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A B S T R A C T   

Mathematical modelling plays a key role in understanding and predicting the epidemiological dynamics of infectious diseases. We construct a flexible discrete-time 
model that incorporates multiple viral strains with different transmissibilities to estimate the changing patterns of human contact that generates new infections. Using 
a Bayesian approach, we fit the model to longitudinal data on hospitalisation with COVID-19 from the Republic of Ireland and Northern Ireland during the first year 
of the pandemic. We describe the estimated change in human contact in the context of government-mandated non-pharmaceutical interventions in the two juris-
dictions on the island of Ireland. We take advantage of the fitted model to conduct counterfactual analyses exploring the impact of lockdown timing and introducing a 
novel, more transmissible variant. We found substantial differences in human contact between the two jurisdictions during periods of varied restriction easing and 
December holidays. Our counterfactual analyses reveal that implementing lockdowns earlier would have decreased subsequent hospitalisation substantially in most, 
but not all cases, and that an introduction of a more transmissible variant - without necessarily being more severe - can cause a large impact on the health care 
burden.   

Introduction 

During an epidemic, behavioural changes are encouraged, and 
sometimes mandated, to curtail infectious disease transmission. These 
changes aim to reduce the number of contacts between people broadly 
(e.g., closure of schools, workplaces, commercial establishments, roads, 
and public transit; restriction of movement; cancellation of public 
events; maintenance of physical distances in public) and reduce the 
chance of infection upon contact (e.g., use of personal protective 
equipment). Furthermore, tracing and isolating known infectious cases 
can limit the contact between infectious and susceptible individuals. 
These actions are collectively referred to as non-pharmaceutical in-
terventions (NPIs) and are often mandated by governments. Slowing the 
surge of infection (or “flattening the curve”) affords an opportunity to 
reduce infection-induced mortality and morbidity, alleviate health care 
burden and wait out an epidemic until pharmaceutical solutions (i.e., 
treatment and vaccines) become available. Implementation of mandated 
NPIs in historical outbreaks, including during the 1918 influenza 
pandemic, was crucial for preventing excess death in the United States 
[1]. NPIs have also been mandated globally during the COVID-19 
pandemic. 

Mathematical modelling and quantitative analyses of empirical data 
play a pivotal role in understanding and predicting epidemiological 
dynamics. Mechanistic epidemiological models have been widely 
applied to study the dynamics of SARS-CoV-2, and to make predictions 
of clinical outcomes under alternative scenarios (e.g., an assumed 
decrease in physical contact [2]). Despite their public health benefits, 
social distancing measures have been shown to incur high costs in 
several domains, including in economy [3], mental health [4], and civil 
liberty [5]. Thus, it is crucial to quantify infection contact, or its de-
rivative quantities like the effective reproductive number, R - to monitor 
changes in infection burden, achieve desired public health outcomes and 
improve policy transparency and public engagement. While it is not 
possible to measure human contact (and its effect on disease trans-
mission) directly, fitting a mathematical model to longitudinal data on 
observed processes such as reported cases and hospital admissions al-
lows estimation of human contact and its derivatives [6,7]. 

Many epidemiological models follows a rich tradition of ordinary 
differential equation (ODE) models [8], which track the spread of 
infection and often immunity in a population. Specifically, ODE models 
assume that waiting time processes (such as infectious period and time 
to hospitalisation) are memoryless, that is to say, that the waiting time 
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until an event (such as recovery and hospitalisation) does not depend on 
the elapsed time. Seen at the population level, this assumption deduces 
that times spent by individuals in each compartment are distributed 
exponentially, implying large individual variability. While mathemati-
cally convenient, the lack of memory is unsupported for certain epide-
miological processes [9], and empirical evidence indicates other 
probability distributions with smaller individual variability and non- 
monotonic densities (e.g., gamma-, Weibull and log-normal distribu-
tions) are better equipped to describe those processes. Previous studies 
have also demonstrated that quantitative predictions of epidemiological 
outcomes depend on the assumed probability distribution in a variety of 
systems [10–13], including SARS-CoV-2 [7]. As such, it is pertinent to 
incorporate realistic waiting time distributions, particularly when one 
aims to obtain quantitative and short-term, rather than qualitative and 
long-term insights from epidemiological models. 

Here we develop a compartmental epidemiological model that 
accurately predicts inter-individual contact over the first year of the 
epidemic in the Republic of Ireland (ROI) and Northern Ireland (NI). 
These neighbouring jurisdictions on the island of Ireland present a 
compelling contrast due to independent policymaking over a small 
geographical area. We use a flexible discrete-time approach that in-
corporates waiting time distributions that reflect accurate assumptions 
about times spent in each compartment [7]. 

The COVID-19 pandemic has been characterised by subsequent 
waves of novel variants with varying disease transmissibility and 
severity. To separate the effect of human behaviour from the difference 
in transmissibility of multiple strains, we explicitly model multiple 
SARS-CoV-2 strains, with differing transmissibilities, seeded in the 
population at differing times. Our multiple strain model allows consis-
tent estimates of relative human contact between periods even when the 
dominant variant has changed. 

Previous studies of SARS-CoV-2 have estimated the time-dependent 
contact ratio and its derived quantities using continuous (e.g., basis 
splines [14]), or piece-wise, discrete functions of time (e.g., consisting of 
the specified period corresponding to NPI mandates [7]). However, both 
approaches can be fraught with challenges. On the one hand, it is not 
obvious to choose the appropriate extent of smoothing of a continuous 
function, for example, by deciding the number of knots in a basis spline 
function. On the other hand, abrupt changes imposed by piece-wise 
functions are at odds with empirical data on human movement during 
the COVID-19 pandemic [15]. Furthermore, it is difficult to establish a 
precise definition of the level of an intervention over time as definitions 
changed over time [16,17]. To address these concerns, we develop an 
intermediate approach, in which we introduce a prior that allows 
smoothness in human contact between neighbouring weeks in the 
absence of information otherwise from empirical data. 

In the Irish context, compartmental models have been used by 
several other research groups to understand the dynamics of the virus, 
make forecasts of outcomes under various scenarios, and assess eco-
nomic impacts of policy restrictions [18–23]. Our study complements 
these studies by providing a high-resolution description of the change in 
human contact over time, comparing the two jurisdictions on the island 
of Ireland. Leveraging the epidemiological model and estimated pa-
rameters, we also perform counterfactual analyses to explore the effects 
of alternative interventions on cumulative hospitalisation and assess the 
impact of a novel variant. 

Methods 

Epidemiological model and data 

Our multi-strain discrete-time model consists of three types of host 
compartments (Fig. 1): a susceptible compartment (S) and two infec-
tious compartments for viral strain s, (Js, i and Ys, i where i indicates the 
infection age, i.e., day since exposure). The compartments J and Y differ 
in their future clinical outcome: individuals in the components Y 

eventually get hospitalised while those in J remain out of hospitals. As 
our primary focus is the inference of NPI in the community, we did not 
consider within-hospital transmission, recurring hospital admissions of 
the same patients, or demographic turnover (including death). We 
ignored the dynamics of recovered hosts who were assumed to have 
minimal influence on the transmission during the period investigated. 

Our model is parameterised by θ, the probability of hospitalisation, 
Δs, the daily probability of infection with strain s, and a discrete random 
variable H that characterises a set of probabilities governing daily 
transitions to hospital. Δs is informed by a discrete random variable, Z, 
that characterises a set of probabilities governing daily transitions into 
infected compartments, and is defined in Section 2.1.1. Z denotes the 
time in days from exposure of the infector to exposure of the infectee for 
a randomly chosen infectee-infector pair (i.e., generation interval), and 
can be viewed as the average relative contribution of each day to the 
individual reproduction number. The probability that infection occurs at 
infector age i, ζi = P(Z = i) = FZ(i) − FZ(i − 1), where the cumulative 
distribution function FZ(i) = P(Z ≤ i). 

Transmission of infection does not affect the individual's stay in the 
compartment; however, for transition out of the Y compartments, the 
event going to hospital at infection age i is conditional on still being in 
the compartment at infection age i − 1. Given H, the random variable 
representing time from infection to hospital admission in hospitalised 
patients, we denote by ηi the probability of hospitalisation at infection 
age i given the individual was still not hospitalised at infection age i − 1, 
that is ηi =

FH(i)− FH(i− 1)
1− FH(i− 1) . This is the discrete hazard of hospital admission 

at infection age i. We use published estimates for Z and H, as described in 
section 2.1.3 below. Our model assumes that the proportion of infected 
people hospitalised and the processes governing hospitalisation and 
recovery over time are constant across strains. 

Infection dynamics 
We extend a discrete epidemiological modelling framework by 

Sofonea et al. [7] to accommodate multiple viral strains spreading 
simultaneously. First, we express the effective density of infectious host 

Fig. 1. Discrete-time model of SARS-CoV-2 community transmission consists of 
susceptible S and infectious (J and Y) compartments of pathogen strain s. Each 
person represents a group of individuals with an identical contribution to the 
epidemiological dynamics. Infection with strain s occurs with probability Δs per 
day. Individuals in the components Y are infectious patients to be hospitalised. 
Once infected, individuals progress to the next square each day (J and Y), 
capturing the memory effect of the infection age. After spending nj days, in-
fectious hosts in J are no longer infectious. Alternatively, a fraction, θ of in-
fectious hosts (in Y), is admitted to the hospital with a delay specified by the 
probabilities η1, …, ηny

, where ηi is the probability that the individual is 
admitted to hospital on the day i, conditional on their being infectious for i − 1 
days. The grey arrows indicate the daily transition of individuals that occurs 
with probability 1. 
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population on a given day d that contributes to transmission of the strain 
s as: 

Is(d) = c(d)
∑

i
ζi
(
Js,i(d)+Ys,i(d)

)
, (1)  

in which Js, i(d) + Ys, i(d) is the number of individuals with strain s on day 
d with infection age i in the community. Multiplying by ζi and summing 
over infection ages, 

∑
iζi(Js, i(d) + Ys, i(d)) can be regarded as the total 

‘potential for infection’ in the community on day d. The effective in-
fectious density, Is(d), is this sum scaled by the contact ratio, c(d), on day 
d. The contact ratio is the ratio of contact rate on day d to contact rate on 
day 0. The infectious density is thus a measure of the total amount of 
transmission in a completely susceptible population. 

We allow susceptible hosts encounter the viral strain s with a prob-
ability Λs(d), which as in [7] is assumed to follow the Michaelis-Menten 
function that saturates with the effective infectious density, Is(d) and the 
contact rate; under assumptions about initial conditions as in [7] we 
derive the following: 

Λs(d) =
c(d)τs Is(d)

S0
τs R01

+ c(d)τs Is(d)
, (2)  

where τs is the relative transmission advantage of strain s, S0 the pop-
ulation size, and R01 the basic reproductive number of the original strain. 
We define the τs as the ratio of the basic reproductive numbers of strain s 
to the original strain R0s = τsR01. 

When a host encounters multiple strains, we model the interaction 
between strains assuming superinfection with priority determined by 
order of exposure: i.e., only the first strain that encounters a host es-
tablishes infection when the same host subsequently encounters multi-
ple strains. Thus, in the case of two strains, the probability of getting 
infected with the strain s, Δs(d), is: 

Δs(d) = Pr(exposure to strain s) − Pr(exposure to both strains and s
′ first)

= Λs(d) −
Λs(d)Λ2

s′ ∕=s(d)
Λs(d) + Λs′ (d)

(3)  

where s′ denotes the non-focal strain. Similarly, expressions can be 
derived for more than two strains. 

It follows then that the number of susceptibles on the next day is 
expressed as: 

S(d + 1) =

(

1 −
∑

s
Δs(d)

)

S(d). (4) 

Of those exposed to either viral strain, the proportion θ will develop 
severe symptoms and eventually be admitted to the hospital (Fig. 1). 

For less severe cases that do not result in hospitalisation, J, the 
infection progresses towards recovery until they are no longer infectious 
on the day nj: 

Js,1(d + 1) = (1 − θ)Δs(d)S(d) (5)  

Js,i(d + 1) = Js,i− 1(d) 1 < i ≤ nj. (6) 

Those that develop severe symptoms, Y, are admitted to hospital 
with the probability ηi on the i-th day following exposure. 

Ys,1(d + 1) = θΔs(d)S(d), (7)  

Ys,i(d + 1) = (1 − ηi− 1)Ys,i− 1(d), 1 < i ≤ ny . (8) 

It follows then that the number of hospital admissions on day d + 1 
equals 

H(d + 1) =
∑

s

∑

i
ηi Ys,i(d) (9)  

Observed longitudinal data 
Epidemiological models are often fitted to data on infected cases - 

however, case data depends on levels of testing, which varied over time 
during the COVID-19 pandemic. It can also be problematic to rely on 
data on deaths - for instance, many deaths in the ROI occurred following 
outbreaks in care homes, and thus data on deaths may not reflect disease 
spread in the general community. Biases and uncertainty in estimating 
the reproductive number arising from such issues are discussed else-
where [6]. Thus, hospital admission data is likely a better reflection of 
the community spread of SARS-CoV-2. We used daily COVID-19 hospital 
admissions in the ROI and NI, reported respectively by the Central 
Statistics Office COVID data hub for the ROI [24], and the NI Depart-
ment of Health [25]. One potential caveat of publicly available hospital 
admission data is their ambiguity on whether infections were acquired 
in the community or health-care settings. Modelling studies of hospital- 
acquired SARS-CoV-2 in Germany [26] and England [27] estimate 
roughly 10 and 20% of hospitalised cases may have originated from 
transmissions within hospitals: such estimates are not available for 
Ireland to our knowledge. As our study focuses on community trans-
mission alone, we conduct a sensitivity analysis fitting our model to 80% 
of reported hospital admission numbers. 

Successive invasions of new variants have characterised the COVID- 
19 pandemic. Our study tracks two strains that circulated in the island of 
Ireland in the first 12 months of the pandemic: i.e., the original strain 
(initially detected in Wuhan, China) and the Alpha strain (also known as 
B.1.1.7., initially detected in Kent, UK). We used publicly accessible data 
on the frequency of the Alpha strain in the ROI [28], and NI [29], 
respectively. 

Incorporating empirical estimates of waiting time distributions 
Linking transitions within and between model compartments are two 

random variables, each describing a waiting time process. These are the 
infectious period (generation interval), Z, and the delay between 
infection exposure and hospitalisation, H. The probability distributions 
representing these random variables have been estimated elsewhere 
empirically for SARS-CoV-2 in a global and European context as 
described below. 

Generation interval 
The generation interval refers to the time between infection events in 

a pair of infector and infectee, reflecting the incubation duration and 
recovery timing. Here, we used the distribution of this interval to model 
the relationship between the age of infection (i.e., time since exposure) 
and the infectiousness of the infector. We employed an estimate by 
Ferretti et al. [30] who found the variation in SARS-CoV-2 generation 
interval was best described by the Weibull distribution with the mean 
interval of 5.5 days (shape=3.29 and scale=6.12). We truncated the 
Weibull distribution at the upper-integer-rounded 99%-quantile — 
without this truncation, the discrete model would require infinite time- 
tracking sub-compartments due to a right-unbounded support [0,∞]. 
We then discretised the distributions because the dynamics unfold in 
discrete-time intervals of one day in our model: the upper limit of the 
discretised distribution corresponds to nj (eq. 6). 

Exposure to hospital admission 
The waiting time between exposure and hospital admission was 

estimated as the sum of the incubation period and the delay between 
symptom onset and hospitalisation. We assumed that the two waiting 
times were independent due to the absence of evidence otherwise. A 
meta-analysis of global, but predominately, Chinese data found that the 
SARS-CoV-2 incubation period was log-normally distributed with pa-
rameters μ = 1.63 and σ = 0.50 [31], corresponding to a mean incu-
bation time of 5.78 days (standard deviation of 3.97 days). The 
distribution of waiting time between symptom onset and hospitalisation 
was estimated assuming a gamma distribution by Public Health England 

T. Kamiya et al.                                                                                                                                                                                                                                 



Global Epidemiology 5 (2023) 100111

4

with a mean of 5.14 days (standard deviation of 4.2 days) [32]. We fitted 
a gamma distribution to the simulated sum of the two distributions to 
represent the timing between exposure to infection and hospital 
admission (shape =4.76 and rate =0.435). As for the generation inter-
val, we discretised the distributions and the upper limit of the discretised 
distribution corresponds to ny (eq. 8). 

Weekly contact ratio 
Here, we defined the contact ratio c as the human contact rate 

relative to the pre-pandemic, pre-intervention baseline (eq. 1 & 2) and 
estimated this quantity using a piece-wise function consisting of weekly 
intervals. Specifically, we estimated the ratio in each area a (NI and 
ROI), per week w (i.e., ca, w) as a function of ϕa, w, the log proportional 
change in the contact ratio from the previous week. We index w from the 
date of the first public health intervention in either jurisdiction, which 
took place in ROI on 2020-03-12 (Supporting Information S1: Table S1 
& S2); hence the preceding, pre-intervention contact ratios are defined 
as 1.0. 

ca,w = 1.0,w = 0. (10)  

ca,w = ca,(w− 1) eϕa,w ,w ≥ 1. (11) 

With this formulation, hierarchical Bayesian inference with priors on 
the ϕa, w allows us to estimate the time-varying weekly contact ratios 
with minimal prior information specific to the modelled system. Spe-
cifically, we used a prior ∼ N (0, ε), where ε is a hyperparameter spec-
ifying the standard deviation of ϕ, such that ca, w would equal ca, (w− 1) in 
the absence of signals from epidemiological data (Table 1). A priori, this 
formulation avoids over-fitting random weekly variation at the potential 
risk of smoothing over valid signals of an abrupt change in the weekly 
contact ratio, for example, following an introduction of lockdown 
measures. To check for such bias, we examined the extent to which our 
smoothing approach affects the estimation of sudden changes in the 
contact ratio, c. We showed that our formulation is unlikely to introduce 
substantial bias (Supporting Information S2). 

Initial conditions 
The first case of SARS-CoV-2 on the island of Ireland was identified in 

NI on 2020-02-27 from an individual travelling back from Northern Italy 
via Dublin Airport located in ROI (Table S2). Two days later, the first 
official case in the ROI was also confirmed from a traveller from 
Northern Italy (Table S1). Initially, most known cases are travel-related, 
and contact tracing may successfully contain infections. As our model 
solely tracks community transmission, we started our simulations on the 
first day that community transmission was detected on the island of 
Ireland: 2020-03-05 (Table S1). Coincidentally, the exponential growth 
of confirmed cases appears to have begun around 2020-03-05 in both 
ROI and NI [24,33]. We account for the uncertainty of the beginning of 
community transmission by estimating the initial infectious density 
independently in the two jurisdictions (Table 1). We assume implicitly 
that the contribution of the travel-related cases is negligible once the 
infection starts growing exponentially in the community. 

The first cases of the Alpha strain were reported in November and 
December 2020, respectively, in ROI and NI (Tables S1 & S2). Due to 
high connectivity with the island of Britain, the Alpha strain likely 
entered the island of Ireland soon after it emerged in England, where the 
strain was detected in mid-September [34]. By February 2021, the Alpha 
strain comprised the majority of infections in both ROI and NI. To es-
timate the date of introduction, we fitted a three-parameter logistic 
function to the longitudinal data of the Alpha frequency and identified 
the date on which Alpha cases (frequency of Alpha × known new cases) 
intersects 1: the date of introduction was estimated as 2020-09-22. 
Again, we account for the sensitivity of the timing of introduction by 
estimating the founding infectious density of the Alpha strain, inde-
pendently in the two areas (Table 1). In our model, viral strains differ 
only in their transmissibility, τs. 

Fitting 
We used a Bayesian approach to fit the above model to two types of 

longitudinal data from the ROI and NI: daily counts of hospital admis-
sions and the Alpha strain frequency. Model parameters are detailed in 
Table 1. Hospital admissions per day were modelled as log-normally 
distributed with standard deviation parameters σh. We set the proba-
bility of hospital admission given infection, θ, to the observed figure in 
ROI published by the Health Service Executive [42] (Table 1). The fre-
quency of the Alpha strain was fitted assuming the beta proportion 
distribution with a standard deviation parameter, σf. 

We fitted our model to the data from the first year of the pandemic 
from the first confirmed case of community transmission on the island, 
which was detected on 2020-03-05, in ROI, to the end of February 2021. 
Our modelling period precedes the widespread administration of the full 
course of vaccination in either jurisdiction: the proportion of fully 
(twice) vaccinated individuals in ROI and NI was less than 3% and 2% at 
the end of February 2021, respectively [24,33]. 

Our model was written in Stan 2.21.2 and fitted through the RStan 
interface [35]. We fitted the model in parallel in four independent 
chains, each with 5000 sampled iterations and 1000 warmup iterations. 
For diagnostics, we confirmed over 400 effective samples and ensured 
convergence of independent chains (R̂ < 1.1) for all parameters [36]. 
We assessed the goodness of fit to data using standardised residuals 
(Supporting Information S3). We also quantified the posterior z-score 
and posterior contraction to examine the accuracy and precision of 
posterior distributions and the relative strength of data to prior infor-
mation [37] (Supporting Information S4). 

Counterfactual analyses 

Estimating human contacts with a multi-strain model separates the 
effect of human behaviour from the difference in transmissibility of 
multiple strains. This separation allows us to leverage the epidemio-
logical model and estimated parameters to simulate an epidemic based 

Table 1 
Description of model parameters and their fixed values, or prior distributions 
used in Bayesian statistical inference. We assigned an informed prior for R0, τ2 

and a generic, weakly informative prior for Is,a(0), ε and measurement error 
parameters.  

Symbol Description Fixed value or 
prior 

Source 

Epidemiological parameters 
ζ Generation interval detailed in text [38] 
η Exposure to hospital admission detailed in text [31,32] 
S0, ROI Population size of the Republic of 

Ireland 
4.92 × 106 [39] 

S0, NI Population size of Northern Ireland 1.89 × 106 [40] 
log
(
Is,a(0)

)
Log initial effective infectious density 
(of strain s in area a) 

N (0, 10)

R01 
Basic reproductive number of the 
original strain 

N (2.79, 0.86) [41] 

τ2 Transmission advantage of the Alpha 
strain 

N (1.31, 0.24) [34] 

ϕa, w Log proportional change in the 
contract ratio from the previous week 

N (0, ε)

ε Hyperprior specifying the standard 
deviation of ϕ 

half-N (0, 1)

θ Probability of hospital admission 
given infection 

0.026 [42] 

Measurement error 
σh Standard deviation for hospital 

admission (log-normal distribution) 
half-N (0, 1)

σf Standard deviation for frequency of 
the Alpha strain (beta proportion 
distribution) 

half-N (0, 1)
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on data-generating processes consistent with the observed data. In turn, 
we can modify one part of the fitted model — while everything else is 
constant — to conduct counterfactual analyses, which allows us to 
explore the impact of different factors that affect disease transmission. 
Here, we explored two counterfactual scenarios: to examine the effect of 
lockdown timing; and to isolate the impact of the more transmissible 
Alpha strain on the hospitalisation outcome. 

Effect of lockdown timing 
We explored the impact of the timing of lockdown introduction by 

simulating an epidemic with parameters estimated from the model fitted 
to the observed data on hospitalisations and strain proportions, but the 
contact ratios counterfactually shifted earlier by seven and 14 days 
relative to the actual start of the three lockdowns imposed in the ROI and 
NI. We then compared counterfactual scenarios and reality by 
computing the percentage difference of the cumulative hospital admis-
sion numbers for the subsequent days under the counterfactual versus 
the observed scenarios. 

Suppose the intervention is to shift the first lockdown date earlier by 
seven days. Denoting the actual lockdown date dl and the counterfactual 
contact ratio on day d as c*(d): 

c*(d) =
{

c(d) if d < (dl − 7)
c(d + 7) if d ≥ (dl − 7). (12) 

The counterfactual infectious density on day d follows from eq. 1, 
and we denote this 

I*
s (d) = c*(d)

∑

i
ζi

(
J*

s,i(d)+ Y*
s,i(d)

)
(13)  

where the J*, Y* denote the counterfactual numbers in these compart-
ments on day d. From this follows the counterfactuals on day d Λs*(d), 
Δs*(d), and H*(d + 1) from eqs. 2 to 9. For the second and third lock-
downs, we assume that the epidemic had proceeded as observed up to 
the second and third lockdown, respectively. 

Impact of a more transmissible variant 
We investigated the extent to which the introduction of the more 

transmissible Alpha strain contributed to public health burden by 
simulating an alternative epidemic with parameters estimated from the 
model fitted to the observed data on hospitalisations and strain pro-
portions, but without introducing the Alpha strain in September 2020. 
We then used the percentage difference to compare the cumulative 
hospital admission numbers between the counterfactual and real sce-
narios over time until the end of the modelled period at the end of 
February 2021. 

Results 

Epidemiological model fit 

Our discrete-time epidemiological model of SARS-CoV2 accurately 
described the time-course of hospital admissions and the frequency of 
the Alpha strain during the first year of the pandemic in the two juris-
dictions on the island of Ireland, before the full course of vaccines were 
widely administered (Fig. 2; see Supporting Information S3 & S4 for 
assessments of model fit and diagnostics). 

Fig. 2. The fit of the epidemiological model to the longitudinal hospital admissions data and the frequency of the Alpha strain (the original strain in blue and Alpha 
strain in purple). The crosses indicate data and coloured bands correspond to 95% predictive intervals of the model, which signify 95% of simulated outcomes 
generated based on samples from the posterior distribution of model parameters and measurement errors. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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Estimated contact ratios 

We estimated a rapid decline in contact ratios during the first month 
of the pandemic before a strict lockdown was implemented (Fig. 3; 
Tables S1 & S2). The first lockdown started on 2020-03-28 in both ju-
risdictions (Fig. 3 NI-a & ROI-a). By this date, the estimated contact ratio 
was already down to about 60% of the pre-pandemic baseline in both 
jurisdictions. This finding is consistent with pre-lockdown movement 
alternations reported elsewhere, for example in China, Italy and New 
York [43]. The changes were likely driven by lighter restrictions that 
preceded strict lockdowns and spontaneous behavioural changes in 
response to increasing perceived infection risk (e.g., increased incidence 
within the social sphere and media coverage) [44]. During the first 
lockdown, human contact fluctuated only slightly. 

In both jurisdictions, the easing of the first lockdown began from 
2020-05-18 (Fig. 3 NI-b & ROI-b), and a long period of slow restriction 
easing took place during the summer months. In the ROI, the estimated 
contact ratio increased from June and fluctuated between approxi-
mately 70–80% of the pre-pandemic baseline in July, August and 
September. In NI, the contact ratio rose to a peak around the end of July. 
We detected higher human contact in NI than the ROI in mid-June 
(indicated by 95% predictive intervals of the difference excluding 

zero; Fig. 3; bottom panel). Of potential relevance, we note that all non- 
essential retail outlets were allowed to reopen earlier in NI than the ROI 
during this period from 2020-06-12 and 2020-06-29, respectively (Fig. 3 
NI-c & ROI-c; Tables S1 and S2). Human contact in NI decreased through 
August but elevated again to about 90% of baseline by the end of 
September with no parallel increase in the ROI (Fig. 3 NI-d & ROI-d). 
This period corresponds to the first time primary and secondary teach-
ing resumed in person in both jurisdictions. The increased contact in NI 
mirrors a trend in detected England where the September schooling 
reopening led to increased cases, most notably among the teaching staff 
[45]. 

Ahead of the second lockdown (Fig. 3 NI-e & ROI-e), the estimated 
contact ratio declined to about 60% of baseline in both jurisdictions 
during October. Unlike during the other two lockdowns, the contact 
ratios tended to increase during the lockdown period in both jurisdic-
tions throughout November (Fig. 3; top and middle panels). 

At the beginning of December in the ROI, several mitigation mea-
sures were lifted, allowing non-essential businesses, restaurants, cafes 
and gastro-pubs to open as well as relaxing household gathering re-
strictions (Fig. 3 ROI-f; Table S1). This period coincides with an 
increasing trend in the estimated contact ratio, which reached about 
90% of the pre-pandemic baseline the week before Christmas. In NI, on 

Fig. 3. Estimated weekly contact ratios in 
Northern Ireland (top) and the Republic of 
Ireland (middle) and differences in the con-
tact ratio between the two jurisdictions 
(bottom). The three lockdown periods, cor-
responding to the most strict restrictions in 
each jurisdiction, are marked in yellow, blue 
and green, respectively. The letters a-g in 
black dots correspond to the timing of events 
described in the main text. The black line, 
and grey bands correspond to the median, 
the 50% (dark) and 95% (light) credible in-
tervals. (For interpretation of the references 
to colour in this figure legend, the reader is 
referred to the web version of this article.)   

T. Kamiya et al.                                                                                                                                                                                                                                 



Global Epidemiology 5 (2023) 100111

7

the other hand, the lockdown remained in place almost two weeks 
longer (Fig. 3 NI-f; Table S2), and the estimated contact ratio reached a 
maximum of about 75% of the baseline value before Christmas. Our 
estimates indicate that human contact was substantially higher in the 
ROI than NI for two weeks over the Christmas period (indicated by 95% 
predictive intervals of the difference excluding zero; Fig. 3 NI-g & ROI- 
g): the ROI experienced the highest per capita infection rate in the world 
during this period. [46]. In both NI and the ROI, the third lockdown 
introduced in late-December 2020 coincided with the lowest contact 
ratio (Fig. 3; green) followed by the first lockdown in late March (Fig. 3; 
yellow) and second lockdown in November (Fig. 3; blue). 

The above finding are based on the assumption that 100% of re-
ported hospital admission cases originate in the community. However, 
recent estimates indicate up to 20% of hospital admission numbers may 
be attributable to transmissions that take place in health-care settings 
[27], though the estimates vary across counties and viral strains [26]. 
Our sensitivity analysis — assuming only 80% of reported admission 
numbers were community-acquired — demonstrate little impact of this 
assumption on the estimated contact ratio (Supporting Information S5: 
Fig. S5). The difference in fitted proportion of hospital admission 
numbers was absorbed by a 25–30% change in the estimated initial 
effective infectious densities (Supporting Information S5: Fig. S6), which 
also affects incidence, but the priors for which were less informative 
than either the contact ratios or R0 (Supporting Information S4: Fig. S4). 

Counterfactual scenarios 

Effect of lockdown timing 
Lockdown measures have been shown effective in reducing the 

infection burden of SARS-CoV-2, and the timing of introduction is the 
most significant factor in determining their effectiveness[47,48]. We 
found that bringing forward the lockdown dates by either seven or 14 
days would have substantially reduced the cumulative hospitalisation 
over the subsequent 50 days from the date of lockdown in most scenarios 

(indicated by the 95% predictive interval excluding zero; Fig. 4). Of 
note, we found that a counterfactual simulation to bring forward the 
second lockdown date by seven days showed a non-conclusive impact on 
the cumulative hospitalisation in the subsequent 50-day period in either 
jurisdiction (judged by the 95% predictive interval containing zero; 
Fig. 4). The second lockdown was preceded by a declining trend in 
contact ratios while the contact during the lockdown remained rela-
tively higher than the first or third lockdown (Fig. 3). 

Impact of a more transmissible variant 
Our model estimated that the Alpha strain was approximately 19% 

more transmissible than the original strain (τ2, 95% prediction intervals 
[16.0,21.8]). It is worthwhile noting that our model does not consider 
continuous inputs of infection into the island of Ireland, despite the high 
connectivity among the British Isles. Thus, our estimate of the Alpha 
transmissibility may be confounded by repeated introductions, for 
example, from England, where the Alpha strain was first detected. 
Nonetheless, our estimate is consistent with those from England [34]. 

To assess the impact of the Alpha strain, which arrived later and is 
more transmissible than the original strain, we compared the fitted 
model (Fig. 5; orange) to a counterfactual simulation without the Alpha 
strain, in which we assumed the same estimated contact ratio (Fig. 5; 
blue). We detected a statistically distinguishable impact of the Alpha 
strain on the cumulative hospital admissions by earlier January in both 
jurisdictions - approximately 3.5 months after the initial introduction 
(indicated by the 95% predictive interval excluding zero; Fig. 5). By the 
end of February 2021, we show that the Alpha strain was responsible for 
a 38 and 55% increase in cumulative hospitalisation, in NI and the ROI, 
respectively (Fig. 5). Our findings demonstrate that an introduction of a 
more transmissible variant - without necessarily being more severe - can 
cause a large impact on the health care burden. 

Fig. 4. Counterfactual analysis demonstrates 
the effect of lockdown timing on epidemio-
logical outcomes. We examined counterfac-
tual introductions of three lockdowns in 
Northern Ireland and the Republic of Ireland, 
assuming that they would have started seven 
days and 14 days earlier. The percentage 
difference in cumulative hospital admissions 
between the counter-factual and factual sce-
narios is shown. The black line and grey 
band indicates the median and 95% predic-
tive interval, respectively. The predictive 
interval signifies 95% of simulated outcomes 
generated based on samples from the poste-
rior distribution of model parameters and 
measurement errors.   
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Conclusion 

We developed a multi-strain model of SARS-CoV-2 and estimated time- 
dependent human contact over the first 12 months of the pandemic on the 
island of Ireland. Unlike many earlier COVID-19 modelling studies that 
estimate the effective reproductive number of a single strain, our model 
explicitly incorporates multiple viral strains and focus on estimating 
contact ratios. An important difference between the contact ratio and the 
effective reproductive number is that the former is unaffected by changes 
in virus transmissibility, which is modelled independently. As such, our 
approach separates the effect of human behaviour from that of the dif-
ference in transmissibilities between multiple, co-circulating strains. 

Examining the longitudinal patterns and geographical differences in 
the estimated contact ratios allowed us to identify corresponding pol-
icies and events. In addition, we leveraged estimated parameters to 
conduct counterfactual analyses, in which we examined the role of 
lockdown timing and a novel variant on cumulative hospitalisation. In a 
companion paper, we extended the application of the estimated contact 
ratios to causal inference [49]. Specifically, we used mobility and mask- 
wearing data to independently predict the contact ratios estimated from 
our epidemiological model described in the current paper and subse-
quently compared observed hospitalisations with predicted hospital-
isations under a counterfactual mask-wearing scenario. 

We presented a generic, epidemic model parameterised for SARS- 
CoV-2 to fit longitudinal hospitalisation data, one of the most reliable 
and available data types [6]. Of most relevance to COVID-19 at the time 

of publication, our model lacks human age structure and vaccination: 
these omissions give rise to certain limitations. For example, hospital-
isation risks increase with age while older individuals adjust their 
behaviour differently from young counterparts [50]. Thus ignoring the 
age structure may bias our estimate of human contact estimated from 
hospitalisation data. In addition, the lack of vaccination and associated 
immunity in our model restricted our scope to the first 12 months of the 
COVID-19 pandemic. Technically, our model can be extended modularly 
to relax these assumptions about age structure and vaccination. How-
ever, these extensions were outside the scope of this study due to chal-
lenges in parameterising these processes reliably. For instance, the 
output of age-structured models are highly sensitive to assumptions of 
age-specific contact patterns [51], which likely changed during the 
epidemic, yet empirical data for time-dependent contact matrices are 
scarcely available. Behavioural adjustment in response to the pandemic 
is further complicated by the interaction between age- and sex-specific 
effects [52]. Furthermore, it is difficult to track and parameterise the 
state of immunity generated by natural infections from multiple viral 
strains and multiple vaccine doses using compartmental models. 

Finally, our work contributes to the growing COVID-19 modelling 
literature by providing a transparent Bayesian workflow for fitting a 
multi-strain epidemic model to longitudinal epidemiological data, 
which may be readily adapted to modelling SARS-CoV-2 in other juris-
dictions and other infectious diseases. 

Fig. 5. Counterfactual analysis shows the extent to which the Alpha strain elevated the burden of hospitalisation. To compute the impact of the Alpha strain, the 
counterfactual simulation (blue) assumes that the Alpha strain never invaded either jurisdiction. The crosses indicate data, and the coloured bands correspond to 95% 
predictive intervals of the fitted model (orange) and counterfactual scenario (blue), respectively (left panels). The percentage difference in cumulative hospital 
admissions between the two scenarios is shown. The black line and grey band indicates the median and 95% predictive interval, respectively (right panels). The 
predictive interval signifies 95% of simulated outcomes generated based on samples from the posterior distribution of model parameters and measurement errors. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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