

Association of Molecular Profiles and Mutational Status With Distinct Histological Lung Adenocarcinoma Subtypes. An Analysis of the LACE-Bio Data

Prashanth Ashok Kumar, Maryam Karimi, Alina Basnet, Lesley K. Seymour, Robert Arthur Kratzke, Élisabeth M. Brambilla, Thierry Le-Chevalier, Jean-Charles Charles Soria, Ken André Olaussen, Siddhartha Devarakonda, et

al.

▶ To cite this version:

Prashanth Ashok Kumar, Maryam Karimi, Alina Basnet, Lesley K. Seymour, Robert Arthur Kratzke, et al.. Association of Molecular Profiles and Mutational Status With Distinct Histological Lung Adenocarcinoma Subtypes. An Analysis of the LACE-Bio Data. Clinical Lung Cancer, 2023, 24 (6), pp.528-540. 10.1016/j.cllc.2023.06.002 . hal-04229530

HAL Id: hal-04229530 https://hal.science/hal-04229530v1

Submitted on 9 Apr 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 2	Association of Molecular Profiles and Mutational Status with Distinct Histological Lung Adenocarcinoma Subtypes. An Analysis of the LACE-Bio Data.
3 4 5 6	Prashanth Ashok Kumar ^{1*} , Maryam Karimi ^{2,3*} , Alina Basnet ¹ , Lesley Seymour ⁴ , Robert Kratzke ⁵ , Elizabeth Brambilla ⁶ , Thierry Le-Chevalier ⁷ , Jean-Charles Soria ⁷ , Ken André Olaussen ⁸ , Siddhartha Devarakonda ⁹ , Ramaswamy Govindan ⁹ , Ming-Sound Tsao ^{10,11} , Frances A Shepherd ^{10,12} , Stefan Michiels ^{2,3**} , Stephen Graziano ^{1**} .
7	* Prashanth Ashok Kumar and Maryam Karimi are equal first authors.
8	** Stefan Michiels and Stephen Graziano are equal senior authors.
9 10 11	 Division of Hematology-Oncology, SUNY Upstate Medical University, Syracuse, New York, USA. Bureau de Biostatistique et d'Epidémiologie, Gustave Roussy, Université Paris-Saclay,
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	 Villejuif, France. 3. Oncostat U1018, Inserm, Université Paris-Saclay, Equipe labellisée Ligue Contre le Cancer, Villejuif, France. 4. Canadian Cancer Trials Group and Queen's University, Kingston, ON, Canada. 5. Department of Medicine, University of Minnesota, Minneapolis, MN. 6. Department of Pathology, University Grenoble Alpes, INSERM, Grenoble, France. 7. Institut Gustave Roussy, Department of Medical Oncology, Villejuif, France. 8. Université Paris-Saclay, Faculté de médecine, Gustave Roussy, Inserm U981, Villejuif, France. 9. Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA. 10. Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. 11. Department of Laboratory Medicine and Pathobiology, University Health Network, Toronto, ON, Canada. 12. Department of Medicine, Division of Medical Oncology, University Health Network, Toronto, ON, Canada.
28 29	Corresponding author
30	Prashanth Ashok Kumar
31	Upstate Cancer Center
32	750 E Adams Street, Syracuse, NY 13202
33	Email: ashokkup@upstate.edu
34	
35	
36	
37	

38 Conflict of Interest/Disclosures

- 39 Prashanth Ashok Kumar: No disclosures or conflict of interest
- 40 Maryam Karimi: No disclosures or conflict of interest
- 41 Alina Basnet: No disclosures or conflict of interest
- 42 Lesley Seymour: Stock or Other Ownership: AstraZeneca, Consulting or Advisory Role:

43 Boehringer Ingelheim, Hanmi, Research Funding: Pfizer (Inst), AstraZeneca (Inst), Innate Pharma

- 44 (Inst), Oncolytics (Inst), Merck (Inst), Senwha (Inst).
- 45 Bob Kratzke: No disclosures or conflict of interest
- 46 Elizabeth Brambilla: No disclosures or conflict of interest
- 47 Thierry Le-Chevalier: No disclosures or conflict of interest
- 48 Jean-Charles Soria: Employment: MedImmune, Stock or Other Ownership:
 49 AstraZeneca/MedImmune, Honoraria: Roche, AstraZeneca, Sanofi, Servier.
- 50 Lesley Seymour: Stock or Other Ownership: AstraZeneca, Consulting or Advisory Role:
- 51 Boehringer Ingelheim, Hanmi, Research Funding: Pfizer (Inst), AstraZeneca (Inst), Innate Pharma
- 52 (Inst), Oncolytics (Inst), Merck (Inst), Senwha (Inst).
- 53 Ken André Olaussen: No disclosures or conflict of interest
- 54 Siddhartha Devarakonda: No disclosures or conflict of interest
- 55 Ramaswamy Govindan: Honoraria: AbbVie, Genentech, Consulting or Advisory Role: Pfizer,
- 56 Celgene, AstraZeneca, AbbVie, Merck, Inivata, EMD Serono, Genentech, Bristol-Myers Squibb,
- 57 Nektar, Merck Serono, Adaptimmune, Phillips Gilmore Oncology, GlaxoSmithKline, Research
- 58 Funding: National Cancer Institute.
- 59 Ming-Sound Tsao: No disclosures or conflict of interest
- 60 Frances A Shepherd: Stock or Other Ownership: Eli Lilly, AstraZeneca, Honoraria: Eli Lilly,
- 61 AstraZeneca, Bristol-Myers Squibb, Roche, Merck Sharp & Dohme, Merck Serono, Boehringer

62 Ingelheim, Consulting or Advisory Role: Eli Lilly, AstraZeneca, Boehringer Ingelheim, Merck

- 63 Serono, Research Funding: Eli Lilly (Inst), Pfizer (Inst), Bristol-Myers Squibb (Inst),
- 64 AstraZeneca/MedImmune (Inst), Roche Canada (Inst), Merrimack (Inst)
- 65 Stefan Michiels: Consulting or Advisory Role: IDDI, Hexal, Johnson & Johnson, Genticel,
- 66 Mabxience, Roche, QuintilesIMS, Patents, Royalties, Other Intellectual Property: Patent pending
- of a prognostic gene score in early breast cancer: WO2017EP66533.
- 68 Stephen Graziano: No disclosures or conflict of interest

69

70 Funding

71 This work was supported by the Upstate University Hospital Department of Medicine Grant and

- 72 National Institutes of Health Grant No. CA165958.
- 73

74 Ethics approval

75 The study was approved by the French Data Protection Committee.

All human investigations were conducted after approval by a local Human Investigations Committee and in accord with an assurance filed with and approved by the Department of Health and Human Services, where appropriate. Data has been anonymized and no identifiable information was used.

80

81 MicroAbstract

82 There are no reliable markers that would predict benefits of chemotherapy after surgery in limited

- 83 stage lung adenocarcinoma. We used data from a repository of pooled historical trials to answer
- this question. It was noted that if TMB in high in these patients, chemotherapy use may have worse
- 85 outcomes, and immune checkpoint therapy should be considered instead.

86

87 Abstract

88 Background

- Adjuvant chemotherapy (AC) is indicated for stage II and stage III lung adenocarcinomas (ADC).
- 90 Using the LACE Bio II database, we analyzed the distribution of various mutations across the
- subtypes of ADCs and studied the prognostic and predictive roles of PD-L1, TMB and Tumor
- 92 Infiltrating Lymphocytes (TILs).

93 Methods

- 94 Clinical and genomic data from the LACE Bio II data were extracted. Patients were divided into
- ADC subtypes, in which the grouping was done based on their known clinical behavior [Lepidic
- 96 (LEP), Acinar/Papillary (ACI or PAP), Micropapillary/Solid (MIP or SOL), Mucinous (MUC) and
- 97 Others]. Kaplan-Meier (KM) and log-rank test were used to compare survival based on PD-L1,
- 98 TMB, TILs and combinations of TMB with PD-L1 and TILs. Adjusted Hazard Ratios (HR) were
- analyzed with Overall Survival (OS), Disease-Free Survival (DFS) and Lung Cancer-Specific
- 100 Survival (LCSS) as endpoints.

101 **Results**

- 102 375 ADC patients were identified. MIP/SOL was the subtype most commonly positive for various
- 103 biomarkers. PD-L1 Negative/high TMB was associated with better outcomes in terms of OS
- 104 (HR=0.46 [0.23-0.89], p=0.021) and DFS (HR=0.52 [0.30-0.90], p=0.02), relative to PD-L1

- Negative/low TMB. High TMB predicted worse outcome with AC use in terms of OS (ratio of 105
- hazard ratio rHR=2.75 [1.07-7.04], p=0.035). Marked TILs had better outcome with AC for DFS 106
- (rHR=0.22 [0.06-0.87], p=0.031 and LCSS (rHR=0.08 [0.01-0.66], p=0.019) respectively. There 107 was also a beneficial effect of AC among patients with Marked TILs/low TMB in terms of DFS

(rHR= 0.06 [0.01-0.53], p=0.011). 109

Conclusions 110

- High TMB has a prognostic role in resectable lung ADC. The high TMB group had a poor outcome 111
- with AC, suggesting that this group may be better served with immune checkpoint therapy. 112
- 113

Clinical Practice Points 114

It is known that adjuvant chemotherapy (AC) for limited stage lung adenocarcinoma (ADC) 115 116 decreased the risk of death by 5.4% at 5 years. Given the toxicity associated with chemotherapy use, especially in patients with significant comorbidities, it is important to identify biomarkers that 117 can predict response to AC. We performed a comprehensive analysis of the LACE Bio II data to 118 help answer this. It was noted that the Micropapillary/Solid (MIP/SOL) subtype of lung 119 adenocarcinoma is commonly associated with genetic alterations, indicating that this subtype has 120 a high chance of expressing biomarkers that can be targeted in clinical practice. High TMB was 121 shown to be associated with better prognosis overall. This combined with the result that high TMB 122 patients had a poor outcome with AC use, questions the clinical utility of chemotherapy in this 123 scenario. It also invokes the question of whether immune checkpoint therapy alone would better 124 serve these patients with high TMB. 125

126

Keywords: Non-Small Cell Lung Cancer (NSCLC), Lung Adjuvant Cisplatin Evaluation (LACE), 127 PD-L1, Tumor Mutational Burden (TMB), Tumor Infiltrating Lymphocytes (TIL), Adjuvant 128

Chemotherapy 129

1

Abbreviations

¹³⁰

AC- Adjuvant Chemotherapy; ADC-Adenocarcinoma, LACE- Lung Adjuvant Cisplatin Evaluation, LEP-Lepidic, ACI-Acinar, PAP-Papillary, MIP-Micropapillary, SOL-Solid, MUC-Mucinous, KM-Kaplan-Meier, PD-LI- Programmed death-ligand, TMB- Tumor mutational burden, TILS-Tumor Infiltrating Lymphocytes, HR-Hazard Ratio, rHR-Ratio of hazard ratio, OS-Overall Survival, DFS- Disease-Free Survival, LCSS-Lung Cancer-Specific Survival, NSCLC-Non-Small Cell Lung Cancer, IMC- International Multidisciplinary Classification, IASLC- International Association for the Study of Lung Cancer, ATS-American Thoracic Society, NCCN- National Comprehensive Cancer Network, ANITA-Adjuvant Navelbine International Trialist Association.

132 Introduction

133 Through the last century, lung cancer has emerged as not only the most common cancer, but also the most common cause of cancer related mortality, accounting for nearly 25% of the annual cancer 134 related fatalities ¹. While Small Cell Lung Cancer comprising 14% of all lung cancers is more 135 aggressive, Non-Small Cell Lung Cancer (NSCLC) is more common and accounts for nearly 85% 136 of the disease ^{2,3}. The International Multidisciplinary Classification (IMC) is a collaborative, 137 multidisciplinary effort by the International Association for the Study of Lung Cancer (IASLC), 138 the American Thoracic Society (ATS), and the European Respiratory Society to provide a robust 139 classification of lung adenocarcinoma (ADC) along with identification of prognostic and 140 therapeutic targets. The various subtypes of ADC developed by the IMC and is now incorporated 141 into the current WHO classification⁴ (Supplement S1)⁵. Research over the past 2 decades has 142 shown that adjuvant chemotherapy (AC) has benefits compared to surgery alone in treating Stage 143 II and Stage IIIA NSCLC. The current guidelines of the National Comprehensive Cancer Network 144 (NCCN) recommends the same, especially after achieving complete surgical resection ⁶. Immune 145 checkpoint therapy have made significant progress, with agents like atezolizumab now found to 146 be effective in the first line setting of all NSCLC subtypes with high PD-L1⁷. While the question 147 of whether adjuvant or neoadjuvant chemotherapy is preferred remains at large, studies like 148 McEnlay et al.'s review and the Lung Adjuvant Cisplatin Evaluation (LACE) have demonstrated 149 survival advantage with adjuvant chemotherapy 8,9 . In LACE, a large number (n = 4584) of 150 completely resected NSCLC patients were analyzed from the 5 largest cisplatin-based adjuvant 151 chemotherapy trials done after the 1995 NSCLC meta-analysis ⁸. The LACE bio consortium 152 involves investigators from the International Adjuvant Lung Trial, Cancer and Leukemia Group 153 B-9633, National Cancer Institute of Canada Clinical Trials Group JBR.10, and Adjuvant 154 Navelbine International Trialist Association (ANITA) trials ¹⁰. LACE Bio contains comprehensive 155 molecular characterization of patient samples from the above trials, except the ANITA trial as the 156 tissue from the trial was exhausted ¹⁰. 157

PDL-1 expression is believed to be predictive for response to immunotherapy but is not established 158 for chemotherapy. Tsao et al. showed that PD-L1 was neither prognostic nor predictive of adjuvant 159 chemotherapy use. Tumor Mutational Burden (TMB) can be defined as the total number of gene 160 mutations per coding area of the entire tumor genome ¹¹. In NSCLC, PD-L1 and TMB are 161 independent biomarkers and have not been correlated with each other. Significant response rate 162 with immunotherapy in different cancer types with higher TMB (> 10 Mut/Mb) has been studied 163 and established. PD-L1 and TMB may overlap for prognostic and predictive response to immune 164 checkpoint therapy but a distinct association has not been established for these in combination. 165 especially for systemic chemotherapy ¹². 166

167 NSCLC management continues to reach new frontiers as evident by the ADAURA clinical trial 168 showing promising results with adjuvant osimertinib in *EGFR* mutated disease ¹³. We wanted to 169 contribute to the same end through our analysis using the LACE-Bio II data.

- 170
- 171

172 Methods

173 **Study Design/Patient characteristics**

We used data from the LACE-Bio II consortium including patients from 3 randomized clinical 174 trials (JBR.10, IALT (International Adjuvant Lung Cancer Trial) and CALGB-9633) for whom 175

FFPE samples were available. 176

ADC patients were extracted from LACE-Bio II data. Five subgroups were considered for the 177 ADC patients: Lepidic (LEP), Acinar/Papillary (ACI or PAP), Micropapillary/Solid (MIP or 178 SOL), Mucinous (MUC) and Other (Table 1). Combining the Acinar and Papillary subgroups and 179 Micropapillary and Solid subgroups was performed based on the similar results in terms of survival 180 outcomes in the literature^{14–17}. Clinical and genomic data were used to provide a descriptive 181 analysis of lung ADC based on histologic subtypes, tumor characteristics, selected targetable gene

- 182
- mutations and biomarkers. We also investigated the prognostic utility of the combinations of PDL-183 1, TMB and Tumor Infiltrating Lymphocytes (TILs) and if they can be used to predict benefit from 184
- adjuvant chemotherapy. 185

Biomarkers, genes, and copy number aberrations 186

- We selected the following genes/biomarkers from LACE-Bio I: Mucin (0 vs. any positive 187 staining), β-Tubulin (<180 vs. ≥180), p27 (<50 vs. ≥50), TILs (Marked vs. Non-marked/other), 188 189 p53 (≤100 vs. >100), KRAS (Wilde type (WT) vs. Mutated (MUT)), EGFR (Wild type (WT) vs. Mutated (MUT)), ERCC1 (≤ 1 vs. >1), Cyclin E (≤ 40 vs. ≥ 40), p16 (≤ 1 vs. ≥ 1), FAS (≤ 240 vs. 190 ≥240), FASL (<240 vs. ≥240), BAX (<20 vs. ≥20), BRCA1 (<160 vs. ≥160), PD-L1 (negative: 191 <1% vs. positive: \geq 1%) and TMB (continuous and \leq 10 vs. >10 Mut/Mb). More details on the 192 techniques and thresholds used for these biomarkers can be found in previous LACE-Bio papers 193
- and has been summarized in the supplement¹⁸. 194
- We also used a set of targetable genes from the LACE-Bio II TMB paper (1,538 genes selected 195
- based on the Cancer Genome Atlas Pan-Cancer analysis) to compare their frequencies between the 196
- 4 partly combined ADC subtype groups: lepidic, acinar/papillary, micropapillary/solid, mucinous 197
- (Others were not considered). Copy number aberrations were also considered to be compared 198
- 199 across the 4 ADC subgroups (supplement)^{10,18–23}.

200 **Outcomes**

- Following endpoints were considered as in previous publications from the consortium¹⁰: 201
- Overall Survival (OS), defined as the time from randomization to death from any cause, 202
- Disease-Free Survival (DFS), defined as the time from randomization to first recurrence 203 (locoregional or distant) or death from any cause, 204
- Lung Cancer-Specific Survival (LCSS), defined as the time from randomization to death 205 because of lung cancer. 206

208 Statistical analysis

209 The distribution of each biomarker was compared across 4 ADC subgroups (excluding 'other'

subgroup) using Chi-squared test for binary biomarkers and Kruskal-Wallis test for continuous
biomarkers

211 biomarkers.

The frequency of mutated genes across the 4 ADC subgroups (excluding 'other') were compared and all tests were corrected for multiple testing (FDR correction).

We investigated the association between Mucin expression status and KRAS/EGFR mutation, 214 association between PD-L1 expression and TMB/TILs, association between TILs and TMB. These 215 associations were assessed using separate logistic models with Mucin, PD-L1 expression and TILs 216 as the response variable. Likelihood ratio tests (LRT) were used to compare the models with and 217 without the biomarker of interest (KRAS/EGFR, TMB/TILs and TMB). All models were stratified 218 219 by trial and adjusted on treatment arm (unadjusted model), adjusted on treatment arm and clinical covariates which included age, sex, tumor stage, nodal stage, WHO performance status, surgery 220 type (fully adjusted model) and adjusted on treatment arm, clinical covariates and ADC subtype 221

(sensitivity analysis). TMB was introduced in regressions as a continuous predictor. To relax the

assumption of linear relationship, the effect of TMB was also modeled in separate analyses using

- spline with 3 knots.
- The Kaplan-Meier (KM) method and log-rank test were used to compare survival curves betweenthe following groups:
- the two groups high TMB and low TMB,
- the two groups positive PD-L1 and low PD-L1,
- the four groups PD-L1 positive/high TMB, PD-L1 negative/high TMB, PD-L1
 positive/low TMB, PD-L1 negative/low TMB,
- the two groups marked TILs and other,
- the four groups TILs marked/high TMB, TILs other/high TMB, TILs marked/low TMB,
 TILs other/low TMB.

The biomarkers (PD-L1 expression, TMB, concomitant PD-L1 expression and TMB, TILs and 234 concomitant TMB and TILs) were correlated to each endpoint using a Cox proportional hazards 235 model, stratified by trial in all models, adjusted for treatment in the unadjusted model, adjusted for 236 treatment, age, sex, tumor stage, nodal stage, WHO performance status, surgery type in the fully 237 adjusted model, and adjusted for treatment, age, sex, tumor stage, nodal stage, WHO performance 238 status, surgery type and ADC subtype in the sensitivity analysis. In the analysis of PD-L1 and 239 TMB, the PD-L1 negative group, the low TMB group and the PD-L1 negative/low TMB group 240 were considered as the reference category. In the analysis of TILs and TMB, the TILs other group, 241 the low TMB group and the TILs other/low TMB group were considered as the reference category. 242

To evaluate the predictive role of PD-L1 expression, TMB status, concomitant PD-L1/TMB, TILs,
 TMB status and concomitant TILs and TMB, a treatment-by-variable interaction was added to the

245 Cox models. We compared the treatment effect across groups of the variable of interest. For

example, for the concomitant PD-L1 expression and TMB status, we compared the treatment effect 246 across four concomitant PD-L1 expression and TMB groups by using the ratio of HRs (rHR): the 247 ratio of the HR for adjuvant chemotherapy versus observation in a given category (PDL-1 248 positive/High TMB, PD-L1 negative/High TMB, PD-L1 positive/low TMB) to the HR for 249 adjuvant chemotherapy versus observation in the PD-L1 negative/low TMB category. Likewise, 250 for the concomitant TILs and TMB status, we compared the treatment effect across four 251 concomitant TILs and TMB groups by using the ratio of HRs (rHR): the ratio of the HR for 252 253 adjuvant chemotherapy versus observation in each category (TILs Marked/High TMB, TILs other/High TMB, TILs Marked/low TMB) to the HR for adjuvant chemotherapy versus 254 observation in the TILs Other/low TMB category. A rHR < 1.0 indicates that the treatment effect 255 size was greater than that for PD-L1 negative/low TMB patients or TILs Other/low TMB patients. 256

Statistical significance was set at p < 0.05. All statistical analyses were performed using the 257 'Survival' and the 'survminer' packages in R software version 4.1.1. 258

259

Results 260

From the LACE-Bio II data, a total number of 375 ADC patients were identified. Out of these, 357 261 had correct inferred gender, 146 females and 211 males. Table 1 shows the characteristics of the 262

263 study population.

264 The descriptive analysis of the biomarkers and genes from the LACE-Bio dataset has been represented in Table 2.A. Distribution of Mucin, ß-Tubulin, p53, KRAS, Cyclin E and PD-L1 was 265 significantly different across ADC subgroups. As anticipated, 95% of the MUC ADC stained 266 positive for mucin. Among non-mucinous adenocarcinoma, ACI or PAP (65%) had the highest 267 distribution of mucin positive patients. MIP/SOL was the subtype most commonly positive for 268 biomarkers and genes, with significant difference seen in β-Tubulin (71%), p53(36%), Cyclin E 269 (36%) and PD-L1 positivity (33%). KRAS mutation was seen most frequently in MUC (58%) 270 followed by MIP/SOL (32%). Overall TMB ranged between 0.19 and 162.69 Mut/Mb. Median 271 272 TMB was highest in MIP/SOL at 6.15 Mut/Mb and lowest in MUC at 2.24 Mut/Mb. MIP/SOL also had a higher likelihood of having high TMB by both levels as described in Table 2.A. Based 273 on results from Table 2.B. no significant association between Mucin production and KRAS/EGFR 274 status was observed. 275

Genetic analysis of the frequency of alterations in the Lace-Bio II data pool showed that 276 CNTNAP5, DRD5 and EME1 were significantly differentially mutated between the 4 groups. 277 CNTNAP5 and EME1 were frequently mutated in MIP/SOL, whereas DRD5 was mutated 278 commonly in LEP. More details on the frequencies and p-values can be found in the supplement. 279 Copy number aberrations were investigated across ADC subgroups and analysis did not show any 280 region with significantly different copy number aberration frequency between 4 ADC subgroups 281

(Supplementary materials). 282

Supplement Table S2.A. shows the distribution of combinations of PD-L1 and TMB in the ADC 283 subgroups from the Lace Bio II data, while the distribution of TILs and TMB is shown in Table 284

S2.B (supplement). Adjusting for clinico-pathological factors and ADC subtypes, higher TMB is 285 associated with better DFS (HR = 0.65 [95%CI, 0.43-0.99], p = 0.045) by sensitivity analysis 286 (Table 3.B). No significant prognostic effect was found for PD-L1 expression in terms of OS, DFS 287 and LCSS. However, considering the concomitant PD-L1 expression and TMB status, analyses 288 showed that concomitant PD-L1 negative/high TMB was associated with better outcomes in terms 289 of OS (HR = 0.46 [95%CI, 0.23-0.89], p = 0.021) and DFS (HR = 0.53 [95%CI, 0.30-0.90], p = 290 0.02), relative to PD-L1 Negative/low TMB group. The results did not change adjusting for ADC 291 subtypes (Table 3.A,B,C). The KM curves are shown in Figure S1 (supplement). 292

- 293 High TMB predicted worse outcome with adjuvant chemotherapy use in terms of OS (rHR = 2.75
- [95%CI, 1.07-7.04], p = 0.035) (Table 4.A). Analyses (unadjusted, fully adjusted and sensitivity 294
- models) did not show any significant chemotherapy predictive effect of the PD-L1 expression and 295
- concomitant PD-L1 expression and TMB status in terms of OS, DFS and LCSS (Table 4.A,B,C). 296 Unadjusted KM plots did not suggest any beneficial predictive effects for any of the biomarkers
- 297
- on OS, DFS and LCSS, when compared to observation (Supplement Figure S2.A,B,C). 298

On studying the prognostic effect of TMB and TILs, adjusted HR results suggested no significant 299

- prognostic effect for TILs in terms of OS, DFS and LCSS. However, considering the concomitant 300
- 301 TILs and TMB status, sensitivity analyses alone showed that concomitant TILs other/high TMB
- was associated with better DFS (0.65 [95% CI, 0.43-0.97], p = 0.037) (Tables 5.A,B,C and 302
- supplement Figure S3). 303

Adjusted analyses (unadjusted, fully adjusted and sensitivity models) showed significant 304 predictive effect of TILs, with beneficial effect of adjuvant chemotherapy among patients with 305 marked TILs for DFS (rHR = 0.22 [95%CI, 0.06-0.87], p = 0.031) and LCSS (rHR = 0.08 [95%CI, 306 0.01-0.66], p = 0.019) respectively. In this cohort, it was once again seen from adjusted analyses 307 that there was significant predictive effect of TMB in terms of OS with beneficial effect of adjuvant 308 309 chemotherapy among patients with low TMB (rHR = 3.1 [95%CI, 1.25-7.7], p = 0.015). Also, there appears to be a beneficial effect of chemotherapy among patients with marked TILs/low 310 TMB in terms of DFS (rHR = 0.06 [95%CI, 0.01-0.53], p = 0.011). (Table 6.A,B,C and 311 Supplement Figure S4.A,B,C). 312

313

Discussion 314

The LACE-Bio project provides an opportunity to analyze a large number of lung ADC with robust 315 clinical outcome data and detailed histopathological, immunohistochemical and molecular 316 information²⁴. Our descriptive analysis shows that MIP/SOL (48%) was the commonest lung ADC 317 subtype. There was a near 50-50 distribution of patients who received adjuvant chemotherapy and 318 those who did not. Our cohort had a significant proportion of low-risk lung ADC as the majority 319 were T2 (81%) and N0 (58%). Most of the patients underwent lobectomy (82%). 320

Analysis of prognostic and predictive factors, especially in relation to the pathological features of 321 a patient's disease is an important part of clinical decision making. With data from the Lace-Bio I 322

and II, we analyzed the association of lung ADC subtypes with potential and commonly used 323

genetic factors and biomarkers ²². The lung ADC subtypes based on the current WHO 324 Classification is shown in Table 1⁵. KRAS and EGFR mutations are mutually exclusive. Literature 325 has shown that lepidic subtype is associated with EGFR mutation, whereas solid and mucinous 326 subtypes are associated with lack of EGFR²⁵. Mucinous subtypes have shown strong association 327 with KRAS expression, while lepidic and acinar are associated with lower prevalence of KRAS 328 alterations ²⁵. While our results reiterate the association of KRAS mutation with mucinous ADC, 329 no association of EGFR with any of the ADC subtypes were observed. Although KRAS mutation 330 331 is associated with mucinous subtypes, our results show that high mucin levels were not differentially associated with KRAS alternations or absence of EGFR. 332

MIP/SOL was the most common subtype that showed a significant association with biomarkers 333 (B-Tubulin, p53, KRAS, Cyclin E, PD-L1 positivity, Median and high TMB). Several studies have 334 revealed MIP and SOL histology to have a poor prognosis and worse outcomes in terms of 335 recurrence free survival (RFS), disease free survival (DFS) and disease specific survival (DSS)²⁶⁻ 336 ²⁸. Reports have shown that MIP is more commonly associated with *EGFR* mutations than other 337 subtypes. MIP patients with EGFR mutations also had better survival when treated with tyrosine 338 kinase inhibitors or platinum based chemotherapy ²⁹. Prospective analysis using NGS sequencing 339 have provided evidence for MIP to have higher TMB, T cell infiltration and chromosomal 340 instability ³⁰. A prior analysis of Lace Bio studied the predictive value of ADC subtypes on benefit 341 from adjuvant chemotherapy. DFS was poor with MIP/SOL compared to LEP, ACI or PAP. 342 Survival advantage was observed with chemotherapy use in MIP/SOL patients (DFS: HR = 0.60343 [95% CI, 0.44-0.82], p =<0.01, SDFS: HR = 0.59 [95% CI, 0.42-0.81], p = 0.01). Histologic 344 subtyping may thus predict disease-specific outcomes with adjuvant chemotherapy use ³¹. We can 345 hypothesize that MIP/SOL, although more aggressive, has a higher chance of exhibiting molecular 346 targets and may be more amenable to systemic therapy. Even though prognostic or predictive 347 utility of biomarkers among ADC subtypes cannot be concluded, understanding their distribution 348 enables a better understanding of these histological entities. 349

In the Checkmate 568 trial, TMB > 10 mut/Mb was associated with a better response and outcome 350 when Stage IIIB and IV NSCLC was treated with nivolumab and low dose ipilimumab in both 351 PD-L1 >1% and <1% subgroups ³². TMB was traditionally measured by whole genome 352 sequencing. In contemporary practice, targeted NGS like FoundationOne CDx is commonly used 353 ³³. Higher TMB levels are associated with MIP, ACI or SOL subtypes ³⁴. This was consistent with 354 our analysis. There was a near 50-50 distribution of TMB between high and low patients, among 355 which MIP/SOL (59%) and ACI/PAP (47%) had the most patients with high TMB. Data form 356 357 studies including past Lace Bio analysis indicate that the survival advantage of adjuvant chemotherapy is limited to tumors with N1 and N2 lymph node involvement. For N0 tumors, the 358 benefit, albeit with a lower level of evidence, is limited to tumors greater than 4 cm in diameter. 359 This is Stage IB in 7th edition and IIA in the 8th edition. Given significant toxicity with 360 chemotherapy, besides the above-mentioned criteria, patient selection is based on comorbidities, 361 recovery from surgery and functional status [8]. Despite the above evidence, the advantage of 362 363 adjuvant chemotherapy for selected Stage IB, II and III NSCLC patients remains modest with a 5year survival benefit of 5% and hazard ratio of 0.89 [6,8]. Currently, there are no validated 364 molecular tools to aid patient selection for adjuvant chemotherapy [9-12]. Targeted sequencing of 365

908 samples involving 1538 genes selected based on the Cancer Genome Atlas (TCGA) Pan-366 Cancer analysis were reported in a previous Lace Bio publication. Devarakonda et al. using the 367 above showed that a high nonsynonymous TMB (>8 mut/Mb) was associated with a better 368 prognosis. The benefit of adjuvant chemotherapy in terms of LCSS was more pronounced with 369 low nonsynonymous TMBs (<4 mut/Mb). The survival benefit, however, may be due to the small 370 size and was not significant when the samples were regrouped by tertiles. The effect was noted in 371 the overall subgroup of the study which included both ADC and SCC. The survival benefit was 372 373 not observed when ADC alone was considered. This study used a TMB cut off as follows: low with $\leq 4 \text{ mut/Mb}$, intermediate with $> 4 \text{ and } \leq 8 \text{ mut/M}$ and high with > 8 mutations/Mb, while 374 we used ≤ 10 vs. >10 which is more in line with current clinical practice¹⁰. Our cohort also included 375 ADC alone and showed that low TMB predicted for better survival with adjuvant chemotherapy 376 use for lung ADC. While PD-L1 lone and combinations of TMB and PD-L1 did not have any 377 predictive effect, TILs however did have some significance in terms of DFS and LCSS. 378

The PACIFIC trial established the benefit of durvalumab in Stage III NSCLC. Following definitive 379 chemoradiation, durvalumab maintenance for 12 months had a significantly better PFS (44.2 vs 380 381 27%), median duration of response (72.8 vs 46.8%) at 18 months, median time to death and metastasis (23.2 months vs. 14.6 months; p<0.001) and OS (0.68[99.73% CI, 0.47 -0.997], p = 382 0.0025) ^{35,36}. While the KEYNOTE-189 established the superior OS and PFS of single agent 383 pembrolizumab with standard chemotherapy in the untreated metastatic setting ³⁷, the IMpower010 384 showed the benefit of adjuvant atezolizumab in Stage II-IIIA disease. Atezolizumab maintenance 385 following adjuvant chemotherapy had better DFS (0.79 [95%CI, 0.64-0.96], p = 0.0205), with 386 significant benefits in the PD-L1Tumor cells \geq 1% subgroup (0.66 [95%CI, 0.50-0.88], p = 0.0039) 387 ³⁸. It is thus clear that TMB, PD-L1, and to a lesser extent TILs, are important factors in enabling 388 providers to make a clinical decision. By providing information on the prognostic use and adjuvant 389 chemotherapy predictive ability of the various combinations of these factors, a better 390 understanding of the disease course may be possible. In our analysis, high TMB clearly had a 391 survival advantage, establishing its role as a prognostic marker. The combination of PD-L1 392 negative/high TMB had better survival, but the exact clinical significance is uncertain and maybe 393 because of the TMB being high. The high TMB group had a poor outcome with adjuvant 394 chemotherapy use suggesting that this group may be better served with immune checkpoint 395 therapy, rather than cytotoxic chemotherapy. TMB and PD-L1 combinations did not show any 396 397 significance in predicting benefits of adjuvant chemotherapy. TILs alone did not have a significant prognostic survival advantage. TILs other/high TMB had some prognostic benefit, which could 398 again be the result of TMB being high. Marked TILs did have a significance in predicting 399 chemotherapy benefits in terms of DFS and LCSS, while marked TILs/low TMB had DFS benefit. 400 This is hypothesis generating and can be the focus of future studies. Cancers with high TILs levels 401 have shown to have higher sensitivity to chemotherapy in the past ^{39,40}. High TILs are considered 402 a favorable prognostic marker for NSCLC⁴¹. TILs thus have the potential to serve as a surrogate 403 404 marker for a better outcome with adjuvant chemotherapy use in resectable lung ADC.

PD-L1 for pembrolizumab in modern practice is measured in terms of Tumor Proportion Score
 (TPS) using IHC like Dako PD-L1 IHC 22C3 pharmDx ⁴². PD-L1 IHC in the Lace Bio data was
 carried out on 4 μm sections, using the E1L3N rabbit monoclonal antibody (Cell Signaling,

Danvers, MA) on BenchMark XT autostainer (Ventana Medical Systems, Tucson, AZ) ²¹, which
may yield differing results compared to current clinical assays ⁴³. This is the likely reason for a
difference in percentage of PD-L1 positive patients seen in our analysis compared to contemporary
clinical trials³⁷. This could be considered a limitation of our study. For several of the subtypes like
LEP and MUC, the sample size was limited. Since the trials were done during the preimmunotherapy era, the treatment selection was not prespecified and PD-L1, TMB and TILs
analysis were done at a later point¹¹.

Our results reestablish and emphasize the application of the IASLC/ATS/ERS subtype 415 classification and highlights their assessment in the context of presence or absence of prognostic 416 and predictive biomarkers. MIP/SOL pattern is commonly associated with genetic alterations and 417 shows positivity for several biomarkers. While high TMB is associated with better prognosis 418 overall, its role in predicting survival with adjuvant chemotherapy is not established in lung ADC. 419 The survival benefit seen with combinations noted above may be attributed to the presence of 420 TMB being high in them. Marked TILs, although a small subgroup, may predict adjuvant 421 chemotherapy response ⁴⁴. Patients with high TMB, given the poor outcome with adjuvant 422 423 chemotherapy use, may be better served with immune checkpoint therapy. Further phase 3 studies 424 are needed to establish this.

425

426 Acknowledgements

- 427 Our sincere thanks to the Upstate Cancer Center, the Upstate Department of Medicine grant, and428 the LACE Bio consortium for enabling us to carry out this analysis.
- 429

430 **References**

- de Groot PM, Wu CC, Carter BW, Munden RF. The epidemiology of lung cancer. *Transl Lung Cancer Res.* 2018;7(3):220. doi:10.21037/TLCR.2018.05.06
- 433 2. Barta JA, Powell CA, Wisnivesky JP. Global Epidemiology of Lung Cancer. *Ann Glob*434 *Heal*. 2019;85(1). doi:10.5334/AOGH.2419
- 435 3. Lu T, Yang X, Huang Y, et al. Trends in the incidence, treatment, and survival of patients
 436 with lung cancer in the last four decades. *Cancer Manag Res.* 2019;11:943.
 437 doi:10.2147/CMAR.S187317
- 4. Publication of the WHO Classification of Tumours, 5th Edition, Volume 5: Thoracic
 439 Tumours IARC. Accessed February 1, 2023. https://www.iarc.who.int/news440 events/publication-of-the-who-classification-of-tumours-5th-edition-volume-5-thoracic441 tumours/
- Travis WD, Brambilla E, Noguchi M, et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society International Multidisciplinary Classification of Lung Adenocarcinoma. *J Thorac Oncol.*2011;6(2):244. doi:10.1097/JTO.0B013E318206A221

- 446 6. Révész D, Engelhardt EG, Tamminga JJ, et al. Needs with Regard to Decision Support
 447 Systems for Treating Patients with Incurable Non-small Cell Lung Cancer. *J Cancer*448 *Educ.* 2020;35(2):345. doi:10.1007/S13187-019-1471-8
- Herbst RS, Giaccone G, de Marinis F, et al. Atezolizumab for First-Line Treatment of PD-L1–Selected Patients with NSCLC. *N Engl J Med.* 2020;383(14):1328-1339.
 doi:10.1056/NEJMOA1917346/SUPPL_FILE/NEJMOA1917346_DATA-SHARING.PDF
- 8. Pignon JP, Tribodet H, Scagliotti G V., et al. Lung adjuvant cisplatin evaluation: A pooled analysis by the LACE collaborative group. *J Clin Oncol.* 2008;26(21):3552-3559.
 doi:10.1200/JCO.2007.13.9030
- MacLean M, Luo X, Wang S, Kernstine K, Gerber DE, Xie Y. Outcomes of neoadjuvant and adjuvant chemotherapy in stage 2 and 3 non-small cell lung cancer: an analysis of the National Cancer Database. *Oncotarget*. 2018;9(36):24470. doi:10.18632/ONCOTARGET.25327
- 460 10. Devarakonda S, Rotolo F, Tsao MS, et al. Tumor Mutation Burden as a Biomarker in
 461 Resected Non–Small-Cell Lung Cancer. *J Clin Oncol*. 2018;36(30):2995.
 462 doi:10.1200/JCO.2018.78.1963
- 463 11. Yarchoan M, Albacker LA, Hopkins AC, et al. PD-L1 expression and tumor mutational
 464 burden are independent biomarkers in most cancers. *JCI Insight*. 2019;4(6).
 465 doi:10.1172/JCI.INSIGHT.126908
- Mancini M, Righetto M, Noessner E. Checkpoint Inhibition in Bladder Cancer: Clinical
 Expectations, Current Evidence, and Proposal of Future Strategies Based on a TumorSpecific Immunobiological Approach. *Cancers (Basel)*. 2021;13(23):6016.
 doi:10.3390/CANCERS13236016
- 470 13. Wu Y-L, Tsuboi M, He J, et al. Osimertinib in Resected EGFR -Mutated Non–Small-Cell
 471 Lung Cancer . *N Engl J Med*. 2020;383(18):1711-1723.
 472 doi:10.1056/NEJMOA2027071/SUPPL_FILE/NEJMOA2027071_DATA473 SHARING.PDF
- 474 14. Choi SH, Jeong JY, Lee SY, et al. Clinical implication of minimal presence of solid or micropapillary subtype in early-stage lung adenocarcinoma. *Thorac Cancer*.
 476 2021;12(2):235-244. doi:10.1111/1759-7714.13754

Russell PA, Wainer Z, Wright GM, Daniels M, Conron M, Williams RA. Does lung
adenocarcinoma subtype predict patient survival?: A clinicopathologic study based on the
new International Association for the Study of Lung Cancer/American Thoracic
Society/European Respiratory Society international multidisciplinary lung
adenocarcinoma classification. *J Thorac Oncol.* 2011;6(9):1496-1504.
doi:10.1097/JTO.0B013E318221F701

Lu D, Yang J, Liu X, et al. Clinicopathological features, survival outcomes, and
appropriate surgical approaches for stage I acinar and papillary predominant lung
adenocarcinoma. *Cancer Med.* 2020;9(10):3455. doi:10.1002/CAM4.3012

- 17. Chang JC, Offin M, Falcon C, et al. Comprehensive Molecular and Clinicopathologic
 Analysis of 200 Pulmonary Invasive Mucinous Adenocarcinomas Identifies Distinct
 Characteristics of Molecular Subtypes. *Clin Cancer Res.* 2021;27(14):4066.
 doi:10.1158/1078-0432.CCR-21-0423
- 490 18. Seymour L, Le Teuff G, Brambilla E, et al. LACE-Bio: Validation of Predictive and/or
 491 Prognostic Immunohistochemistry/Histochemistry-based Biomarkers in Resected Non–
 492 small-cell Lung Cancer. *Clin Lung Cancer*. 2019;20(2):66-73.e6.
 493 doi:10.1016/J.CLLC.2018.10.001
- 494 19. Shepherd FA, Domerg C, Hainaut P, et al. Pooled Analysis of the Prognostic and
 495 Predictive Effects of KRAS Mutation Status and KRAS Mutation Subtype in Early-Stage
 496 Resected Non–Small-Cell Lung Cancer in Four Trials of Adjuvant Chemotherapy. *J Clin*497 Oncol. 2013;31(17):2173. doi:10.1200/JCO.2012.48.1390
- 498 20. Graziano SL, Gu L, Wang X, et al. Prognostic Significance of Mucin and p53 Expression
 499 in Stage IB Non-Small Cell Lung Cancer: A Laboratory Companion Study to CALGB
 500 9633. *J Thorac Oncol.* 2010;5(6):810. doi:10.1097/JTO.0b013e3181d89f95
- 501 21. Tsao MS, Le Teuff G, Shepherd FA, et al. PD-L1 protein expression assessed by
 502 immunohistochemistry is neither prognostic nor predictive of benefit from adjuvant
 503 chemotherapy in resected non-small cell lung cancer. *Ann Oncol.* 2017;28(4):882.
 504 doi:10.1093/ANNONC/MDX003
- Rotolo F, Zhu CQ, Brambilla E, et al. Genome-wide copy number analyses of samples
 from LACE-Bio project identify novel prognostic and predictive markers in early stage
 non-small cell lung cancer. *Transl Lung Cancer Res.* 2018;7(3):416.
 doi:10.21037/TLCR.2018.05.01
- Jänne PA, Wang X, Socinski MA, et al. Randomized Phase II Trial of Erlotinib Alone or
 With Carboplatin and Paclitaxel in Patients Who Were Never or Light Former Smokers
 With Advanced Lung Adenocarcinoma: CALGB 30406 Trial. *J Clin Oncol.*2012;30(17):2063. doi:10.1200/JCO.2011.40.1315
- Shepherd FA, Lacas B, Le Teuff G, et al. Pooled Analysis of the Prognostic and
 Predictive Effects of TP53 Comutation Status Combined With KRAS or EGFR Mutation
 in Early-Stage Resected Non–Small-Cell Lung Cancer in Four Trials of Adjuvant
 Chemotherapy. *J Clin Oncol.* 2017;35(18):2018. doi:10.1200/JCO.2016.71.2893
- 517 25. Jiang L, Mino-Kenudson M, Roden AC, et al. Association between the novel
 518 classification of lung adenocarcinoma subtypes and EGFR/KRAS mutation status: A
 519 systematic literature review and pooled-data analysis. *Eur J Surg Oncol.* 2019;45(5):870520 876. doi:10.1016/J.EJSO.2019.02.006
- 521 26. Matsuoka Y, Yurugi Y, Takagi Y, et al. Prognostic Significance of Solid and
 522 Micropapillary Components in Invasive Lung Adenocarcinomas Measuring ≤3 cm.
 523 Anticancer Res. 2016;36(9):4923-4930. doi:10.21873/ANTICANRES.11058
- 524 27. Cha MJ, Lee HY, Lee KS, et al. Micropapillary and solid subtypes of invasive lung
 525 adenocarcinoma: clinical predictors of histopathology and outcome. *J Thorac Cardiovasc*526 *Surg.* 2014;147(3). doi:10.1016/J.JTCVS.2013.09.045

- S27 28. Yanagawa N, Shiono S, Abiko M, Katahira M, Osakabe M, Ogata SY. The Clinical
 S28 Impact of Solid and Micropapillary Patterns in Resected Lung Adenocarcinoma. *J Thorac*S29 Oncol. 2016;11(11):1976-1983. doi:10.1016/J.JTHO.2016.06.014
- Cao Y, Zhu LZ, Jiang MJ, Yuan Y. Clinical impacts of a micropapillary pattern in lung adenocarcinoma: a review. *Onco Targets Ther*. 2016;9:149. doi:10.2147/OTT.S94747
- 30. Zhang S, Xu Y, Zhao P, et al. Integrated Analysis of Genomic and Immunological
 Features in Lung Adenocarcinoma With Micropapillary Component. *Front Oncol.*2021;11. doi:10.3389/FONC.2021.652193/FULL
- Tsao MS, Marguet S, Le Teuff G, et al. Subtype Classification of Lung Adenocarcinoma
 Predicts Benefit From Adjuvant Chemotherapy in Patients Undergoing Complete
 Resection. *J Clin Oncol.* 2015;33(30):3439. doi:10.1200/JCO.2014.58.8335
- 32. Ready N, Hellmann MD, Awad MM, et al. First-Line Nivolumab Plus Ipilimumab in
 Advanced Non–Small-Cell Lung Cancer (CheckMate 568): Outcomes by Programmed
 Death Ligand 1 and Tumor Mutational Burden as Biomarkers. *J Clin Oncol.*2019;37(12):992. doi:10.1200/JCO.18.01042
- Willis C, Fiander M, Tran D, et al. Tumor mutational burden in lung cancer: a systematic
 literature review. *Oncotarget*. 2019;10(61):6604. doi:10.18632/ONCOTARGET.27287
- Talvitie EM, Vilhonen H, Kurki S, et al. High tumor mutation burden predicts favorable
 outcome among patients with aggressive histological subtypes of lung adenocarcinoma: A
 population-based single-institution study. *Neoplasia*. 2020;22(9):333.
 doi:10.1016/J.NEO.2020.05.004
- Antonia SJ, Villegas A, Daniel D, et al. Durvalumab after Chemoradiotherapy in Stage III
 Non–Small-Cell Lung Cancer. *N Engl J Med.* 2017;377(20):1919-1929.
 doi:10.1056/NEJMOA1709937/SUPPL FILE/NEJMOA1709937 DISCLOSURES.PDF
- 36. Antonia SJ, Villegas A, Daniel D, et al. Overall Survival with Durvalumab after
 Chemoradiotherapy in Stage III NSCLC. *N Engl J Med.* 2018;379(24):2342-2350.
 doi:10.1056/NEJMOA1809697/SUPPL_FILE/NEJMOA1809697_DATASHARING.PDF
- 37. Gandhi L, Rodríguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus Chemotherapy in
 Metastatic Non–Small-Cell Lung Cancer. *N Engl J Med.* 2018;378(22):2078-2092.
 doi:10.1056/NEJMOA1801005/SUPPL_FILE/NEJMOA1801005_DISCLOSURES.PDF
- 38. Wakelee HA, Altorki NK, Zhou C, et al. IMpower010: Primary results of a phase III
 global study of atezolizumab versus best supportive care after adjuvant chemotherapy in
 resected stage IB-IIIA non-small cell lung cancer (NSCLC). *J Clin Oncol.*2021;39(15 suppl):8500. doi:10.1200/JCO.2021.39.15 suppl.8500
- Shibutani M, Maeda K, Nagahara H, et al. Tumor-infiltrating Lymphocytes Predict the
 Chemotherapeutic Outcomes in Patients with Stage IV Colorectal Cancer. *In Vivo (Brooklyn)*. 2018;32(1):151. doi:10.21873/INVIVO.11218
- West NR, Milne K, Truong PT, Macpherson N, Nelson BH, Watson PH. Tumor infiltrating lymphocytes predict response to anthracycline-based chemotherapy in estrogen

567 568		receptor-negative breast cancer. <i>Breast Cancer Res.</i> 2011;13(6):R126. doi:10.1186/BCR3072
569 570 571	41.	Chen B, Li H, Liu C, et al. Prognostic value of the common tumour-infiltrating lymphocyte subtypes for patients with non-small cell lung cancer: A meta-analysis. <i>PLoS One</i> . 2020;15(11). doi:10.1371/JOURNAL.PONE.0242173
572 573 574	42.	Wang H, Agulnik J, Kasymjanova G, et al. The metastatic site does not influence PD-L1 expression in advanced non-small cell lung carcinoma. <i>Lung Cancer</i> . 2019;132:36-38. doi:10.1016/J.LUNGCAN.2019.04.009
575 576 577	43.	McLaughlin J, Han G, Schalper KA, et al. Quantitative Assessment of the Heterogeneity of PD-L1 Expression in Non-small Cell Lung Cancer (NSCLC). <i>JAMA Oncol.</i> 2016;2(1):46. doi:10.1001/JAMAONCOL.2015.3638
578 579 580	44.	Brambilla E, Le Teuff G, Marguet S, et al. Prognostic Effect of Tumor Lymphocytic Infiltration in Resectable Non–Small-Cell Lung Cancer. <i>J Clin Oncol</i> . 2016;34(11):1223. doi:10.1200/JCO.2015.63.0970
581		
582		
583	Table	S

585	Table 1. Demographic, clinical, and pathological characteristics of the study population.
586	

Lace-Bio II	(N = 357) (%)
Age	
< 55	119 (33)
55-64	131 (37)
>= 65	107 (30)
Gender	
Female	146 (41)
Male	211 (59)
ADC subtype	
Lepidic (LEP)	14 (4)
Acinar/Papillary (ACI or PAP)	139 (39)
Micropapillary/Solid (MIP or SOL)	173 (48)
Mucinous (MUC)	19 (5)
Other	12 (3)
WHO performance status	
0	196 (55)
1-2	159 (45)
missing	2(1)
Т	
T1	52 (15)

Τ2	286 (81)
T3/T4	16 (5)
missing	3 (1)
Ν	
N0	206 (58)
N1	106 (30)
N2	42 (12)
missing	3 (1)
Stage	
IA	20 (6)
IB	181 (51)
IIA	25 (7)
IIB	81 (23)
IIIA	45 (13)
IIIB	2 (1)
missing	3 (1)
Surgery type	
Lobectomy/Other	294 (82)
Pneumonectomy	63 (18)
Treatment arm	
Observation	179 (50)
Adjuvant chemotherapy	178 (50)
Trial	
CALGB	74 (21)
IALT	163 (46)
JBR10	120 (34)

588	Table 2 A Distribution	of various	hiomarkers and	l genes from	the Lace-Ric	data in the
200	Table 2. A. Distribution	of various	o Diomai Kei s'and	i genes n'om	i the Lace-Dic	i uata mi the

overall population and subgroups according to ADC histologies. B. Association between
 Mucin and KRAS/EGFR.

A	Overall (N = 357) (%)	Lepidic (N = 14) (%)	Acinar or Papillary (N = 139) (%)	Micropapillary or Solid (N = 173) (%)	Mucinous (N = 19) (%)	Other (N = 12) (%)	P value (except other)
Mucin							4e-04^
0	116 (32)	6 (43)	39 (28)	69 (40)	0 (0)	2 (17)	
1 (any positive staining)	207 (58)	4 (29)	90 (65)	90 (52)	18 (95)	5 (42)	
Non evaluable	34 (10)	4 (29)	10(7)	14 (8)	1 (5)	5 (42)	

B-Tubulin							5e-06^
0 (< 180)	115	7 (50)	57 (41)	36 (21)	12 (63)	3 (25)	
	(32)						
1 (>= 180)	208	6 (43)	70 (50)	123 (71)	5 (26)	4 (33)	
	(58)			- ()		()	
Non	$\frac{(30)}{34(10)}$	1 (7)	12 (0)	14 (8)	2 (11)	5 (12)	
	34 (10)	1(7)	12 (9)	14 (8)	2(11)	5 (42)	
evaluable							0.64
p27							0.6^
0 (< 50)	155	4 (29)	62 (45)	76 (44)	9 (47)	4 (33)	
	(43)						
1 (>= 50)	172	9 (64)	66 (47)	86 (50)	8 (42)	3 (25)	
- ((48)				- ()	- ()	
Non	$\frac{(10)}{20(8)}$	1 (7)	11 (8)	11 (6)	2 (11)	5 (12)	
	30 (8)	1(/)	11(0)	11(0)	2(11)	5 (42)	
evaluable							
TILs							0.7^
Marked	26 (7)	0 (0)	11 (8)	13 (8)	1 (5)	1 (8)	
Other	326	14	127 (91)	159 (92)	18 (95)	8 (67)	
	(91)	(100)					
Non	5(1)	0(0)	1 (1)	1 (1)	0 (0)	3 (25)	
avaluabla	5(1)	0(0)	1 (1)	1 (1)		5 (25)	
							0.002
p53							0.002^
0 (<= 100)	199	7 (50)	82 (59)	88 (51)	16 (84)	6 (50)	
	(56)						
1 (> 100)	97 (27)	1 (7)	34 (24)	62 (36)	0 (0)	0 (0)	
Non	61 (17)	6 (43)	23 (17)	23 (13)	3 (16)	6 (50)	
evaluable				20 (10)	0 (10)	0 (00)	
							0.04
	220		00 (71)	116 (67)		0 ((7)	0.04
W I	238	9 (64)	98 (71)	116 (67)	7 (37)	8 (67)	
	(67)						
MUT	110	5 (36)	38 (27)	55 (32)	11 (58)	1 (8)	
	(31)						
Non	9(3)	0 (0)	3 (2)	2(1)	1 (5)	3 (25)	
evaluable							
FGFR							0.06^
	240	11 (70)	00 (65)	121 (70)	14 (74)	4 (22)	0.00
VV I	240	11(79)	90 (03)	121 (70)	14 (74)	4 (33)	
	(67)						
MUT	36 (10)	2 (14)	21 (15)	12 (7)	0 (0)	1 (8)	
Non	81 (23)	1 (7)	28 (20)	40 (23)	5 (26)	7 (58)	
evaluable				· · ·			
ERCC1							0.6^
0 (<=1)	13 (0)	0.00	7 (13)	6 (8)	0 (0)	0(0)	0.0
1 (> 1)	13(9)	2(100)	(13)	$\frac{0(0)}{72(02)}$			
1 (> 1)	155	2 (100)	4/(8/)	13 (92)	/ (100)	4	
	(91)					(100)	
Non	211	12 (86)	85 (61)	94 (54)	12 (63)	8 (67)	
evaluable	(59)						

Cyclin E							0.003^
0 (< 40)	186	7 (100)	81 (82)	83 (64)	11 (92)	4 (67)	
	(73)						
1 (>= 40)	68 (27)	0 (0)	18 (18)	47 (36)	1 (8)	2 (33)	
Non	103	7 (50)	40 (29)	43 (25)	7 (37)	6 (50)	
evaluable	(29)						
p16							0.2^
0 (< 1)	97 (38)	1 (14)	32 (32)	57 (44)	5 (42)	2 (33)	
1 (>= 1)	157	6 (86)	67 (68)	73 (56)	7 (58)	4 (67)	
	(62)						
Non	103	7 (50)	40 (29)	43 (25)	7 (37)	6 (50)	
evaluable	(29)						
FAS							0.4^
0 (< 240)	252	9 (82)	104 (81)	124 (78)	12 (63)	3 (43)	
	(77)		· · ·			, í	
1 (>= 240)	74 (23)	2 (18)	25 (19)	36 (22)	7 (37)	4 (57)	
Non	31 (9)	3 (21)	10(7)	13 (8)	0 (0)	5 (42)	
evaluable						, í	
FASL							0.4^
0 (< 240)	167	3 (27)	69 (53)	83 (52)	9 (47)	3 (43)	
	(51)						
1 (>= 240)	161	8 (73)	61 (47)	78 (48)	10 (53)	4 (57)	
	(49)					, í	
Non	29 (8)	3 (21)	9 (6)	12 (7)	0 (0)	5 (42)	
evaluable							
BAX							0.1^
0 (< 20)	62 (19)	1 (8)	17 (13)	37 (23)	5 (26)	2 (29)	
1 (>= 20)	263	11 (92)	109 (87)	124 (77)	14 (74)	5 (71)	
	(81)						
Non	32 (9)	2 (14)	13 (9)	12 (7)	0 (0)	5 (42)	
evaluable							
BRCA1							0.2^
0 (< 160)	101	0 (0)	42 (45)	51 (44)	6 (46)	2 (40)	
	(44)						
1 (>= 160)	131	6 (100)	51 (55)	64 (56)	7 (54)	3 (60)	
	(56)						
Non	125	8 (57)	46 (33)	58 (34)	6 (32)	7 (58)	
evaluable	(35)						
PD-L1							0.03^
(Tumor cell							
PD-L1							
expression)							
Negative (<	235	13	98 (77)	103 (67)	12 (75)	9 (90)	
1%)	(73)	(100)					

Positi 1º	ve (>= %)	85 (27)	0 (0)	29 (23)	51 (33)	4 (25)	1 (10)		
N	lon	37 (10)	1 (7)	12 (9)	19 (11)	3 (16)	2 (17)		
eval	uable	, í							
ТМВ								4.16	6e-05*
m	nin	0.19	1.43	0.19	0.71	0.51	1.07		
me	dian	4.87	2.43	4.33	6.15	2.24	3.23		
m	nax	162.69	10.69	162.69	139.39	36.09	11.38		
mean	n (sd)	8.36 ±	3.77 ±	7.56 ±	9.98 ± 15.66	5.67 ±	$3.88 \pm$		
		14.64	2.67	15.03		9.43	2.77		
TM	IB (3							0.0	013^
leve	els as								
ot	her								
pap	oers)								
Low	(<= 4	147	9 (64)	63 (45)	54 (31)	14 (74)	7 (58)		
M	ſb)	(41)							
Mode	erate (4	97 (27)	4 (29)	37 (27)	50 (29)	2 (11)	4 (33)		
Mb <	<=7.8								
N.	<u>1b)</u>	110	1 (5)		(10)		1 (0)		
High	(> 7.8		1 (7)	39 (28)	69 (40)	3 (16)	1 (8)		
I. I.	1b)	(32)						0.0	0104
IN	IB (2							0.0	018^
leve	els Dy								
I and	<u>1111)</u> (<= 10	270	12 (02)	114 (82)	125 (72)	16 (94)	11		
LOW ((\10 -/Mb)	(78)	15 (95)	114 (02)	123 (72)	10 (04)	(02)		
High	(> 10)	(78)	1 (7)	25 (18)	18 (28)	3 (16)	(92)		
Mut	·/Mb)	10(22)	1(/)	25 (18)	48 (28)	5 (10)	1 (0)		
P R	 Un	 adjusted n	nodel	Fully adjusted model		Sensitivity analysis		alveie	
D	OR	n	n(IRT)	1	n	n(IRT)	OR	n n	n(IRT)
	[95%	Р		OR [95%	Р		[95%	P	P(LICI)
	CI			CI			CII		
					AS(N = 312)				
MUT	1.03	0.909	0.909	1.05	0.85	0.85	0.96	0.897	0.897
	[0.62-			[0.63-			[0.56-		
	1.72]			1.78]			1.66]		
WT	1.00			1.00			1.00		
	•	·	• 	EGI	FR(N = 243)	·		·	·
MUT	1.13	0.766	0.765	1.05	0.902	0.902	1.07	0.878	0.878
	[0.52-			[0.46-			[0.45-		
	2.57]			2.53]			2.67]		
WT	1.00			1.00			1.00		

593 ^ Chi-squared test

594 * Kruskal–Wallis test

596	Table 3. A. Prognostic effect of PD-L1 expression, TMB status and concomitant PD-L1
597	expression and TMB status on overall survival (OS) in the total population (n=315). B.
598	Prognostic effect of PD-L1 expression, TMB status and concomitant PD-L1 expression and
599	TMB status on disease-free survival (DFS) in the total population (n=315). C. Prognostic
600	effect of PD-L1 expression, TMB status and concomitant PD-L1 expression and TMB
601	status on lung-cancer-specific survival (LCSS) in the total population (n=315).

A.	Unadjusted m	nodel	Fully adjusted	model Sensitivity an		analysis				
	HR [95%CI]	p-value	HR [95%CI]	p-	HR [95%CI]	p-				
		DD	[1 overvession	value		value				
DD I 1		г <i>р</i> -1			1 16 [0.9					
Positive	1.33 [0.93-1.91]	0.116	1.15 [0.8-1.66]	0.455	1.68]	0.437				
PD-L1	1.00		1.00		1.00					
Negativ										
e										
	TMB Status									
TMB high	0.56 [0.36-0.88]	0.011	0.7 [0.44-1.11]	0.126	0.69 [0.43- 1.11]	0.128				
TMB low	1.00		1.00		1.00					
		P	D-L1/TMB	1	I	1				
PD-L1 Positive /high TMB	1.14 [0.63-2.05]	0.662	1.12 [0.62-2.05]	0.704	1.13 [0.61- 2.07]	0.703				
PD-L1 Positive /low TMB	1.11 [0.73-1.67]	0.625	0.98 [0.64-1.5]	0.929	0.98 [0.64- 1.5]	0.932				
PD-L1 Negativ e/high TMB	0.36 [0.19-0.69]	0.002	0.46 [0.23-0.89]	0.021	0.46 [0.23- 0.89]	0.022				
PD-L1	1.00		1.00		1.00					
Negativ e/low TMB										
В.	Unadjusted n	nodel	Fully adjusted	model	Sensitivity an	alysis				
	HR [95%CI]	p-value	HR [95%CI]	p- value	HR [95%CI]	p- value				

		PD-	L1 expression			
PD-L1 Positive	1.39 [1-1.94]	0.053	1.28 [0.91-1.79]	0.16	1.28 [0.9- 1.81]	0.164
PD-L1	1.00		1.00		1.00	
Negativ						
e		T	MB Status			
		-				
TMB high	0.62 [0.42-0.91]	0.015	0.67 [0.44-1.01]	0.057	0.65 [0.43- 0.99]	0.045
TMB	1.00		1.00		1.00	
10W		 	D-L1/TMB			
PD-L1						
Positive /high TMB	1.07 [0.62-1.85]	0.806	1.04 [0.6-1.82]	0.881	1.01 [0.58- 1.78]	0.964
PD-L1 Positive /low TMB	1.27 [0.86-1.87]	0.223	1.2 [0.81-1.78]	0.372	1.19 [0.8- 1.78]	0.388
PD-L1 Negativ e/high TMB	0.48 [0.29-0.81]	0.006	0.52 [0.3-0.9]	0.02	0.52 [0.3-0.9]	0.018
PD-L1 Negativ e/low TMB	1.00		1.00		1.00	
C.	Unadjusted m	odel	Fully adjusted	model	Sensitivity an	alysis
	HR [95%CI]	p-value	HR [95%CI]	p- value	HR [95%CI]	p- value
		PDL	-L1 expression			
PD-L1 Positive	1.4 [0.98-2]	0.062	1.3 [0.9-1.87]	0.166	1.33 [0.91- 1.93]	0.136
PD-L1 Negativ e	1.00		1.00		1.00	
		T	MB Status			1

TMB high	0.63 [0.42-0.96]	0.03	0.71 [0.46-1.11]	0.137	0.71 [0.45- 1.1]	0.126
TMB low	1.00		1.00		1.00	
		P	D-L1/TMB			
PD-L1 Positive /high TMB	1.01 [0.55-1.86]	0.963	1.03 [0.55-1.92]	0.926	1.03 [0.55- 1.94]	0.915
PD-L1 Positive /low TMB	1.35 [0.9-2.04]	0.146	1.27 [0.84-1.93]	0.261	1.3 [0.85- 1.98]	0.231
PD-L1 Negativ e/high TMB	0.54 [0.32-0.93]	0.026	0.61 [0.35-1.09]	0.094	0.62 [0.35- 1.09]	0.094
PD-L1 Negativ e/low TMB	1.00		1.00		1.00	

604

Table 4.A. Predictive effect of PD-L1 expression, TMB status and concomitant PD-L1 expression and TMB status on overall survival (OS) in the total population (n=315). B. Predictive effect of PD-L1 expression, TMB status and concomitant PD-L1 expression and TMB status on disease-free survival (DFS) in the total population (n=315). C. Predictive effect of PD-L1 expression, TMB status and concomitant PD-L1 expression and TMB status on lung-cancer-specific survival (LCSS) in the total population (n=315)

A.	Unadjusted model		Fully adjusted model		Sensitivity analysis	
	rHR [95%CI]	p-value	rHR [95%CI]	p- value	rHR [95%CI]	p- value
		PD-	L1 expression			
PD-L1 Positive	1.05 [0.52-2.12]	0.9	1.08 [0.52-2.25]	0.827	1.07 [0.51- 2.22]	0.86
PD-L1 Negativ e	1.00		1.00		1.00	

		Т	MB Status			
ТМР			I		2 20 [1 12	
high	1.96 [0.79-4.84]	0.145	2.75 [1.07-7.04]	0.035	2.89 [1.13- 7.4]	0.027
TMB low	1.00		1.00		1.00	
10 10		P	D-L1/TMB		I	I
PD-L1 Positive /high TMB	1.98 [0.56-6.93]	0.286	2.8 [0.78-10.03]	0.114	2.76 [0.77- 9.9]	0.119
PD-L1 Positive /low TMB	0.87 [0.39-1.97]	0.742	0.77 [0.33-1.8]	0.553	0.78 [0.34- 1.79]	0.552
PD-L1 Negativ e/high TMB	1.49 [0.42-5.27]	0.535	2.1 [0.56-7.85]	0.271	2.27 [0.6- 8.52]	0.226
PD-L1 Negativ e/low TMB	1.00		1.00		1.00	
В.	Unadjusted m	odel	Fully adjusted	model	Sensitivity an	alysis
	rHR [95%CI]	p-value	rHR [95%CI]	p- value	rHR [95%CI]	p- value
		PDL	-L1 expression			
PD-L1 Positive	1.1 [0.57-2.12]	0.774	1.06 [0.54-2.06]	0.869	1.05 [0.54- 2.04]	0.895
PD-L1 Negativ e	1.00		1.00		1.00	
		Т	MB Status			
TMB high	1.25 [0.58-2.71]	0.572	1.54 [0.69-3.4]	0.289	1.66 [0.75- 3.65]	0.212
TMB low	1.00		1.00		1.00	
		P	D-L1/TMB			

PD-L1 Positive /high TMB	1.94 [0.62-6.1]	0.258	1.86 [0.58-5.96]	0.299	1.92 [0.6- 6.16]	0.274
PD-L1 Positive /low TMB	0.81 [0.38-1.74]	0.593	0.82 [0.38-1.77]	0.607	0.81 [0.37- 1.75]	0.588
PD-L1 Negativ e/high TMB	0.75 [0.26-2.13]	0.59	1.04 [0.35-3.09]	0.937	1.14 [0.39- 3.35]	0.818
PD-L1 Negativ e/low TMB	1.00		1.00		1.00	
C.	Unadjusted m	odel	Fully adjusted model		Sensitivity analysis	
	rHR [95%CI]	p-value	rHR [95%CI]	р-	rHR	р-
				value	[95%CI]	value
		PDL-	-L1 expression			
PD-L1 Positive	1.02 [0.51-2.06]	0.954	0.96 [0.47-1.96]	0.908	0.95 [0.46- 1.95]	0.895
PD-L1 Negativ e	1.00		1.00		1.00	
		Т	MB Status			
TMB high	0.9 [0.39-2.06]	0.806	1.1 [0.47-2.57]	0.828	1.16 [0.5- 2.72]	0.724
TMB low	1.00		1.00		1.00	
		P]	D-L1/TMB			
PD-L1 Positive /high TMB	1.32 [0.39-4.51]	0.653	1.22 [0.35-4.24]	0.758	1.24 [0.36- 4.34]	0.735

PD-L1 Negativ e/high TMB	0.6 [0.2-1.8]	0.363	0.85 [0.27-2.68]	0.787	0.91 [0.29- 2.85]	0.867
PD-L1	1.00		1.00		1.00	
Negativ						
e/low						
TMB						
11/10						

612

613 Table 5.A. Prognostic effect of TILs, TMB status and concomitant TILs and TMB status on

overall survival (OS) in the total population (n=347). B. Prognostic effect of TILs, TMB status and concomitant TILs and TMB status on disease-free survival (DFS) in the total

population (n=347). C. Prognostic effect of TILs, TMB status and concomitant TILs and

TMB status on lung-cancer-specific survival (LCSS) in the total population (n=347).

A.	Unadjusted m	odel	Fully adjusted	model	Sensitivity an	alysis			
	HR [95%CI]	p-value	HR [95%CI]	p-	HR [95%CI]	p-			
				value		value			
	TILs								
Marked	0.6 [0.29-1.22]	0.159	0.54 [0.26-1.12]	0.099	0.54 [0.26- 1.13]	0.102			
Other	1.00		1.00		1.00				
		1	ТМВ			•			
TMB high	0.57 [0.37-0.87]	0.009	0.72 [0.46-1.12]	0.146	0.71 [0.46- 1.11]	0.138			
TMB low	1.00		1.00		1.00				
		ſ	TILs/TMB	I		8			
TILs Marked /high TMB	0.53 [0.13-2.14]	0.371	0.43 [0.1-1.79]	0.245	0.44 [0.1- 1.84]	0.261			
TILs Marked /low TMB	0.52 [0.23-1.18]	0.118	0.54 [0.23-1.27]	0.159	0.54 [0.23- 1.27]	0.155			
TILs Other/h	0.54 [0.35-0.84]	0.007	0.73 [0.46-1.16]	0.182	0.72 [0.46- 1.15]	0.168			

igh TMB						
TILs Other/l ow TMB	1.00		1.00		1.00	
B .	Unadjusted m	nodel	Fully adjusted	model	Sensitivity an	alysis
	HR [95%CI]	p-value	HR [95%CI]	p- value	HR [95%CI]	p- value
			TILs		1	1
Marked	0.66 [0.36-1.22]	0.181	0.59 [0.31-1.12]	0.106	0.6 [0.32- 1.13]	0.114
Other	1.00		1.00		1.00	
		Т	MB Status	1	I	
TMB high	0.63 [0.43-0.91]	0.014	0.68 [0.46-1.01]	0.059	0.66 [0.44- 0.99]	0.042
TMB low	1.00		1.00		1.00	
]	TILs/TMB	I	1	
TILs Marked /high TMB	0.65 [0.2-2.04]	0.457	0.54 [0.17-1.78]	0.312	0.55 [0.17- 1.79]	0.32
TILs Marked /low TMB	0.56 [0.27-1.14]	0.11	0.54 [0.26-1.13]	0.103	0.54 [0.25- 1.14]	0.106
TILs Other/h igh TMB	0.59 [0.4-0.88]	0.009	0.67 [0.44-1]	0.052	0.65 [0.43- 0.97]	0.037
TILs Other/l ow TMB	1.00		1.00		1.00	
С.	Unadjusted m	nodel	Fully adjusted	model	Sensitivity an	alysis
	HR [95%CI]	p-value	HR [95%CI]	p- value	HR [95%CI]	p- value
		1	TILs		1	

Marked	0.55 [0.27-1.12]	0.099	0.5 [0.24-1.04]	0.064	0.5 [0.24-	0.069
Other	1.00		1.00		1.00	
		Т	MB Status	I		
TMB high	0.65 [0.44-0.97]	0.033	0.73 [0.48-1.11]	0.143	0.71 [0.46- 1.09]	0.117
TMB low	1.00		1.00		1.00	
	I]	TILs/TMB	1		
TILs Marked /high TMB	0.51 [0.13-2.08]	0.35	0.46 [0.11-1.93]	0.289	0.48 [0.12- 2.03]	0.321
TILs Marked /low TMB	0.48 [0.21-1.09]	0.081	0.46 [0.2-1.08]	0.076	0.46 [0.19- 1.08]	0.074
TILs Other/h igh TMB	0.62 [0.42-0.94]	0.024	0.72 [0.46-1.11]	0.134	0.7 [0.45- 1.08]	0.105
TILs Other/l ow TMB	1.00		1.00		1.00	

619 Figure 6.A. Predictive effect of TILs, TMB status and con	ncomitant TILs and TMB status on
---	----------------------------------

overall survival (OS) in the total population (n=347). B. Predictive effect of TILs, TMB status

621 and concomitant TILs and TMB status on disease-free survival (DFS) in the total population

622 (n=347). C. Predictive effect of TILs, TMB status and concomitant TILs and TMB status on

623 lung-cancer-specific survival (LCSS) in the total population (n=347).

A.	Unadjusted model		Fully adjusted model		Sensitivity analysis		
	rHR [95%CI]	p-value	rHR [95%CI]	p-value	rHR 195%C11	p- value	
Marked	0.44 [0.1-1.92]	0.276	0.41 [0.09-1.84]	0.245	0.4 [0.09- 1.81]	0.236	
Other	1.00		1.00		1.00		

			ТМВ			
TMB high	2.24 [0.93-5.4]	0.073	3.1 [1.25-7.7]	0.015	3.18 [1.28-7.88]	0.012
TMB low	1.00		1.00		1.00	
	1		TILs/TMB	1	1	1
TILs Marked /high TMB	0	0.994	0 [0-Inf]	0.995	0	0.992
TILs Marked /low TMB	0.13 [0.01-1.17]	0.069	0.12 [0.01-1.12]	0.063	0.12 [0.01-1.13]	0.064
TILs Other/h igh TMB	1.73 [0.7-4.25]	0.234	2.42 [0.96-6.1]	0.062	2.51 [1-6.32]	0.051
TILs Other/l ow TMB	1.00		1.00		1.00	
B.	Unadjusted m	odel	Fully adjusted	model	Sensitivity ar	nalysis
	rHR [95%CI]	p-value	rHR [95%CI]	p-value	rHR [95%CI]	p- value
	0.04 [0.06 0.00]	0.020		0.021	0.00 000	0.025
Marked	0.24 [0.06-0.92]	0.038	0.22 [0.06-0.87]	0.031	0.23 [0.06- 0.9]	0.035
Other	1.00		1.00		1.00	
	I	Т	MB Status		I	1
TMB high	1.52 [0.72-3.19]	0.273	1.87 [0.87-4]	0.107	1.95 [0.91-4.15]	0.085
TMB low	1.00		1.00		1.00	
	I]	TILs/TMB			
TILs Marked /high TMB	2.26 [0.2-25.71]	0.51	3.57 [0.3-43.11]	0.317	3.41 [0.28-40.76]	0.333

TILs Marked /low TMB	0.08 [0.01-0.64]	0.018	0.06 [0.01-0.53]	0.011	0.07 [0.01-0.57]	0.013						
TILs Other/h igh TMB	1.24 [0.57-2.69]	0.584	1.47 [0.67-3.25]	0.337	1.56 [0.71-3.43]	0.267						
TILs Other/l ow TMB	1.00		1.00		1.00							
С.	Unadjusted model		Fully adjusted model		Sensitivity analysis							
	rHR [95%CI]	p-value	rHR [95%CI]	p-value	rHR	p-						
TH s												
Marked	0.09 [0.01-0.71]	0.023	0.08 [0.01-0.66]	0.019	0.08 [0.01- 0.66]	0.019						
Other	1.00		1.00		1.00							
TMB Status												
TMB high	1.17 [0.53-2.57]	0.691	1.44 [0.64-3.23]	0.374	1.49 [0.67-3.33]	0.326						
TMB low	1.00		1.00		1.00							
]	TILs/TMB		1	1						
TILs Marked /high TMB	0.99 [0.06-16.36]	0.997	1.41 [0.08-24.97]	0.813	1.35 [0.08-23.56]	0.836						
TILs Marked /low TMB	0 [0-Inf]	0.992	0 [0-Inf]	0.993	0 [0-Inf]	0.993						
TILs Other/h igh TMB	0.99 [0.44-2.23]	0.981	1.18 [0.51-2.71]	0.694	1.25 [0.55-2.85]	0.602						
TILs Other/l	1.00		1.00		1.00							

	ow TMB			
624		 		
625				
626				
627				