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Abstract The networked nature of complex systems determines the way in which
'information' navigates the system from a source to a target. This navigation is gov-
erned by the lack of central controllers and the fact that every individual entity ignores
the global structure of the system. Consequently, targeted shortest-path searches are
almost automatically excluded in these systems, leaving the more blind di�usive pro-
cesses as the main mechanism for navigating complex networks. Here we show that
non-conservative di�usion has some advances over the 'classical' (conservative) di�u-
sion for searching a target in a network. The non-conservative nature of the di�usion
process is given by the possibility that the network 'communicates' with the envi-
ronment in which it is embedded. We use analytical and computational methods to
show that non-conservative di�usion uses trajectories which are more prone to �nd
a target than the conservative one. We illustrate the existence of this mechanisms in
systems as varied as tra�c in urban environments, volume transmission in the brain
and communication through online social networks.

Keywords: non-conservative di�usion; graph Laplacians; communicability dis-
tance; di�usion distance; complex networks; circum-Euclidean distance matrices

1 Introduction

�The Target Problem� seems to be an easy problem when it deals with searching
strategies toward an e�cient target identi�cation on a networked environment. This
environment can be represented by the discrete space created by a graph G = (V,E),
in which a set of vertices V are interconnected by pairs forming a set of edges E [26].
Therefore, once a target has been identi�ed in the graph, e.g., the vertex w ∈ V , our
task can be though to be reduced to �nd the shortest topological path connecting our
current location, e.g., the vertex v ∈ V , with the target. A path refers to a sequence
of di�erent vertices and edges between two corresponding vertices. Among all existing
paths between two vertices, the one having the minimum length, in terms of the number
of edges in the path, is the shortest path. There are several algorithms for �nding the
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shortest path between two vertices in a graph [49, 92, 99]. The Bellman-Ford-Moore
algorithm [7, 42, 77] allows to �nd the shortest paths from the source vertex to all other
vertices in a graph in which edges can be weighted by positive numbers. The algorithm
has a time complexity of O (V · E) , which because #E ≥ #V −1 in connected graphs
makes the complexity relatively large, i.e., in general larger than O

(
V 2
)
. The most

popular algorithm for �nding shortest paths is the Dijkstra [22] which �nds the shortest
paths from the source vertex to all other vertices in the graph with time complexity
O
(
V 2
)
. Finally, the Floyd-Warshall algorithm [41, 93] �nds the shortest paths between

all pairs of vertices in a graph in O
(
V 3
)
allowing weights in the edges, which can be

positive or negative.
Let us now see the target problem from the perspective of a single vertex in a

network representation of a complex system [30]. Think for instance about a neuron
which is interconnected to others in a human brain composed by about 1010 neuronal
cells and 1014 interconnections [64]. Can this single neuron �nd the shortest path to a
target neuron in this network? If the neuron is going to use a routing/navigation process
to �nd the shortest path to a speci�c target it needs to have a �global knowledge about
the network topology� [51]. This is exactly what the previously mentioned algorithms
use: global information about the network. It is hard to digest that a every single neuron
has a map of the 86 billion neurons in the brain. In spite of this, there are authors
that believe that [68] �the shortest path plays an important role in the information
transmission of a brain network, and it is a very important measure to describe the
internal structure of the brain network�. The claim is mainly based on the apparent
fact that �the shortest path can transmit the information more quickly and reduce
brain consumption.� For such a thing to be possible it is necessary the existence of a
central controller with �global knowledge about the network topology� [51] to direct
the information through the shortest paths connecting pairs of brain regions. But even
in this �mystical� scenario, the use of the shortest path could be ine�cient from an
energetic point of view. Tomasi et al. [90] have found experimentally that �a higher
degree of connectivity was associated with nonlinear increases in metabolism�. That is,
the more connected a vertex is, the highest its energy consumption. It is evident that a
highly connected vertex supports many shortest paths crossing it�a vertex of degree k
supports k (k − 1) /2 shortest paths of length two between its nearest neighbors, apart
from the rest. Therefore, it is not true that the use of shortest paths �reduces brain
consumption� as claimed in [68].

How is then possible that information �nds its way from a speci�c source to a
speci�c target in such complex networked environments like a human brain? Di�usion
may be a plausible solution. At the end, a di�usive process can transmit information
between a source and a target without any �knowledge about global network topology�
[51]. This strategy will also avoid the problem of increasing glucose consumption be-
cause it �prevents particles or messages from taking shortest paths� [51]. Di�usion is
ubiquitous in nature and in many man-made systems, even in those in which it seems
to be counterintuitive [72]. For instance, when navigating a city at rush hour, drivers
in general know the shortest topological paths between origin-target pairs. However,
it has been seen statistically that they frequently avoid such paths for several reasons
[3]. The �rst is that such routes contain, with high probability, highly interconnected
intersections. Therefore, traveling through shortest topological paths necessarily would
imply more complicated maneuvers and more waiting time due to tra�c signals, jams,
etc. In navigating between origin-target pairs, drivers frequently use their own �cogni-
tive maps�, which allow them �establishing locations, understanding distances between
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locations, comprehending the direction of one location from another, linking locations
in sequence, and transferring knowledge from the mental arena to the surrounding
physical environment� [50]. We can think that every driver in the same city has his
own cognitive map to go from one place to another, particularly at rush hour. Indeed,
Golledge and Gärling [50] have found in travel-related literature more than 20 di�er-
ent strategies used by drivers to �nd their routes. Their search include reports in �elds
such as travel behavior, operations research, transport geography, and behavioral travel
modeling. Such mental algorithms include strategies like: using the �longest leg �rst�,
or using the �shortest leg �rst�, selecting the route that has �fewest turns�, or �fewest
lights or stop signs�, or �fewest obstacles or obstructions�, etc. If we assign randomly
and independently these algorithms to the drivers in a city at rush hour, what we will
observe are patterns similar to those of a di�usive motion [3, 61, 97].

When we talk about di�usion we typically talk about a series of di�erent physical
phenomena, which include classical conservative di�usion, non-conservative di�usion,
and anomalous di�usion (sub- and superdi�usion) [18, 47, 60, 66, 84]. By conservative
we mean that the amount of di�usive particles is constant in the graph, while in a non-
conservative di�usion such number of di�usive particles can change with time. The
reason for the last is that some particles are created/annihilated in the graph, maybe
because they escape to the environment in which this graph lives. Here, we study
the similarities and di�erences between conservative and non-conservative di�usion on
graphs. We discover here that the non-conservative di�usive strategy present certain
advantages for a single vertex in a network to send information to a target in a faster
way relative to the conservative one. The main reason behind this advantage of non-
conservative di�usion over the conservative one resides in the trajectories that di�usive
particles follow in both processes. These trajectories are found here by means of a
geometrization of the graphs using the Euclidean distances induced by the di�usive
processes. We found here that non-conservative di�usive particles follow trajectories
involving low-connected vertices, which coincide with the bypasses recently found to
play an important role in complex networks navigation [32], while the conservative
ones can follow trajectories more similar to those of the shortest topological paths.
We �nalize this chapter with some examples of complex systems in which such non-
conservative di�usive strategies are used.

2 The setting

Here we only consider simple, undirected and unweighted graphs G = (V,E) , where
V = {v1, . . . , vn} is the set of vertices with #V = n, and E =

{
(vi, vj)

∣∣vi, vj ∈ V
}
is

the set of edges with #E = m. We use indistinctly the terms graphs and networks to
refer to G, although the term �network� is mainly reserved to the skeleton of complex
systems in the real-world. The terms vertex and node are also used indistinctly.

A walk of length l in a graph is a sequence of (not necessarily di�erent) vertices
v1, v2, . . . , vl, vl+1 such that for each i = 1, 2, . . . l there is an edge from vi to vi+1.

The walk is known as closed if vl+1 = v1. If all the vertices and edges of the walk are
di�erent we say that it corresponds to a path. Among all the paths that connect a pair
of vertices, the one having the minimum length is the shortest path. The shortest path
between two vertices is a distance. A graph for which there is at least a path between
every pair of vertices is said to be connected. We will consider here only connected
graphs.
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Two vertices are adjacent in the graph if they share a common edge. Then the
square symmetric matrix A, whose entries are de�ned as

Ai,j =

{
1 (i, j) ∈ E

0 (i, j) /∈ E,
(2.1)

represents the adjacency between pairs of vertices in the graph and it is known as the
adjacency matrix.

The following is a very well-known result (see for instance [8]):

Theorem 1 Let G be a simple connected graph. Then,
(
Al
)
ij

counts the number of

walks of length l between the vertices i and j.

The number of vertices adjacent to a vertex i is known as the degree of i and denoted
by ki. The diagonal matrix K of the degree of the vertices in G is known as the degree
matrix. Then, the matrix L = K − A is de�ned as the graph Laplacian matrix of G,
see further for a ��rst-principles� de�nition.

3 Normal di�usion

Let us consider a simple undirected graph as the one illustrated in Fig. 3.1 in which
there is a �concentration� of a given �item� at the nodes at a time t = 0. At every edge
(i, j) there will be a gradient ui (0)−uj (0) of concentrations. As time evolves, there is
a �movement� of the �items� from high concentration to low concentration. Let us pick
a vertex of G, let say A and analyze how the concentration of the items at this vertex
changes in time. Because A is connected to B and to C we have that the change of
concentration at A is proportionally to the sum of the gradients with both B and C:

dCA (t)

dt
= γ [(CB (t)− CA (t)) + (CC (t)− CA (t))] , (3.1)

where γ is a proportionality coe�cient known as di�usivity or di�usion coe�cient [47].
We can rearrange this equation for the node A as:

dCA (t)

dt
= γ [CB (t) + CC (t)− 2CA (t)] , (3.2)

where CB (t) + CC (t) is the sum of the concentrations at the nearest neighbors of A
and 2CA (t) is the concentration at A multiplied by the number of nearest neighbors
it has, i.e., its degree. Let us hereafter consider γ = 1. Then, we can write generically
the following equation:

Ċi (t) =

 ∑
(j,i)∈E

Cj (t)

− kiCi (t) , (3.3)

where ki is the degree of vertex i.
Let us now de�ned the following.

De�nition 1 Let H := ℓ2 (V ) be a Hilbert space and let f ∈ H be a function. Then,
the adjacency operator A of G is de�ned as [70]:

(Af) (v) :=
∑

(w,v)∈E

f (w) . (3.4)
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Notice that if G is in�nite but locally �nite, i.e., ki < ∞ for all vertices of G, the
adjacency operator is a bounded selfadjoint operator in H [70]. If the graph is �nite
the adjacency operator coincides with the adjacency matrix A of the graph.

De�nition 2 Let H := ℓ2 (V ) be a Hilbert space and let f ∈ H be a function. Then,
the degree operator K of G is de�ned as:

(Kf) (v) := kvf (v) . (3.5)

If the graph is �nite the degree operator is realized by the diagonal matrix K of vertices
degrees of the graph.

Let Ċ (t) :=
[
Ċv1 (t) . . . Ċvn (t)

]T
and let C (t) := [Cv1 (t) . . . Cvn (t)]T . Then, we

can write the set of di�usion equations for all the vertices of the graph in the following
matrix-vector form:

Ċ (t) = AC (t)−KC (t)

= (A−K)C (t)

= −LC (t) ,

(3.6)

where L := K −A is the Laplacian of the graph, which can be formally de�ned as:

De�nition 3 Let H := ℓ2 (V ) be a Hilbert space and let f ∈ H be a function. The
Laplacian operator L of G is de�ned as [53]:

(Lf) (v) :=
∑

(w,v)∈E

(f (w)− f (v)) . (3.7)

When the graph is �nite, then L is the matrix representation of this operator.

We then have the di�usion equation of the graph as:

Ċ (t) = −LC (t) (3.8)

where L := K−A is the graph Laplacian and K is a diagonal matrix of vertex degrees,
and where the initial condition is C (0) = C0.

3.1 Some properties of L

Here we state some of the general properties of the graph Laplacian matrix L (see
[54, 55, 73, 76]).

De�nition 4 Let m be the number of edges and n be the number of vertices. Then
the incidence matrix ∇ is the m× n matrix given by:

∇v,e =


−1 e = (v, w) and v > w

1 e = (v, w) and v < w

0 otherwise.
(3.9)
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Lemma 1 The Laplacian matrix of the graph L is given by

L = ∇T∇, (3.10)

such that the incidence matrix can be considered as a gradient matrix of a graph where

concentrations are arbitrarily but �xed at the nodes.

The following resume some of the general properties of the Laplacian.

Theorem 2 The Laplacian matrix L of a graph:

1. is a positive semide�nite matrix, indeed fTLf =
∑

(v,w)∈E (f (v)− f (w))2 ≥ 0;
2. always has an eigenvalue equal to 0;

3. the multiplicity of the zero eigenvalue is equal to the number of connected compo-

nents of the graph.

3.2 Conservative nature of the graph di�usion

De�nition 5 A di�usion process is said to be conservative if the number of di�usive
particles is constant along the time. That is, if and only if 1TC (ti) = 1TC0 for any
0 ≤ ti ≤ ∞. Otherwise the process is said to be non-conservative

Lemma 2 The di�usion (3.8) on a connected graph is always conservative.

Proof The solution of the di�usion equation is:

C (t) = e−tLC0. (3.11)

Let us take the sum of the entries of C (t) at an arbitrary time t,

1TC (t) = 1T e−tLC0 (3.12)

and let us expand the matrix exponential in its Taylor series

1TC (t) = 1TC0 − t1TLC0 +
t2

2!
1TL2C0 + · · ·+

(
(−1)k tk

2!

)
1TLkC0 + · · · . (3.13)

Because L is positive semide�nite, we have that 1TL = 0 and so
(
1TL

)
Lk−1 = 0,

so that 1TC (t) = 1TC0 for any t. ⊓⊔

In plane words, the previous result means that at any time t the sum of concen-
trations of particles at the nodes of the graph is exactly the same, independently of
t.

Let us now see what is the steady state of the di�usive dynamics in a graph.

Lemma 3 Let C0 (i) be the state of the vertex i at time t = 0. Then, when t → ∞

the solution of the di�usion equation of the graph converges to Ct (i) =
1

n

∑n
i=1 C0 (i),

i.e., to the average of the state of nodes in the initial condition. The rate of convergence
of the di�usion is dictated by the smallest nontrivial eigenvalue of L.
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Proof Let 0=µ1 < µ2 ≤ · · · ≤ µn be the eigenvalues of L and let φi the orthonormal-
ized eigenvector associated with µi. Then, we can write

C (t) = e−tLC0

= φ1e
−tµ1

(
φT
1 C0

)
+ φ2e

−tµ2

(
φT
2 C0

)
+ · · ·+ φne

−tµn

(
φT
nC0

)
.

(3.14)

When t is su�ciently large we have

lim
t→∞

C (t) = φ1e
−tµ1

(
φT
1 C0

)
=

1√
n
1

(
1√
n
1TC0

)
= 1

(
1

n

n∑
i=1

C0 (i)

)
,

(3.15)

which proves the �rst part of the result. Because µ2 is the second smallest eigenvalue
of L, it will dictate the rate of convergence of the process. ⊓⊔

3.3 Intuition of the conservative di�usion on graphs

We start here by writing an iterative form of the di�usion dynamics on graphs in
discrete-time:

Ci (r + 1) = Ci (r)− εCi (r) ki + ε
∑

(j,i)∈E

Cj (r) . (3.16)

If we introduce the following matrix P := I − εL, which was proposed to be called
the Perron matrix by Olfati-Saber et al. [79], we can write the discrete-time di�usion
dynamics as:

C (r + 1) = PC (r) . (3.17)

This formulation allows us to interpret what is happening in the di�usive process on
a graph in a step-by-step basis. That is, if the �concentration� of an item at the vertex
i at time step r is equal Ci (r), then the node i will transfer the amount εCi to every
of its nearest neighbors at time step r+1, at the same time that it will receive εCj (r)
from every of its jth nearest neighbors. This means that at every time step there is a
trade o� in which pairs of connected vertices interchange concentrations between each
other, but such a process goes in the direction of lower concentration.

Let us explain this with an example based on the graph illustrated in Fig. 3.1. Let
us consider the following initial condition: C0 = [3, 2, 5, 4, 1]T . That is, the vertex A,
which is connected to vertices B and C, has an initial concentration of CA (0) = 3.
At the next time step, r = 1, A will transfer to B the amount εCA (0) = 3ε and
will receive from B the amount εCB (0) = 2ε. This means that the net balance of A
for its trade o� with B is: CA⇌B (1) = −3ε + 2ε = −ε, which implies that A has
transferred more to B that what it has received from that vertex. If we do the same
analysis for the trade o� between A and C, which has initial concentration 5, we have:
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CA⇌C (1) = −3ε + 5ε = 2ε, clearly indicating that A receives more from C that
what it transfers to that node. Because A is connected only to B and C, we have:
CA (1) = CA (0) + CA⇌B (1) + CA⇌C (1) = 3 − ε + 2ε = 3 + ε, indicating that in
the �rst step A increases its concentration in spite of the fact that it has transferred
more to B that what it has received from it, but such a lost is compensated by the
gains from C which has a high initial concentration. The process continues with these
�negotiations� of concentrations between pairs of connected vertices so that the steady
state is eventually reached as illustrated in Fig. 3.1. This kind of negotiation is the
main reason why this process is known in engineering as the �consensus protocol� (see
for instance [74]).

Fig. 3.1

4 Non-conservative di�usion

Let us consider the following matrix: Lχ := χI − A, which was �rst analyzed in [45]
(see also [46]) and I therefore propose here to call it the Lerman-Ghosh Laplacian of a
graph. Let us then consider the following di�usive process

Ċ (t) = − (χI −A)C (t) = −LχC (t) . (4.1)

At the local level, the concentration of items at a vertex i at time t is given by
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Ċi (t) =

 ∑
(i,j)∈E

Cj (t)

− χCi (t) . (4.2)

We now analyze the solution of this dynamics.

Theorem 3 Let Lχ = χI −A be the Lerman-Ghosh Laplacian and let

Ċ (t) = −LχC (t) (4.3)

with initial condition C (t) = C0. Then,

lim
t→∞

C (t) =


(
ψT
1 C0

)
ψ1e

t(λ1−χ) = ∞ for χ < λ1(∑
j C0 (j)ψ1 (j)

)
ψ1 for χ = λ1(

ψT
1 C0

)
ψ1e

−t(χ−λ1) = 0 for χ > λ1.

(4.4)

Proof The solution of the di�usion equation is given by

C (t) = e−t(χI−A)C0, (4.5)

which can be written as

C (t) = et(λ1−χ)
(
ψT
1 C0

)
ψ1 + et(λ2−χ)

(
ψT
2 C0

)
ψ2 + · · ·+ et(λn−χ)

(
ψT
nC0

)
ψn.

(4.6)
Then, when χ < λ1 we have

lim
t→∞

C (t) = et(λ1−χ)
(
ψT
1 C0

)
ψ1, (4.7)

which diverges as t→ ∞.
If χ = λ1 we have that the �rst term of Eq. (4.6) is zero, and the rest are negative,

such that

lim
t→∞

C (t) =
(
ψT
1 C0

)
ψ1, (4.8)

which indicates that the solution is proportional to the entries of the eigenvector
associated with the spectral radius of A. This eigenvector was introduced by Bonacich
[9�11] as a centrality index of the vertices in a graph and it is nowadays known as the
eigenvector centrality. Therefore, the current framework provides a dynamics interpre-
tation of this centrality index in term of the concentration reached by a vertex at the
steady state of a non-conservative di�usion controlled by the Lerman-Ghosh Laplacian
matrix when χ = λ1. Because the second smallest eigenvalue of (λ1I −A) is λ1 − λ2,
it determines the rate of convergence of the di�usive process. Notice that if C0 = ψ1,
then the di�usion process is conservative because:

1TC (t) =
[
1Tψ1

]
= 1TC0. (4.9)

Finally, if χ > λ1 then,

lim
t→∞

C (t) = e−t(χ−λ1)
(
ψT
1 C0

)
ψ1, (4.10)

which goes to zero as t→ ∞. ⊓⊔
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Corollary 1 Let G be a regular graph. Then, the di�usion model (4.1) with χ = λ1

is conservative for any initial condition, where lim
t→∞

C (i) =
1

n

∑
j C0 (j) for all j ∈ V .

If the graph is not regular and C0 ̸= ψ1 then the process is non-conservative and

0 < C (t) < C0 <∞.

Remark 1 The di�usion process (4.1) is non-conservative for all values of χ and initial
conditions C0, except for the speci�c case in which χ = λ1 and C0 = ψ1.

In Fig. 4.1 we illustrate the three examples of non-conservative di�usion modeled by
Eq. (4.1) using the Lerman-Ghosh Laplacian for the graph and initial condition of the
Fig. 3.1 with χ < λ1 (a), χ = λ1 (b) and χ > λ1 (c). Notice that when χ = λ1 and
C0 ̸= ψ1 the process can be said to be quasi-conservative as the number of particles
when t→ ∞ is just a bit smaller than at t = 0.

(a) (b) (c)

Fig. 4.1: Illustration of the non-conservative di�usion process on the graph illustrated
in Fig. 3.1 for χ < λ1 (a), χ = λ1 (b) and χ > λ1 (c).

4.1 On the intuition of the non-conservative di�usion

In the discrete time setting the Eq. (4.1) indicates that the resulting concentration at
every vertex of the graph at the discrete time step r + 1 is given by

Ci (r + 1) = Ci (r)− εχCi (r) + ε
∑

(j,i)∈E

Cj (r) . (4.11)

If we introduce the following matrix Q := I − ε (χI −A) = (1− εχ) I + A, then
we can write the discrete-time di�usion dynamics as:

C (r + 1) = QC (r) . (4.12)

In order to gain intuition on what is happening let us start by considering that a
graph is submerged into a given reservoir in which there could be an in�nite reserve
of the item to be di�used across the graph. Every vertex of the graph is connected to
the reservoir by mean of a semi-edge, which has one endpoint at the vertex and the
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other one is freely dangling in the reservoir. We then consider a two-steps di�usion
process as follows. First every vertex i expels εχCi (r) to the reservoir, where χ is a
constant such that εχ ≤ maxi C0 (i) to guarantee that no vertex is left with a negative
concentration. This �rst step creates a pool of the item being di�used in the reservoir
which adds to the existing reserve of items in the reservoir (in case it exists). In the
second step of the process every vertex sucks from the reservoir an amount equal to
ε
∑

(j,i)∈E Cj (r).
For instance, let us consider the graph of Fig. 3.1, which has λ1 ≈ 2.343, and

let us use χ = 3 and ε = 0.25 as before. Then, vertex A expels εχCA (0) = 2.25 of
its initial concentration to the reservoir. The amounts expelled by the other vertices
are: 1.5; 3.75; 3.0; 0.75. In total, the vertices have expelled 11.25 of its initial total
concentrations that sum 15. At every vertex remains concentrations equal to: 0.75;
0.50; 1.25; 1.0; 0.25, respectively, as can be seen in Fig. 4.2(a). In the second step,
the vertex A has to suck ε

∑
(j,A)∈E Cj (0) = 1.75, while the others will suck: 3.25;

1.25; 0.50; 0.50; respectively, for a total of 7.25. This amount to be sucked from the
reservoir is smaller than the one expelled previously to it. Therefore, in the reservoir
it will remain 11.25 − 7.25 = 4 and the sum of the concentrations at the nodes will
be 11 instead of the 15 that there was initially. This is illustrated in Fig. 4.2(b). The
repetition of this process makes that the vertices get empty as time evolves because
in every time step there are more �items� deposited in the reservoir than the ones
extracted from it. Notice that in this case the reservoir at t = 0 may be empty.

(a) (b)

Fig. 4.2: Schematic representation of the non-conservative di�usive process when χ >
λ1.

If χ < λ1 the amount εχCi (r) expelled by the vertices to the reservoir is smaller
than the amount ε

∑
(j,i)∈E Cj (r) that the vertex has to suck from the reservoir.

For instance if we use χ = 1, the vertices will expel in total 3.75 to the reservoir as
illustrated in Fig. 4.3(a). However, the vertices have to extract 7.25 from the reservoir,
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which means they will take the 3.75 previously expelled plus 3.5 from the reserve in the
reservoir. Here the total amount at the vertices at t = 1 is 19 (see Fig. 4.3(b)) instead
of the amount equal to 15 which existed at t = 0. The consequence of the repetition of
this process is that the concentrations at the vertices growth to in�nity as time evolves
due to the fact that vertices extract �items� from the reservoir.

(a) (b)

Fig. 4.3: Schematic representation of the non-conservative di�usive process when χ <
λ1.

5 Logistic di�usion

It is certainly unrealistic to think about systems in which a non-conservative di�usion
blows up when t → ∞. This situation is avoided in the so-called reaction-di�usion
models, where we allow that the vertices create or annihilate items to avoid that their
concentrations go to zero or to in�nity:

Ċ (t) = −LC (t) + f (C (t)) . (5.1)

An example of this model is the Fisher-Kolmogorov�Petrovsky�Piskunov [40, 62]

(see also [23]) where f (C (t)) = αC (t)

(
1− C (t)

C

)
with α being the growth rate and

C being the carrying capacity. The model represents the linear growth of the particle
population in proportion to its current size, and the negative quadratic one has the
e�ect of curtailing the items population growth.

Let us here consider a general model of the form

Ċ (t) = (χI −A)C (t) + f (C (t)) , (5.2)



Title Suppressed Due to Excessive Length 13

such that although non-conservative it reaches a steady state in which the concen-
tration at every vertex in the graph is equal. We consider the non-conservative di�usion
with Lerman-Ghosh Laplacian, γ = 1, χ < λ1 and C (0) = C0 with 0 ≤ C0 (i) < 1.
Then, because the graphs considered here are never the trivial graph we have that
λ1 > 0, so that setting χ = 0 we always guarantee the condition that 0 = χ < λ1.
If we consider f (C (t)) = 0, the model Ċ (t) = AC (t) always blows up because the
adjacency operator sums the concentrations of the newest neighbors of every node,
which continuously increases:

Ċi (t) =
∑

(j,i)∈E

AijCj (t) . (5.3)

However, we consider here that a fraction of the concentration increased at the
vertex i is removed from it. Because Ci < 1 we consider that the fraction to be removed
is equal to Ci multiplied by the amount in which the concentration has increased:

Ċi (t) =
∑

(j,i)∈E

AijCj (t)− Ci (t)
∑

(j,i)∈E

AijCj (t) . (5.4)

Obviously, we can regroup the terms to obtain:

Ċi (t) = (1− Ci (t))
∑

(j,i)∈E

AijCj (t) , (5.5)

which is not other thing than the logistic di�erential equation [6] (for applications see
also [16, 56, 63, 98]).

The logistic model can be rewritten (see [1]) as

1

1− Ci(t)

dCi (t)

dt
=
∑
j∈N

Aij

(
1− e−(− log(1−Cj(t)))

)
, (5.6)

which is equivalent to

dyi (t)

dt
=
∑
j∈N

Aijf (yj (t)) , (5.7)

where yi (t) := g (Ci (t)) = − log (1− Ci (t)) ∈ [0,∞], f (y) := 1− e−y = g−1 (y).
Lee et al. [65] have considered the following linearized version of the previous non-

linear equation

dŷ (t)

dt
= Adiag (1− C0) ŷ (t) + b (C0) , (5.8)

where Ĉ (t) = f (ŷ (t)) in which Ĉ (t) is the approximate solution to the logistic model,
ŷ0 = g (C0) and b (C) := C + (1− C) log (1− C) .

Theorem 4 [65] For any t it is true that C (t) ⪯ Ĉ (t) when they have the same initial

conditions, and the solution of the linearized logistic model is
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ŷ (t) = e(t−t0)Adiag(1−C0)g (C0)

+
∞∑
k=0

(t− t0)
k+1

(k + 1)!
[Adiag (1− C0)]

k
Ab (C0) ,

(5.9)

which reduces to

ŷ (t) = g (C0) +
[
etAdiag(1−C0) − I

]
diag (1− C0)

−1
C0, (5.10)

when C0 ≺ 1, and to

ŷ (t) = g (C0) +
∞∑
k=0

tk+1

(k + 1)!
[Adiag (1− C0)]

k
AC0 (5.11)

when C0 (i) ∈ {0, 1} .

Remark 2 Here we show that both solutions when C0 ≺ 1, and when C0 (i) ∈ {0, 1} are
the same. For that, let us consider D = diag (1− C0) in the solution for C0 (i) ∈ {0, 1}
. Then,

ŷ (t) = g (C0) + t

∞∑
k=0

[tAD]k

(k + 1)!
AC0

= g (C0) + tE1,2 (A)AC0

= g (C0) + t

(
etAD − I

tAD

)
AC0

= g (C0) +

(
etAD − I

D

)
C0,

(5.12)

which is the solution for C0 ≺ 1. We have used the de�nition of the Mittag-Le�er
matrix function:

Eα,β (M) :=
∞∑
k=0

Mk

Γ (αk + β)
, (5.13)

where M is a matrix, which for α = 1 and β = 2 is

E1,2 (M) :=
∞∑
k=0

Mk

Γ (k + 2)
=

∞∑
k=0

Mk

(k + 1)!
=
eM − I

M
. (5.14)

This speci�c Mittag-Le�er matrix function [5, 28, 44] is also known as the Ψ -matrix
function (see Section 10.7.4 in [57]). Notice that E1,2 (M) = exp (M) .

Hereafter, we consider the realistic scenario in which the initial concentration of
the item under study at one given vertex i is very small C0 (i) ≪ 1, and zero elsewhere.
In this scenario, D ≈ I and the solution of the approximate logistic di�usion equation
is

ŷ (t) ≈ etAC0 − (C0 + log (1− C0)) , (5.15)

and

x̂ (t) ≈ 1− e−ŷ(t). (5.16)
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(a) (b)

Fig. 5.1: Illustration of the time evolution of the logistic di�usion on the graph of Fig.
3.8 using the approximation eq. (5.15) instead of the exact solution of eq. (5.10). Here
C0 (A) = 0.001 and C0 (i) = 0 for i = {B,C,D,E} .

For instance, we illustrate in Fig. 5.1 the temporal evolution of this di�usion model
on the simple graph of Fig. 3.8 with both the approximate and exact solutions.

Obviously,

lim
t→∞

ŷ (t) = etλ1

(
ψT
1 C0

)
ψ1 − (C0 + log (1− C0)) = ∞, (5.17)

such that

lim
t→∞

x̂ (t) = 1, (5.18)

implying that the process is non-conservative as 1TC0 = C0 (i) ≪ 1, and 1TC∞ =
n.

6 Sending �information� to a target

In order to compare the two di�usion processes considered here, conservative and non-
conservative ones, we select a graph formed by two cliques, which are interconnected
by a path. This kind of graphs are known as dumbbell graphs and they are a good
example of a di�cult networked environment in which a particle in one of the cliques
have to di�use to �nd a target in the other clique. While it is relatively easy for a
di�usive particle to navigate one of the cliques, it is more di�cult to �nd the only path
communicating the two cliques to move to the other. The dumbbell graph built here has
10 vertices in each clique and 10 vertices in the path connecting them. In Fig. 6.1(a)
we illustrate the temporal evolution of the conservative di�usion of a concentration
initially located in a clique vertex i di�erent from the one connecting the clique to
the path, such that C0 (i) = 0.001 and C0 (j) = 0 for all j ̸= i. . For the sake of
comparison we illustrate in Fig. 6.1(b) the same process in a random graph having the
same number of vertices and edges as the dumbbell one. That is, this is a graph in which
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the di�culties inherent to the structure of the dumbbell graph have been changed by
an environment in which the particle can navigate in an easier way, although having
the same number of vertices and edges. As can be seem in Fig. 6.1 the conservative
di�usion takes about 100 times more time to reach the steady state in the dumbbell
graph than in its random analogous.

(a) (b)

Fig. 6.1: Time evolution of conservative di�usion dynamics on a dumbbell graph (a)
with two cliques of 10 vertices interconnected by a linear chain of 10 vertices, and in
the random graph (b)�of the Erd®s-Rényi type� having the same number of vertices
and edges like the graph in (a).

Let us now consider what happen with the non-conservative di�usion. To consider
a process in which a steady state is reached we will use the non-conservative logistic
di�usion equation on graphs using the approximation of Lee-Tenneti-Eun and the same
initial condition as before.

It is remarkably to notice that the non-conservative di�usion only takes about two
times more time to reach the steady state in the dumbbell graphs than in its random
analogous. This is illustrated in Fig. 6.2. If we compare this non-conservative process
with the conservative one in the dumbbell graph we observe that the �rst is about 100
times faster than the second one.

In Fig. 6.3 we illustrate the di�erences in the way in which the concentration of
items is di�used from a vertex of the dumbbell graph to the rest of the vertices. In
this case we selected a vertex of the linear chain which is located close to the center
(the linear chain has 10 vertices, and the vertex selected has four vertices to the right
and �ve to the left). At very short times, as illustrated in Fig. 6.3(a), it is already
seen that the logistic di�usion spreads faster the concentration of items to the nearest
neighbors of the central vertex than the standard di�usion. The main fundamental
di�erence between the two dynamics occurs when the time advances. The standard
di�usion evolves by �attening the peak of concentration at the central node while
spreading the concentration from the closest to the farthest vertices (see 6.3(b)). The
logistic di�usion progresses by extracting concentration from the central vertex and
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(a) (b)

Fig. 6.2: Time evolution of non-conservative logistic di�usion dynamics on a dumbbell
graph (a) with two cliques of 10 vertices interconnected by a linear chain of 10 vertices,
and in the random graph (b)�of the Erd®s-Rényi type�having the same number of
vertices and edges like the graph in (a).

�lling the two cliques at its expense. That is, it evolves by emptying the vertex in
which the whole concentration is initially located and its nearest neighbors to �ll the
two cliques. Once the cliques are �lled, as illustrated in Fig. 6.3(c), the central vertex
and its nearest neighbors are �lled again. This mechanism is possible only because
the process is non-conservative and the vertices can �extract� concentration from the
reservoir. The result of the process is that it is faster than the standard di�usion as we
have seen before.

(a) (b) (c)

Fig. 6.3: Illustration of the time evolution of the di�usion through a dumbbell graph
with 30 vertices. The initial concentration is C0 (i) = 0.001 at a vertex close to the
center of the linear chain connecting the two cliques. The dynamics is controlled by
the standard di�usion equation (solid blue line) and by the logistic di�usion (broken
red line). The plots are for t = 0.5 (a), t = 3.0 (b), and t = 3.5 (c).



18 Ernesto Estrada

7 Trajectories of �items� to a target

Both the conservative classical di�usion model and the non-conservative one studied
here have solutions in which the term depending on the structure of the network is:
exp (βM), where β is a parameter usually depending on time and di�usivity coe�cient
and where M = {−L,A}. Hereafter we will consider only the case β = 1 for the sake
of simplicity. Let us focus on a couple of vertices designated by u and v. Then, at a
given time the concentration at these nodes are:

Cu (t) =
∑
j

(exp (M))uj Cj (0) (7.1)

and

Cv (t) =
∑
j

(exp (M))vj Cj (0) . (7.2)

Then, let Fuv = Cu (t)− Cv (t) be the di�usive �ow from u to v in a graph when
the initial concentration is totally located at the vertex u, C0 = δu,j and let the same
be in the other direction when the initial concentration is completely located at the
vertex v, Fvu = Cv (t)− Cu (t) when C0 = δu,j . Then, we have that

Fuv = [(exp (M))uu − (exp (M))uv]Cu (0) , (7.3)

and

Fvu = [(exp (M))vv − (exp (M))vu]Cv (0) . (7.4)

For the sake of simplicity we consider Cu (0) = 1 in the �rst case and Cv (0) = 1
in the second one.

7.1 Inducing a geometric embedding

De�nition 6 Let Fuv and Fvu as de�ned previously. Then, let us de�ne the sum of
the �ows between the two nodes in both directions, which is given by:

Duv (M) := Fuv + Fvu = (exp (M))uu + (exp (M))vv − 2 (exp (M))uv . (7.5)

We then have the following result [24, 52, 81].

Proposition 1 Duv (M) is a squared Euclidean distance between the pairs of vertices

u and v.

Proof Let us consider that M = UTΛU where Ξ is a diagonal matrix of eigenvalues
of M and U is an orthogonal matrix of eigenvectors. Then, if φi is the ith column of
UT ,we have

Duv (M) = (φu − φv)
T
eΛ (φu − φv)

=
(
eβΛ/2φu − eΛ/2φv

)T (
eΛ/2φu − eβΛ/2φv

)
= (xu − xv)

T (xu − xv)

= ∥xu − xv∥2 .

(7.6)

⊓⊔
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De�nition 7 Let s = diag
(
eM
)
. Then, we de�ne the di�usion Euclidean Distance

Matrix (EDM) as the matrix

M = s1T + 1sT − 2eM . (7.7)

An EDM is called [4, 59, 67, 87] spherical EDM or circum-EDM if the points p1, p2, ..., pn

that generate the EDM lie on a hypersphere .

Proposition 2 M is a circum-Euclidean distance matrix.

Proof We follow Gower [? ] who proved that the points that generate the matrix M
lie on the surface of a hypersphere if and only if 1TM−11 ̸= 0. Thus, we have to prove
that M−1 exists. We �rst use the Sherman-Morrison-Woodbury formula (see p. 50 in
[48]) to have

M−1 =
((

−2eM + 1sT
)
+ s1T

)−1

= −1

2
e−M −

(
e−M1sT e−M

)
4− 2sT e−M1

−

−1

2
e−A −

(
e−M1sT e−M

)
4− 2sT e−M1

 s1T

−1

2
e−M −

(
e−M1sT e−M

)
4− 2sT e−M1


1 + 1T

−1

2
e−M −

(
e−M1sT e−M

)
4− 2sT e−M1

 s

= −1

2
e−M − ab

4− 2ε
−

(
−1

2
bT − ac

4− 2ε

)(
−1

2
aT − db

4− 2ε

)
1 +

(
−1

2
ε− dc

4− 2ε

) ,

(7.8)

from which we get

M−1 = −1

2
e−A +

caaT − (ε− 2) bT aT − (ε− 2) ab+ dbT b

2
(
cd− (ε− 2)2

) , (7.9)

where a = e−A1, b = sT e−M , c = sT e−Ms, d = 1T e−M1, and ε = sT e−M1. We still
need to prove that the denominator is not zero: cd − (ε− 2)2 ̸= 0. It is easy to see
that c ≥ ε, with equality if and only if s = 1 which only happen if the graph is trivial,
which is excluded here as the graphs are connected. Therefore,

−ε2 + cd+ 4ε− 4 > −ε2 + (d+ 4) ε− 4 > 0, (7.10)

where the last inequality is obvious from the roots of the quadratic equation.
We now obtain 1TM−11, as

1TM−11 = −1

2
d− dε

4− 2ε
−

(
−1

2
ε− dc

4− 2ε

)(
−1

2
d− dε

4− 2ε

)
1 +

(
−1

2
ε− dc

4− 2ε

) (7.11)

=
2d

cd− (ε− 2)2
. (7.12)
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Because d = 1T e−M1 is the sum of all the entries of e−M and M ̸= 0 (because
the graph is not trivial), we have that d > 0 and because we have proved before that
cd− (ε− 2)2 > 0, we have proved that M is a nonsingular spherical EDM. ⊓⊔

Remark 3 For properties of the circum-EDM M when M = A, the reader is referred
to [29, 35, 37]. For analysis of the circum-EDM M when M = L, the following is
recommended [17, 82].

7.2 Di�usive trajectories

In order to analyze the trajectories of the di�usive particles in a graph we need to
convert the distances generated in the previous section into geodesics which can be
traversed by these particles. That is, we need a geometrization of the graph. A graph
is geometrized if we consider every edge e = uv in E as a compact 1-dimensional
manifold with boundary ∂e = u ∪ v. We then assign to e = uv the metric Luv (M),
such that, ẽuv (M) ∼= [0,Duv (M)] if e ∈ E or zero otherwise. In this way we transform
the network into a space which is locally compact, complete and geodetic [15, 71].

Technically, what we need is to create the corresponding distance matrix D (M)
and then multiply it in an entrywise way by A, creating a weighted adjacency matrix
W in which every weight corresponds to the length of the corresponding edge. We
now can obtain the weighted shortest paths (SP) connecting every pair of vertices.
While the unweighted shortest paths correspond to the topological ones, those based
on D (−L) correspond to the conservative di�usive SP and the ones based on D (A)
are the non-conservative di�usive SP, also known as communicability SP.

Fig. 7.1: Illustration of the di�usive paths between two vertices in a random rectangular
graph. Blue: shortest non-conservative path; Red: shortest conservative path; Green:
shortest topological path.

To understand the di�erences between the conservative and non-conservative dif-
fusion trajectories let us �rst consider the non-conservative case. The non-conservative
di�usion trajectory between two vertices corresponds to the path with the minimum
sum of the corresponding distances Duv (A) along the path. The distance between
individual pairs of vertices can be written as
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Duv (A) = eλ1 (ψ1u − ψ1v)
2 + eλ2 (ψ2u − ψ2v)

2 + h.o.

= eλ1

(
ψ2
1u + ψ2

1v − 2ψ1uψ1v

)
+ eλ2 (ψ2u − ψ2v)

2 + h.o.

= eλ1

(
EC2

u + EC2
v − 2ψ1uψ1v

)
+ eλ2 (ψ2u − ψ2v)

2 + h.o,

where ECj indicates the eigenvector centrality of the corresponding vertex. Therefore,
selecting the path that minimizes Duv (A) necessarily means a path that minimizes the
eigenvector centralities of the vertices along the path. Let us now give a walk-based
interpretation of the eigenvector centrality (see p. 25 on [19] and a proof in p.161 on
[36]).

Theorem 5 Let Nr (i) be the number of walks of length r starting at vertex i. Let

pr (i) =
Nr (i)∑
j Nr (j)

, (7.13)

be the ith element of the vector pr. Then, if G is not bipartite there is a scalar α such

that as r → ∞, pr → αψ1.

This result indicates that the eigenvector centrality of the vertex i can be interpreted
as the probability of intercepting at this vertex an in�nitely long walk among all the
walks of such length traversing the graph.

On the case of the conservative di�usion the distance is expressed as:

Duv (−L) = e−µ2 (φ2u − φ2v)
2 + h.o.

= e−µ2

(
φ2
2u + φ2

2v − φ2uφ2v

)
+ h.o.,

where φ2 is the Fiedler vector [38, 39]. The entries of the Fiedler vector may be positive
or negative and the sign of this vector is frequently used to partitionate a graph into two
communities. Therefore, large entries of φ2 correspond to vertices with a large number
of neighbors in the same cluster. In fact, the entries of φ2 are positively contributed
by the number of incluster neighbors that the vertex has, minus the number of its
out-cluster neighbors. This indicates clearly that the Fiedler vector is not necessarily
related to the degree of the vertices like in the case of the eigenvector centrality. For
instance, in the graph illustrated in Fig. 7.2 the vertex with the largest degree has the
same number of connections with vertices of one cluster (red vertices) than with those
of the other (blue vertices). Therefore, φ2,i = 0 for this vertex. The vertices with the
largest values of the Fiedler vector are those having only two connections, but they
are both only connected with vertices in their same cluster. In [20] more details about
the structural interpretation of the entries of the Fiedler vector and its role on spectral
clustering are provided.

In closing, Duv (A) avoids the vertices with the highest EC, implying that the
shortest non-conservative di�usive paths traverse the graph by using relatively low
degree (more precisely low cliquishness) vertices. For a blind navigator of the graph,
these trajectories are easier to navigate than those having vertices with large degrees
in which they have to decide which of the many routes ahead they have to select to
continue to the next step (see [32]). This may be the case of the shortest conservative
di�usive paths where sometimes the vertices with the lowest entries of the Fiedler vector
coincide with those of high degree, di�culting the blind navigation of the graph.
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Fig. 7.2: Illustration of a simple graph having two clusters according to the sign of
the Fiedler vector (vertices in red and vertices in blue). The size of the vertices is
proportional to the square of the magnitude of the entries of the Fiedler vector.

7.3 Where to �nd non-conservative di�usion in graphs

We have seen in this chapter that the non-conservative di�usion has some advantages
relative to conservative di�usion for �nding a target on a networked environment.
Namely, the steady state in the non-conservative process is reached much faster than in
the conservative one by tracing trajectories that avoids the potentially most connected
vertices. Then, it is not surprising to �nd real-world systems in which non-conservative
di�usion is present, some of which are described below.

The most intuitive of these examples is the one of tra�c at rush hour that we have
described in the Introduction. But, where the �non-conservative� part comes from?
The number of cars departing from one intersection is not necessarily the same that
arrives at the next one. The reason is that a few cars will end up their trajectory in the
street leg between two intersections due to the existence of parking spaces in them. In
a similar way some cars can emerge from these spaces, such that the number of cars
can increase/decrease from one vertex to another.

A second illustrative example is the di�usive neurotransmission by means of chem-
ical synapses in neuronal systems [78, 91]. Nowadays it is well-established that chem-
ical synapses do not only take place by the wiring intercellular communication in
which two neurons interchange neurotransmitters [2]. Apart from this conservative
process, neurons and brain regions also communicate by means of a volume trans-
mission (VT), which uses the extracellular �uid �lling channels of the extracellular
space (ECS) and the cerebrospinal �uid �lling ventricular space and sub-arachnoidal
space [2, 13, 43, 85, 86, 94, 95]. That is, some amounts of the neurotransmitters are
spilled over to the ECS in the perisynaptic region and from there it can be retaken by
other neurons, or they can even be transported by blood and/or cerebrospinal �uid to
long distances where they can also be retaken. From the point of view of the network
of neuronal or brain regions, the process is clearly non-conservative, although at the
organ-level it is of course a conservative process.

A third example of networked non-conservative di�usion is the communication in
social media [69, 80, 96] like Twitter or Facebook where an user can post a message
which can be read by her followers, but also (if not constrained by the user) by non-
followers, all of whom can propagate such information to others [88]. By constructing
the network of followers, the propagation of information is non-conservative because
part of the information goes out the network and some other information is subse-
quently received by the users from outside the network.

Other areas in which non-conservative di�usion on networks is present include,
for instance, di�usive processes in ecology [12, 14, 83], di�usion of microplastics and
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other materials in the ocean [58] where the locations can be recorded by means of
interconnected nodes, among others.

8 Conclusions

When referring to transmission principles in the brain, Tognoli and Scott-Kelso [89]
stated that they �do not scale well upward from simple �channels� of synaptic interac-
tions to the larger and more complex web of evolved brains. Thus, it is without surprise
that the brain betrays an essential communicational etiquette: its parts do not behave
in a sequential one-talks-at-a-time manner�. This statement can be extended to
most complex systems where the sender of information does not necessarily know the
global topology of the network in which it is embedded.

The lack of a sequential one-talks-at-a-time communication is a characteristic fea-
ture of di�usive processes in which the sender of information spreads it across all
potential routes to �nd its target(s). We have seen here that even a conservative dif-
fusive way in which one-talks-to-everybody is not the most e�cient way of reaching
potential targets in networked environments. The discovery presented here by �rst time
that the non-conservative di�usion is more e�cient in communicating a source and a
target in a network is somehow surprising. On the light of this discovery it is then clear
why some new ways of social communication, such as online social networks, are so
e�cient in spreading information. They certainly use non-conservative di�usive ways
of �nding their targets. However, we should not forget that this process may be more
costly energetically than a conservative one, particularly when di�usive particles need
to be constantly created at the nodes of the network.

The current work also opens new avenues that should be explored to better under-
stand the ways in which source-to-target communication occurs in complex systems.
For instance, anomalous di�usion on graphs described by means of the d-path Lapla-
cians [25, 27, 33, 34] and its combination with fractional temporal derivatives [21], are
all conservative processes. The extension of d-path Laplacians to d-path Lerman-Ghosh
Laplacians seems to be a necessary extension of the current work. This will allow us
to investigate, for instance, if the non-conservative anomalous di�usion is more e�-
cient than its conservative analogous in �nding a target on a graph. Similarly, the
Lerman-Ghosh Laplacians can be used in degree-biased advection--di�usion models on
undirected graphs/networks [75] to simulate realistic scenarios in complex systems. An-
other avenue is to investigate non-conservative di�usion in metaplexes [31], where not
only the particles di�use across a discrete space, but also in a continuous one existing
inside the nodes. All in all, we hope this Chapter helps the reader in their particular
�Target Problems� for understanding complex systems.
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