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1. Abstract

This study focuses on the stress gradient effect regarding the crack nucleation of a 

cylinder/plane Ti-6Al-4V titanium alloy contact under low cycle fatigue (LCF) fretting 

loading. Several local and non-local analytical approaches were compared to predict 

experimental results. The first part of the study presents fretting nucleation boundaries for 

three different cylinder radii in the partial slip regime. In the next part, the Crossland and 

Papadopoulos multi-axial fatigue criteria are computed and compared. Finally, local and non-

local fatigue approaches are compared. Square constant volume, critical distance and 

weighted function approaches have been compared. 

The methodology used covers a large range of stress gradients. The impact of varying the 

stress gradients is that the larger the stress gradient, the larger the difference between 

experiments and local stress fatigue predictions. A Crossland local form was applied to 

confirm that a local stress fatigue analysis cannot predict the fretting cracking risk. Three non-

local approaches were carried out, and the results allowed the proper prediction of the 

empirical thresholds with a 3% to 5% margin of error. The positive results obtained helped 

select a multi-axial fatigue criterion and a non-local approach which take into account the 

gradient effect of contact fretting behavior.   

Keywords: Fretting; Crack nucleation threshold; multi-axial fatigue criterion; Stress gradient 

effect; Non-local approach 
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2. Introduction

Fretting is a phenomenon which appears when a contact between two parts is subjected to 

micro-movements. It is observed in aeronautics, especially in turbojet engines, where high 

frequency vibrations (some kHz) are combined with cycles of low-frequency fatigue due to 

repetitive takeoffs and landings. These vibrations induce wear and\or cracking of the 

interfaces [1]. This type of complex loading can cause a premature breakdown of blade and 

disk. Ti-6Al-4V titanium alloy, a two-phase alloy, is the material used in the fan stage (blade 

and disk) of civilian engines [2]. 

Fig. 1.  Illustration of the fretting damage observed in dovetail contacts of turbine engines. 

The purpose of this work is to establish a predictive model of cracking nucleation risk under 

fretting loading in the partial slip regime. The study focuses on the cracking threshold, 

considering only the effect of the contact radius to optimize the identification of the cracking 

risk. Stress gradient effects, induced by several contact radii or variable normal pressure 

levels are analyzed on the cracking threshold. Araújo and al. in [3] performed fretting fatigue 

experiments with different pad sizes and showed that the lifetime depends on the pad size. 

Amargier and al. extended this study by working on the effect of pad size and stress gradient 

on crack initiation. They used a large range of pad sizes in order to cover a large range of 

stress gradients [4]. 

Fretting loading induces multiaxial stress fields [5] and severe stress gradients [6]. This 

multiaxial stress field requires the application of multiaxial fatigue criteria, as discussed in 

numerous works [7–10]. To optimize the prediction of the cracking risk, “multiaxial criteria” 

[11, 12] approaches are coupled with “local and non-local” approaches [5, 13–15]. This 

model has to take into consideration the influence of contact pressure [16] and the stress 

gradient effect induced by variable radius contacts [4] or variable normal pressure levels. 

These effects are presented on a single fretting map resulting from experimental tests of a 

plane/cylinder contact [17]. The representation chosen to compare the different cracking 

boundaries depending on the various radii and normal pressure levels is a (pmax vs. qmax) chart 

introduced in [4]. 

The method used in this paper neglects wear in the case of partial slip, since cracking process 

is the predominant damage type observed [3, 5, 15, 18, 19]. The next assumption establishes a 

transferability of the multiaxial fatigue criteria for high cycle fatigue to the finite endurance 

condition.  

Hence in the first part of this paper, the fatigue limits for a lifetime of 10
5
 cycles is

determined. Next, the experimental results of fretting tests performed with several cylinder 
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radii and various normal pressure levels are introduced to highlight the gradient effects. In the 

subsequent part, two multiaxial fatigue criteria are compared. The first one is the Crossland 

criterion, which is a tensorial approach using the invariants of the stress tensor’s deviator [12]. 

And the second, from work by Papadopoulos [20], is based on a critical plane approach. 

Finally, four numerical approaches are studied. A local one, proposed by Petiot [7], is 

compared with three non-local stress averaging approaches. The first one, presented by 

Fouvry [21], is based on constant volume with square shape. The second one is the critical 

distance approach of Araújo’s works [22]. The last approach is a weighted function of the 

equivalent stress field, recently presented in the works of Amargier [4]. 

3. Studied materials

Fretting tests were performed with specimens made of TA64, which is a two-phase titanium-

based alloy. The structure is composed of 60%  phase and 40% of . The main mechanical 

properties are displayed in Table 1. 

Table 1 

Mechanical properties of Ti-6Al-4V

Elastic modulus (GPa)           119 

Poisson’s ratio 0.29 

Yield stress (MPa)           970 

Plain fretting loading is cyclic loading. Thus to predict the crack nucleation risk, the fatigue 

behavior of the alloy studied must be known. Fretting stress is multiaxial, so a multiaxial 

fatigue criterion approach must be considered. This implies identifying the fatigue behavior 

under not only tensile but also cyclic shear stress. Note that at the contact border, where the 

cracking risk is the highest, the loading state alternates. Therefore, both tensile and shear 

fatigue analyses were performed with a stress ratio R=-1. 

First, a global overview of the endurance evolution was described (Fig. 2). Fretting cracking 

analysis focuses on a 10
5
 cycle test duration; therefore, a special attention was taken to

identify the tensile and shear fatigue limits at 10
5
 cycles by applying the staircase method.
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Fig. 2. (a) Staircase levels with broken and unbroken specimens and (b) Wöhler curves with stress ratio R=-1. 
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Due to confidentiality concerns, the obtained fatigue values are normalized versus a reference 

maximum Hertzian peak pressure (pref) used to standardize the analysis of the crack 

nucleation process in the following investigation. It was found that: 

refp*97.0)10( 5

1 s (1) 

refp*65.0)10( 5

1 t (2) 

which infers that: 

349.1
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t
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4. Experimental procedure

4.1. Plain fretting test configuration 

Plain fretting tests were carried out using a tension-compression MTS hydraulic system [9]. 

The normal force (P) is kept constant, while the tangential force (Q) and displacement () are 

recorded. The fretting loop can be plotted and the corresponding amplitude values 

(respectively Q* and *) defined (Fig. 3). 

This investigation focuses on the partial slip condition (Q*<µP); therefore, the test was 

adjusted to impose a constant-tangential-force-amplitude (Q*) loading on a closed fretting 

loop. 
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Fig. 3. (a) Schematic of the fretting machine and (b) partial slip fretting cycle. 

The number of fretting cycle is set to 10
5
cycles and the testing frequency at 10 Hz for this

study.  

4.2. Contact configurations 

Homogeneous cylinder/plane contact configurations were investigated. To standardize the 

experimental investigations, a reference test condition is considered (Rref, pref, qmaxref). Due 

to confidentiality issues, this reference condition cannot be provided.  

Our objective is to investigate the stress gradient effect; therefore, two other contact radii are 

investigated (Rref(1/2)=1/2*Rref and Rref(2)=2*Rref). To maintain a plane strain configuration, the 
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contact length “L” is adjusted so that the ratio between the contact radius “a” and the contact 

length is systematically lower than 0.1. 

4.3. Definition of the crack nucleation threshold 

The cracking investigation consists of identifying the fretting loading inducing a threshold 

crack length after 10
5
 fretting cycles. All stopped tests were investigated with respect to a

crack analysis technique inspired by Proudhon and al.[23]. The following methodology is 

applied: After each fretting test, the plane specimen is cut along the median axis of the fretting 

scar. Gross section observations are performed and not only the real crack length, Lm, but 

also the projected crack length Lp along the normal of the surface, are measured.  

The polishing process is then repeated twice so that the crack measurement is performed on 6 

different planes located along the median axis of the fretting scar. From these three 

measurements, the maximum projected crack length is determined (Lp).  

This crack analysis is generalized to various tangential force amplitudes in order to plot the 

evolution of Lp as a function of the applied tangential force amplitude. As demonstrated in 

[4], the crack analysis is better formalized using the (pmax vs. qmax) representation, which is 

independent of the cylinder radius (Fig. 4). 
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Fig. 4. (a) Evolution of projected crack length Lp as a function of the applied qmax value for (P=Pref and R=Rref) 

and (b) normal and tangential stress profiles under fretting contact. 

Our crack-nucleation analysis is selected for a structural engineering approach. Therefore, in 

contrast with conventional analysis, where the crack nucleation threshold is related to a crack 

length smaller than 10 µm, the given analysis considers a crack length around 70 µm, which 

is also the smallest crack length which can be detected using potential drop method.  

Considering this threshold, Lpth, equal to 70 µm, the corresponding shear fretting loading 

qmaxth is determined. This crack nucleation analysis will be generalized to all the studied 

fretting loading conditions. 

4.4. Analytical computation 

The analytical model used in this paper is a two dimensional contact computation. The stress 

field induced under the surface is fully described by the description of pressure p(x) and shear 
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q(x) profiles acting on the surface. The partial slip description of the cylinder-plane interfaces 

studied is addressed using the elastic Mindlin and al. [24] and Cattaneo [25] models. The 

normal load P and the periodic tangential load Q applied to the bodies (Fig. 3a) impose the 

elastic stress profiles p(x) and q(x) illustrated in Fig. 4b. The surface tractions p(x) and q(x) 

are expressed by [26]:  
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The contact half-width is defined by a, c is the sticking zone half-width and p0 is the maximal 

pressure. Using the equations available in [26], the subsurface stress field can be computed 

with the previous description of surface tractions. The analytical expressions of the stress 

tensor elements (sxx, szz, txz) are obtained by integrating the complete distributions of p(x) 

and q(x) over the loaded region. Thus, the stress field can be evaluated for each M(x,z) point 

in the model. 

5. Multiaxial fatigue criteria

Our objective is to predict the crack nucleation risk induced by plain fretting loading under 

partial slip. The fretting stress field induced by a cylinder/plane contact, in addition to 

displaying very severe stress gradients, is also multiaxial. Therefore a multiaxial approach 

will be considered. Two fatigue criteria are examined. The first one, the Crossland criterion, is 

based on the first invariant, I1, of the stress tensor and the second invariant, J2, of its deviator 

[27]. The second one, the Papadopoulos criterion, is based on a more physical critical 

approach. These criteria assume that shear, hydrostatic pressure and its invariants are the 

parameters that most greatly influence the fatigue life. 

5.1. Crossland tensorial approach 

One of the most used criteria is called Crossland. It considers 2aJ , the maximum amplitude 

of the root square of the deviator second invariant  2J t , and the maximum hydrostatic 

pressure value during the macroscopic loading path, (Phmax), so that there is no cracking risk 

as long as the following expression is satisfied: 

s  max2_ hCaCrosseq PJ (6) 

The 2aJ variable is given by the following double maximization over the whole loading 

cycle: 
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where S is the deviator part of the tensor   and the symbol " : " expresses the contracted 

double product. Phmax is defined by the following expression: 
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Both c and  parameters are functions of the material fatigue properties such that: 
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with td-1 and sd-1, the fatigue limits under alternated shear and tensile stress conditions, 

respectively. 

5.2. Papadopoulos critical plane approach 

The Papadopoulos criterion is an extension of the most common Dang Van’s fatigue criterion. 

Compared to the Dang Van’s criterion, the Papadopoulos approach appears better adapted to 

describing a non-proportional stress field. The formulation of this critical plane approach can 

be defined as follows: For metals, the elementary volume V is defined as a volume containing 

a hundred to a thousand grains [28]. It represents the smallest volume that can be considered 

homogeneous. Assuming a physical point O in the material volume V, we considered a plane, 

 defined by its normal, n. This vector makes an angle  with the z-axis of the Oxyz frame.

The projection of this vector on the xy plane makes an angle with the x-axis. For each plane

 a quantity called the resolved shear stress is introduced, designated as ta. Papadopoulos

introduced a new average value (Formula 10) representing the mean volumetric square root of

Ta(φ,θ,χ) which is defined as follows [11]:
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The Papadopoulos fatigue criterion is defined as: 

sts  max,_ ² HCPapeq a (11) 

As long as this relationship is satisfied, there is no cracking risk. 

To define the shear magnitude ta, several steps are necessary. From the previous equations, 

we can define the six components of the stress tensor stress applied on the right . This tensor 

is a function of the angles , ,  and the time t. For a given pair (  ) and a characteristic 

angle  of , we can define the resolved shear stress t acting on  along  by: 
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The c and material parameters are identical to the ones used in the Crossland expression. 

5.3. Finite endurance model 

Crossland and Papadopoulos criteria are theoretically related to the fatigue limit conditions. 

Indeed both the c and material parameters are defined from the tensile and shear fatigue 

limits at 10
7
 cycles (td-1 and sd-1). However, former investigations show that these fatigue

criteria can adequately be transposed to the finite endurance domain by considering the 

corresponding fatigue limit. A similar expression is applied, and the material properties 

parameters are now expressed by: 
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Fig. 5 plots the evolution of the c(N) parameter as a function of the fatigue cycles. The 

chosen stress ratio Rs=-1 represents the load ratio imposed at the contact borders of the 

cylinder/plane fretting tests. 
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Fig. 5. Evolution of the c factor versus cycle lifetime N. 

An interesting conclusion of this graph is the fact that the c(N) parameter is greater than zero 

in the finite endurance domain (N < 10
6
 cycles). For instance for the 10

5
 cycles test duration,

we found c(10
5
) equals 0.31, which implies that the hydrostatic pressure component for the

Crossland criterion or the tensile component for the Papadopoulos criterion will significantly 

influence the cracking process. 

By contrast, for the infinite endurance domain (N ≥ 10
6
 cycles), the c(N) parameter

converges to zero. This leads to the following important conclusion:  

In the infinite endurance domain, because c(N) is negligible, the tensile components related 

to the studied fatigue criterion can be neglected. For the TA64 alloy studied, it can then be 

concluded that: 

If N ≥ 10
6
 cycles (Fatigue limit condition),
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Crossland model: 

ahCaCrosseq JPJ 2max2_  s (14) 

Papadopoulos model: 

²² max,_ aa HCPapeq tsts  (15) 

Another interesting conclusion is that if the c converges to zero above 5.10
5
 cycles this

implies that: 

0
3

1
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d
d

s
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So that: 

3

d
d

s
t  (17) 

Finally, from this fatigue investigation, a very basic criterion can be established to define the 

transition between finite endurance and infinite endurance conditions: 

Finite endurance domain: c > 0 (N < 10
6
 cycles)

Infinite endurance domain: c = 0 (N ≥ 10
6
 cycles)

6. Comparison between multiaxial fatigue criteria

The surface distribution of Crossland and Papadopoulos equivalent stresses are compared for 

the same loading conditions (Rref, pref, qmaxref) in Fig. 6. 
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Fig. 6. (a) Stress profiles vs. contact surface and (b) surface loadings in the principal stress frame. 

This analysis suggests that the Papadopoulos criterion is more conservative than Crossland’s 

formula. We obtained a 5-percent difference in the maximum equivalent stresses. The second 

observation is the form of the equivalent stress profiles (Fig. 6a). Both criteria present 
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equivalent stress values and a similar stress profile in the stick zone at the contact edge. In 

contrast, in the slip zone, the Crossland criterion displays a linear stress profile with a 

maximum at “|X| = a”. The Papadopoulos criterion displays a convex shape in the external 

slip area between “c” and “a”. The maximum is not located exactly at the contact border but 

slightly in the sliding zone |X| = 0.95*a. However the difference with the value computed at 

the contact border (i.e. |X| = a) is very small, which suggests that a Papadopoulos analysis 

performed at the contact border is quite representative of the maximum cracking risk at the 

interface. 

Another interesting aspect is that the two fatigue models have equivalent results in the stick 

zone |X| ≤ c and outside the contact |X| ≥ a. Conversely, that of in the sliding zone the 

Papadopoulos equivalent stress is systematically higher than Crossland. All the criteria lead to 

a similar prediction at the contact border |X| = a and at the stick boundary |X| = c. To interpret 

this result, the loading paths computed in three regions (i.e. in the stick zone, sliding zone and 

outside the contact) are compared. 

In the stick zone |X| ≤ c, the loading path is affine (i.e., linear evolution between stress 

components). Outside the contact (when |X| > a), the loading path is proportional, which 

means that in addition to being affine it crosses the origin. The fact that the loading paths in 

these two domains are affine can explain why similar cracking risks are obtained. Indeed, for 

this loading path we deduce aJa 2² t , which suggests an equivalence between the two 

equivalent stresses PapeqCrosseq __ ss  . 

In the sliding zone c < |X| < a, the loading path is common and therefore aJa 2² t . The 

two criteria lead to different predictions. The averaged variable ²at represents the global

“shear loading” imposed on the material better than the aJ 2  variable. Therefore, maximal 

equivalent stress values of the both criteria are different, and the Papadopoulos criterion 

becomes more conservative than the Crossland one (i.e., )max()max( __ PapeqCrosseq ss  ). 

However our analysis suggests that the maximum cracking risk in the entire interface is well 

described by the cracking risk computed at the contact border. Therefore, the peculiarity that 

the loading path is linear and intercepts the origin, can explain why the two criteria lead to 

equivalent predictions, confirming previous conclusions. To simplify the analysis, the 

Crossland criterion, which is easier and faster to compute, is preferred. Most of the multiaxial 

fatigue criteria converge toward the same prediction for collinear fretting fatigue cracking, as 

was previously highlighted in [29].  

7. Crack nucleation analysis

7.1. Influence of the contact stress gradients 

The first analysis applied to predict the crack nucleation process consists of considering a 

local Crossland fatigue stress analysis. The local stress field paths are computed at each point 

of the planar material during the fretting cycle, and this stress field path is successively 

transposed to the multiaxial fatigue analysis. Fig. 7 compares the predictions with the 

obtained experimental results for (R1=Rref(1/2), R2=Rref and R3=Rref(2)). 
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As mentioned by Amargier and al. using (pmax vs. qmax), the theoretical “local stress” crack 

nucleation boundary is related to a single master curve independent of the cylinder radius and 

nearly independent of contact pressure.  

Indeed the crack nucleation boundary is related to a threshold qmax_th_c value. The 

experimental results display a very different tendency. First, crack nucleation is observed 

experimentally, for significantly higher shear stress value than predicted, which confirms that 

the local stress analysis overestimates the cracking risk. Additionally, a pressure dependence 

of the experimental crack nucleation boundary can be observed. For a given cylinder radius, 

the higher the contact pressure, the higher the corresponding qmax crack nucleation threshold. 

The larger difference is related to the cylinder size effect. In contrast to the local stress 

predictions, the experimental crack nucleation boundaries obtained for the various cylinder 

radii are very different. The smaller the cylinder radius, the larger the qmax_th threshold crack 

nucleation boundary. These typical evolutions can be explained by considering the stress field 

imposed by the fretting loading. 

Fig. 8a compares the evolution of the experimental crack nucleation boundaries obtained for 

various pressures, on given cylinder radius, with the corresponding stress field computed 

along the z-axis (i.e., in depth) at the contact border x = a. Whatever the radius, the slopes are 

always positive and close. This promotes an increase of the cracking threshold as a contact 

pressure increase: 
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Fig. 8. (a) Contact pressure effect on threshold increase and (b) hydrostatic pressure vs. depth computed at the 

contact borders below the surface. 

Fig. 8b compares the stress fields obtained for a constant qmax = qth_ref shear stress field and 

varying pressure conditions (i.e., points (a, b, c) along the vertical dotted line in Fig. 8a).  The 

“a” condition, corresponds to a crack nucleation condition, whereas the “b” and “c” 

conditions are far below the crack nucleation condition, although similar qmax are imposed. 

When the contact pressure increases, the hydrostatic pressure converges to the compression 

domain faster, which indirectly reduces the cracking risk. 

To activate the cracking process, higher shear stress fields are consequently required, which 

explains the shift of the threshold qmax_th value observed for the highest pressure conditions. 

The effect of the cylinder radius and corresponding stress gradient is illustrated in Fig. 9a. 
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The maximum value of the equivalent Crossland stress at the contact border surface is similar 

for the three cylinder radii. To interpret the shift of the experimental threshold crack 

nucleation boundaries, a stress gradient analysis must be considered. The smallest cylinder 

radius creates the smallest stress gradient beneath the surface. The material volume exposed 

to the highest stress is consequently very small. In fact, the larger the cylinder radius, the 

greater the material volume affected by the highest equivalent Crossland stress values. This 

allows us to explain why the smallest cylinder radius displays the largest threshold qth stress 

value under equivalent pressure conditions. 

7.2. Synthesis 

Both contact pressure and cylinder radius analyses demonstrated that to predict the crack 

nucleation in fretting contact, the influence of the contact stress gradient must be considered. 

This suggests that an efficient cracking prediction requires non-local fatigue stress analysis. 

This aspect will be addressed in the following part of this work, focusing on the comparison 

between different non-local fatigue models currently applied in the fatigue research field and 

more particularly in notch fatigue failure modeling.  

8. Experimental analysis of the cracking process induced by plain fretting loading

8.1. Experimental strategy 

The shear threshold values for the Lpth = 70 µm crack nucleation condition have been defined 

for each contact configuration studied. A major objective of this work is to quantify the effect 

of the contact stress gradient in the fretting cracking process. Hence various normal forces and 

cylinder radii have been investigated (Table 2): 

Table 2 

Maximal shear threshold for various contact radii and contact pressure. 

pmax/pref Rref(1/2) Rref Rref(2) 

0.75 - - 0.66 

1.00 0.94 0.81 0.72 

1.17 0.97 0.82 0.75 

1.50 - 0.89 - 

1.67 1.12 - - 

For each studied cylinder radius, Rref(1/2), Rref and Rref(2), contact pressures ranging from 

0.75*pref to 1.67*pref have been investigated. A first investigation consists of seeing if the 

loading conditions related to the crack nucleation process are still elastic. Fig. 10a compares 

the crack nucleation conditions and the Von Mises boundary in the (pmax vs. qmax) 

representation.  

Above the threshold Hertzian p0-H = 1.6*sy value, the maximum plastic deformation is 

located along the surface. Below p0-H, the maximum plastic deformation is located at the 

surface in the sliding zone and depends on the shear stress loading. Assuming a local 

approach, the plastic boundary is related to a constant qth value. Half of the test conditions are 

located in the elastic zone (i.e., Rref(2) and Rref with pmax < 1.3*pth), whereas for the smaller 

cylinder radius, the contact is plastic. However the local stress analysis concerns a very small 

quantity of material. To be more representative of the global response of the interface, it is 

more pertinent to consider a non-local plastic approach, by averaging the Von Mises stress 
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over a grain size volume (Ø = 30 µm). By considering these non-local plastic conditions, the 

Von Mises boundary shifts to larger shear stress values and displays a similar pressure 

dependence to that of the local approach. 
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Fig. 10. (a) Von Mises plastic boundary  local,  non local: average Von Mises value computed over a 

30 µm diameter volume and (b) depth plastic zone and (c) surface plastic localization. 

Considering this plastic grain size description, all tested conditions, except the highest 

pressure situation (1.67*pth, Rref(2)), remain in the elastic region. Regarding the material 

accommodation behavior, it can be assumed that the critical point moves to the elastic domain 

after some number of fretting cycles. Hence in the following analysis, the contact modeling 

will be performed by coupling analytical elastic stress descriptions of fretting contacts [30, 

31] and multiaxial fatigue criteria.

9. Non local fatigue stress analysis

9.1. Volume averaging stress approach 

A first non local approach introduced to predict crack nucleation consists of averaging the 

equivalent multiaxial criterion over a representative material volume [21]. This approach is 

currently applied for our 2D contact model, assuming a square surface of width Lv. The 

Crossland equivalent stress seq_Cross is therefore computed for every point, spaced by one 

micron, using an analytical local stress analysis and successively averaged over the square 

surface Lv². 

A first step consists of identifying the Lv parameter. This is obtained by considering the 

reference conditions (Rref, pref, qmaxref) and adjusting the Lv value until seq_Cross(Lv²) is equal 

to the crack nucleation condition.  

510__ ²)(
dCrosseq Lv ts  (18) 

This analysis leads to Lv = 37 µm, which is very close to the one previously extracted for 

high cycle fretting conditions (10
6
 cycles) [2]. The parameter Lv is maintained constant and

applied for the other threshold crack nucleation conditions. Fig. 11 compares the experimental 
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(pmax vs. qmax) crack nucleation conditions with the given prediction. The correlation is very 

good. It is interesting to see that this very basic non-local approach, which is very easy to 

transpose in Finite Element Modeling simulations (i.e., optimization of the mesh dimensions), 

is suitable to describe not only the pressure but also the cylinder radius effects. 
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Fig. 11. (a) Numerical square volume averaging approach scheme and (b) shear threshold predicted by the non-

local approach. 

To quantify the error of prediction for each studied configuration, the following error index is 

computed: 

 
i

i ith

ithinumth

n

q

qq

E





)exp(_

)exp(_)(_

*100% (19) 

The corresponding data are compiled in Table 3. The comparison with the local stress analysis 

clearly underlines the gain in terms of stability for prediction of the crack nucleation risk. The 

E(%) are systematically lower than 7.6%, whereas the mean value (%)E , computed from the 

studied condition, gives 3.1%, which is significantly smaller than the value obtained using the 

local stress analysis (29.1%). The crack boundary slopes are very close to the ones obtained 

experimentally. It is already possible to conclude that a constant volume averaging strategy is 

able to predict the nucleation threshold. The gap between each computed border seems equal 

to the experimental one. Thus, the constant volume averaging model can reflect the shear 

threshold increase for smaller contact radii. 

9.2. Critical distance 

An alternative strategy introduced by Araújo and al. for fretting cracking problems considers 

the stress at a critical distance below the point maximal of surface stress [22]. This strategy is 

presently adopted by identifying the critical Lc from which the crack nucleation related to the 

reference conditions (Rref, pref, qmaxref) is computed. 

510__ )( 
dCrosseq Lc ts (20)
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The Lc parameter is set to 17 µm. This value is assumed constant and applied to predict the 

crack nucleation of each condition studied. Again the comparison with the experimental 

threshold leads to a very good correlation. The corresponding E(%) values are systematically 

lower than 7.7%, and the mean value (%)E , equal to 3.1%, which suggests that this basic 

non-local approach, like the square volume averaging approach, provides a very good 

estimation of the cracking risk. A very large spectrum of contact pressures and contact radii 

has been investigated. 
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9.3. Weighted function approach 

The last strategy applied to consider the stress gradient effect is based on the Papadopoulos 

approach, using the stress gradient value in the Papadopoulos criterion equation. The gradient 

of a scalar value X = f(x, y, z) is defined by: 
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The Crossland stress value computed using local stress analysis is weighted by a coefficient 

w, which is function of the gradient of the hydrostatic pressure around the nucleated crack. 

  wJw HaCrosseq *)( max,,2_ ss  (22) 

with: 

max,*1 hkw s (23) 

with max,hs  the mean value of the gradient of the hydrostatic pressure. This mean value is 

computed over a square volume where the length is the threshold length Lpth. 



17 
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1

max,max, ss (24) 

The k variable is identified from the reference test conditions (Rref, pref, qmaxref) by verifying 

the following relationship: 
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For the reference conditions investigated, we found k=8.596*10
-5

. The w function is therefore

characterized by a straight line starting from 1 when 0max,  hs (i.e. non stress gradient 

condition) and passing through the reference point (
refh max,s , refCrossecd __10_ 5 st  ). 

To validate this linear assumption, all the corresponding ( max,hs  , Crossecd
w _10_exp 5 st  ) 

couples related to each set of test conditions are compared in Fig. 14b. All the points are 

aligned along the reference linear approximation. This a posteriori demonstrates the stability 

of the given linear dependency of the weighted function w as a function of the mean of the 

hydrostatic pressure stress gradient. 
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weighted function. 

Like for the square averaging or critical distance methods, the experimental and predicted 

crack nucleation limits are compared in the (pmax vs. qmax) chart. 
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The errors between experimental and predicted values are very small, systematically smaller 

than 12.8% (Table 3). The computed mean value (%)E  is 4.2%, equivalent to that given by 

the former square averaging and critical distance approaches. 

9.4. Synthesis 

Charts ( 2aJ  vs. max,Hs ) which compare the various local and non local fatigue approaches

clearly underline that a local approach is not suitable to predict the crack nucleation risk 

induced by fretting. 

The comparison between the non-local fatigue approaches (Table 3, Fig. 16) suggests that 

whatever the approach, similar results are obtained. All these models provide accurate 

predictions with a mean index error value (%)E  lower than 4.2%.  

The local description leads to a very large divergence from the predictions, and the prediction 

systematically overestimates the cracking risk. 
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The studied non local approaches (square volume averaging, critical distance and weighted 

function) display a very good correlation. All the predictions are aligned along the theoretical 

boundary. 

The weighted function approach is quite complex to apply and does not significantly increase 

the accuracy of the prediction. Therefore the critical distance or the square volume averaging 

methods will be preferred regarding the computing time. The critical distance method appears 

to be the most pertinent model. It requires a single stress analysis at a given critical distance 

below the “hot point” (i.e., contact border |X|=a). However, to be transposed to industrial 

computation, the normal of the surface must thus be determined in order to locate the point at 

which the fatigue analysis must be done. The square volume averaging strategy performs the 

fatigue analysis at several points, at least 9 points to establish the averaged volume. However 

this approach does not require establishing the surface normal. It is therefore easier to apply 

using systematic FEM computation techniques. This is why this approach is currently adopted 

in engineering design models.  Our current research work confirms that this approach is 



20 

appropriate for fretting cracking problems, and there is no need to implement more complex 

approaches like weighted function analysis to improve the accuracy of predictions, at least for 

the conditions and material. Besides, the constant square volume averaging criterion is based 

on a stress homogenization over a grain surface, which is more consistent with the physical 

description of the cracking process. 

Table 3 

Error between experimental results and predicted thresholds for each approach in the study. 

Contact 

radii 
pmax/pref 

E(%) 

Local stress 

analysis 

E(%) 

Square volume 

Lv=37µm 

E(%) 

Critical distance 

Lc=17µm 

E(%) 

Weighted 

function 

Rref(2) 

0.75 14.6 7.6 7.7 4.3 

1.00 21.3 1.9 2.0 0.5 

1.17 24.0 0.2 0.2 0.2 

Rref 

1.00 27.9 - - - 

1.17 28.3 1.5 1.5 3.7 

1.50 32.2 0.9 1.1 6.1 

Rref(1/2) 

1.00 35.0 3.3 3.1 1.1 

1.17 35.4 1.6 1.5 4.6 

1.67 42.8 7.6 7.6 12.8 

(%)E - 29.1 3.1 3.1 4.2 

(%)E

0.0

5.0

10.0

15.0

20.0

25.0

30.0

Local stress 
analysis

Square volume 
Lv=37µm

Critical distance 
Lc=17µm

Weighted function

Fig. 16. Mean error index values for the various numerical methods. 

10. Conclusion

A dedicated analysis has been performed to quantify the crack nucleation risk introduced by 

plain fretting loading focusing on stress gradient effects. The following conclusions have been 

derived: 

 At the contact border, the zone of the maximum cracking risk, the stress loading path

is proportional, which infers that all the conventional multiaxial criteria lead to

equivalent predictions. Therefore the simplest approach, Crossland’s, is preferred.



21 

 The stress gradient imposed below the surface plays a critical impact on the cracking

prediction. For a given pressure, the larger the contact area, the higher the quantity of

material affected by the maximum stress and therefore the higher the cracking risk. To

efficiently predict the cracking risk, a non-local multiaxial fatigue approach must be

adopted.

 The comparison between various non local approaches (i.e., square averaging, critical

distance and weighted function) transposed to the Crossland criterion leads to

equivalent predictions. For practical reasons, the square averaging approach is

preferred.
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