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e Department of Geography, School of Environment Education and Development, University of Manchester, Manchester, UK 
f Institute for Environmental Futures, School of Geography, Geology and the Environment, University of Leicester, Leicester LE1 7RH, UK 
g Instituto Centro de Vida (ICV), Alta Floresta, Mato Grosso, Brazil 
h National Center for Monitoring and Early Warning of Natural Disasters - CEMADEN, São José dos Campos, SP, Brazil 
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A B S T R A C T   

Tropical rainforests from the Brazilian Amazon are frequently degraded by logging, fire, edge effects and minor 
unpaved roads. However, mapping the extent of degradation remains challenging because of the lack of frequent 
high-spatial resolution satellite observations, occlusion of understory disturbances, quick recovery of leafy vege
tation, and limitations of conventional reflectance-based remote sensing techniques. Here, we introduce a new 
approach to map forest degradation caused by logging, fire, and road construction based on deep learning (DL), 
henceforth called DL-DEGRAD, using very high spatial (4.77 m) and bi-annual to monthly temporal resolution of the 
Planet NICFI imagery. We applied DL-DEGRAD model over forests of the state of Mato Grosso in Brazil to map forest 
degradation with attributions from 2016 to 2021 at six-month intervals. A total of 73,744 images (256 × 256 pixels 
in size) were visually interpreted and manually labeled with three semantic classes (logging, fire, and roads) to 
train/validate a U-Net model. We predicted the three classes over the study area for all dates, producing accumu
lated degradation maps biannually. Estimates of accuracy and areas of degradation were performed using a 
probability design-based stratified random sampling approach (n = 2678 samples) and compared it with existing 
operational data products at the state level. DL-DEGRAD performed significantly better than all other data products 
in mapping logging activities (F1-score = 68.9) and forest fire (F1-score = 75.6) when compared with the Brazil’s 
national maps (SIMEX, DETER, MapBiomas Fire) and global products (UMD-GFC, TMF, FireCCI, FireGFL, GABAM, 
MCD64). Pixel-based spatial comparison of degradation areas showed the highest agreement with DETER and 
SIMEX as Brazil official data products derived from visual interpretation of Landsat imagery. The U-Net model 
applied to NICFI data performed as closely to a trained human delineation of logged and burned forests, suggesting 
the methodology can readily scale up the mapping and monitoring of degraded forests at national to regional scales. 
Over the state of Mato Grosso, the combined effects of logging and fire are degrading the remaining intact forests at 
an average rate of 8443 km2 year− 1 from 2017 to 2021. In 2020, a record degradation area of 13,294 km2 was 
estimated from DL-DEGRAD, which was two times the areas of deforestation.  
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1. Introduction 

Degradation caused by selective logging and forest fires are the 
dominant forms of disturbance across tropical rainforests. It is respon
sible for up to 41.9% of total gross carbon emissions of the land use 
sector in the Amazon followed by deforestation (34.4%) and droughts 
(23.7%) (Aragão et al., 2014). Recent studies have shown that the 
Amazon Forest degradation has been increasing over the last decade, 
surpassing deforestation in affected areas and carbon losses up to three 
times (Matricardi et al., 2020; Bullock et al., 2020; Silva Junior et al., 
2021; Qin et al., 2021). Unlike deforestation (total loss of forest through 
clear-cutting), the process of forest degradation causes partial losses of 
tree cover and carbon storage among other ecosystem services (Lapola 
et al., 2023). Degradation can be caused from direct management 
practices, such as selective logging and road construction, or from a 
series of hidden and collateral disturbances, such as understory fires, 
edge effects, forest fragmentation, and illegal logging (Asner et al., 2005; 
Souza et al., 2005; Pearson et al., 2017; Shimabukuro et al., 2015; 
Melendy et al., 2018; Shimabukuro et al., 2019; Silva et al., 2020). While 
fire is naturally suppressed in Amazon forests due to the humid under
story microclimate (Uhl and Kauffman, 1990), it has become a wide
spread and increasing disturbance due to droughts. It can also have a 
synergistic effect with logging due to the opening of roads and clearings, 
which create dry surface fuel load and can exacerbate the risk and in
tensity of fires (Aragão et al., 2018; Barni et al., 2021; Silveira et al., 
2022). The degraded forests, such as from logging activities, act as net 
carbon sources to the atmosphere, where the relative amount of carbon 
being emitted varies with intensity of disturbances (Mills et al., 2023). 
While degradation can lead to losses of carbon in tropical forests, sus
tainable practices in selective logging and/or the natural regeneration of 
these degraded forests post-disturbance can also lead to high rates of 
carbon accumulation if they are allowed to recover (Gourlet-Fleury 
et al., 2013; Bullock and Woodcock, 2021; Heinrich et al., 2023). 
Furthermore, degradation events across tropical rainforests remain 
largely undetected and underestimated from conventional remote 
sensing approaches, especially those related to selective logging, rep
resenting a major scientific gap on accurately estimating their impacts 
(Lapola et al., 2023). 

Developing new methodologies for accurately quantifying forest 
degradation is essential for creating strategies to protect forests and their 
ecosystem services. These methodologies can be applied across various 
policy and action fronts, including the United Nations Framework 
Convention on Climate Change’s (UNFCCC) Reducing Emissions from 
Deforestation and Forest Degradation (REDD+) program, which aims to 
monitor and reduce emissions from deforestation and forest degradation 
(Mitchell et al., 2017; Gao et al., 2020). In Brazil, new policies are being 
developed that involve payment for environmental services, which will 
require accurate data for forest monitoring (Brasil, 2021). Moreover, the 
recent increase in investments in forest carbon credits within the 
voluntary carbon market has also increased the demand for monitoring 
forests that are undergoing deforestation and degradation (Bomfim 
et al., 2022). Accurate monitoring is necessary to quantify emissions and 
attributions, to detect activity that are leaking into non-protected areas 
and causing emissions, and to monitor forests that are being preserved or 
restored (Joseph et al., 2013; Streck, 2021). 

Accurate mapping of forest degradation in the tropics has been 
difficult to achieve due to the small scale of tree loss and the rapid re
covery of tree canopies, which are significantly different from the large 
clear-cut disturbances caused by deforestation (Zhang et al., 2021; 
Aquino et al., 2022). For instance, treefall gaps created by selective 
logging are typically <25 m2 and fully recover within two years (Dala
gnol et al., 2019). Persistent cloud cover can also impede timely 
detection of these disturbances, as the spatial patterns of degradation 
may be obscured by the regrowth of understory vegetation before they 
can be observed in satellite imagery. Current initiatives are based on 
Landsat satellite data (30-m spatial resolution) in conjunction with 

machine learning methods and time series analysis to create global-scale 
maps of annual forest cover change that includes mostly clear cuts. 
Examples are the Global Forest Change (GFC) (Hansen et al., 2013) and 
the Tropical Moist Forests (TMF) (Vancutsem et al., 2021). The GFC 
product detects forest loss from clearing but also captures some levels of 
intense forest degradation (Cunningham et al., 2019; Kinnebrew et al., 
2022). The TMF product includes separate information on degradation 
and deforestation, but it does not attribute or label the causes of 
degradation (Vancutsem et al., 2021). A newly derived product from 
GFC, called Global Forest Loss by Fire (here called FireGFL), disentan
gles the effects of forest fire and should be further tested over tropical 
regions (Tyukavina et al., 2022). The attribution of degradation is 
important because different degradation drivers, such as logging or fire, 
will lead to different carbon emissions from the disturbance which need 
to be estimated and accounted for (Rappaport et al., 2018). Also, na
tional and global-scale burned area products with different spatial res
olutions can also be used to assess forest degradation caused by fire. 
Examples are the MODIS MCD64 (Giglio et al., 2018), Fire CCI (Chu
vieco et al., 2018), GABAM (Long et al., 2019), and MapBiomas Fire 
(Alencar et al., 2022). However, these burned area products may un
derestimate the occurrence of understory fires (Morton et al., 2011) and 
can have significant spatial dissimilarities, which indicates the uncer
tainty of these operational products (Pessôa et al., 2020). 

Some disturbances related to forest degradation such as logging and 
fire have been traditionally mapped using spectral mixture analysis 
applied to medium spatial resolution data (e.g., Landsat satellites) to 
derive subpixel fractions that enhance the contrast between intact and 
degraded forests by logging and fire (Souza et al., 2005; Souza et al., 
2013; Shimabukuro et al., 2019). By leveraging these fractions and 
conducting photo-interpretation, two operational forest degradation 
products have been created in Brazil: the Brazilian official deforestation 
and degradation alert program (DETER) for the Amazon forests (De 
Almeida et al., 2022), and the system for monitoring wood exploration 
(SIMEX) focusing on the Mato Grosso state (Silgueiro et al., 2021). These 
two products rely on the visual interpretation of images and manual 
editing of maps and require several months of work from a team of 
analysts to monitor one year of the area of interest. Subpixel fractions 
have also been used in other semi-automatic methods to map logging 
and fire in the Brazilian Amazon (Matricardi et al., 2010, 2020). How
ever, Landsat data cannot directly observe disturbances and rely on 
changes in the reflectance signal (Dupuis et al., 2020; Gao et al., 2020), 
which can also be influenced by factors such as variability in rainfall, 
leaf density, or even acquisition artifacts. Additionally, high cloud cover 
in tropical regions limits the ability to detect all degraded areas, forcing 
some data products to have infrequent repeat time (3 to 4 years) 
(Matricardi et al., 2020). This reduces the ability to detect all degraded 
areas, whose effects may rapidly fade from the imagery (Dalagnol et al., 
2019). 

Norway’s International Climate and Forest Initiative (NICFI) pro
vides unprecedented open access to high-spatial resolution data (4.77 
m) from Planet’s satellite constellation for the entire tropics at bi-annual 
(twice a year) to monthly time scales (NICFI, 2021). A recent local-scale 
study exploring logging detection at multiple scales showed that the 
spatial resolution brought by PlanetScope data shows logging at low to 
medium intensity with success (Aquino et al., 2022). Another recent 
study explored the use of PlanetScope to map logging and fire-related 
degradation using traditional machine learning and texture metrics at 
local scale (Pinagé et al., 2023). Moreover, Planet NICFI mosaics 
aggregate data into a bi-annual scale from 2016 to 2020, and offer 
monthly mosaics from September 2020 until the present day through 
selecting the best cloud-free images. The high temporal resolution of the 
raw PlanetScope image acquisitions (close to daily) increases the chance 
of obtaining cloud-free data for the image composites generated, 
thereby increasing the possibility of mapping degradation in tropical 
forests. However, the usage of PlanetScope data does not come without 
limitations. For instance, the inter-calibration between the CubeSats 
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adds uncertainties in the data analysis of surface reflectance (Pandey 
et al., 2021). This makes it difficult to create robust large-scale appli
cations because traditional machine learning and time-series algorithms 
operate on a per-pixel basis and largely depend on high-quality reflec
tance values. One potential solution is the application of DL methods for 
semantic segmentation, and more specifically, based on convolutional 
neural networks (CNN) (Lecun et al., 2015). 

CNN methods are not constrained by specific values of a given pixel 
in the image, but they leverage the local textural variability as main 
sources of information to fit non-linear relationships at multiple levels of 
abstraction and map inputs into outputs with state-of-the-art accuracy 
(Lecun et al., 2015; Chollet et al., 2022). For example, they can identify 
two objects as cars in images because of common spatial features or 
patterns inherent to this type of target, despite having different colors. In 
the context of forest degradation, forest burn scars may show, for 
instance, different colors such as red and brown for recently burned 
areas, or light green for burned areas under vegetation regeneration. 
One can expect CNNs to be able to identify both areas as burn scars even 
though their spectral values (or colors, in terms of R, G, and B) may be 
totally different. Several CNN models are available such as U-Net, Seg
Net, FC-DenseNet or DeepLabv3+ among others (Ronneberger et al., 
2015; Kattenborn et al., 2021). While the relative accuracy among these 
methods is similar for segmentation tasks, the U-Net has advantages 
such as simpler architecture, less effort for model training and inference, 
and low computational time (Lobo Torres et al., 2020). The U-Net has 
been widely applied with remote sensing imagery to find spatial patterns 
in high spatial resolution data, producing, for instance, maps of forest 
type and tree cover (Wagner et al., 2019; Brandt et al., 2020); tree 
species (Wagner et al., 2020; Dalagnol et al., 2022); roads (Botelho et al., 
2022); and deforestation (Wagner et al., 2023). Because fire and logging 
disturbances create spatial patterns in the PlanetScope imagery that are 
observable to the human eye (e.g. trails, logging decks, and treefall 
gaps), it is expected that U-Net should be able to map them. 

The Brazilian state of Mato Grosso is a major hotspot for forest 
degradation in the Amazon. From 2000 to 2013, 5890 km2 of logging, 
10,660 km2 of forest fire, and 76,360 km2 of deforestation were reported 
in Mato Grosso (Tyukavina et al., 2017). These numbers correspond to 
43%, 52% and 32% of the whole Brazilian Amazon estimates, respec
tively. These estimates were based on the GFC data (Hansen et al., 2013) 
and represent a sample-based approach to disentangle the effects of each 
degradation type (Tyukavina et al., 2017). A spatially explicit map 
attributing the different degradation types to every unit of area has yet 
to be developed and validated and would be very valuable for REDD+
and forest monitoring operations. The state of Mato Grosso represents a 
highly relevant study area for testing a degradation mapping approach, 
due to the availability of regional datasets such as SIMEX and DETER 
that can be used to further evaluate the model predictions. 

In this study, we develop and evaluate a methodology for mapping 
forest degradation with attributions in tropical rainforest ecosystems, 
using high spatial resolution satellite imagery from Planet NICFI and 
deep learning. We also introduce the DL-DEGRAD degradation product 
created by our methodology. Specifically, we present the process of 
training and validating a CNN U-Net model to map forest degradation 
with distinct attributions to logging, fire, and road construction, and 
evaluate the performance of the DL-DEGRAD by comparing it to avail
able products. Our study addresses a major gap in forest monitoring and 
emission reduction programs and investments in avoiding deforestation 
and degradation, specifically the problem of accurately quantifying 
degradation - the second “D” in REDD+. 

2. Materials and methods 

2.1. Study area 

The study area is the portion of the Amazon biome in the Brazilian 
state of Mato Grosso (Fig. 1). The area of 507,181 km2 is mainly covered 

by open and dense ombrophilous forests and seasonal forests, as well as 
croplands and pastures. In the state of Mato Grosso, tropical forests have 
been threatened for decades by large-scale deforestation for commodity- 
driven agriculture and cattle grazing (Aragão et al., 2014). The slash- 
and-burn method used for deforestation, in conjunction with the use 
of fire as a land management practice, promotes the escape of fire to 
standing forests, causing understory fires. The development of new 
roads also drives the disturbance of forests (Ferrante and Fearnside, 
2020; Nascimento et al., 2021). Moreover, Mato Grosso allows logging 
concessions in private lands for nominally sustainable wood extraction 
of non-threatened tree species. These concessions limit logging damage 
and extraction per hectare allowing the forest to regenerate over the 
next 25 years. 

2.2. Forest degradation mapping methodology 

2.2.1. Planet NICFI satellite data 
We acquired bi-annual surface reflectance satellite data from the 

Planet NICFI product (‘analytic’ mosaic) having red (R), green (G), blue 
(B) and near-infrared (NIR) bands and a nominal spatial resolution of 
4.77 m (NICFI, 2021). Each Planet NICFI quad (or tile) corresponds to 
20 × 20 km in the ground and has 4096 × 4096 pixels. A total of 1530 
tiles covered the study area (delimited by the red boundaries in Fig. 1) 
and were downloaded using scripts based on the PlanetNICFI R package 
v1.0.3 (Mouselimis, 2022). Data acquisitions encompassed the period 
from December 2015 to March 2022. This corresponded to 10 bi-annual 
Planet NICFI mosaics combining the best cloud-free images in a six- 
month window from January to June and from July to December of 
each calendar year from 2015 to 2020. The process of selecting the best 
cloud-free images is described in the NICFI documentation (NICFI, 
2023). From 2020 we acquired 19 monthly mosaics (from September 
2020 to March 2022), totalizing 29 image mosaics for the full period of 
analysis. The period of analysis covered 2016 to 2021, and the months of 
January, February and March of 2022 were used only for confirmation 
of detections in 2021. The NICFI product already filtered out some of the 
cloud cover from the mosaics. False positive degradation associated with 
the remaining clouds were removed in post-processing using a cloud 
mask applied to the derived maps, as described in a subsequent section 
(2.2.4). The only pre-processing step was a conversion from surface 
reflectance in integer (0 to 10,000) to 8-bit byte encoding (0 to 255) to 
compress the information to the number of levels necessary for the DL 
model. Since the reflectance of vegetation is low in the R, G, and B 
bands, we constrained their values up to a maximum of 2540 and scaled 
their distribution along the available 256 gray levels. Values above that 
threshold are usually found on very bright surfaces, such as clouds, and 
do not interfere with values from forest targets. NIR band values were 
not scaled because they already show a larger range of values than R, G, 
and B bands. 

2.2.2. Degradation definition and sampling 
In this study, forest degradation refers to forest-remaining-forest but 

being impacted by land use activities that modify properties of the stand 
or site and its carbon stocks resulting from a loss of canopy cover that is 
insufficient to be classified as deforestation (Pearson et al., 2017; IPCC, 
2003). The definition may change depending on the forest definition in 
each country. For example, in Brazil, the forest is defined as land 
spanning >0.5 ha of trees with average height taller than 5 m, and >10% 
canopy cover. Degraded forest, therefore, refers to forests that after land 
use activities (e.g. logging, mining, edge effects, trails, roads, etc.) 
remain forest by definition. In our study, degradation refers to different 
intensity of logging and forest fires that partially remove forest canopy 
or burn understory trees, and logging trails and roads that may be 
temporary and narrow. 

To train the model, we identified these areas using 4.77-m Planet 
NICFI satellite imagery (August 2021 mosaic) by observing spatial fea
tures such as canopy gaps, trails, logging decks, and specific color and 
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texture resulting from burning and recovery of forests (Table 1). This 
image composite was used because it had the best cloud-free observa
tions. The mapping encompassed not only pixels with apparent tree loss 
and exposed bare soil, but also the surrounding context areas contouring 
these features observed in the imagery. This is based on evidence that 
logging can cause canopy damage to areas around logging trails and 
decks (Pereira et al., 2002; Asner et al., 2004), and that forest fires may 
cause direct but also delayed tree mortality from 5 to 10 years after fire, 
with long-lasting effects in terms of biomass up to 30 years (Silva et al., 
2018). Therefore, we assumed as degraded those areas in between 
interleaved logging trails, in between and around multiple logging 
decks, and all forest areas within burn scars. These areas correspond to 
locations where trees have been effectively felled or burned, although 
the direct observation of tree loss or damage may be prevented due to 
occlusion caused by limited spatial resolution and multi-layer canopy (e. 
g. understory trees being felled or burned and not observed), or limited 
temporal resolution (e.g. vegetation quickly recovering of disturbance 
before the next image is acquired). This definition is in line with the 
current state-of-the-art of Brazilian degradation monitoring, based on 
visual interpretation of Landsat-like imagery, namely SIMEX (Silgueiro 
et al., 2021) for mapping both logging concessions and illegally logged 
forests, and DETER/INPE (De Almeida et al., 2022) the official dataset of 
forest degradation in the Brazilian Amazon, mapping both logged and 
burned forests. 

We manually sampled a total of 289 tiles across the Mato Grosso state 
for a total of 115,600 km2 sampled area. For each tile, all degradation 
occurrences were vectorized as polygons encompassing the whole 
degraded area and not only the individual spatial features of each 
disturbance type (e.g., isolated pixels of exposed ground at logged for
ests). Samples were collected and reviewed by three experts in degra
dation photo interpretation. From these tiles, we gridded the data into 
smaller image patches (256 × 256 pixels) and retrieved only those that 
intersected the presence of degradation in the manually delineated 
samples (n = 66,048 patches). To tackle heavy atmospheric effects 
identified in some bi-annual mosaics that were not present in August 
2021 (e.g. dust-like cloud artifacts in Supplementary Fig. S1), we 
collected samples of the absence of degradation from the December- 
2016 and June-2017 bi-annual mosaics covering these areas (n =
7696 image patches of 256 × 256 pixels). The total sample size was 
73,744 image patches. 

The criteria used to sample logging included the presence of canopy 
gaps and/or multiple occurrences of logging decks and trails spread 
across a forest area. Logging decks and trails were regularly and irreg
ularly organized across the landscape. Canopy gaps were not always 
observed on a logging site, likely due to small gap sizes, which can 
quickly close with vegetation regrowth (Dalagnol et al., 2019). The 
criteria used to sample fire included all burn scars observed in the 
landscape, including inside or outside forests, at different levels of 

Fig. 1. Study area in the Brazilian state of Mato Grosso over the Amazon biome (red boundaries). The background consists of a Planet NICFI true color composite 
from August 2021, with overlaying training tiles in yellow (n = 289) and tiles used for visualization of results in blue (n = 4). Reference data used for design-based 
accuracy and area assessments were shown as red points (n = 2678). (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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burned intensity and regeneration, and sometimes forests showing 
interleaved burning rings (Andela et al., 2022). The model was trained 
to recognize all burn scars, including inside and outside forests, and fires 
occurring outside of forests were then filtered out in post-processing to 
retrieve only standing forests degraded by fire. By including recent and 
older burn scars in vegetation, the model could learn patterns of forest 
fire at different levels of burn intensity and time since disturbance, 
possibly improving fire degradation detection even when new images 
were not readily available right after the fire event or with persistent 
cloud cover. 

2.2.3. U-Net model training 
To automatically segment forest areas affected by logging, fire, and 

road construction, we employed a U-Net model (Fig. 2) adapted from the 
original model from Ronneberger et al. (2015). The model has a u- 
shaped architecture due to the contracting path (encoder, left-hand side) 
that extracts contextual features at multiple spatial levels and a sym
metric expanding path (the decoder, right-hand side) that localizes the 
features in the pixels to the size of the original image. On each level of 
the contracting path, there are two 3 × 3 convolutional layers followed 
by 25% dropout layers, a rectified linear unit (ReLU) activation function 
and a 2 × 2 max-pooling operation for downsampling. Meanwhile, in the 

expanding path, on every level there is a 2 × 2 upsampling of the feature 
maps from the lower level (“upconvolution”), concatenation with the 
feature maps from the matching contracting path, followed by two 3 × 3 
convolutional layers and a ReLU. The final layer is a 1 × 1 convolutional 
layer with three outputs (logging, fire, and roads) with a sigmoid 
function, that is outputting a probability between 0 and 1 of a given 
pixel belonging to each class. The probabilities are then transformed into 
binary masks, converting values greater or equal to 0.5 to 1 (presence) 
and lower than 0.5 to 0 (absence), for logging, fire, and roads inde
pendently. We modified the original U-Net by changing the image input 
size to 256 × 256 pixels and by including four channels (R, G, B, and 
NIR), adding a new level of depth in the network (i.e., extra two con
volutional layers at the beginning and end) and dropout layers in the 
contracting path with a value of 25%. The dropout layers help prevent 
overfitting of the model during the training phase by randomly setting to 
zero a portion of the output features (Chollet et al., 2022). 

The model was trained using 80% of the samples, that is 58,995 
image patches (256 × 256 pixels). To train the model, we used the Adam 
(adaptive moment estimation) optimization algorithm (Kingma and Ba, 
2015) with a learning rate of 0.0001. The remaining parameters have 
been kept as default for tensorflow (beta_1 = 0.9, beta_2 = 0.999, epsilon 
= 1e-07, decay = 0). The loss function was calculated as the sum of 

Table 1 
Summary of degradation types, definition and image patterns used to detect disturbance visually in true color composites of Planet NICFI data.  

Degradation type Definition and image patterns visualized in the imagery 

Logging Boundary area around logging trails, decks, or treefall canopy gaps 
a) Logging trail Linear or curved features (e.g. 5–20 m wide). Sometimes called skid trails, these are temporary roads that are used for logging activities and to pull timber out 

of the forest. They may show exposed soil (white to magenta color) or regenerating vegetation (light green). 
b) Logging deck Small clearings (e.g. 15–30 m wide) with a rounded shape, where timber is temporarily stored before transportation. It may show exposed soil or regenerating 

vegetation. 
c) Treefall canopy 

gaps 
Small openings in the forest canopy with irregular shapes (e.g. 5–20 m wide) created by the tree felling process and with size varying according to logging 
damage. They reveal exposed ground or dead wood material (magenta), understory vegetation (light green), or shadows from neighboring trees (black), 
depending on the age and size of the gap and sensor view-illumination parameters. Gaps are not always directly observed in the imagery, but the texture of the 
recently logged canopy is rougher than that of the undisturbed forest.   

Fire Boundary area around burned forests or other land covers 
a) Inside forests Forest being brown- or grey-colored if the fire is recent; or a lighter shade of green if the fire is older and vegetation has been regenerating. Burn scars from 

large forest fires often show interleaving bands of burned forest due to different burning levels. 
b) Outside forests Exposed soil may show red, brown, or black colors due to the accumulation of burned coarse wood debris, ash, and charcoal. Areas with no forest remaining 

were filtered out of the final product.   

Roads Tree loss with linear or curved features (e.g. ≥ 20 m), consisting of unpaved roads or large trails surrounded by standing forest on both sides. It may show 
exposed soil or regenerating vegetation.  

Fig. 2. The U-Net architecture used to map forest degradation. The model inputs the Planet NICFI Red, Green, Blue and NIR reflectance bands in image tiles of 256 ×
256 pixels, which are processed through multiple convolutional layers. The final outputs include semantic segmentation (provided in binary masks) of logging, fire, 
and roads with the same pixel size as the input data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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binary cross-entropy and Dice coefficient-related loss (Dice, 1945; 
Chollet, 2015; Allaire and Chollet, 2016). The network was trained for 
1000 epochs with a batch size of 128 images and the model with the best 
F1-score in validation was kept for prediction (epoch 900 with validation 
loss and F1-score of 0.22 and 0.614, respectively; Supplementary Fig. 
S2). Data augmentation was randomly applied over the images during 
training to increase the samples’ variability to improve learning (Chollet 
et al., 2022). The procedure included: (i) 0–360◦ rotations; (ii) hori
zontal and vertical flips; and (iii) ±20% changes to image brightness and 
contrast for all bands, and saturation and hue for the R-G-B bands, 
because the latter two augmentations work at the RGB color space. This 
step is important for the model to learn about shift invariance since 
degradation can happen in any orientation and shows high variability in 
reflectance. To run the DL model, we used tensorflow v2.6 through the 
tensorflow R package v2.9 (Falbel et al., 2022), and a RTX 3090 GPU 
with 24Gb memory. 

2.2.4. Model prediction and post-processing 
After training, the model was used to predict the three degradation 

types (Table 1) for all acquired Planet NICFI dates, creating binary 
masks (presence and absence) of each degradation type. Predictions 
were carried out for the entirety of Planet NICFI tiles for all 4096 × 4096 
pixels at once. To avoid edge artifacts in the borders of the tiles, we 
added a border of 256 pixels to each side of the tiles. To create these 
borders, we used the data from the neighboring image tiles whenever 
available. Otherwise, we mirrored the borders from the same image 
(Ronneberger et al., 2015). Because the model was applied to predict 
over different landscapes than it was trained for, we visually inspected 
the predictions to identify areas with commission errors and added new 
samples over these areas. Also, given that the boundaries of degradation 
patterns are usually not sharp (e.g. forest and non-forest pixels), and 
thus subjective to be annotated by a human interpreter, we also re- 
evaluated how our training samples compared to the predictions and 
corrected labels that were incorrectly annotated or missed by the in
terpreters due to human error. These were included back in the training 
samples to improve the model iteratively. 

Two post-processing procedures were applied to the bi-annual maps: 
(i) a bi-annual tree cover mask to remove detections outside the forest 
areas; and (ii) a cloud cover mask to filter out potential confusion due to 
cloud cover. The tree cover mask consisted of binary masks of forest/ 
non-forest based on Planet NICFI data generated from a U-Net model 
with overall accuracy and an F1-score above 98% validated with 
airborne LiDAR data, obtained from Wagner et al. (2023). The cloud 
cover mask consisted of binary masks of cloud/non-cloud based on 
Planet NICFI data and a U-Net model with the same architecture used in 
the study, showing 91.5% accuracy and 0.77 F1-score on an independent 
test dataset. Cloud shadow was not considered for this filtering, because 
we did not identify degradation false positives associated with it. This 
complementary model and dataset were also developed and validated in 
this study and presented in Supplementary Material S1 as well as Sup
plementary Figs. S3-S5 for visual examples of the cloud cover mask 
results. 

2.2.5. DL-DEGRAD product 
The DL-DEGRAD product included three different layers (maps): bi- 

annual degradation, cumulative degradation, and detection frequency. 
The basic data output from the modelling approach consisted of binary 
degradation maps, which have a value of 1 for presence and 0 for 
absence of degradation, created for each disturbance type independently 
(logging, fire, and roads). For the period where we had monthly mosaics, 
we combined them into bi-annual degradation maps (months from 
January to June and from July to December) by taking the sum of all 
months within the 6-month periods, independently for each disturbance 
type. To reduce false positives in the dataset, we confirmed predictions 
from all bi-annual maps if (i) they had at least two detections in the 6- 
month window, or (ii) if they had one detection in the 6-month 

window, but also showed at least another detection within the three 
previous or next predictions, that is, a persistent signal. These confirmed 
pixels were set as value 1 (presence), and the remaining were set as 
value 0 (absence). This resulted in the bi-annual degradation maps for 
the time period from 2016 to 2021. 

In the next step, we aggregated the bi-annual degradation maps into 
cumulative degradation maps from 2016 to 2021, where the value of 
each pixel was now set to the first image composite date of degradation 
occurrence in that pixel. In this map, 2016 represents all apparent dis
turbances visible in the imagery that year, while the remaining subse
quent image composite dates represent new disturbances that have 
occurred over the areas. Therefore, the first year of the time series is not 
recommended for comparison with other forest degradation products. 
During this aggregation, the pixel values were simplified to 3-digits 
between 160 and 215 to encode the data in 8-bits and reduce file 
sizes. For example, 160 indicates the first half of 2016, while 165 in
dicates the second half of 2016, and so on until 215, representing the 
second half of 2021. 

To generate the detection frequency map in the DL-DEGRAD prod
uct, we calculated how many times each pixel was detected for each type 
of degradation. A frequency greater than one does not directly mean the 
pixel experienced recurring disturbances, but indicates that the distur
bance remains visible in the pixel over time. The frequency of detection 
allows further analysis of the degradation mapping to quantify the 
relative patterns of forest recovery, intensity of degradation, and the 
logging cycle. 

2.3. Analysis 

2.3.1. Model validation for individual mosaic prediction 
To evaluate the performance of the model, we applied the trained 

model over 20% of the samples that were not used during training 
(14,749 image patches). The following four metrics were computed for 
quantifying the model performance, based on the pixel-by-pixel inter
section per degradation type (Eqs. (1)–(4)): 

Accuracy = (TP + TN)/NP (1)  

Precision (P) = TP/NPP (2)  

Recall (R) = TP/NPR (3)  

F1 − score (F1) = (2 × P × R)/(P+R) (4) 

The true positive (TP) and true negative (TN) represent a match 
between prediction and sample data regarding the presence and absence 
of degradation, respectively. Accuracy represents the fraction of accu
rately mapped values in the map, considering both presence and absence 
of degradation. NP represents the total number of pixels, NPP represents 
the total number of presence pixels in the prediction, and NPR repre
sents the total number of presence pixels in the reference. P represents 
the fraction of correctly mapped degradation, complementary to the 
commission error, while R represents the fraction of reference data 
accurately mapped by the model, complementary to the omission error. 
Finally, F1 represents the harmonic mean between P and R, that is, a 
balance between commission and omission errors. 

2.3.2. Estimating accuracy and area 
To provide estimates of accuracies and areas for DL-DEGRAD results 

as well as inter-compare data products, we followed the good practices 
considering a design-based stratified random sampling approach 
(Olofsson et al., 2014; Olofsson, 2021). We distributed a total of 2678 
samples across the region for our analyses (Fig. 1). The DL-DEGRAD 
maps were used to stratify the landscape into presence and absence 
strata of degradation classes. Since the majority of land cover in this 
region is nominally undisturbed forests or non-forest, and degraded 
forests are a rare class in this region (< 7% cover each type), we selected 
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a minimum of 300 samples for each disturbance type from the maps to 
be distributed randomly across any year of disturbance between 2017 
and 2021. The remainder of samples were randomly distributed across 
stable forest, stable non-forest and deforestation classes from the tree 
cover maps from Wagner et al. (2023) to account for potential com
mission and omission errors in these areas. We aimed to select a mini
mum of 30 samples per date from 2017 to 2021. The final number for 
our presence classes were: 331 samples for logging, 569 for fire, and 342 
for roads. The sample size per class was higher than the minimum 
recommendation of 98, 106, 71 samples for logging, fire, and roads, 
respectively, considering stratified samples and a 1% standard error for 
overall accuracy calculated following Olofsson et al. (2014) good prac
tices. After the stratified random sampling design was done, we 
observed 70% of samples occurred over forests (stable or deforested in 
between 2017 and 2021) and 30% over stable non-forests. The high 
number of samples in the absence strata (absence of a given disturbance) 
was used as a strategy to reduce uncertainties associated with omission 
errors (Olofsson et al., 2020; Olofsson, 2021). The degradation classes 
can overlap each other, so the same forest can be for example logged and 
then burned, which is slightly different from conventional land use and 
cover change (LUCC) analyses. 

To create the reference classification of our samples we conducted 
visual interpretation of high-resolution Planet NICFI imagery (4.7 m 
spatial resolution) between 2016 and 2022 at the Collect Earth Online 
platform (Saah et al., 2019). Two images per year were used in the 
platform dashboard as reference data for the interpreters to answer the 
survey regarding each sample. The survey was designed following a 
continuous monitoring assessment approach where each sample was 
analyzed to determine the year of occurrence of a given disturbance or 
its absence (Arévalo et al., 2020). Each disturbance was allowed to occur 
independently from each other, i.e. logging and fire at the same sample. 
Three interpreters experienced in LUCC and degradation visual inter
pretation conducted the data collection, where two interpreters 
collected the initial samples (having >90% agreement between each 
other), and a third senior interpreter reviewed the results. To ensure 
high quality on the sampling outcomes, for each sample, the interpreters 
also assigned a confidence level (low or high). Samples with low con
fidence were considered as non-reliable to be used for the analysis and 
were removed from analysis (the final number of 2678 samples already 
discounted the low confidence samples). We note that using multiple 
images from the Planet NICFI time series for interpretation is key for the 
accurate interpretation of these disturbances. Especially for forest fires’ 
burn scars, some samples are difficult to interpret and required the 
comparison of images across time to make sure the patterns observed 
were indeed burn scars and not some natural change in vegetation. Also, 
for fire it is important to zoom out of the sample, because some burn scar 
patterns are easier to identify when looking at larger contexts. The 
samples with a given identified disturbance occurring in the year 2016 
were removed from analysis, because analyses were done starting from 
year 2017. 

After validation data were collected, we estimated and reported the 
mean and 90% confidence interval for overall, producer’s and user’s 
accuracy, F1-score, as well as for the area estimate of each class 
considering the validation data as reference and accounting for un
certainties in the maps (Olofsson et al., 2014). This reference dataset was 
also used to evaluate the relative performance of our method in com
parison to existing datasets of forest disturbance: DETER, SIMEX, Global 
Forest Change (GFC), Tropical Moist Forests (TMF), Global Fire Loss 
(FireGFL), FireCCI, MCD64, MapBiomas Fire, and GABAM. In order to 
estimate accuracies using the same reference dataset obtained from the 
map strata of DL-DEGRAD, we employed the method by Stehman (2014) 
that was designed for strata being different from the assessed map 
classes. The calculations were done using the ‘mapaccuracy’ R-package 
(Costa, 2022). For this analysis we filtered areas of non-forest from the 
compared data products. A full description of these datasets and 
pre-processing is presented in Supplementary Material S2 and 

Supplementary Table S1. First, the maps were assessed in terms of 
location, that is, whether the product found that sample-pixel to be 
disturbed in any period from 2017 to 2020. Second, they were analyzed 
in terms of date of occurrence, that is, if the product found the correct 
period of disturbance from 2017 to 2020. To analyze the date of 
occurrence, the weighted F1-Score (WF1-score) was computed by taking 
the mean F1-score among the different detected years corrected by the 
number of pixels found in that year. The F1-score calculated for each year 
assumes that any detection found outside of that year is incorrect. 

2.3.3. Spatial agreement of degradation products 
To understand the spatial agreement between products, we also 

conducted an inter-comparison analysis comparing each pair of prod
ucts pixel per pixel (Supplementary Table S1). For this analysis, we 
aggregated detections from 2017 to 2020. For this analysis we did not 
filter areas of non-forest from the compared data products and used their 
original detections. Each pair of data products were compared to 
calculate the recall and Intersection over Union (IoU) metrics. The recall 
corresponds to the percentage of area mapped by one product to a 
reference, in this case considering SIMEX and DETER as references. The 
IoU corresponds to the ratio between the overlap area mapped by the 
two products and the total area mapped by the two products and was 
calculated in between all pairs of data products. The goal here was to 
determine the overlap between data products, and understand which 
one more closely resembles official Brazilian datasets (DETER and 
SIMEX), considering them as ‘ground truth’, to the best extent of spatial 
resolution and visual interpretation limitations from which they were 
created. 

2.3.4. Degradation area and frequency in Mato Grosso 
Finally, the degradation was analyzed across the study area 

regarding area and frequency of each disturbance. Degradation data 
were aggregated into the 20 × 20 km tiles before calculating the fraction 
of degraded forests from 2016 to 2021 normalized by the remaining 
forest in 2021. To retrieve remaining forest areas, we used the tree cover 
and deforestation dataset based on Planet NICFI data and DL model 
(Wagner et al., 2023). The frequency of degradation was analyzed by 
looking at degraded areas from the year 2017 from our cumulative 
degradation product, and by tabulating how many times areas were 
found as degraded afterwards using our frequency of degradation 
product. Total degraded forest areas and deforestation per year for Mato 
Grosso were calculated from 2017 to 2021. 

3. Results 

3.1. Model validation for individual mosaic prediction 

The U-Net DL model showed very high overall accuracy (> 98%) and 
a F1-score of 0.82 on segmenting the disturbances caused by logging, fire, 
and road construction on an individual mosaic (August 2021) consid
ering the 20% validation data not used for training (Table 2). For logging 
and fire, the DL model showed recall values higher than precision values 
(R = 0.90 and 0.88, respectively), indicating the ability of the proposed 
approach for accurately detecting most of the validation samples. 
However, it also had 20–25% commission errors (P = 0.75 and 0.80, 

Table 2 
Performance of the deep learning (DL) model using Planet NICFI data to map 
degraded forests on image patches of an individual mosaic (August 2021). The 
metrics of accuracy were calculated using the 20% validation samples (14,749 
patches of 256 × 256 pixels, or 22,123 km2).   

Precision (P) Recall (R) F1-Score Accuracy (%) 

Logging 0.75 0.90 0.82 98.20 
Fire 0.80 0.88 0.84 98.42 
Roads 0.69 0.61 0.65 99.36  
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respectively). The road construction detection had an inferior perfor
mance (F1-score = 0.65) than that observed for logging (F1-score = 0.82) 
and fire (F1-score = 0.84). 

DL-DEGRAD accurately detected and mapped the boundary of areas 
degraded by logging around logging trails, decks, and canopy gaps 
(Fig. 3A). Irregular or small-scale logging, without trails or logging 
decks, were also detected when canopy gaps were visible in the imagery 
(Supplementary Fig. S6). The model accurately segmented burned for
ests with different levels of burn intensity and stages of regenerating 
vegetation, including areas with burn rings (Fig. 3B). The DL model 
correctly mapped roads/trails that were found in the middle of the 
forest, and not only roads neighboring other land covers (Fig. 3C). Wider 

logging trails were sometimes detected in the roads class (Fig. 3A). 
However, individual roads were rarely confused as logging. 

3.2. Accuracy estimates 

Considering the design-based stratified random reference samples (n 
= 2678 samples), DL-DEGRAD products showed predictions that pre
sented strong agreement with logging identified in reference data for 
both location (F1-score = 68.9) and correct year of detection (WF1-score 
= 57.1) (Table 3). SIMEX and DETER also showed strong to moderate 
agreement with the reference data with logging for both location (F1- 
score values of 69.3 and 51.3, respectively) and year (WF1-score = 56.4 

Fig. 3. Examples of degradation by logging (A), forest fire (B) and road construction (C) mapped by the deep learning (DL) model in an individual mosaic. The first 
row shows Planet NICFI true color composites, while the second row illustrates manually delimited samples over the corresponding areas. The third row indicates the 
DL model prediction results. 

Table 3 
Map agreement between the DL-DEGRAD product (this study) and other available products for the detection of logging and forest fire degradation considering a 
probability design-based stratified sample design (n = 2678 samples). Overall Accuracy (OA), User’s Accuracy (UA), Producer’s Accuracy (PA), and F1-score values are 
shown in percentage, from 0 to 100%. Values in bold were the metrics with the highest performance.  

Disturbance and Products Location of disturbance detected from 2017 to 2020 Correct year of disturbance detected from 2017 to 2020 

OA% UA% PA% F1-score OA% Weighted F1-score (WF1) 

Logging       
DL-DEGRAD Logging 97.9 57.4 86.2 68.9 97.4 57.1 

SIMEX 98.5 80.9 60.7 69.3 98.2 56.4 
DETER Logging 97.7 61.4 44.3 51.5 97.4 37.7 

GFC 82.6 5.6 33.0 9.5 82.2 4.2 
TMF 93.9 8.0 11.4 9.4 93.9 4.9 

Forest Fire       
DL-DEGRAD Fire 97.6 65.5 89.5 75.6 97.3 69.1 

DETER Fire 98.5 87.0 75.7 81.0 97.5 52.7 
FireGFL 97.2 74.2 49.1 59.1 96.4 38.0 

GFC 91.0 24.5 57.0 34.3 89.9 20.6 
FireCCI 89.4 16.8 39.1 23.5 88.6 10.4 
MCD64 89.6 15.7 34.3 21.6 88.8 7.5 

TMF 94.8 27.5 16.5 20.6 94.5 9.4 
GABAM 91.4 13.4 19.7 16.0 90.8 3.2 

MapBiomas Fire 88.8 6.5 12.7 8.6 88.4 1.9 
Road       

DL-DEGRAD Road 97.7 29.5 55.1 38.4 97.4 23.8  
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and 37.7, respectively). Both GFC and TMF products showed weak 
agreement with the reference dataset for samples with identified logging 
(F1-score = 9.5 and 9.4, respectively). For degradation caused by fire, 
DL-DEGRAD showed strong agreement with the reference data for both 
location (F1-score = 75.6) and correct year of detection (WF1-score =
69.1). DETER and FireGFL also showed strong to moderate agreement 
with the fire reference data for location (F1-score values of 81.0 and 
59.1) and moderate for the date (WF1-score values of 52.7 and 38.0). The 
remaining datasets showed moderate to weak agreement with the fire 
reference data showing F1-scores ranging from 8.6 to 34.3. The DL- 
DEGRAD road mapping had moderate agreement for location (F1- 
score = 38.4) and weak for date (WF1-score = 23.8). Confusion matrices, 
accuracies and area estimates with confidence intervals are found in 
Supplementary Materials S3 and Supplementary Tables from S2 to S9. 

By inspecting the user and producer’s accuracies of products with 

highest performances, we observed that DL-DEGRAD results for logging 
and fire showed high producer’s accuracy considering only location 
(PAs of 86.2 and 89.5%, respectively), and moderate user’s accuracy 
(UAs of 57.4 and 65.5%, respectively). This means that most of the 
degradation was found by the model (omission errors of 14% and 10% 
for logging and fire, respectively), but additional areas not belonging to 
the disturbance classes were mapped as disturbance (commission errors 
of 43 and 34% for logging and fire, respectively). The opposite was 
found for the other data products, where UA was higher than PA, indi
cating the products could not reliably detect most disturbances in the 
reference data, but their detections were generally correct when they did 
map it. For instance, SIMEX had the highest UA for logging (80.9%) and 
DETER the highest UA for fire (87%). On the other hand, the two 
datasets showed lower PAs of 60.7% and 75.7%, respectively, indicating 
they omitted from 24 to 39% of the degradation events. 

Fig. 4. Examples of cumulative forest degradation maps from the DL-DEGRAD and available products from 2017 to 2020 for a site located at 54◦14′W; 12◦7′S. (A-D) 
Logging mapped by the independent test dataset, DL-DEGRAD Logging, DETER Logging, and SIMEX, respectively. (E-L) Forest fire mapped by the independent test 
dataset, DL-DEGRAD Fire, DETER Fire, GABAM, FireGFL, FireCCI, MCD64, and MapBiomas Fire, respectively. (M-N) Unspecified Forest disturbances mapped by the 
GFC and TMF. (O) Planet NICFI true color composite from June 2020. 
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To understand better these commission and omission errors, we 
inspected them one by one and found that in the case of logging as 
mapped by SIMEX, 59% of samples with omission were small-scale 
logging activities without road infrastructure (with bare soil showing 
on the trails), 19% were logged forests with very clear patterns of road 
infrastructure and likely large enough to be observed in Landsat imag
ery, 13% were simple human interpretation errors when drawing the 
vectors, and 9% occurred in areas with clear logging patterns but 
overlap with burn scars. In the case of the omissions of fire mapped in 
DETER dataset, 56% of omissions were large-scale fires being omitted (e. 
g. > 500 m width), errors of geolocation (displaced detections to the 
patterns observed in the imagery), burn scars not being mapped at 
logged forests (the same but inverse issue as SIMEX), or an erroneous 
attribution to deforestation alert or to DETER’s ‘degradation’ mosaic 
class which may mix both logging and fire, 23% related to small-scale or 
less severe burn scars that vanish quickly from the imagery (disappear in 
6–12 months), and 21% related to random errors due to the sample 
being close to the edge of the burn scar or the forest edge, and the 
polygon was off by up to 100 m (few Landsat pixels). 

In agreement with the results of Table 3, we found a strong agree
ment between the independent test dataset and our DL-DEGRAD prod
uct when visually inspecting the degradation by logging mapped with 
the different products (Fig. 4A-D). Results were also consistent with the 
detections of SIMEX (based on official Mato Grosso state logging con
cessions data) and DETER (official national degradation data from 
INPE). The GFC and TMF (Fig. 4L and M) showed scattered detections in 
correct locations of logged forests, depicting logging trails and decks. 
However, the detections by these two products did not encompass the 
whole boundary of the logged forests. GFC showed many detections in 
locations unrelated to degradation by logging, such as in the bottom-left 
corner of the area (Fig. 4). Those areas are recently burned and defor
ested areas. The degradation by fire in the example revealed strong 
agreement between our DL-DEGRAD product and the reference dataset, 
and some disagreement with the other products, especially regarding 
the disturbance year (Fig. 4E-K). For example, the area #1 (Fig. 4E) 
which burned in 2018 (in blue) was mapped as burned in 2018 by our 
product and GFC. It was mapped as burned in 2017 by DETER and in 

2019 by FireCCI. MapBiomas Fire and MCD64 did not fully detect that 
event. Furthermore, for the burned area #2 (Fig. 4E) that burned in 
2018 and 2020 (in blue and yellow), DL-DEGRAD mapped the first fire 
occurrence in 2018, while GFC and DETER also mapped parts of the area 
as being burned in 2018 and 2017, respectively. The remaining products 
did not detect the first fire, and only mapped that area as burned in 2020 
when a second fire happened. GFC showed a good match for fire, but 
also detected many pixels that did not correspond to fire disturbance. 
More examples to highlight the performance of the model can be 
observed in the Supplementary Material S2, including examples of a mix 
of logging and fire occurrences at different dates at site B (Supplemen
tary Fig. S7), large-scale fires occurring at different dates at site C 
(Supplementary Fig. S8), and logging occurring at different dates at site 
D (Supplementary Fig. S9). 

3.3. Spatial agreement of degradation products 

DL-DEGRAD mapped 77.89% and 64.76% of the total logged forests 
present in SIMEX and DETER datasets, respectively (Table 4). On the 
other hand, GFC and TMF mapped <20% of the total logging present in 
SIMEX and DETER. Regarding forest fire, DL-DEGRAD mapped 72.59% 
of all forest fire observed in DETER, while the next highest recalls or 
overlaps were observed for FireCCI (44.13%) and GFC (41.07%) data
sets. When looking at the intersection-over-union metrics between all 
products (Tables 5 and 6), meaning the intersecting area mapped by two 
products divided by the total area mapped by both, DL-DEGRAD also 
showed the highest overlap with DETER (IoU = 20.89%) and SIMEX 
(IoU = 27.87%) for logging degradation. The other data products 
showed a very low overlap with SIMEX or DETER (IoU close to 5%). For 
fire degradation, DL-DEGRAD showed the highest agreement with 
DETER (IoU = 33.47%). Among the other tested products, the FireGFL 
product also showed high overlap with DETER (IoU = 28.66%). 

3.4. Degradation extent in Mato Grosso rainforests 

According to the DL-DEGRAD product and probability design-based 
area estimates, 42,216.1 km2 of forests have been degraded by logging 

Table 4 
Percentage of SIMEX and DETER detections of logging and forest fire mapped by data products (Recall metric) considering any detection from 2017 to 2020. Values 
with highest overlap/recall are highlighted in bold.  

Product Logging Fire 

Overlap SIMEX (%) Overlap DETER Logging (%) Overlap DETER Fire (%) 

DL-DEGRAD Logging 77.89 64.76 – 
SIMEX – 48.22 – 
DETER Logging 45.16 – – 
TMF 9.30 9.75 13.31 
GFC 15.48 19.01 41.07 
DL-DEGRAD Fire – – 72.59 
FireCCI – – 44.13 
MCD64 – – 37.80 
FireGFL – – 36.26 
GABAM – – 20.58 
MapBiomas Fire – – 18.02  

Table 5 
Logging and roads degradation products’ intercomparison. Values represent the agreement between products measured by the pixel-by-pixel Intersection over Union 
(IoU) metrics, considering any detection from 2017 to 2020.   

DL-DEGRAD Logging DL-DEGRAD Roads SIMEX DETER Logging TMF GFC 

DL-DEGRAD Logging – 2.48 27.87 20.89 3.73 5.05 
DL-DEGRAD Roads 2.48 – 1.70 1.48 1.47 3.47 
SIMEX 27.87 1.70 – 30.41 4.82 4.55 
DETER Logging 20.89 1.48 30.41 – 4.89 5.36 
TMF 3.73 1.47 4.82 4.89 – 9.29 
GFC 5.05 3.47 4.55 5.36 9.29 –  
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and fire over the Amazon biome portion of the Mato Grosso state from 
2017 to 2021, corresponding to an average degradation rate of 8443 
km2 yr− 1 (Table 7). Furthermore, both deforestation and degradation 
increased from 2017 to 2021 in the study area. The relative contribution 
of each degradation type to the total degradation area was 58% to fire 
(4856 km2 yr− 1 on average) and 42% to logging (3587 km2 yr− 1). The 
absolute road area estimates were not combined with logging and fire 
due to an overestimate of roads’ width by the model, however the es
timates show that road construction is ongoing in the region of Mato 
Grosso. The sum of annual degradation by logging and fire exceeded 
deforestation rates in all years. On average, the combined annual 
degradation by logging and fire was 58% higher (8443 km2 yr− 1) than 
the annual deforestation (5332 km2 yr− 1) (Fig. 5; Supplementary Table 
S11). In 2020, the combined degradation rate of logging and fire 
reached a record high of 13,294 km2, or two times the deforested area 
for that year, which was 6594 km2. While logging rates were high in 
2020, degradation due to fire was the major responsible for the higher 
rates in that year. 

Forest degradation by logging was widespread across the study area 
with some areas reaching >40% degradation at west of the Xingu Park 
(Fig. 5A). Areas inside and at the east of Xingu Park showed relatively 
less impacts from logging. On the other hand, degradation by fire was 
more concentrated in the southwest of the Mato Grosso state, as well as 
inside and west of the Xingu Park, where our model detected fire- 
induced degradation reaching >60% of forests (Fig. 5B). Inside the 
Xingu Park, we observed very large patches of burned forests close to the 
major rivers, reaching up to 250 km2 for a single fire event. We found 
widespread degradation from narrow roads or trails across the study 
area, where almost every forest area has some trail access that is not 
immediately noted in color composites when visual interpreting, even at 
the 4.77 m resolution. The center of the Mato Grosso region showed the 
highest concentrations of roads inside the forests (>25%), mainly 
associated with land use activities. The concentrations of roads 
decreased towards the north of the state (Fig. 5C). The three indigenous 
territories of Aripuanã Park, Apiaká do Pontal e Isolados, and Xingu Park 
showed the least degraded forests of the state and the most remaining 
forests in 2021 (Fig. 5D). Their boundaries were easily visualized in 
Fig. 5C, as indicated by blue colors (close to zero % roads). 

The distribution of the temporal frequency of detections of logging 

and fire degradation showed different patterns (Fig. 6). Logging had on 
average 50% more detections on the same pixel (4.27 detections) than 
fire (2.85 detections). The frequency of logging detections gradually 
decreased from one detection (23% with one detection) up to ten de
tections, but never reached <5%. Meanwhile, the frequency of fire de
tections increased from one to two detections (24 to 29%) and then 
decreased to <1% for eight or more detections. 

From the areas found as degraded by logging and fire in our maps in 
between 2017 and 2021, 24% of them had been further subject to 
deforestation by the end of 2021. An estimated 301,960 km2 of standing 
forests remained in the Amazonian biome of Mato Grosso in 2021 
(Supplementary Table S9), accounting for 59.5% of the total area. Of 
these remaining forests, 14% or 42,216 km2 were identified as degraded 
during the analysis period from 2017 to 2021. 

4. Discussion 

4.1. The novelty of the DL-DEGRAD approach 

We successfully developed and validated the first tropical forest 
degradation map based on 4.77-m resolution Planet NICFI satellite data 
with detection and attribution of logging, fire, and road construction in 
the Brazilian Amazon forests in the state of Mato Grosso. Overall, the DL- 
DEGRAD approach showed 97% accuracy and 68.9%, 75.6% and 38.4% 
F1-scores for logging, fire, and road construction degradation mapping 
according to the probability design-based accuracies estimates. 
Compared to existing approaches and previous results, we summarize 
the novelty of our methodology in three contributions: (1) Our meth
odology is designed to automatically map areas impacted by forest 
degradation (forest remaining forest by losing carbon and change of 
structure) with close to human level accuracy, similarly as regional 
official datasets as DETER and SIMEX, and not only mapping pixels with 
complete clearings or cover change (Hansen et al., 2013); (2) The U-Net 
model developed in our study is different from earlier deep-learning 
models for detecting tree cover loss and deforestation (Wagner et al., 
2023), by being trained to map degradation from combined tree loss and 
textural variations in high resolution imagery. In addition to improved 
resolution, the accuracy of detecting degradation is significantly better 
than results based on Landsat imagery (Vancutsem et al., 2021); (3) Our 

Table 6 
Fire degradation products’ intercomparison. Values represent the agreement between products measured by the pixel-by-pixel Intersection over Union (IoU) metrics, 
considering any detection from 2017 to 2020.   

DL-DEGRAD Fire DETER Fire GABAM MCD64 FireCCI MapBiomas Fire TMF GFC FireGFL 

DL-DEGRAD Fire – 33.47 9.56 12.14 15.25 7.80 8.93 24.21 21.94 
DETER Fire 33.47 – 9.23 10.63 13.25 5.95 9.38 20.81 28.66 
GABAM 9.56 9.23 – 29.23 36.94 42.60 0.66 15.22 8.70 
MCD64 12.14 10.63 29.23 – 43.40 32.64 1.77 12.12 8.06 
FireCCI 15.25 13.25 36.94 43.40 – 38.45 2.38 15.39 9.87 
MapBiomas Fire 7.80 5.95 42.60 32.64 38.45 – 0.66 10.97 5.04 
TMF 8.93 9.38 0.66 1.77 2.38 0.66 – 9.29 9.75 
GFC 24.21 20.81 15.22 12.12 15.39 10.97 9.29 – 45.38 
FireGFL 21.94 28.66 8.70 8.06 9.87 5.04 9.75 45.38 –  

Table 7 
Degradation area estimates from DL-DEGRAD and deforestation area estimates from Wagner et al., 2023 in the Mato Grosso Rainforests from 2017 to 2021 according to 
design-based estimates conducted in this study. Values in parentheses represent the 90% Confidence Interval around the mean for the stratified sample estimator.   

DL-DEGRAD (this study) Wagner et al., 2023  

Logging (km2) Forest Fire (km2) Roads (km2) Deforestation (km2) 

2017 1332.9 (±623) 2335.6 (±453) 2083.3 (±713) 2534.3 (±853) 
2018 3404.2 (±884) 6709.6 (±944) 532.6 (±385) 7486.3 (±1479) 
2019 4068.7 (±655) 2223.2 (±449) 1640.5 (±736) 4508.2 (±932) 
2020 4159.8 (±973) 9134.6 (±1204) 941.7 (±539) 6594.3 (±1472) 
2021 4969.7 (±1084) 3877.7 (±863) 1250.4 (±715) 5536.8 (±1169) 
Total 17,935.4 24,280.7 6448.5 26,659.8  
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approach provides attributions to several events of forest degradation 
caused by logging, forest fire, and roads. The attributions are important 
for assessing the carbon loss and emission for various scientific and 
greenhouse gas (GHG) inventory and reporting (Pearson et al., 2017). 
Forest degradation affects large areas of the Amazon and has important 
effects on the global carbon cycle (Aragão et al., 2014). 

The model showed high agreement on determining the exact year of 
degradation, with some variability in the year-to-year user’s and pro
ducer’s accuracy but with no clear trend. This means that even though 
we trained the model mostly using only the mosaic of one date (August 
2021), it was able to learn the spatial features associated with degra
dation and reproduce that across time and space. This is an important 
feature of our model, because one of the main purposes of having such a 
model is reducing the manual effort to produce maps at different loca
tions and over multiple years, therefore overcoming limitations of noise 
in the PlanetScope data and ultimately being able to achieve mapping at 
large scale. We expect this ability to generalize to other locations and 
dates may be attributed to multiple components of the training dataset. 
First, there is a lot of reflectance variability in the Planet NICFI imagery 
even when using data from a single month: image mosaics are composed 
of aggregated images from hundreds of small satellites collecting data at 
different angles which creates lots of noise and acquisition artifacts. 
Second, the spatial variability of the training data includes most of the 
forest covers existing in the Southern Amazon, from open to dense 

forests and some short stature savanna-type forests, which contributes 
for its adaptation to different locations and dates. We note however, for 
heavily seasonal forests, the model and methodology might need to be 
adapted in future studies. During the period of analysis (December 2015 
to December 2021), some improvements in technical specifications of 
the CubeSats (e.g., radiometric resolution) were implemented over time. 
Although not evaluated in our work, the effects of these improvements 
on the results are probably small because of the use of composite 
products selecting the highest quality pixels in a given month or bian
nual period. 

We advanced forest degradation mapping by developing a workflow 
that combines AI analysis with remote sensing data of both high spatial 
and temporal resolution. First, the applied U-Net DL model learned the 
spatial patterns associated with the different disturbances in one time 
period. Then, it was able to predict degradation with high accuracy to 
different areas within Mato Grosso for image composites covering 
different time periods. Historically, mapping logging with satellite im
agery has focused on detecting trails and log decks with high soil frac
tions using spectral unmixing techniques (Souza et al., 2005). However, 
this kind of mapping does not return area estimates close to the real 
extent of logged forests, which correspond to the bounding box around 
trees that have been logged. By mapping the area of logged forests, that 
is, the boundaries around trails, log decks, and treefall gaps (whenever 
visible), our method and dataset produce area estimates close to the 

Fig. 5. Percentage of degraded forests from 2016 to 2021 shown by the DL-DEGRAD product for the disturbances caused by (A) logging, (B) fire, and (C) road 
construction. The panel (D) represents the percentage of remaining intact forests in the year 2021. Each cell corresponds to a 20 × 20 km tile. Values were truncated 
at their 95th percentile to improve visualization. 
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extent of degraded forests. This is supported by the high overlap be
tween DL-DEGRAD with SIMEX data, which considers logging permits 
for areas of forest management (Silgueiro et al., 2021). Small-scale 
logging was also captured by DL-DEGRAD, in which the occurrence of 
roads was not the main feature for disturbance detection (example 
shown in Supplementary Fig. S6). Second, the model also leveraged the 
high temporal resolution of PlanetScope imagery to map forest degra
dation every six months, that is, before the regeneration can cover the 
tracks of disturbance. This contributed to show that logging distur
bances lingered for a longer time in the imagery than the footprints from 
fire disturbances. On average, our frequency data indicated that logging 
patterns persisted in the imagery for 2.13 years, while fire patterns 
persisted in the imagery for 1.42 years. This means that at least annual 
datasets are required to fully capture forest degradation effects, espe
cially those caused by fire, which is easily achievable by the PlanetScope 
data. 

4.2. Comparison of degradation products 

Among the degradation products compared in the analysis, DL- 
DEGRAD logging and fire maps showed one of the highest F1-scores 
according to the design-based stratified random sampling approach 
used here, in relation to the correct location as well as the correct timing 
of degradation. The results brought by DL-DEGRAD showed similar 
performance to those from regional datasets of DETER and SIMEX based 
on visual interpretation of satellite data and manual delineation of 
degradation. While considering limitations of data comparison, the 
difference between DL-DEGRAD and SIMEX for mapping logged forests 
was <1% of F1-Score; and for forest fire, DETER had 5% higher F1-Score 
on identifying the location, but 16% less F1-Score on identifying the 
correct year of degradation than the DL-DEGRAD. Moreover, a similar 
outcome was observed when we compared the pixel-by-pixel agreement 
between data products, where DL-DEGRAD showed the highest agree
ment with the visual-interpreted regional datasets DETER and SIMEX 
when compared to the other automatic datasets. This reinforces that it is 
not a matter of the data used for the evaluation or their spatial resolu
tion, but that the methodology is in fact mapping forest degradation 

more consistently and with human-level accuracy when compared to 
other automatic methods. One difference, however, is that DL-DEGRAD 
mapped two to three times more areas of degradation than DETER and 
SIMEX, thereby finding areas that were not previously mapped. We note 
however, as shown in the results, part of these mapped areas can be 
attributed to commission errors from DL-DEGRAD, but also to omission 
errors from SIMEX and DETER. Area estimates should be done using the 
design-based approach, which accommodates errors in the maps. We 
expect our dataset to complement these initiatives to obtain more ac
curate maps of forest degradation, as well as making them more efficient 
and consistent than visual inspection. While performing visual inter
pretation and manual data collection for such large areas may take 
months of work by trained analysts, through our model framework we 
can map the entire Mato Grosso rainforest area (>500,000 km2) from 
new Planet NICFI monthly image composites in less than one day. 

An in-depth look into the omission errors in SIMEX for Logging 
(39.3%) and DETER for Fire (24.3%) reveals that 60 and 44% of these 
errors of these two datasets, respectively, are likely not avoidable when 
using Landsat data because they consist of (i) small-scale patterns which 
only appeared in one Planet NICFI bi-annual mosaic and then dis
appeared in the next mosaic, that is, vegetation quickly recovered in a 
matter of six to twelve months; and (ii) logging areas without well-built 
road infrastructure; or (iii) image resolution-related issues, such as 
omission of fire at the borders of burn scars. On the other hand, some 
errors can be avoided, such as logging not being identified if the area 
was also burned (also the inverse), DETER geolocation errors showing 
detections displaced from 80 to 200 m of the actual degradation, and 
omitted large-scale forest fires (e.g. >500 m of width) which could be 
clearly seen in the Landsat imagery but were not mapped by DETER. By 
deducing the potentially avoidable errors (40 and 66% of logging and 
fire), we estimate the Landsat data would allow the observation up to a 
theoretical maximum of 84.3 and 84% of all logging and fire in the 
reference dataset. This reveals a limitation to what Landsat data may 
offer for visual interpretation of degradation in the Mato Grosso region, 
of which shows large logging infrastructure and large forest fire events. 
Thus, if the dynamics of logging in other regions involve less develop
ment of infrastructure (e.g., illegal logging), or fires are smaller in size, 

Fig. 6. Per-pixel temporal frequency of degradation detection by DL-DEGRAD, initially mapped in 2017 by (A) Logging, and (B) Fire disturbances.  
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the rate of detection using Landsat data will likely decrease. Neverthe
less, although having higher commission errors than SIMEX and DETER 
– a rate that can be reduced in further developments of the model, our 
DL approach using Planet NICFI allows to observe much more of these 
small-scale logging activities with low omission errors (10%). 

The DL-DEGRAD approach offers improved mapping abilities for 
logging degradation that are not matched by any other automatic data 
product, and that reduces the minimum area mapped by visual- 
interpreted datasets (DETER and SIMEX) based on 30-m satellite data. 
Moreover, the DL-DEGRAD product showed higher sensitivity in 
detecting forest fires than the compared automatic burned area prod
ucts. Besides DL-DEGRAD, the FireGFL dataset also showed good 
agreement for fire degradation mapping (F1-Score of 59.1). We find that 
the FireGFL is an important refinement over the GFC product because it 
mainly retrieves forest fires reducing other sources of disturbance 
(Tyukavina et al., 2022). The remaining automatic burned area maps 
had low map agreements (F1-score lower than 34%). This low map 
agreement was especially observed regarding time of detection, which 
highly varied between burned area products, indicating the high un
certainty to map burned forests using available datasets. We expect that 
our methodology can contribute to surpass previous limitations of un
derstory fire mapping sensitivities (Morton et al., 2011; Dupuis et al., 
2020; Gao et al., 2020). By visual examining the Planet NICFI imagery, 
we identified that burned area products usually detected burned forests 
when the fire severity was high and barely any vegetation was left, 
corresponding to brown to black colors in the NICFI true color com
posites. Therefore, underestimating understory fires obfuscated by the 
forest canopy (Morton et al., 2011). Meanwhile, our DL-DEGRAD 
product was trained to detect different levels of fire severity and post- 
fire regeneration. Therefore, even if there is a temporal mismatch be
tween fire occurrence and image acquisition, we can detect it after
wards. Even with coarser spatial resolution data, the MCD64 showed 
similar performance to FireCCI (difference of 2% in F1-Score) and better 
agreement with the reference data than other products such as the 
GABAM and MapBiomas Fire. This corroborated a previous finding that 
MCD64 had better performance than Landsat-based satellite estimates of 
fire disturbance (Pessôa et al., 2020). 

4.3. Limitations 

The differences in spatial and temporal resolution between the 
compared data products bring some potential limitations in the data 
analysis. Also, the accuracy metrics of the compared datasets represent 
the accuracy of the resampled (down-sampled) datasets and according 
to the degradation definitions utilized in this study. This type of com
parison is complex and has intrinsic limitations as discussed in previous 
studies (Tyukavina et al., 2017; Pessôa et al., 2020). This is the reason 
why an effort was made here to provide independent reference data as 
well as to compare products on a per-pixel basis. We note that there is 
also subjectivity in manual vectorization of degradation of which there 
is not a simple solution. The boundary of the degraded areas is usually 
not sharp and well defined such as a forest/non-forest boundary, and its 
interpretation can vary according to the interpreter – as also highlighted 
some issues in complementary products such as SIMEX and DETER. 
However, after training the DL model to perform the mapping, it can 
provide a more consistent and reliable approach to map the boundaries 
of degraded forests based on the data, thus following the spectral/ 
textural features of which humans may lack visual acuity to identify 
boundaries or manual dexterity to accurately draw them. However, the 
good agreement presented between our automated approach and 
manually delineated products (DETER and SIMEX) highlight the method 
is able to reproduce what other analysts also identified as degradation in 
these official datasets. A thorough assessment of degradation intensity 
and how much of it leads to a detection is yet to be assessed in future 
studies. For logging degradation, this means acquiring and integrating 
data of carbon losses in logging concessions at state and national level, 

however for degradation due to fire, ground data is way more limited. 
Analysis of airborne lidar data may help to address these gaps in future 
studies. 

The spatial extent of mapped roads covers a larger area than the 
actual disturbed area, resulting in the overestimation of the road- 
covered areas, as shown by the low user’s accuracy in the probability 
design-based validation (29.5%). At the current state, the road maps 
should not be used for direct area estimates. It can be useful though as a 
relative indicator of road coverage and increase over time. This estimate 
will be improved for next versions of this data product by reducing the 
width of the road training samples to match more closely the width of 
the interpreted roads and trails. The overestimation does not affect its 
potential use for monitoring where roads are being opened, and how 
they can contribute to the spread of degradation, of which the road maps 
can do a nice job (Supplementary Fig. S10). The spatial extent of areas 
degraded by logging and fire mapped by the DL-DEGRAD approach is 
higher than other methods that mostly track complete canopy clearings, 
but a strong spatial agreement is observed with degraded forests mapped 
by SIMEX and DETER datasets (Silgueiro et al., 2021; De Almeida et al., 
2022). These estimates differ from other datasets, such as GFC and TMF, 
which detect only pixels with tree loss pixels (change from forest to bare 
soil), explaining the much higher detected area by our method. Due to 
the inability to look under the canopy and to the quick gap recovery 
dynamics of vegetation, we expect that the exact degraded area estimate 
at local scales should be very hard to achieve using optical data of any 
spatial resolution in the future. This area could be potentially retrieved 
at local scales using ALS data looking at the top of the canopy and un
derstory. Overall, at regional scales, we expect that DL-DEGRAD has 
potential to capture most of the degraded forests, but some small-scale 
disturbances where forest can quickly recover may still be under
estimated. The ability of the dataset to observe repeated degradation in 
the same area is still to be assessed in future research, when more data 
collection on repeated events is collected. 

During the DL training, we discovered and dealt with a few issues 
arising from artifacts of Planet NICFI imagery as well as from the 
different environments of the Amazon forests. The level of accuracy 
obtained was only possible because the U-Net model inherently learns 
the contextual information in the imagery, which minimizes issues of 
reflectance variability and visual artifacts present in PlanetScope data, 
caused by the nature of their acquisition system - a constellation of 
hundreds of small satellites (Pandey et al., 2021). Some notable artifacts 
from Planet NICFI data include areas where apparent dust clouds were 
found nearby cities in Mato Grosso likely due to radiometric correction 
(Supplementary Fig. S1); illumination artifacts in the edges of forests 
where saturated brighter signals were found (Supplementary Fig. S11); 
and brightness effects created by the mosaicking in locations of severe 
cloud influence (Supplementary Fig. S3-S5). The brightness effects were 
dealt with by including samples of those locations in the training data
set. To minimize the cloud issues, we developed our own cloud mapping 
model to mask out remaining clouds in the Planet NICFI product. Other 
issues related to Amazonian environments that caused the model to 
produce false positives and commission errors were large flowering trees 
being confused with logging (likely because their round shape could be 
confused with a logging deck, as well as having low NIR values), and 
narrow rivers being confused with roads. These reported issues were 
minimized in predictions by adding examples of these occurrences as 
samples of absence of degradation during model training. 

Alternative sources of high-resolution data to the Planet NICFI 
include the Sentinel-1 and Sentinel-2 satellite sensors operating at a 
similar spatial resolution (10-m) (Zhang et al., 2021; Reiche et al., 
2021). In this context, some recent studies have shown the potential of 
Sentinel-2 to map small-scale disturbances (< 1 ha) associated with 
shifting agriculture and logging roads (Zhang et al., 2021). The potential 
of Sentinel-1 to map forest disturbances from logging roads and large 
canopy gaps with exposed soil has also been demonstrated (Reiche et al., 
2021). However, it is yet to be investigated whether Sentinel data brings 
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enough contextual information for the CNN-based method to map 
degradation without apparent tree loss. 

4.4. Impacts 

Our study represents the first large-scale attempt to use a DL model to 
map tropical forests degraded by logging, fire and road construction 
based on high-resolution Planet NICFI satellite data. This is the first step 
towards developing large-scale operational monitoring of degradation, 
required to understand the extent of tropical forests degradation and its 
impacts to carbon, as well as achieve goals of REDD+ at jurisdictional 
levels (Mitchell et al., 2017). By stratifying forest degradation between 
different drivers, it is possible to obtain more accurate emission esti
mates using specific emission factors for each type of disturbance 
(Rappaport et al., 2018). This is the type of information that the Mato 
Grosso government is currently using from the SIMEX (logging) and 
INPE’s DETER (logging and fire) products. Both products are based on 
visual interpretation and manual vectorization of maps, but can now be 
produced in an automatic and timely manner through our approach. In 
the context of REDD+, policy and decision making, where pixel count
ing may not be the preferred approach, the maps generated by the DL- 
DEGRAD approach can be used as a starting point for a sample-based 
approach to estimating the areas of land cover and change as shown 
in this paper (Olofsson et al., 2014; Global Forest Observations Initia
tive, 2020). 

The implementation of near real-time forest monitoring from bi- 
annual to monthly, or even weekly, time-steps should be possible with 
further developments. Planet NICFI provides unprecedented open high- 
resolution data (4.77-m) at bi-annual (Dec 2015 to Jun 2020) to monthly 
frequency from September 2020 to recent days, which allows for the 
continuous monitoring of forest degradation in the future, given the 
continuity of the program. For this first experiment, we accumulated the 
monthly predictions into six-month composites to increase confidence in 
results and to secure the same time-intervals for the entire time-series. 
However, by improving our models with more training data, as well 
as testing alternative DL architectures, we expect to increase confidence 
in monthly predictions. This could be especially useful to help author
ities performing ground operations with greater agility over national 
parks under threat or over selected areas targeting the frontiers of 
deforestation and degradation. Such a near-real time approach will also 
be useful to monitor individual REDD+ carbon projects, where forest 
protection and carbon sequestration are of major concern. 

Our findings show Mato Grosso rainforests have been going through 
widespread and very-high rates of degradation due to logging and fire 
corresponding to 8443 km2 yr− 1 from 2017 to 2021. Around 24% of 
these degraded areas have already been deforested by 2021, depicting 
the pathway of which degradation leads to deforestation. The remaining 
forests in 2021 account for 301,960 km2, of which 14% were assessed as 
degraded in between 2017 and 2021. Overall, these degradation esti
mates exceed by a factor of two to three those from official datasets from 
DETER/INPE. Part of this degradation is in fact legalized though state 
logging concessions program (Silgueiro et al., 2021). However, that does 
not change the fact that these forests dynamics are being widely changed 
without much thought to what this will mean for the future of the 
Amazon forests and potential impacts to the climate. Meanwhile, recent 
studies point out that logged forests are a net source of carbon to the 
atmosphere (Mills et al., 2023). The year 2020 alone was responsible for 
31.5% of the five-year degradation, that is, 13,294 km2 of the total 
42,215 km2 area of degradation mapped in the region, and to twice the 
deforestation rate of that year, with a major contribution from fires with 
9134 km2 of burned forests. Indigenous territories within Mato Grosso 
had significantly lower levels of degradation compared to other areas. 
Protecting these territories from spilling deforestation and degradation 
are of utmost importance as already highlighted in previous studies (de 
Oliveira et al., 2022). 

Overall, our study reveals a dire situation for southern Amazonian 

rainforests in the edge of ‘arc of deforestation’, of which degradation has 
been rampant in these last few years and leading to further deforestation 
activities. The technology necessary to accurately put degradation on 
the map is available through the presented methodology. Knowing 
where degraded forests are located can be important to assess carbon 
dynamics following disturbance, in terms of both carbon losses but also 
gains as expected if these forests are allowed to regenerate (Heinrich 
et al., 2023). It is essential that next studies stratify between planned and 
unplanned deforestation, logging and fire activities, because each pro
cess may have different carbon dynamics and mechanisms which poli
cymakers and environmental agencies can pursue to optimize nature- 
based solutions to climate change. If Brazil wants to effectively tackle 
REDD+, hampering the further spread of degradation is imperative and 
must be considered together with the zero-deforestation pledge until 
2030. 

5. Conclusions 

Tropical forest degradation can now be mapped at a cost-efficient 
manner with an unprecedented level of detail in spatial and temporal 
scales using a trained U-Net deep learning model applied to Planet NICFI 
data. Moreover, it is possible to provide attributions to the causes of 
degradation (logging, forest fire, and road construction), which can 
contribute to ensuring the degradation classes are well represented in 
the samples being used for area estimates on REDD+ monitoring. We 
also show that at least annual temporal resolution is necessary to reli
ably map degraded forests. The performance of our automated approach 
was found to be consistent with degradation products generated from 
visual interpretation of 30-m satellite data and substantial manual 
editing (e.g., DETER and SIMEX). However, the NICFI data allows 
mapping degradation with additional detail which is likely not possible 
with Landsat. Our new DL-DEGRAD approach shows that the tropical 
forests of Mato Grosso are being degraded by logging and fire at the rate 
of 8443 km2 yr− 1. Of the remaining forests in 2021 (301,960 km2), at 
least 14% are currently degraded. In the period of analysis, 2020 showed 
the largest area of degradation (13,294 km2), exceeding deforestation 
twofold. In the future, the model will be evaluated and improved to 
extend the mapping of forest degradation across the entire pan-tropical 
forests. 
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