∞ k * t = x.
b) If α < α * , then the unique optimal path is the solution to Rawls' problem,

k * t = k 0 , ∀ t. ii) Consider the case k 0 ≥ k. There exist two values x < k < x such that a) If if k 0 ≤ x, every optimal path satisfies lim inf t→∞ k * t = x, lim sup t→∞ k * t = x. b) If k 0 > x,
then the optimal path is unique and satisfies k * t = x for every t ≥ 1. This is also a solution to Rawls' problem.

It is worth noting that when α tends to zero, the two values x and x converge to k 0 if k 0 ≤ k and to k otherwise. Every optimal path becomes a solution to Rawls problem, which can be considered as a special case of α-MaxMin.

4 Axiomatic foundation and no-dictatorship criteria

-contamination criteria

In this article, we follow the ider of -contamination. The agent has an "opinion" that the good discount system should be a σ-additive probability in π. 5 The use of the word "opinion" is similar to that of Kopylov [START_REF] Kopylov | A parametric model of ambiguity hedging[END_REF], to define a state of mind that is less rigid than a "belief". The economic agent thinks that π is a good choice, but there are reasons that suggest to her or him that this conclusion could be hasty. She or he should also consider all other time discounting systems.

Precisely, the evaluation can be presented as

U (c 0 , c 1 , . . .) = (1 -) ∞ t=0 π t u(c t ) + inf t≥0 u(c t ).
The parameter ∈ [0, 1] represents the lack of confidence in the choice π * of the agent. If = 1, the ignorance is complete. We obtain Rawls' criterion inf t≥0 u(c t ).

By contrast, if = 0, she or he believes without doubt that π is the good one, and we find the usual discounted utilitarian configuration. The general case for ∈ [0, 1] and a more general set of probabilities is provided by Kopylov [START_REF] Kopylov | Subjective probability, confidence, and Bayesian updating[END_REF]. 6 5 We have π t ≥ 0 for every t and ∞ t=0 π t = 1. 6 The result of Kopylov, in the context of this article, can be presented as follow:

U (c 0 , c 1 , . . .) = (1 -) ∞ t=0 π t u(c t ) + inf p∈∆ ∞ t=0 p t u(c t )
, where ∆ is a set of probabilities being given as a fundamental of the model.

We assume that the preference order being represented by function U satisfies the four axioms A1 to A4 in Kopylov [START_REF] Kopylov | Subjective probability, confidence, and Bayesian updating[END_REF],7 with the fundamental set ∆ constitutes of all countably additive probabilities defining on the set {0, 1, 2, . . .}. We add a time invariance condition to establish the exponential discount rate form for the probability π. This property states that the comparison of two sequences with the same infimum value does not depend on the period of departure. It is a weaker version of Koopman's standard condition in the time discounting literature. This guarantees that marginal rates between any two consecutive time periods are the same, a characterization of the exponential discounting.

Remark that in the general case of Kopylov [START_REF] Kopylov | Subjective probability, confidence, and Bayesian updating[END_REF] with π and ∆ belong to the set of probabilities (which contains also the non-countably additive ones) on the set of natural numbers N, we can also obtain an exponential representation for π with our version of time invariance and a property of Monotone Continuity, initiated by Villegas [START_REF] Villegas | On qualitative probability σ-algebra[END_REF] and proven by Arrow [2]. This later one has the purpose to ensure the countable additivity of the subjective probability π.

Proposition 4.1. Assume that the evaluation has an -contamination representation with ∆ constitues of every countably additive probabilities. Assume also that for every consumption sequences (c 0 , c 1 , c 2 , . . .) and (c 0 , c 1 , c 2 , . . .) such that inf t≥0 c t = inf t≥0 c t , every consumption level c, we have

U (c 0 , c 1 , c 2 , . . .) ≥ U (c 0 , c 1 , c 2 , . . .) if and only if U (c, c 0 , c 1 , c 2 , . . .) ≥ U (c, c 0 , c 1 , c 2 , . . .).
Then there exists β ∈ (0, 1) such that π t = (1 -β)β t for every t ≥ 0.

The inter-temporal evaluation then becomes

U (c 0 , c 1 , c 2 , . . . ) = (1 -) ∞ t=0 (1 -β)β t u(c t ) + inf t≥0 u(c t ). If 0 < < 1, this is equivalent to a Ramsey-Rawls criterion with a = (1-)(1-β) .
The cases = 0 and = 1 correspond to the well-known Ramsey and Rawls criteria.

No-dictatorship criteria

The criteria and the non-existence of solution

To capture the idea of sustainable growth, and to maintain the equality between generations of the present and close future and generations of the distant future, Chichilnisky in [11,[START_REF] Chichilnisky | What Is Sustainable Development?[END_REF] considers criteria that are combinations of a sum of discounted utilities, exhibiting dictatorship of the present and a criteria that, disregarding the utilities of close future generations, exhibits dictatorship of the future.

The no dictatorship of the present requires the existence of two utility streams that the comparison can be reversed by careful changes in the distant future of these streams. By contrast, the no dictatorship of the future requires a similar one, with changes in the close future. As an example, the following mixed criterion precisely satisfies no-dictatorship of the present and no-dictatorship of the future:

∞ t=0 β t u(c t ) + a lim inf t→∞ u(c t ),
with some parameter a > 0 that represents the importance of the distant future compared with the present and close future. This approach is very appealing, and rapidly becomes an inspiration source for a large range of researches. However, under no-dictatorial criteria, an optimal solution may not exist, as proven in Heal [START_REF] Heal | Valuing the Future, Economic Theory and Sustainability[END_REF], in an economy with renewable resources, or Ayong le Kama et al. [START_REF] Le | A neverdecisive and anonymous criterion for optimal growth models[END_REF] in a growth context. The reason for this non-existence is that the optimal paths of the Ramsey part and the lim inf part converge to different values. While the former's converges to a steady-state depending on the value of the discount factor, the latter converges to the golden rule.

Towards a satisfying solution

Neither the no-dictatorship criteria nor the Ramsey-Rawls one is time-consistent.

To overcome the difficulties caused by the generic non-existence, and the time in-consistency, following the idea of Phelps and Pollack [28], Asheim and Ekeland [4] study the Markovian equilibrium of optimization problem under the Chichilnisky criterion, and come to interesting results. If the economy begins from sufficiently high productivity of the initial stock, the lim inf part does not influence the determination of the solution. By contrast, from low productivity of stock, the distant future part leads the economy to larger stock conservation than the one which would have been under a standard discounted utilitarian configuration.

Our Propositions 2.1 and 2.2 go in line with the results of Asheim and Ekeland

[4], especially in the long term behaviour of the economies. In Proposition 2.1, beginning from a high productivity capital stock, the equality has an effect on the first periods, avoiding a too low level of consumption. After that, the economy behaves like in the case there is no equality part. In Proposition 2.2, beginning from a high level of stock accumulation, in comparison with the Ramsey configuration, the economy converges to a higher accumulation for generations in the distant future, and even avoiding a possible collapse, as will be proven in Section 6.1.

In another contribution, Figuières and Tidball [START_REF] Figuières | Sustainable exploitation of a natural resource: a satisfying use of Chichilnisky's criterion[END_REF], in an economy where the economic agent enjoys consumption and natural resources, restrict themselves on the set of convex combinations between solutions of Ramsey problem and the lim inf one. They prove the existence of an optimal combination and consider it as a "satisfying" response to the problem under Chichilnisky's criteria.

Conclusion

In this article, we establish the solution to the saving problems under Ramsey-Rawls and maximin criteria. The optimization of the inf part leads to a status-quo situation. It is important to note that the Ramsey-Rawls and α-MaxMin criteria are time-inconsistent. Without commitment, future agents may want to revise past decisions.

A possibility to overcome this time incoherency is the approach that considers the Markovian rules, as presented in the seminal contribution of Phelps and Pollack [28], considering the Markovian rules. Phelps and Pollack [28] consider the existence and properties of linear stationary Markov equilibria in the context of quasi-hyperbolic discounting. In general, however, this question is difficult and complicated, even in the case of constant productivity, as pointed out in Krusell and Smith [START_REF] Krusell | Consumption-Saving decisions with quasigeometric discounting[END_REF]. 8 According to our intuition, the Ramsey-Rawls criterion challenges us with similar difficulties. To address them, we can begin by following the ideas of Phelps and Pollack [28] and Cao and Werning [9] to study the linear Markovian rules and saving behavior. 9 Following this, we may come to similar results as Asheim and Ekeland [4], especially in the case where the initial level of resource is high. But this should be the subject of another study.

appendix

Constant productivity function and logarithmic utility function

In this section, we provide computations for the case where productivity is constant (f (k) = Ak) and the utility function is logarithmic u(c) = ln c. The optimal policy function is 10 σ(k) = βAk.

Assume that A > 1. Hence k = ∞. By induction, we have

k * t = (βA) t k 0 , c * t = A(1 -β) (βA) t k 0 .
8 For a review of this literature, and an excellent analysis of saving and dissaving under quasihyperbolic discounting criterion, see The value function is defined as

v(k 0 ) = ∞ t=0 β t ln c * t = ln A + ln(1 -β) + ln k 0 1 -β + (ln β + ln A) ∞ t=0 tβ t .
1. Consider the case A > 1 β . As k 0 < k s for every k 0 , by Lemma 6.3, W (0) = ∞ and W (˜ ) = 0. The optimal sacrifice level * satisfies W ( * ) = a. There is

T such that for 0 ≤ t ≤ T , u f (k * t ) -k * t+1 = u (f (k 0 ) -k 0 ) - * , which is equivalent to ln Ak * t -k * t+1 = ln(A -1) + ln k 0 - * . For 0 ≤ t ≤ T , k * t+1 = Ak * t - (A -1)k 0 e * .
The value T is the smallest such that

u f (k * T +1 ) -σ(k * T +1 ) ≥ u (f (k 0 ) -k 0 ) - * ,
which is equivalent to

ln Ak * T +1 -βAk * T +1 ≥ ln (Ak 0 -k 0 ) - * .
This is equivalent to

ln A + ln(1 -β) + ln k * T +1 ≥ ln(A -1) + ln k 0 - * .
The value T is the first integer number satisfying

k * T +1 ≥ A -1 A(1 -β) × k 0 e * .
The sequence {k * T +t } ∞ t=0 is the solution to the Ramsey problem with initial state k * T +1 .

2. Consider the case A < 1 β . In this case, k s = 0, every solution of the Ramsey problem converges to zero. The critical value ˜ is then

˜ = u (f (k 0 ) -k 0 ) -u(0) = ∞.
Next, we determine W (0). For close to zero, the critical time T from which

u(c t ) = u (f (k 0 ) -k 0 ) -is T = 1. Capital level k 1 is solution to u (f (k 1 ) -k 1 ) = u (f (k 0 ) -k 0 ) -. This implies ln (Ak 1 -k 1 ) = ln(A -1) + ln k 0 -. Hence k 1 = k 0 e .
We have

W ( ) = u (f (k 0 ) -k 1 ) + β 1 -β (u (f (k 0 ) -k 0 ) -) = ln Ak 0 - k 0 e + β 1 -β (ln (Ak 0 -k 0 ) -) = ln A - 1 e + β 1 -β (ln(A -1) + ln k 0 -) .
Hence for close to zero,

W ( ) = e - A -e -- β 1 -β .
Let converge to zero, we obtain

W (0) = 1 -βA (A -1)(1 -β)
.

Then, we have Proposition 6.1. The equality parameter has a strong effect if it is sufficiently high. Otherwise, there is no difference between the behavior following Ramsey-Rawls criterion and the behavior following Rawls criterion. Proposition 6.1. i) For a ≤ 1-βA (A-1)(1-β) , we have * ≥ 0, and there exists T such that:

a) For 0 ≤ t ≤ T , u(c * t ) > ln(A -1) + ln k 0 - * . b) For t ≥ T + 1, u(c * t ) = ln(A -1) + ln k 0 - * .
ii) For a ≥ 1-βA (A-1)(1-β) , * = 0. The optimal path is constant: k * t = k 0 for any t ≥ 0.

Thanks to the Rawls' part, even if the productivity is low, the economy does not collapse.

Optimal solution under Rawlsian criterion

We consider the problem under the Rawls criterion:

max inf t≥0 u(c t ) ,
under the constraint c t + k t+1 ≤ f (k t ) for all t, with k 0 > 0 given. Proposition 6.2. i) Consider the case 0 ≤ k 0 ≤ k. The problem has a unique solution k * = (k 0 , k 0 , . . .) and

max k∈Π(k 0 ) inf t≥0 u(c t ) = u (f (k 0 ) -k 0 ) .
ii) Consider the case k is finite and k 0 ≥ k. The problem has an infinite number of solutions and

max k∈Π(k 0 ) inf t≥0 u(c t ) = u f (k) -k .
Proof. Let k * be a solution to the problem.

(i) Suppose that k * t ≤ k 0 for some t. Observe that k 0 -k * t+1 ≥ f (k 0 ) -f (k * t ) ≥ f (k 0 )(k 0 -k * t ) ≥ k 0 -k * t , which implies k * t+1 ≤ k * t .
By induction, we obtain k 0 ≥ k * t for all t. Furthermore, the sequence (k * t ) is decreasing and then converges to k ≤ k 0 . From the continuity of f , we have f

( k) -k ≥ f (k 0 ) -k 0 . However, the function f (x) -x is increasing in [0, k], thus, f ( k) -k ≤ f (k 0 ) -k 0 . Then k = k 0 , then k * t = k 0 for all t.
(ii) Let k * be an optimal path. Since the sequence k = (k 0 , k, k, . . .) is feasible, for every t, we have f

(k * t ) -k * t+1 ≥ f (k) -k. Hence, k -k * t+1 ≥ f (k) -f (k * t ) ≥ f (k)(k -k * t ) = k -k * t .
This implies k * t+1 ≤ k * t for any t. The sequence k * is decreasing and converges to some k. By the continuity of f ,

f ( k) -k ≥ f (k) -k. Since k maximizes f (x) -x,
this implies k = k. By induction, we can construct an infinite number of sequence k that satisfy: for all t, k < k t+1 < f (k t ) -f (k) + k. It is easy to verify that this sequence is decreasing and converges to k,

satisfying inf t≥0 (f (k t ) -k t+1 ) = f (k) -k. QED

The Ramsey-modified problem

Let ν be the value function of the problem under Rawls criterion:

ν(k 0 ) = max k∈Π(k 0 ) inf t≥0 u (f (k t ) -k t+1 ) .
Given k 0 ≥ 0, for each ≥ 0, we first consider the following intermediary problem (P ) with a given k 0 :

W ( ) = max ∞ t=0 β t u(c t ) , s.c c t + k t+1 ≤ f (k t ), ∀ t ≥ 0, u(c t ) ≥ ν(k 0 ) -, ∀ t ≥ 0.
Proposition 6.1 states that the optimal solution of (P ) is also the optimal solution of (P ), for some optimal value . Lemma 6.1. For any k 0 ≥ 0,

V (k 0 ) = max ≥0 W ( ) + a (ν(k 0 ) -) .
Using Lemma 6.1, to understand the behavior of the optimal solution of initial problem (P ), we study the solution of problems (P ), with ≥ 0. For simplicity, henceforth, we use the term "equality constraint" to denote u(c t ) ≥ ν(k 0 ) -. Let {c t , k t+1 } ∞ t=0 be the optimal solution of (P ). By the strict concavity of u, this sequence is unique.

Obviously, if is sufficiently large, the solution of the Ramsey problem also satisfies the equality constraint, and solving the problem (P ) becomes a trivial task.

Let ˜ be the critical value for this property: if we lower the Rawls part to ˜ , the solution of the Ramsey problem also satisfies the constraint of the Ramsey-modified problem and becomes the solution of the latter one.

Define

˜ =              u f (k 0 ) -k 0 -u f (k 0 ) -σ(k 0 ) if 0 ≤ k 0 ≤ k s , u f (k 0 ) -k 0 -u f (k s ) -k s if k s ≤ k 0 ≤ k u f (k) -k -u f (k s ) -k s if k 0 ≥ k.
As the equality constraint is satisfied, it is a trivial task to prove Lemma 6.2. Lemma 6.2. Assume that ≥ ˜ .

i) The optimal solution of the problem (P ) coincides with the solution of the Ramsey problem.

ii) W ( ) = W (˜ ) = v(k 0 ).
If = 0, the optimal solution is (k 0 , k 0 , . . . ). We now consider the interesting case, where 0 < ≤ ˜ . Proposition 6.3 states as follows. If 0 ≤ k 0 ≤ k s , the equality constraints are binding in the early dates, the optimal solution behaves like a solution of the Ramsey problem when the accumulation of capital reaches a sufficiently high level.

If k 0 ≥ k s , the equality constraints are binding from some date T that is sufficiently large, and in the long term, every date (or generation) has the same utility level, which is equal to exactly the lowest level acceptable. Proposition 6.3. i) Consider the case 0 < k 0 < k s . If 0 < ≤ ˜ , there exists T such that:

a) For 0 ≤ t ≤ T , u(c t ) = ν(k 0 ) -. b) For t ≥ T + 1, u(c t ) > ν(k 0 ) -. c) The sequence {k t } ∞
t=T +1 is the solution of the Ramsey problem with initial state k T +1 .

ii) Consider the case k 0 > k s . If 0 < ≤ ˜ , there exists T such that

a) For 0 ≤ t ≤ T , u(c t ) > ν(k 0 ) -. b) For t ≥ T + 1, u(c t ) = ν(k 0 ) -.
For the case k 0 ≥ k s , define k as the solution to

u f ( k) -k = ν(k 0 ) -.
We easily verify that k t = k for a T that is sufficiently high. Let β * be the discount rate that satisfies

f ( k) = 1 β * .
By the choice of ˜ , we have k s < k < k. Hence, β * > β. In the long term, the optimal solution for the case k 0 ≥ k s behaves as a solution of the Ramsey problem with a discount rate β * , that is greater than β. For instance, we provide some preparation results for W + (0) and W -(˜ ). Lemma 6.3. i) For any k 0 , the function W is strictly concave on [0, ˜ ].

ii) If 0 ≤ k 0 < k s , then W (0) = +∞ and W (˜ ) = 0.

iii) If k 0 > k s , then W (0) < +∞.

Proof of Lemma 6.1

By the very definition of ν, for every feasible sequence

{k t } ∞ t=0 , inf t≥0 u f (k t ) -k t+1 ≤ ν(k 0 ).
Let {k * t } ∞ t=0 be the optimal solution of problem (P ).

Define * = ν(k 0 ) -inf t≥0 u(c * t ).
We have

V (k 0 ) = ∞ t=0 β t u(c * t ) + a inf t≥0 u(c * t ) = ∞ t=0 β t u(c * t ) + a (ν(k 0 ) - * ) ≤ W ( * ) + a (ν(k 0 ) - * ) .
Conversely, consider ≥ 0. Let {c t } ∞ t=0 be the consumption set corresponding to the solution of the modified problem:

W ( ) + a (ν(k 0 ) -) = ∞ t=0 β t u (c t ) + a (ν(k 0 ) -) ≤ ∞ t=0 β t u (c t ) + a inf t≥0 u (c t ) ≤ V (k 0 ).

Proof of Proposition 6.3

Obviously, W is increasing. Moreover, the concavity of W is from the concavity of utility function u and production function f . Let σ be the optimal policy function of the economy under Ramsey criterion.

First, we consider the case that 0 ≤ k 0 ≤ k. For each > 0, let x * ( ) such that x ≥ k 0 and

u f (x) -σ(x) = u f (k 0 ) -k 0 -. (i)
We consider the case k 0 < k s . Observe that k 0 < x * ( ) < k s . Indeed, by the definition of ˜ and the choice of , u (f

(k 0 ) -σ(k 0 )) < u (f (k 0 ) -k 0 ) -. Since σ(k s ) = k s , and u (f (k s ) -k s ) > u (f (k 0 ) -k 0 ) > u (f (k 0 ) -k 0 )-, the existence of x * ( ) ∈ (k 0 , k s ) is ensured.
We prove the following claim: k t < k s for every t. First, observe that: if k t < x * ( ),

then k t+1 < k s . Indeed, u f (k t ) -k t+1 ≥ u f (k 0 ) -k 0 - = u x * ( ) -σ(x * ( )) . Since k t < x * ( ), this implies k t+1 < σ(x * ( )) < k s . Now, assume that for some T , x * ( ) < k T +1 < k s . Let { ǩt } ∞
t=T +1 be the solution of the Ramsey problem with initial state k t+1 . Since k T +1 < k s , ǩt < k s for any t ≥ T + 1 and

inf t≥T +1 u( čt ) = u f (k t+1 ) -σ(k t+1 ) ≥ u f (x * ( )) -σ(x * ( )) = u f (k 0 ) -k 0 -.
Hence the sequence {k 0 , k 1 , . . . , k T , k T +1 , ǩT+2 , ǩT+2 , . . . } is the optimal solution for the problem (P ), or ǩt = k t for any t ≥ T + 1. The proof that k t < k s for any

t is completed. It is impossible that u (c T ) = u f (k 0 ) -k 0 -
for every T . Indeed, assume the contrary. This implies k t < x * ( ) for every t and k 1 > k 0 . By induction, we have k t+1 > k t for every t and then the sequence {k t } ∞ t=0 converges to some k * such that k 0 < k * ≤ x * ( ). Taking the limit when T tends to infinity, we have

u (f (k * ) -k * ) < u (f (k 0 ) -k 0 ), a contradiction.
Consider the Lagrangian:

L = ∞ t=0 β t u(c t ) - ∞ t=0 β t λ t c t + k t+1 -f (k t ) - ∞ t=0 β t µ t u f (k 0 ) -k 0 --u(c t ) .
By the Inada condition of u, at optimal the consumption and capital level are strictly positive. Hence, the Lagrangian parameters for these constraints are zero.

For any t,

(1 + µ t )u (c t ) = λ t , λ t = βλ t+1 f (k t+1 ).
This implies that for any t,

(1 + µ t )u (c t ) = β(1 + µ t+1 )u (c t+1 )f (k t+1 ) ≥ βf (k t+1 )u (c t+1 ). Let T = T ( ) be the smallest time such that u (c T ) > u f (k 0 ) -k 0 -. The constraint does not bind, hence, µ T = 0. Since f (k T +1 ) ≥ 1 β , then u (c T ) ≥ u (c T +1 ), hence, c t+1 ≥ c T . The (T +1) th constraint also does not bind: u c T +1 > u f (k 0 ) -k 0 -. By induction, for any t ≥ T + 1, u (c t ) > u f (k 0 ) -k 0 -and µ t = 0. The sequence {(c t , k t+1 )} ∞
t=T is increasing and satisfies Euler equations. Hence {k t } ∞ t=T is the solution for Ramsey problem with initial state k T .

(ii) Consider the case k s < k 0 < k. In this case, k s is finite. We will prove that k t > k s for any t ≥ 0. Assume that there exists T such that k T ≤ k s . We have

u f (k T ) -k T +1 ≥ ν(k 0 ) - = u f (k 0 ) -k 0 - > u f (k 0 ) -k 0 -˜ = u f (k s ) -k s , which implies k T +1 < k T < k s , since f (x) -
x is strictly increasing in (0, k s ). By induction, the sequence {k T +t } ∞ t=0 is decreasing and converges to k < k s . Taking the limit, we obtain

u f (k s ) -k s > u f (k) -σ(k) ≥ ν(k 0 ) - ≥ u f (k 0 ) -k 0 - > u f (k s ) -k s ,
a contradiction. The property that k t > k s for any t ≥ 0 is established, we re-consider the Lagrangian:

L = ∞ t=0 β t u(c t ) - ∞ t=0 β t λ t c t + k t+1 -f (k t ) - ∞ t=0 β t µ t u f (k 0 ) -k 0 --u(c t ) .
For any t,

(1 + µ t )u (c t ) = λ t , λ t = βλ t+1 f (k t+1 ).
This implies for any t:

u (c t ) ≤ (1 + µ t )u (c t ) = β(1 + µ t+1 )u (c t+1 )f (k t+1 ).
If u (c T ) > u f (k 0 ) -k 0 -, the constraint does not bind, and µ T = 0. Since

f (k T ) < 1 β , we obtain u (c T -1 ) < u (c T ), which implies c T -1 > c T , with the direct consequence u c T -1 > u f (k 0 ) -k 0 -.

By induction, we obtain for any

0 ≤ t ≤ T , u (c t ) > u f (k 0 ) -k 0 -.
If this property is ensured for any t ≥ 0, the the sequence {k t } ∞ t=0 satisfies Euler equations and the transversality condition, hence it is the optimal solution of the Ramsey problem and converges to k s : a contradiction, since

u f (k s ) -k s < u f (k 0 ) -k 0 -.
Hence there exists T such that for any t ≥ T ,

u (c T ) = u f (k 0 ) -k 0 -.
Obviously, for any t ≥ T , we have

u (c t ) = u f (k 0 ) -k 0 -,
otherwise using the same arguments in the induction, we obtain u (c

T ) > u f (k 0 )- k 0 -, a contradiction.
For the last case k 0 ≥ k, we use the same arguments as those for the case 1 ≤

f (k 0 ) ≤ 1 β , with the observation that the value of ν(k 0 ) is u f (k) -k and f (k) -k ≥ f (k s ) -k s .

Proof of Lemma 6.3

From the concavity of the functions u and f , the function W ( ) is strictly concave in respect to on [0, ˜ ].

(i) We prove that W (0) = +∞. Consider T ( ) in the proof of Proposition 6.3.

For any 0 ≤ t ≤ T ( ):

= u f (k 0 ) -k 0 -u f (k t ) -k t+1 ≥ u f (k 0 ) -k 0 f (k 0 ) -k 0 -f (k t ) + k t+1 ≥ u f (k 0 ) -σ(k 0 ) f (k 0 )(k 0 -k t ) + k t+1 -k 0 . This implies k t+1 -k 0 ≤ u f (k 0 ) -k 0 + f (k 0 )(k t -k 0 ).
By induction, we obtain for any t ≥ 0,

k t+1 -k 0 ≤ f (k 0 ) t+1 -1 f (k 0 ) -1 × u f (x * ) -x * . Hence x * ( ) -k 0 ≤ k T ( )+1 -k 0 ≤ f (k 0 ) T ( )+1 -1 f (k 0 ) -1 × u f (k 0 ) -k 0 . W ( ) = T ( ) t=0 β t u (c t ) + ∞ t=T ( )+1 β t u (c t ) = u f (k 0 -k 0 - T ( ) t=0 β t + β T ( )+1 v(k T ( ) ). Hence W ( ) -W (0) = - T ( ) t=0 β t + β T ( )+1 v k T ( ) - u f (k 0 ) -k 0 1 -β = - 1 -β T ( )+1 1 -β + β T ( )+1 v k T ( ) - u f (k 0 ) -k 0 1 -β . Now, we prove that lim →0 β T ( ) = +∞.
Indeed, recall that

f (k 0 ) T ( )+1 -1 f (k 0 ) -1 × u f (k 0 ) -k 0 ∼ x * ( ) -k 0 .
This implies

f (k 0 ) T ( ) ∼ O(1). Hence T ( ) ln f (k 0 ) ∼ -ln( ),
which is equivalent to

T ( ) ∼ - ln( ) ln f (k 0 )
.

We have

β T ( ) ∼ e ln β - ln( ) ln f (k 0 ) ∼ - ln β ln f (k 0 ) ∼ ln ( 1 β ) ln f (k 0 ) . Since f (k 0 ) > 1 β , we have lim →0 β T ( ) = lim →0 ln ( 1 β ) ln f (k 0 ) -1 = ∞,
which implies W (0) = +∞.

(ii) First assume that k s < k 0 ≤ k. Now we prove that W (0) < +∞. For small:

W ( ) -W (0) = ∞ t=0 β t u f (k t ) -k t+1 -u f (k 0 ) -k 0 ≤ u f (k 0 ) -k 0 ∞ t=0 β t f (k t ) -f (k 0 ) -k t+1 + k 0 ≤ u f (k 0 ) -k 0 ∞ t=0 β t f (k 0 )(k t -k 0 ) -k t+1 + k 0 ≤ u f (k 0 ) -k 0 ∞ t=0 β t [f (k 0 )(k t -k 0 )] ≤ u f (k 0 ) -k 0 f (k 0 ) ∞ t=0 β t [k t -k 0 ] ≤ u f (k 0 ) -k 0 f (k 0 ) ∞ t=0 β t f (k 0 ) t+1 -1 f (k 0 ) -1 × u f (k 0 ) -k 0 = f (k 0 ) ∞ t=0 β t f (k 0 ) t+1 -1 f (k 0 ) -1 × = O( ), since βf (k 0 ) < 1. This implies W ( ) -W (0) = O( ), or W (0) < +∞.
Now assume that k is finite and k 0 ≥ k. We use exactly the same arguments in the proof of part (ii), by changing the constrains u(c

t ) ≥ u (f (k 0 ) -k 0 ) -by u(c t ) ≥ u f (k) -k .
Now we prove that W (˜ ) = 0. For close enough to ˜ , the critical time T ( ) from which the optimal path behaves as a solution of Ramsey problem with initial state k T ( ) is T ( ) = 1. We then have

u (f (k 0 ) -k 1 ) = u (f (k 0 ) -k 0 ) -,
and the sequence {k 1+t } ∞ t=0 is the solution of the Ramsey problem with initial state k 1 . Denote by v the value function of the Ramsey problem. Then

W ( ) = u (f (k 0 ) -k 0 ) -+ βv(k 1 ), and 
W ( ) = -1 + βv (k 1 ) × dk 1 d .
By the implicit function theorem, we have

dk 1 d = 1 u (f (k 0 ) -k 1 )
.

We observe that by letting converge to ˜ , we have

lim →˜ k 1 = σ(k 0 ).
This implies

W -(˜ ) = -1 + βv (σ(k 0 )) × 1 u (f (k 0 ) -σ(k 0 ))
.

Recall that it is well-known in dynamic programming literature that

v(k 0 ) = max 0≤k 1 ≤f (k 0 ) [u (f (k 0 ) -k 1 ) + βv(k 1 )] = u (f (k 0 -σ(k 0 )) + βv (σ(k 0 )) .
Combined with the Inada condition, this implies

-u (f (k 0 ) -σ(k 0 )) + βv (σ(k 0 )) = 0,
which is equivalent to

W (˜ ) = 0.
(iii) For any 0 ≤ ≤ ˜ , there exists T such that the equality constraint corresponding to T bind. Hence, the solutions corresponding to different values of differ. We combine this with the strict concavity of u, and obtain that W is strictly concave in [0, ˜ ].

Proof of Proposition 2.1

For any 0 ≤ ≤ ˜ , the optimal solution satisfies the following property: there exists t such that u (c t ) = u f (k 0 ) -k 0 . Hence, the solutions corresponding to difference values of also differ. Combined with the strict concavity of u, the function W is strictly concave in [0, ˜ ]. This implies the existence of an unique left derivative of W . Since for any a > 0, we have W -(˜ ) = 0 < a < W (0) = ∞, there exists a unique 0 < < ˜ such that W ( * ) = a. The statement of this Proposition is a consequence of Propositions 6.1 and 6.3.

Proof of Proposition 2.2

We use exactly the results in Proposition 6.3 and the same arguments as in the proof of Proposition 2.1 and Proposition 2.2.

Proof of Corollary 2.1

The result is a direct consequence of the definition of k0 and β * × f ( k0 ) = 1.

6.7

The α-MaxMin criterion 6.7.1 The sup-modified problem

Consider the following problem: for a given k 0 ≥ 0,

V(k 0 ) = sup α sup t≥0 u(c t ) + (1 -α) inf t≥0 u(c t ) , s.c. c t + k t+1 ≤ f (k t ) for all t ≥ 0.
The idea to resolve this is similar to the one in the previous section. To determine the supremum value of the optimization problem, we consider the following sup-modified one: For > 0, define

W( ) = max sup t≥0 u(c t ) , s.c c t + k t+1 ≤ f (k t ), for all t ≥ 0, u(c t ) ≥ ν(k 0 ) -, for all t ≥ 0.
Let Π (k 0 ) be the set of feasible paths of this problem. Lemma 6.4 states the existence of an optimal level of trade-off.

Lemma 6.4. We have

V(k 0 ) = max ≥0 [αW( ) + (1 -α) (ν(k 0 ) -)] .

Solution of the sup-modified problem

With Lemma 6.4, we solve the modified problem, with some > 0. Let x and x be correspondingly the solution in [0, k 0 ] and (k 0 , ∞) to the equation

u (f (x) -x) = u (f (k 0 ) -k 0 ) -.
In the case u (f (x) -x) ≥ u (f (k 0 ) -k 0 )-for any x ≥ k 0 , let x = ∞. Obviously, if lim x→∞ f (x) < 1, the value x is finite.

Proposition 6.4. Consider the case 0 ≤ k 0 ≤ k.

i) For any ≥ 0,

W( ) = u (f (x ) -x ) .
ii) For any optimal path {k t } ∞ t=0 , we have x ≤ k t ≤ x , and

lim inf t→∞ k t = x , lim sup t→∞ k t = x .
The case k is finite and k 0 ≥ k deserves a slight change in the treatment. The optimal value * does not depend on k 0 . Let x be the unique solution in [0, k] to the equation:

u (f (x) -x) = u f (k) -k -. Since f (x) -x is decreasing on [k, ∞), there is a unique x in [k, +∞), that is solution to u (f (x) -x) = u f (k) -k -.
Notably, contrary to the case k 0 ≤ k, in this case the values x and x are independent from k 0 . If k 0 ≤ x , thus there exists an infinite number of solutions, and every optimal path fluctuates between x and x . Only for k 0 sufficiently large, there exists a unique solution, and it is constant from date t = 1.

Proposition 6.5. Consider the case k 0 ≥ k.

i) If k ≤ k 0 ≤ x , then W( ) = u f (x ) -x .
Moreover, there is an infinite number of solutions. Every optimal paths {k t } ∞ t=0 satisfies x ≤ k t ≤ x , and

lim inf t→∞ k t = x , lim sup t→∞ k t = x .
ii) If k 0 ≥ x , then k t = x for any t ≥ 1 and W( ) = u f (k 0 ) -x .

Proof of Lemma 6.4

Consider any feasible sequence

{k t } ∞ 0 ∈ Π(k 0 ), with c t = f (k t ) -k t+1 . Let ˆ = ν(k 0 ) -inf t≥0 u (c t ) .
Obviously,

(1 -α) sup t≥0 u(c t ) + α inf t≥0 u(c t ) = α sup t≥0 u(c t ) + (1 -α) (ν(k 0 ) -ˆ ) ≤ αW(ˆ ) + (1 -α) (ν(k 0 ) -ˆ ) ≤ sup ≥0 [(1 -α)W( ) + α (ν(k 0 ) -)] .
Now, consider any feasible sequence {k t } ∞ 0 ∈ Π(k 0 ) that satisfies the constraints of the modified problem.

α sup t≥0 u(c t ) + (1 -α) (ν(k 0 ) -) ≤ α sup t≥0 u(c t ) + (1 -α) inf t≥0 u(c t ) ≤ V(k 0 ).
Taking the supremum on the left side, the proof of the Lemma is completed. 6.7.4 Proof of Proposition 6.4 i) We prove that for any feasible sequence {k t } ∞ t=0 of the modified problem, we have for any t ≥ 0,

x ≤ k t < x .
Assume the contrary of the first inequality, that is for some T , k T < x . Since the function f (x) -x is strictly increasing in [0, k 0 ], we have

u (f (k T ) -k T ) < u (f (x ) -x ) = u (f (k 0 ) -k 0 ) - ≤ u (f (k T ) -k T +1 ) .
This implies that k T +1 ≤ k T < x . By induction, the sequence {k T +t } ∞ t=0 is decreasing and converges to some 0 ≤ k * < x . Hence,

u (f (k * ) -k * )) < u (f (x ) -x ) = u (f (k 0 ) -k 0 ) - ≤ u (f (k * ) -k * ) , a contradiction.
Consider the sequence {k t } ∞ t=0 determined as

k 0 = k 0 , u f (k t ) -k t+1 = u (f (k 0 ) -k 0 ) -.
We easily verify that the sequence {k t } ∞ t=0 is increasing and converges to x , whether this value is finite or infinite.

Fix any feasible sequence {k t } ∞ t=0 of the modified problem. Assume that for some T , k T ≤ k T . As a consequence,

u f (k t ) -k t+1 = u (f (k 0 ) -k 0 ) - ≤ u (f (k T ) -k T +1 ) ≤ u f (k T ) -k T +1 , which implies k T +1 ≤ k T . By induction, for any t ≥ 0, k T +t ≤ k T +t < x .
As for every t, x < k t < x , the following inequality holds:

sup t≥0 u (f (k t ) -k t+1 ) ≤ u (f (x ) -x ) .
Now, we prove that the existence of feasible paths {k t } ∞ t=0 such that

sup t≥0 u (f (k t ) -k t+1 ) = u (f (x ) -x ) .
Fix any two sequences {x n } ∞ n=0 and {x n } ∞ n=0 such that the former is strictly decreasing and converges to x and the later is strictly increasing and converges to x :

x 0 > x 1 > . . . > x n > . . . → x , x 0 < x 1 < . . . < x n < . . . → x .
We construct the sequence T 0 < T 1 < . . . < T n and the sequence {k t } ∞ t=0 as follows. For 0

≤ t ≤ T 0 , u (f (k t ) -k t+1 ) = u (f (k 0 ) -k 0 ) -.
If we continue to use this equation to define k t+1 from k t to infinity, the sequence converges to x . Hence, there exists a T 0 that is the smallest one t

satisfying k T 0 ≥ x 0 . Let k T 0 +1 = x 0 . We have u (f (k T 0 ) -k T 0 +1 ) ≥ u (f (x 0 ) -x 0 ) . For t ≥ T 0 + 1, define the sequence as u (f (k t ) -k t+1 ) = u (f (k 0 ) -k 0 ) -.
Using the same argument for the definition of T 0 , there exists a T 1 that is the smallest satisfying k

t ≥ x 1 . Let k T 1 +1 = x 1 . We have u (f (k T 1 ) -k T 1 +1 ) ≥ u (f (x 1 ) -x 1 ) .
Additionally, we define in the same manner, by induction T n+1 in function of T n . For any n ≥ 0 we have k Tn ≥ x n , k Tn+1 = x n and:

u (f (k Tn ) -k Tn+1 ) ≥ u (f (x n ) -x n ) .
Let n converge to infinity,

lim n→∞ u (f (k Tn ) -k Tn+1 ) ≥ u (f (x ) -x ) . Hence, sup t≥0 u (f (k t ) -k t+1 ) = u (f (x ) -x ) .
Since the two sequences {x n } ∞ n=0 and {x n } ∞ n=0 can be chosen arbitrarily, there exist an infinite number of optimal solution. Consider a optimal path {k t } ∞ t=0 . It is an easy task to verify that if k T = x , by induction, we obtain that k T +t = x for any t ≥ 0. As for 0 ≤ t ≤ T ,

k t < x , the strict inequality sup t≥0 u (f (k t ) -k t+1 ) < u (f (x ) -x ) holds,
implying that this sequence is not optimal. Hence, for every optimal path, the inequality x < k t < x is satisfied for every t. Moreover, as there exits an infinite number T 0 < T 1 < . . . < T n < . . . such that

lim n→∞ u (f (k Tn ) -k Tn+1 ) = u (f (x ) -x ) ,
the following limits are verified:

lim n→∞ k Tn = x , lim n→∞ k Tn+1 = x .
ii) This part is a direct consequence of the proof of the first part. 6.7.5 Proof of Proposition 6.5 i) First, we prove that for any k ≤ k 0 ≤ x , and for every feasible path {k t } ∞ t=0 ∈ Π (k 0 ), we have

x ≤ k t ≤ x .
Assume that there is some T such that k T < x . Then

u (f (k T ) -k T ) < u f (x ) -x = u f (k) -k - ≤ u (f (k T ) -k T +1 ) , which implies k T +1 ≤ k T < x . By induction, the sequence {k T +t } ∞
t=0 is decreasing and converges to some k * < x , and

u (f (k * ) -k * ) < u (f (x) -x) = u f (k) -k -, a contradiction.
By induction, assume that for some T , we have x ≤ k T ≤ x . Since

u f (x ) -x ≤ u (f (k T ) -k T +1 ) ≤ u (f (x ) -k T +1 ) ,
we have k T +1 ≤ x . As this property is satisfied by k 0 , by induction, we obtain k t ≤ x for all t ≥ 0. Since for any t, x ≤ k t ≤ x , we have

sup t≥0 u (f (k t ) -k t+1 ) ≤ u f (x ) -x . (6.1)
To prove that the left side is equal to the right side in the aforementioned inequality (6.1), and that there exists an infinite number of solutions for the modified problem, we prove that for any x ≤ k 0 ≤ x , the sequence { kt } ∞ t=0 defined as follows is increasing and converges to x : k0 = k 0 , u f ( kt ) -kt+1 = u f (k) -k -, for all t ≥ 0.

Indeed, using the same aforementioned arguments, we have for any t, x ≤ kt ≤ x . Then

u f ( kt ) -kt+1 = u (f (x ) -x ) = u f (k) -k - ≤ u f ( kt ) -kt .
This implies kt ≤ kt+1 , and the sequence { kt } ∞ t=0 is increasing and converges to the solution of u (f (x) -x) = u f (k) -k -, or lim t→∞ kt = x . Now, we fix two sequences {x n } ∞ n=0 which is strictly decreasing and converges to x , and {x n } ∞ n=0 , which is strictly increasing and converges to x .

Using the same arguments as in the Proof of Proposition 6.4, we can construct a feasible sequence {k t } ∞ t=0 ∈ Π (k 0 ) and a sequence of index T 0 < T 1 < . . . < T n < . . . such that for any n, u (f (k Tn ) -k Tn+1 ) ≥ u f (x n ) -x n .

Additionally, we have

sup t≥0 u (f (k t ) -k t+1 ) ≥ lim n→∞ u f (x n ) -x n = u f (x ) -x .
Since the two sequences {x n } ∞ n=0 and {x n } ∞ n=0 are chosen arbitrarily, there exists an infinite number of optimal paths. Consider an optimal path {k t } ∞ t=0 . We verify easily that if k T = x , by the constraint, k T +t = x for any t ≥ 0, which implies sup t≥0 u (f (k t ) -k t+1 ) < u (f (x ) -x ), a contradiction. Hence, for any t, x < k t < x . Moreover, there exists an infinite number T 0 < T 1 < . . . < T n < . . . Moreover, remark that when converges to 0, f (ξ) converges to 1. This implies lim →0

xk = +∞.

We have

W( ) -W(0) = u f (x ) -x -u f (k) -k ≥ u f (x ) -x f (x ) -x -f (k) + k = u f (x ) -x f (x ) -x -f (k) + k + x -x ≥ u f (x ) -x f (x ) -x -f (k) + k + x -k .
Hence,

lim →0 W( ) -W(0) = +∞.
This implies that * > 0 for every α > 0. We then apply Proposition 6.5.

Proof of Proposition 4.1

For each T ≥ 0, let π T the probability being defined as

π T s = π T +s ∞ s =0 π T +s .
We will prove that π = π T for every T ≥ 0. First, we prove the following Claim:

for every consumption sequences (c 0 , c 1 , . . .), (c 0 , c 1 , . . .), In the "if " case, we apply the same argument, and the Claim is proven. The satisfaction of the Claim proves that π = π 1 . By induction, we have π = π T for every T ≥ 0. Hence, π T +t+1 π T +t = π t+1 π t , ∀ T, s ≥ 0.

∞
Let β = π 1 π 0 , we have π t+1 = βπ t , for every t. Since ∞ t=0 π t = 1, it is easy to verify that π t = (1 -β)β t , for t ≥ 0.

  Chichilnisky's no-dictatorship criteria, the Ramsey-Rawls and α-MaxMin criteria are time-inconsistent. However, an optimization problem under a timeincoherent criterion may have a coherent markovian solution. Drugeon et al. [14] study the maximin criterion with multiple discount factors. The authors present a dynamic programming structure that has the same value function as the problem at stake and proves that the solutions in the two cases are coincide. To overcome the difficulties caused by the generic non-existence, and the time inconsistency in no-dictatorship criteria, following the idea of Phelps and Pollack [28], Asheim and Ekeland [4] study the Markovian equilibrium of optimization problem under the Chichilnisky criterion, and come to interesting results about the influence of distant future evaluation on long term behaviour of the economy.

  This article is organized as follows. Section 2 analyses the Ramsey-Rawls problem. Section 3 solves the α-MaxMin problem. Section 4 discusses the axiomatic foundation of Ramsey-Rawls and Chichilnisky's no-dictatorship criteria. Section 5 concludes. As an example, Appendix 6.1 studies the Ramsey-Rawls problem with linear production function and logarithmic utility function. The proofs and some intermediary analysis are given in the Appendix.

Lemma 6 .

 6 3 is a direct consequence of Proposition 6.3. The function W is strictly concave with respect to belonging to [0, ˜ ]. This concavity implies the existence of the right derivative of W at 0 and the left derivative of W at ˜ . In Section 2.2, these two values play the role of critical thresholds for equality parameter a. The behavior of the optimal solution depends strongly on the comparison between a and W (0), W -(˜ ). Details are given in Section 2.2.

  such thatlim n→∞ u (f (k Tn ) -k Tn+1 ) = u f (x ) -x .If α ≤ α * , the Rawls' part dominates, and * = 0. The optimal path is solution to Rawls' problem. Otherwise, * > 0. In two cases, the results are direct consequences of Proposition 6.4.Consider the case k0 > k. If * is big enough such that k 0 < x * , apply part (i)of Proposition 6.5. Otherwise, * is close to 0 and k 0 > x * , apply part (ii) of Proposition 6.5.Consider the remaining case, k 0 = k. We prove that W (0) = +∞. Indeed, fromu (f (x ) -x ) = u f (k) -k -and the Mean Value Theorem, we have = u f (k) -k -u (f (x ) -x ) = u (ζ) f (k) -k -f (x ) + x = u (ζ) (f (ξ) -1) (x -k), with some f (x ) -x ≤ ζ ≤ f (k) -k and k ≤ ξ ≤ x .Since ζ is bounded from below and above, f (k) -k -f (x ) + x = O( ).

π

  Consider the "only if " case. Fix any constant b > 0, a constant c ≥ 0 such that c ≤ min {inf t≥0 c t , inf t≥0 c t }. Fix T 0 ≥ 0 big enough such that for every T ≥ T 0 ,T t=0 π t u(c t + b) + π T +1 u(c) + ∞ t=T +2 π t u(c t + b) ≥ T t=0 π t u(c t ) + π T +1 u(c) + ∞ t=T +2 π t u(c t ).Since the infimum of the consumption sequence on the left-hand side is equal to the infimum of the one on the right-hand side, we have U (c 0 + b, c 1 + b, . . . , c T + b, c, c T +2 + b, . . .) ≥ U (c 0 , c 1 , . . . , c T , c, c T +2 , . . .).This impliesU (c, c 0 + b, c 1 + b, . . . , c T + b, c, c T +2 + b, . . .) ≥ U (c, c 0 , c 1 , . . . , c T , c, c T +2 , . . .). t u(c t-1 +b)+π T +2 u(c)+ ∞ t=T +3 π t u(c t-1 +b) ≥ T +1 t=1 π t u(c t-1 )+π T +2 u(c)+ ∞ t=T +3 π t u(c t-1 ).Let T converges to infinity, we get∞ t=1 π t u(c t-1 + b) ≥ ∞ t=1 π t u(c t-1 ).Since b > 0 is chosen arbitrarily, we obtain ∞ t=1 π t u(c t-1 ) ≥ ∞ t=1 π t u(c t-1 ),

For a general review of formulations in ambiguity, where α-MaxMin is a special case, see Etner, Jeleva and Tallon[START_REF] Etner | Decision theory under ambiguity[END_REF].

See[START_REF] Basu | Aggregating infinite utility streams with intergenerational equity: the impossibility of being paretian[END_REF] for the impossibility theorem stating that there is no functin holding simultaneously strong Pareto and anonimity properties.

See Gale[START_REF] Gale | On optimal development in a multi-sector economy[END_REF].

The most two important axioms are ∆-monotonicity and ∆-independence.
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Hence, we have

ii) Now, we consider the case k 0 ≥ x . Take any feasible sequence {k t } ∞ t=0 ∈ Π (k 0 ). We claim that for any t ≥ 0,

Using the same arguments as in the proof of the part (i), we have k t ≥ x for any t ≥ 0. We prove by induction that k t ≤ k 0 for any t. Indeed, this is true

We verify easily that the sequence {k * t } ∞ t=0 = (k 0 , x , x , x , . . . ) is feasible and

To prove that this sequence is unique solution, take any feasible sequence

Combining these inequalities, we obtain

For the case k 1 = x , to maintain the path being feasible, we must have

The uniqueness of the optimal solution is proven.

Proof of Proposition 3.1

The optimal trade-off value * is defined as

We will prove that if k 0 < k, W (0) < ∞. The value x is defined as solution to

Using the same arguments, we have k

Hence, W (0) < ∞. Let α * ∈ (0, 1) such that