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Abstract

Regularising the primal formulation of optimal transport (OT) with a strictly
convex term leads to enhanced numerical complexity and a denser transport plan.
Many formulations impose a global constraint on the transport plan, for instance
by relying on entropic regularisation. As it is more expensive to diffuse mass
for outlier points compared to central ones, this typically results in a significant
imbalance in the way mass is spread across the points. This can be detrimental for
some applications where a minimum of smoothing is required per point. To remedy
this, we introduce OT with Adaptive RegularIsation (OTARI), a new formulation
of OT that imposes constraints on the mass going in or/and out of each point. We
then showcase the benefits of this approach for domain adaptation.

1 Introduction

Optimal transport (OT) is a well-established framework to compare probability distributions with
numerous applications in machine learning [1, 20, 21]. Discrete OT seeks a transportation plan that
minimizes the total transportation cost between samples from the source and target distributions.
In the absence of regularisation, this optimal OT plan is inherently sparse. Regularising OT with a
strictly convex term is a widely adopted practical approach, leading to reduced numerical complexity
and more diffuse OT plans [21]. As an illustration, the prominent entropic regularisation [9] leads to
a dense plan. In some applications, the smoothing effect induced by the regularisation has a primary
importance on its own. A key example is the construction of doubly stochastic affinity matrices for
clustering and dimensionality reduction [15, 27], where smoothing enables connecting to neighbor
points. Another is domain adaptation [8] where smoothed OT often results in enhanced performance
when compared to non-regularised ones (see for instance Table 1). Many OT regularisation schemes
on the primal formulation impose a constraint on the overall transport plan. Consequently, central
data points tend to exhibit a denser (or more diffuse) transport plan compared to extreme (or outlier)
data points, for which diffusion is more costly. As a result, the latter points receive limited benefits
from the smoothing effect introduced by the regularizer as shown in the left side of Figure 1. This
partly explains OT’s significant sensitivity to outliers in many applications [19, 7]. To remedy this,
one needs to constrain the transport plan in a pointwise manner. Note that this has recently been
explored for constructing affinity matrices [25] (i.e. symmetric OT setting) leading to enhanced noise
robustness and clustering abilities.

Contributions. In this work, we develop a new formulation of OT, called OT with Adaptive
RegularIsation (OTARI), allowing to control, for any strictly convex function ψ, the value of ψ
on each row and/or column of the OT plan. We then show the advantages of OTARI over usual
regularised OT on domain adaptation tasks, focusing particularly on the negative entropy and the ℓ2
norm respectively associated with entropic [9] and quadratic [4] optimal transport.
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2 Regularised Optimal Transport

We first introduce the discrete OT problem before presenting regularised formulations and associated
algorithms. Let XS = {xSi ∈ Rd}NSi=1 and XT = {xTi ∈ Rd}NTi=1 denote the sets of respectively
source and target point locations. The discrete Monge-Kantorovitch problem [13] focuses on the
optimal allocation strategy to transport the empirical measure µS = 1

NS

∑NS
i=1 aiδxSi onto µT =

1
NT

∑NT
i=1 biδxTi where a ∈ ∆NS and b ∈ ∆NT . It consists in computing a coupling P ∈ RNS×NT+

i.e. a joint probability measure over XS ×XT solving the linear program

min
P∈Π(a,b)

⟨P,C⟩ (OT)

where Π(a, b) is the transport polytope with marginals (a, b) and the cost matrix C ∈ RNS×NT+
encodes the pairwise distances between the source and target samples. One can typically consider the
squared Euclidean distance Cij = ∥xSi − xTj ∥22 or any Riemannian distance over a manifold [26].

To enable faster algorithmic resolution as well as smoother solutions, one can rely on a strictly convex
regulariser ψ : RNs → R. It amounts to solving minP∈Π(a,b) ⟨P,C⟩+ ε⋆

∑
i ψ(Pi:) where ε⋆ > 0.

Interestingly, regularised OT can also be framed using a convex constraint as follows

min
P∈Π(a,b)

⟨P,C⟩ s.t. P ∈ B(η) (ROT)

where B(η) := {P s.t.
∑
i ψ(Pi:) ≤ η}. Note that the previously introduced ε⋆ is the optimal dual

variable associated with the constraint B(η) in the above equivalent formulation. Throughout, we
make the following assumption on ψ.
Assumption 1. Let ψ : dom(ψ)→ R ∪ {∞} be strictly convex and differentiable on the interior of
its domain dom(ψ) ⊂ RNS+ .

In what follows, we denote by ψ(P) = (ψ(P1:), ..., ψ(PNS :))
⊤. We introduce ψ∗ := p →

supq∈dom(ψ)⟨p,q⟩ − ψ(q) the convex conjugate of ψ [23]. Note that when ψ is strictly
convex, this supremum is uniquely achieved and from Danskin’s theorem [10]: ∇ψ∗(p) =
argmaxq∈dom(ψ)⟨p,q⟩−ψ(q). We show in Appendix B.1 that when ε⋆ > 0, i.e. when the constraint
P ∈ B(η) is active, (ROT) is solved for P⋆ = ∇ψ∗((C− λ⋆ ⊕ µ⋆)/ε⋆) 1 where (λ⋆,µ⋆, ε⋆) solve
the following dual problem

max
λ,µ,ε>0

⟨λ,a⟩+ ⟨µ, b⟩+ ε
(∑

i

ψ∗((Ci: − λi1− µ)/ε)− η
)
. (Dual-ROT)

The above objective is concave thus the problem can be solved exactly using e.g. BFGS [17] or ADAM
[14]. As a complementary view, one can also frame (ROT) as a ψ-Bregman projection over a convex
set. The ψ-Bregman divergence is defined as Dψ(P,Q) := ψ(P)−ψ(Q)−⟨P−Q,∇ψ(Q)⟩. The
solution of (ROT) can then be expressed as P⋆ = Proj

Dψ

Π(a,b)∩B(η)
(Kσ) where Kσ := ∇ψ∗(−C/σ)

for any σ < ε⋆ (see Appendix B.1 for details). The key benefit of the above result is that it enables
solving (ROT) with alternating Bregman projection schemes [3].

In this work, we focus specifically on certain Bregman divergences: the Kullback Leibler (KL)
divergence and the squared Euclidean distance. The first reads DKL(P|Q) = ⟨P, log (P⊘Q) −
11⊤⟩ with associated negative entropy ψKL(p) = ⟨p, logp − 1⟩. In this case, (ROT) boils down
to entropic OT and solved for ProjKL

Π(a,b)(Kε⋆) where Kε⋆ = ∇ψ∗
KL(−C/ε⋆) = exp(−C/ε⋆) is

a Gibbs kernel. This projection is well-known as the static Schrödinger bridge [16] referring to
statistical physics where it first appeared [24], and can be computed efficiently using the Sinkhorn
algorithm [9]. For the squared Euclidean distance, we define ψ2(p) = 1

2∥p∥
2
2. The associated

problem (1) is usually referred to as quadratic OT [18] and can yield sparse OT plans unlike entropic.

3 Optimal Transport with Adaptive Regularisation

In this section, we present a new formulation of OT that imposes constraints on each row of the OT
plan. We begin by introducing the set of matrices with point-wise constraints. To set the upper bound,

1We use the notation ∇ψ∗(P) := (∇ψ∗(P1:), ...,∇ψ∗(PNS :))
⊤.
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Figure 1: Entropic OT plans (ξ = 5) with global constraint, pointwise constraints on sources and then
on targets. The three plans have the same global entropy. The color of each source (resp. target) point
shows the perplexity (exponential of entropy) of the associated row (resp. column) of the OT plan.

we rely on the perplexity parameter ξ [25] that can be interpreted as the number of effective neighbors
for each point. Concretely, we define eξ =

1
ξ (11i≤ξ)i and

Bψ(ξ) := {P ≥ 0 s.t. ∀i, ψ(Pi:) ≤ ψ(eξ)} . (1)
Note that ψKL(pξ) = −(log ξ + 1) and ψ2(pξ) = 1/ξ. We now define Optimal Transport with
Adaptive RegularIsation (OTARI) as the generalization of (ROT) to the case where the strictly convex
constraint is given by Bψ(ξ). Similarly to Proposition 1 (Appendix B.1), we can frame OTARI as a
ψ-Bregman projection of Kσ = ∇ψ∗(−C/σ) or solve it using dual ascent.
Proposition 2. Let (a, b, ξ) be such that Π(a, b) ∩ Bψ(ξ) has an interior point and let P⋆ solve

min
P∈Π(a,b)

⟨P,C⟩ s.t. P ∈ Bψ(ξ) . (OTARI-s)

Let ε⋆ be the optimal dual variable associated with the constraint P ∈ Bψ(ξ). If ε⋆ > 0,
then it holds P⋆ = Proj

Dψ
Π(a,b)∩Bψ(ξ)(Kσ) for any 0 < σ ≤ mini ε

⋆
i . Moreover it holds

P⋆ = ∇ψ∗ (diag(ε⋆)−1(C− λ⋆ ⊕ µ⋆)
)

where (λ⋆,µ⋆, ε⋆) solve the following dual

max
λ,µ,ε>0

⟨λ,a⟩+ ⟨µ, b⟩+
〈
ε, ψ∗ (diag(ε)−1(C− λ⊕ µ)

)
− ψ(eξ)1

〉
. (Dual-OTARI-s)

Algorithm 1 Dykstra for solving (OTARI-d)

1: Input: C, ψ(·), ξa, ξb, ε, a, b
2: (Pb,Ξ,Θ)← (∇ψ⋆(−C/ε),0,0)
3: while not converged do
4: Pa ← Proj

Dψ
Π(a)(Pb)

5: Pa ← Proj
Dψ
Bψ(ξa) ◦∇ψ

∗(∇ψ(Pa) +Ξ)

6: Ξ← Ξ+∇ψ(Pa)−∇ψ(Pa)

7: P⊤
b ← Proj

Dψ
Π(b)(P

⊤
a )

8: P
⊤
b ← Proj

Dψ
Bψ(ξb) ◦∇ψ

∗((∇ψ(Pb) +Θ)⊤)

9: Θ← Θ+∇ψ(Pb)−∇ψ(Pb)
10: end while
11: Output: Pb

According to Proposition 2, one can solve
(OTARI-s) using either alternating projections
or dual ascent. When ε⋆ > 0, meaning that all
constraints are active i.e. ∀i, ψ(P⋆

i:) = ψ(pξ),
dual ascent is usually faster. However, if ε⋆
has null components, one can still rely on
Proj

Dψ
Π(a,b)∩Bψ(ξ)(Kε) to provide an approxi-

mate solution as alternating Bregman projec-
tions are always guaranteed to converge.

Note that we can impose the pointwise con-
straint equivalently on the rows or the columns
of the OT plan. Hence (OTARI-t) can be de-
fined by imposing the constraint on the tar-
get samples i.e. P⊤ ∈ Bψ(ξ). We also pro-
pose a doubly constrained formulation called

(OTARI-d) that consists of projecting Kσ onto the nonempty set Bψ(ξa) ∩ B⊤
ψ (ξ

b) where we defined
B⊤ψ (ξ) = {P⊤ ∈ Bψ(ξ)} thus ensuring sufficient smoothing for both rows and columns. Such
projection can be computed using alternating Bregman projections, whose convergence has been
well-studied [6, 3]. As we generally do not have access to a closed form for the projection onto the
transport polytope Π(a, b), it is common to alternate projection onto Π(a) and Π(b) separately (see
e.g. the seminal Sinkhorn algorithm [9]). We extend this scheme by adding projection steps into the
pointwise constraints Bψ(ξ) for both P and P⊤. As this set is not affine, one needs to resort to the
Dykstra procedure [11] that can be applied to a broad class of Bregman divergences [2], as shown in
Algorithm 1. In Appendix C, we provide the form of the projections for ψKL and ψ2. A key benefit of
decoupling both row and column constraints is that projection onto Bψ(ξ) exhibits a simple structure
where the rows can be decoupled into independent subproblems.
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4 Application to Domain Adaptation
Global Constraint (Sinkhorn) Constraints on Targets Constraints on Sources and Targets

Barycenters

Sources

Targets

Figure 2: Toy domain adaptation scenario with entropic OT plans (ξ = 10) with various constraints.
The size of the point is proportional to the associated entropy. When using Sinkhorn, barycentric
mapping match outliers points since the OT plan is less diffuse for these points. In turn, using
pointwise constraints concentrate the mapped points in high-density regions, thus giving more robust
estimates for the mappings onto the target domain.

OT EOT EOTARI-s EOTARI-t EOTARI-d

MNIST → USPS (ξ = 30) 53.1(5.4) 64.2(2.8) 65.0(5.3) 66.4(3.5) 67.4(2.9)
MNIST → USPS (ξ = 300) 53.1(5.4) 68.8(3.1) 70.8(4.2) 70.2(3.4) 72.6(5.1)
USPS → MNIST (ξ = 30) 59.1(4.9) 60.8(5.4) 61.6(4.4) 62.6(3.0) 61.0(4.7)
USPS → MNIST (ξ = 300) 59.1(4.9) 59.8(1.6) 61.0(2.3) 61.6(3.0) 58.8(2.3)

OT QOT QOTARI-s QOTARI-t QOTARI-d

MNIST → USPS (ξ = 30) 53.1(5.4) 68.3(3.9) 68.3(3.6) 69.3(4.7) 68.1(4.6)
MNIST → USPS (ξ = 300) 53.1(5.4) 60.7(1.5) 67.0(2.4) 65.5(2.3) 65.8(2.5)
USPS → MNIST (ξ = 30) 59.1(4.9) 60.4(3.5) 62.8(3.7) 59.6(2.7) 61.6(3.1)
USPS → MNIST (ξ = 300) 59.1(4.9) 59.2(3.4) 60.1(3.0) 62.0(3.7) 61.5(3.8)

Table 1: Domain adaptation 1-NN classification scores for OT (unregularised), EOT (entropic),
EOTARI (entropic OTARI), QOT (quadratic), QOTARI (quadratic OTARI) for ξ = 30 and ξ = 300.

In this section, we evaluate OTARI on a domain adaptation task where the goal is to transport
labeled data points to a target domain where a classifier is trained. Mapping onto the target domain
is performed through a barycentric mapping of the form: for any i ∈ [[NS ]], x̂i = 1

ai

∑
j Tijx

T
j .

Looking at Figure 2, one can notice that using OTARI for domain adaptation yields a mapping that
is concentrated in high-density (thus more faithful) regions of the target domain. On the opposite,
when using globally constrained OT (left side of Figure 2), the barycentric mapping associated with
an outlier is concentrated on the outlier’s position. For the experiments, we take C as the squared
Euclidean distance computed from raw images of the handwritten digit classification benchmark
MNIST-USPS. Following the standard practice in OT-based domain adaptation [12], we map the
source to the target samples and then train a 1-NN classifier on the barycentric mappings with source
labels. We compute the outcomes across 10 independent trials. In each of these experiments, the target
data is partitioned into a 90% training and 10% testing split, with OT barycentric mappings and 1-NN
classifiers exclusively applied to the training set. Mean scores and standard deviations are displayed
in Table 1. The latter shows that adaptive regularisation consistently outperforms global regularisation
(set such that the average perplexity is ξ for a fair comparison) with significant performance gains in
some settings (see e.g. MNIST→ USPS (ξ = 300) with the quadratic regularisation).

5 Conclusion

In this work, we presented a versatile framework to control the value of any OT regulariser in source
or/and target locations. We showed encouraging preliminary results for domain adaptation that will be
investigated in upcoming works. One could also extend OTARI to continuous distributions and apply
it to OT mapping estimation [22]. Other interesting directions include investigating optimization
algorithms that can avoid quadratic memory complexity.
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A Notations

We adopt the conventions that 0/0 = 0, 0 log(0) = 0 and x/0 = ∞ for x > 0. exp, log applied
to vectors/matrices are taken element-wise. 1 is the all-one vector whose size depends on the
context. ⟨·, ·⟩ is the standard inner product for matrices/vectors. Pij denotes the entry at position
(i, j) of a matrix P while Pi: and denotes the i-th row. P ≥ 0 means that for any (i, j), Pij ≥ 0.
⊙ (resp. ⊘) stands for element-wise multiplication (resp. division) between vectors/matrices.
For a, b ∈ Rn,a ⊕ b ∈ Rn×n is (ai + bj)ij . For α ∈ R, p⊙α and P⊙α denote element-wise
exponentiation i.e. [p⊙α]i = pαi . [P]+ is the element-wise positive part with max(0, Pij) in position
(i, j). For n ∈ N, ∆n is the probability simplex {p ∈ Rn+ s.t.

∑
i pi = 1}. For a ∈ ∆NS and

b ∈ ∆NT , Π(a, b) = {P ∈ RNS×NT+ s.t. P1 = a and P⊤1 = b} is the transport polytope with
marginals (a, b) while Π(a) = {P ∈ RNS×NT+ s.t. P1 = a} is the semi-relaxed transport polytope.
For a set E and a divergence D, ProjDE (K) = argminP∈E D(P|K).

B Proofs of the Optimal Transport Solutions

B.1 Optimal Transport with Global Constraint

Proposition 1. Let ψ : RNS → R satisfy Assumption 1. We define B(η) :=
{P s.t.

∑
i ψ(Pi:) ≤ η}. Let (a, b, η) be such that Π(a, b) ∩ B(η) has an interior point

and let P⋆ be a solution of

min
P∈Π(a,b)

⟨P,C⟩ s.t. P ∈ B(η) . (ROT)

Let ε⋆ be an optimal dual variable associated with P ∈ B(η). If ε⋆ > 0, then for any
0 < σ ≤ ε⋆, it holds P⋆ = Proj

Dψ

Π(a,b)∩B(η)
(Kσ) where Kσ := ∇ψ∗(−C/σ). One also has

P⋆ = ∇ψ∗((C− λ⋆ ⊕ µ⋆)/ε⋆) where (λ⋆,µ⋆, ε⋆) solve

max
λ,µ,ε>0

⟨λ,a⟩+ ⟨µ, b⟩+ ε
(∑

i

ψ∗((Ci: − λi1− µ)/ε)− η
)
. (Dual-ROT)

Proof. We first show that P⋆ = Proj
Dψ

Π(a,b)∩B(η)
(Kε) before focusing on the dual problem.

Part I : Proof of the Bregman projection.

Simplifying the constant terms ProjDψ
Π(a,b)∩B(η)

(Kε) boils down to the following problem

min
P

∑
i

ψ(Pi:)− ⟨P,∇ψ(Kσ)⟩ (2)

s.t.
∑
i

ψ(Pi:) ≤ η (3)

P1 = a, P⊤1 = b (4)

P ∈ Rn×n+ . (5)

This problem is convex and strictly feasible. Strong duality holds thanks to Slater’s constraint
qualification. Therefore the KKT conditions [5] are necessary and sufficient conditions for optimality.
The Lagrangian can be expressed as

L(P, ν,λ,µ) =
∑
i

ψ(Pi:)− ⟨P,∇ψ(Kσ)⟩+ ν
(∑

i

ψ(Pi:)− η
)

(6)

+ ⟨λ,a−P1⟩+ ⟨µ, b−P⊤1⟩ − ⟨Ω,P⟩ . (7)

Any optimal primal-dual variables (P⋆, ν⋆,λ⋆,µ⋆,Ω⋆) satisfies

∇PL(P⋆, ν⋆,λ⋆,µ⋆) = (ν⋆ + 1)∇ψ(P⋆)−∇ψ(Kσ)− λ⋆ ⊕ µ⋆ −Ω⋆ = 0 . (8)
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Note that by definition Kσ = ∇ψ⋆(−C/ϵ) and thus ∇ψ(Kσ) = ∇ψ[∇ψ⋆(−C/σ)] = −C/σ [23].
Thus we have

C+ σ(ν⋆ + 1)∇ψ(P⋆)− σλ⋆ ⊕ µ⋆ − σΩ⋆ = 0 . (9)
Similarly, for the optimal transport problem (1)

min
T
⟨T,C⟩ s.t. T ∈ Π(a, b) ∩ B(η) , (10)

we get the optimality condition for optimal primal-dual variables (T⋆, ε⋆,ρ⋆,κ⋆,Λ⋆)

C+ ε⋆∇ψ(T⋆)− ρ⋆ ⊕ κ⋆ −Λ⋆ = 0 . (11)
Focusing on the original Bregman projection problem, we can then consider

λ = ρ⋆/σ
µ = κ⋆/σ
ν = ε⋆/σ − 1
Ω = Λ⋆/σ
P = T⋆ .

(12)

With the above choice,

• (P, ν,λ,µ,Ω) satisfies the first order optimality condition.

• P = T⋆ ∈ Π(a, b) ∩ E(η) thus the primal constraint is satisfied.

• σ ≤ ε⋆ implies that ν ≥ 0 and Ω has positive entries thereby dual constraints are satisfied.

• ε⋆ ̸= 0 thus by complementary slackeness ψ(T⋆) = η hence complementary slackness is
also verified for P since P = T⋆.

Therefore the KKT conditions are met hence (P, ν,λ,µ,Ω) = (P⋆, ν⋆,λ⋆,µ⋆,Ω⋆) and P⋆ =
T⋆.

Part II : Proof of dual ascent.

The optimal dual variables (λ⋆,µ⋆, ε⋆) solve the following problem

max
λ,µ,ε>0

min
P≥0
⟨P,C⟩+ ⟨λ,a−P1⟩+ ⟨µ, b−P⊤1⟩+ ε

(∑
i

ψ(Pi:)− η
)

(13)

= max
λ,µ,ε>0

⟨λ,a⟩+ ⟨µ, b⟩ − εη + min
P≥0
⟨P,C− λ1⊤ − 1µ⊤⟩+ ε

∑
i

ψ(Pi:) (14)

= max
λ,µ,ε>0

⟨λ,a⟩+ ⟨µ, b⟩ − εη + min
P≥0

∑
i

⟨Pi:,Ci: − λi1− µ⟩+ εψ(Pi:) (15)

(⋆)
= max

λ,µ,ε>0
⟨λ,a⟩+ ⟨µ, b⟩+ ε

(∑
i

ψ∗((Ci: − λi1− µ)/ε)− η
)
. (Dual-ROT)

In (⋆) we have used that ψ∗(x) = supy≥0⟨x,y⟩ − ψ(y). From Danskin’s theorem [10], one can
recover the solution of the primal

∀i, P⋆
i: = ∇ψ∗((Ci: − λ⋆i 1− µ⋆)/ε⋆) . (16)

Using matrix notations yields P⋆ = ∇ψ∗((C− λ⋆ ⊕ µ⋆)/ε⋆) where (λ⋆,µ⋆, ε⋆) are the solution
of the dual problem (Dual-ROT).

B.2 OT with Pointwise Constraints on Either Sources or Targets (OTARI-s and OTARI-t) :
proof of Proposition 2

Proposition 2. Let (a, b, ξ) be such that Π(a, b)∩Bψ(ξ) has an interior point and let P⋆ solve

min
P∈Π(a,b)

⟨P,C⟩ s.t. P ∈ Bψ(ξ) . (OTARI-s)

Let ε⋆ be the optimal dual variable associated with the constraint P ∈ Bψ(ξ). If ε⋆ > 0,
then it holds P⋆ = Proj

Dψ
Π(a,b)∩Bψ(ξ)(Kε) for any 0 < ε ≤ mini ε

⋆
i . Moreover it holds
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P⋆ = ∇ψ∗ (diag(ε⋆)−1(C− λ⋆ ⊕ µ⋆)
)

where (λ⋆,µ⋆, ε⋆) solve the following dual

max
λ,µ,ε>0

⟨λ,a⟩+ ⟨µ, b⟩+
〈
ε, ψ∗ (diag(ε)−1(C− λ⊕ µ)

)
− ψ(eξ)1

〉
. (Dual-OTARI-s)

Proof. Again we break down the proof, focusing on the primal and then on the dual approach.

Part I : Proof of the Bregman projection.

The proof is almost identical to the one in Proposition 1. We use the same notations for simplicity.
The only difference brought by the pointwise constraint is that ν⋆ is now vectorial. The first-order
optimality condition for the Bregman projection problem reads

C+ σ(diag (ν⋆) + INS )∇ψ(P⋆)− σλ⋆ ⊕ µ⋆ − σΩ⋆ = 0 . (17)

Again using the same notations as before, the first order KKT condition for problem (ROT) reads

C+ diag(ε⋆)∇ψ(T⋆)− ρ⋆ ⊕ κ⋆ −Λ⋆ = 0 . (18)

We end the proof by following the same reasoning as for Proposition 1, choosing for any i, νi =
ε⋆i /σ − 1 ≥ 0.

Part II : Dual Problem of (OTARI-s).

The optimization problem (OTARI-s) writes

min
P∈Π(a,b)

⟨P,C⟩ s.t. P ∈ Bψ(ξ) . (19)

Introducing the dual variables λ ∈ Rn and µ ∈ Rn for the marginals and ε ∈ Rn+ for the constraint
P ∈ Bψ(ξ). The problem can be formulated as

min
P≥0

max
λ,µ,ε≥0

⟨P,C⟩+ ⟨λ,a−P1⟩+ ⟨µ, b−P⊤1⟩+ ⟨ε, ψ(P)− ψ(eξ)1⟩ . (20)

When ε⋆ > 0, relying on strong duality to invert the min and max operators, the problem reduces to

max
λ,µ,ε>0

min
P≥0
⟨P,C⟩+ ⟨λ,a−P1⟩+ ⟨µ, b−P⊤1⟩+ ⟨ε, ψ(P)− ψ(eξ)1⟩ (21)

= max
λ,µ,ε>0

⟨λ,a⟩+ ⟨µ, b⟩ − ⟨ε, ψ(eξ)1⟩+ min
P≥0
⟨P,C− λ1⊤ − 1µ⊤⟩+ ⟨ε, ψ(P)⟩ (22)

= max
λ,µ,ε>0

⟨λ,a⟩+ ⟨µ, b⟩ − ⟨ε, ψ(eξ)1⟩+ min
P≥0

∑
i

⟨Pi:,Ci: − λi1− µ⟩+ εiψ(Pi:) (23)

= max
λ,µ,ε>0

⟨λ,a⟩+ ⟨µ, b⟩ − ⟨ε, ψ(eξ)1⟩+
∑
i

εiψ
∗((Ci: − λi1− µ)/εi) (24)

(⋆)
= max

λ,µ,ε>0
⟨λ,a⟩+ ⟨µ, b⟩+

〈
ε, ψ∗ ((C− λ⊕ µ)⊘ ε1⊤)− ψ(eξ)1〉 . (Dual-OTARI-s)

In (⋆) we used that ψ∗(X) = (ψ∗(X1:), ..., ψ
∗(XN :))

⊤. From Danskin’s theorem [10], one can
recover the solution of the primal

P⋆ = ∇ψ∗ (diag(ε⋆)−1(C− λ⋆ ⊕ µ⋆)
)

(25)

where (λ⋆,µ⋆, ε⋆) solve (Dual-OTARI-s).

C ψ-Bregman Projections for ψKL and ψ2

In this section, we detail the expressions of the projections used in the alternating Bregman projection
approach.

C.1 KL Projections

Proposition 3. When Dψ is the KL divergence DKL, one has for a matrix K ∈ RNS×NT+ ,

ProjKL
Π(a)∩BKL(ξ)(K) = diag(Λ1)−1Λ with Λ = exp (diag(1+ γ⋆)−1 logK) (26)
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Figure 3:
∑
i ψ(pi) plotted over the 3 dimensional probability simplex for ψKL (negative Shannon

entropy) and ψ2 : x→ 1
2∥x∥

2
2. Unlike ψKL, the level sets of ψ2 intercept with the boundaries of the

simplex thus leading to potentially sparse solutions when used to regularize OT.

where γ⋆ ≥ 0 is the optimal dual variable associated with the constraint BKL(ξ).

Proof. The KL projection of a matrix K ∈ RNS×NT+ onto Π(a) ∩ B1(ξ) is the following problem.

min
P∈RNS×NT

+

KL(P|K) = ⟨P, log(P⊘K)− 11⊤⟩ (27)

s.t. ∀i ∈ [[NS ]], H(Pi:) ≥ η (28)
P1 = a . (29)

where for p ∈ RNS+ , H(p) = −⟨p, log p − 1⟩ is the Shannon entropy. The associated Lagrangian
writes

L(P,λ,γ) = ⟨P, logP− logK− 11⊤⟩+ ⟨γ, η1−H(P)⟩+ ⟨λ,a−P1⟩ . (30)

Strong duality holds hence any optimal primal-dual variables (P⋆,γ⋆,λ⋆) must satisfy the KKT
conditions. The first-order optimality condition gives

∇PL(P⋆,γ⋆,λ⋆) = log (P⋆ ⊘K) + diag(γ⋆) logP⋆ − λ⋆1⊤ = 0 . (31)
Isolating P⋆ yields

∀(i, j) ∈ [[NS ]]× [[NT ]], P ⋆ij =
1

ui
exp ((logKij)/(1 + γ⋆i )) (32)

where ui = exp (−λi/(1 + γ⋆i )). Given the marginal constraint, we have

ui = a−1
i

∑
j∈[[NT ]]

exp ((logKij)/(1 + γ⋆i )) . (33)

We are now left with P⋆ as a function of γ. Plugging P⋆ in L yields the dual function γ 7→ G(γ).
This function is concave (property of the dual problem) and its gradient reads:

∇γG(γ) = (log ξ + 1)1−H(P⋆(γ)) . (34)
Similarly to [25], one can show that the above gradient is canceled for a unique γ. The optimal dual
variable is then given by γ⋆ = [γ]+.

C.2 Euclidean Projections

For the Euclidean case, we break down the projection into ℓ2 norm and marginal projections. Starting
with the marginal projection, we have the following expression [18]

Projℓ2Π(a)(K) = [λ⋆1⊤ +K]+ (35)

where λ⋆ is such that [λ⋆1⊤ +K]+ ∈ Π(a).

Focusing on the ℓ2 norm we have the following result.
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Proposition 4. One has
Projℓ2B2(ξ)

(K) = diag(γ⋆)−1K (36)

where for any i, γ⋆i = max
(
ξ1/2∥Ki:∥2, 1

)
.

Proof. The D2 projection of a matrix K ∈ RNS×NT+ onto B2(ξ) reduces to

min
P∈RNS×NT

+

D2(P|Kε) =
1

2

〈
P⊙2,1

〉
− ⟨P,K⟩ (37)

s.t. ∀i ∈ [[NS ]], ∥Pi:∥22 ≤ (1/ξ) . (38)

Introducing the dual variable ω ∈ Rn+, the Lagrangian writes:

L(P,ω,Ω) =
1

2

〈
P⊙2,1

〉
− ⟨P,K⟩+ 1

2

∑
i

ωi
(
∥Pi:∥22 − (1/ξ)

)
. (39)

P⋆ solves the primal problem if and only if there exists ω⋆ that satisfies the KKT conditions. The
first-order condition yields

∇PL(P⋆,ω⋆,Ω⋆) = −K+ diag(ω⋆ + 1)P⋆ = 0 . (40)

Hence it follows

P⋆ = diag(ω⋆ + 1)−1K . (41)

To satisfy the KKT conditions, one has to find the root ω⋆ of the following independent problems

∀i, (ωi + 1)
2
= ξ∥Ki:∥22 . (42)

Thus we have ωi + 1 = ξ1/2∥Ki:∥2 and taking ωi ≥ 0 into account yields the result.
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