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Conservative vs. non-conservative diffusion
towards a target in a networked environment

Ernesto Estrada

Abstract The networked nature of complex systems determines the way in which
’information’ navigates the system from a source to a target. This navigation is gov-
erned by the lack of central controllers and the fact that every individual entity ignores
the global structure of the system. Consequently, targeted shortest-path searches are
almost automatically excluded in these systems, leaving the more blind diffusive
processes as the main mechanism for navigating complex networks. Here we show
that non-conservative diffusion has some advantages over the ’classical’ (conserva-
tive) diffusion for searching a target in a network. The non-conservative nature of the
diffusion process is given by the possibility that the network ’communicates’ with the
environment in which it is embedded. We use analytical and computational methods
to show that non-conservative diffusion uses trajectories which are more prone to
find a target than the conservative one. We illustrate the existence of this mechanisms
in systems as varied as traffic in urban environments, volume transmission in the
brain and communication through online social networks.

1 Introduction

“The Target Problem” seems to be an easy problem when it deals with searching
strategies toward an efficient target identification on a networked environment. This
environment can be represented by the discrete space created by a graph𝐺 = (𝑉, 𝐸),
in which a set of vertices 𝑉 are interconnected by pairs forming a set of edges
𝐸 [25]. Therefore, once a target has been identified in the graph, e.g., the vertex
𝑤 ∈ 𝑉 , our task can be thought to be reduced to find the shortest topological path
connecting our current location, e.g., the vertex 𝑣 ∈ 𝑉 , with the target. A path refers
to a sequence of different vertices and edges between two corresponding vertices.
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2 Ernesto Estrada

Among all existing paths between two vertices, the one having the minimum length,
in terms of the number of edges in the path, is the shortest path. There are several
algorithms for finding the shortest path between two vertices in a graph [48,92,100].
The Bellman-Ford-Moore algorithm [7,40,77] allows to find the shortest paths from
the source vertex to all other vertices in a graph in which edges can be weighted by
positive numbers. The algorithm has a time complexity of𝑂 (𝑉 · 𝐸) , which because
#𝐸 ≥ #𝑉 − 1 in connected graphs, makes the complexity relatively large, i.e., in
general larger, than 𝑂

(
𝑉2) . The most popular algorithm for finding shortest paths

is the Dijkstra algorithm [20], which finds the shortest paths from the source vertex
to all other vertices in the graph with time complexity 𝑂

(
𝑉2) . Finally, the Floyd-

Warshall algorithm [39,93] finds the shortest paths between all pairs of vertices in a
graph in 𝑂

(
𝑉3) allowing weights in the edges, which can be positive or negative.

Let us now see the target problem from the perspective of a single vertex in
a network representation of a complex system [31]. Think for instance about a
neuron which is interconnected to others in a human brain composed by about
1010 neuronal cells and 1014 interconnections [64]. Can this single neuron find the
shortest path to a target neuron in this network? If the neuron is going to use a
routing/navigation process to find the shortest path to a specific target it needs to
have a “global knowledge about the network topology” [50]. This is exactly what
the previously mentioned algorithms use: global information about the network. It
is hard to digest that every single neuron has a map of the 86 billion neurons in
the brain. In spite of this, there are authors who believe that [68] “the shortest path
plays an important role in the information transmission of a brain network, and it is a
very important measure to describe the internal structure of the brain network”. The
claim is mainly based on the apparent fact that “the shortest path can transmit the
information more quickly and reduce brain consumption” [68]. For such a thing to be
possible it is necessary that there exists a central controller with “global knowledge
about the network topology” [50] to direct the information through the shortest
paths connecting pairs of brain regions. But even in this “mystical” scenario, the
use of the shortest path could be inefficient from an energetic point of view. Tomasi
et al. [90] have found experimentally that “a higher degree of connectivity was
associated with nonlinear increases in metabolism”. That is, the more connected a
vertex is, the higher its energy consumption. It is evident that a highly connected
vertex supports many shortest paths crossing it–a vertex of degree 𝑘 may support up
to 𝑘 (𝑘 − 1) /2 shortest paths of length two between its nearest neighbors, apart from
the rest. Therefore, it is not necessairily true that the use of shortest paths “reduces
brain consumption” as claimed in [68].

How is then possible that information finds its way from a specific source to a spe-
cific target in such complex networked environments like a human brain? Diffusion
may be a plausible solution. At the end, a diffusive process can transmit informa-
tion between a source and a target without any “knowledge about global network
topology” [50]. This strategy will also avoid the problem of increasing glucose con-
sumption because it “prevents particles or messages from taking shortest paths” [50].
Diffusion is ubiquitous in nature and in many man-made systems, even in those in
which it seems to be counterintuitive [72]. For instance, when navigating a city at rush
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hour, drivers in general know the shortest topological paths between origin-target
pairs. However, it has been seen statistically that they frequently avoid such paths for
several reasons [3]. The first is that such routes contain, with high probability, highly
interconnected intersections. Therefore, traveling through shortest topological paths
necessarily would imply more complicated maneuvers and more waiting time due to
traffic signals, jams, etc. The second is that in navigating between origin-target pairs,
drivers frequently use their own “cognitive maps”, which allow them “establishing
locations, understanding distances between locations, comprehending the direction
of one location from another, linking locations in sequence, and transferring knowl-
edge from the mental arena to the surrounding physical environment” [49]. We can
think that every driver in the same city has his own cognitive map to go from one
place to another, particularly at rush hour. Indeed, Golledge and Gärling [49] have
found, in travel-related literature, more than 20 different strategies used by drivers
to find their routes. Their search include reports in fields such as travel behavior, op-
erations research, transport geography, and behavioral travel modeling. Such mental
algorithms include strategies like: using the “longest leg first”, or using the “shortest
leg first”, selecting the route that has “fewest turns”, or “fewest lights or stop signs”,
or “fewest obstacles or obstructions”, etc. If we assign randomly and independently
these algorithms to the drivers in a city at rush hour, what we will observe are patterns
similar to those of a diffusive motion [3, 61, 98].

When we talk about diffusion we typically talk about a series of different phys-
ical phenomena, which include classical conservative diffusion, non-conservative
diffusion, and anomalous diffusion (sub- and superdiffusion) [18, 46, 60, 66, 84]. By
conservative we mean that the amount of diffusive particles is constant in the graph,
while in a non-conservative diffusion the number of diffusive particles can change
with time. The reason for the latest is that some particles are created/annihilated
in the graph, maybe because they escape to the environment in which this graph is
embedded. Here, we study the similarities and differences between conservative and
non-conservative diffusion on graphs. We discover here that the non-conservative
diffusive strategy present certain advantages for a single vertex in a network to send
information to a target in a faster way relative to the conservative one. The main
reason behind this advantage of non-conservative diffusion over the conservative
one resides in the trajectories that diffusive particles follow in both processes. These
trajectories are found here by means of a geometrization of the graphs using the
Euclidean distances induced by the diffusive processes. We ffind here that non-
conservative diffusive particles follow trajectories involving low-connected vertices,
which coincide with the bypasses recently found to play an important role in complex
networks navigation [33], while the conservative ones can follow trajectories more
similar to those of the shortest topological paths. We finalize this chapter with some
examples of complex systems in which such non-conservative diffusive strategies
are used.
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2 The setting

Here we only consider simple, undirected and unweighted graphs𝐺 = (𝑉, 𝐸) ,where
𝑉 = {𝑣1, . . . , 𝑣𝑛} is the set of vertices with #𝑉 = 𝑛, and 𝐸 =

{(
𝑣𝑖 , 𝑣 𝑗

) ��𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 }
is

the set of edges with #𝐸 = 𝑚. We use indistinctly the terms graphs and networks to
refer to𝐺, although the term “network” is mainly reserved to the skeleton of complex
systems in the real-world. The terms vertex and node are also used indistinctly.

A walk of length 𝑙 in a graph is a sequence of (not necessarily different) vertices
𝑣1, 𝑣2, . . . , 𝑣𝑙 , 𝑣𝑙+1 such that for each 𝑖 = 1, 2, . . . 𝑙 there is an edge from 𝑣𝑖 to 𝑣𝑖+1.
The walk is known as closed if 𝑣𝑙+1 = 𝑣1. If all the vertices and edges of the walk
are different we say that it corresponds to a path. Among all the paths that connect a
pair of vertices, the one having the minimum length is the shortest path. The shortest
path between two vertices is a distance. A graph for which there is at least a path
between every pair of vertices is said to be connected. We will consider here only
connected graphs.

Two vertices are adjacent in the graph if they share a common edge. Then the
square symmetric matrix 𝐴, whose entries are defined as

𝐴𝑖, 𝑗 =

{
1 (𝑖, 𝑗) ∈ 𝐸
0 (𝑖, 𝑗) ∉ 𝐸, (1)

represents the adjacency between pairs of vertices in the graph and it is known as
the adjacency matrix.

The following is a very well-known result (see for instance [8]):
Theorem 1 Let 𝐺 be a simple connected graph. Then, the (𝑖, 𝑗) entry of the 𝑙th
power of 𝐴,

(
𝐴𝑙

)
𝑖 𝑗

, counts the number of walks of length 𝑙 between the vertices 𝑖
and 𝑗 . □

The number of vertices adjacent to a vertex 𝑖 is known as the degree of 𝑖 and
denoted by 𝑘𝑖 . The diagonal matrix 𝐾 of the degree of the vertices in 𝐺 is known
as the degree matrix. Then, the matrix 𝐿 = 𝐾 − 𝐴 is defined as the graph Laplacian
matrix of 𝐺, see further for a “first-principles” definition.

3 Normal diffusion

Let us consider a simple undirected graph as the one illustrated in Fig. 1 in which
there is a “concentration” 𝐶𝑖 (0) = 𝐶𝑖 (𝑡 = 0) ∈ R+ ∪ {0} of a given “item” at the
node 𝑖 at a time 𝑡 = 0.

At every edge (𝑖, 𝑗) there will be a gradient 𝐶𝑖 (0) −𝐶 𝑗 (0) of concentrations. As
time evolves, there is a “movement” of the “items” from high concentration to low
concentration. Let us pick a vertex of𝐺, let say 𝐴, and analyze how the concentration
of the items at this vertex changes in time. Because 𝐴 is connected to 𝐵 and to 𝐶 we
have that the change of concentration at 𝐴 is proportional to the sum of the gradients
with both 𝐵 and 𝐶:
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Fig. 1: Illustration of the time-evolution of the standar diffusion on the graph il-
lustrated in the inset, when the intial concentrations at the vertices is given by:
𝐶0 = [3, 2, 5, 4, 1]𝑇 for the vertices 𝑉 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}.

𝑑𝐶𝐴 (𝑡)
𝑑𝑡

= 𝛾 [(𝐶𝐵 (𝑡) − 𝐶𝐴 (𝑡)) + (𝐶𝐶 (𝑡) − 𝐶𝐴 (𝑡))] , (2)

where 𝛾 is a proportionality coefficient known as diffusivity or diffusion coefficient
[46]. We can rearrange this equation for the node 𝐴 as:

𝑑𝐶𝐴 (𝑡)
𝑑𝑡

= 𝛾 [𝐶𝐵 (𝑡) + 𝐶𝐶 (𝑡) − 2𝐶𝐴 (𝑡)] , (3)

where 𝐶𝐵 (𝑡) +𝐶𝐶 (𝑡) is the sum of the concentrations at the nearest neighbors of 𝐴
and 2𝐶𝐴 (𝑡) is the concentration at 𝐴 multiplied by the number of nearest neighbors
it has, i.e., its degree. Let us hereafter consider 𝛾 = 1. Then, we can write generically
the following equation:

¤𝐶𝑖 (𝑡) =
©«

∑︁
( 𝑗 ,𝑖) ∈𝐸

𝐶 𝑗 (𝑡)
ª®¬ − 𝑘𝑖𝐶𝑖 (𝑡) , (4)

where 𝑘𝑖 is the degree of vertex 𝑖. It is worth mentioning here that this equation is
a particular case of the so/called “master equation”, which is considered in other
Chapters of this book.

Let us now defined the following.
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Definition 2 Let H := ℓ2 (𝑉) be a Hilbert space and let 𝑓 ∈ H be a function. Then,
the adjacency operator A of 𝐺 is defined as [70]:

(A 𝑓 ) (𝑣) :=
∑︁

(𝑤,𝑣) ∈𝐸
𝑓 (𝑤) . (5)

Notice that if 𝐺 is infinite but locally finite, i.e., 𝑘𝑖 < ∞ for all vertices of 𝐺, the
adjacency operator is a bounded selfadjoint operator in H [70]. If the graph is finite
the adjacency operator coincides with the adjacency matrix 𝐴 of the graph.

Definition 3 Let H := ℓ2 (𝑉) be a Hilbert space and let 𝑓 ∈ H be a function. Then,
the degree operator K of 𝐺 is defined as:

(K 𝑓 ) (𝑣) := 𝑘𝑣 𝑓 (𝑣) . (6)

If the graph is finite the degree operator is realized by the diagonal matrix 𝐾 of
vertices degrees of the graph.

Let ¤𝐶 (𝑡) :=
[ ¤𝐶𝑣1 (𝑡) . . . ¤𝐶𝑣𝑛 (𝑡)

]𝑇 and let 𝐶 (𝑡) :=
[
𝐶𝑣1 (𝑡) . . . 𝐶𝑣𝑛 (𝑡)

]𝑇 . Then,
we can write the set of diffusion equations for all the vertices of the graph in the
following matrix-vector form:

¤𝐶 (𝑡) = 𝐴𝐶 (𝑡) − 𝐾𝐶 (𝑡)
= (𝐴 − 𝐾) 𝐶 (𝑡)
= −𝐿𝐶 (𝑡) ,

(7)

where 𝐿 := 𝐾 − 𝐴 is the Laplacian of the graph, which can be formally defined as:

Definition 4 Let H := ℓ2 (𝑉) be a Hilbert space and let 𝑓 ∈ H be a function. The
Laplacian operator L of 𝐺 is defined as [53]:

(L 𝑓 ) (𝑣) :=
∑︁

(𝑤,𝑣) ∈𝐸
( 𝑓 (𝑤) − 𝑓 (𝑣)) . (8)

When the graph is finite, then 𝐿 is the matrix representation of this operator. □

We then have the diffusion equation of the graph as:

¤𝐶 (𝑡) = −𝐿𝐶 (𝑡) (9)

where 𝐿 := 𝐾 − 𝐴 is the graph Laplacian and 𝐾 is a diagonal matrix of vertex
degrees, and where the initial condition is 𝐶 (0) = 𝐶0 ∈ R𝑛×1

+ ∪ {0} .

3.1 Some properties of 𝑳

Here we state some of the general properties of the graph Laplacian matrix 𝐿

(see [54, 55, 73, 76]).
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Definition 5 Let 𝑚 be the number of edges and 𝑛 be the number of vertices. Then
the incidence matrix ∇ is the 𝑚 × 𝑛 matrix given by:

∇𝑣,𝑒 =


−1, 𝑒 = (𝑣, 𝑤) and 𝑣 > 𝑤
1, 𝑒 = (𝑣, 𝑤) and 𝑣 < 𝑤
0, otherwise.

(10)

Lemma 6 The Laplacian matrix of the graph 𝐿 is given by

𝐿 = ∇𝑇∇, (11)

such that the incidence matrix can be considered as a gradient matrix of a graph
where concentrations are arbitrarily fixed at the nodes. □

The following describes some of the general properties of the Laplacian.

Theorem 7 The Laplacian matrix 𝐿 of a graph: □

1. is a positive semidefinite matrix, indeed 𝑓 𝑇𝐿 𝑓 =
∑

(𝑣,𝑤) ∈𝐸 ( 𝑓 (𝑣) − 𝑓 (𝑤))2 ≥ 0;

a. always has an eigenvalue equal to 0;
b. the multiplicity of the zero eigenvalue is equal to the number of connected

components of the graph.

3.2 Conservative nature of the graph diffusion

Definition 8 A diffusion process is said to be conservative if the number of diffusive
particles is constant along the time. That is, if and only if 1𝑇𝐶 (𝑡) = 1𝑇𝐶0 for any
0 ≤ 𝑡 ≤ ∞. Otherwise the process is said to be non-conservative □

Lemma 9 The diffusion (9) on a connected graph is always conservative. □

Proof The solution of the diffusion equation is:

𝐶 (𝑡) = 𝑒−𝑡𝐿𝐶0. (12)

Let us take the sum of the entries of 𝐶 (𝑡) at an arbitrary time 𝑡,

1𝑇𝐶 (𝑡) = 1𝑇𝑒−𝑡𝐿𝐶0 (13)

and let us expand the matrix exponential in its Taylor series

1𝑇𝐶 (𝑡) = 1𝑇𝐶0 − 𝑡1𝑇𝐿𝐶0 + 𝑡
2

2!
1𝑇𝐿2𝐶0 + · · · +

(
(−1)𝑘 𝑡𝑘
𝑘!

)
1𝑇𝐿𝑘𝐶0 + · · · . (14)

Because 𝐿 is positive semidefinite, we have that 1𝑇𝐿 = 0 and so
(
1𝑇𝐿

)
𝐿𝑘−1 = 0,

so that 1𝑇𝐶 (𝑡) = 1𝑇𝐶0 for any 𝑡. □
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In plain words, the previous result means that at any time 𝑡 the sum of concentrations
of particles at the nodes of the graph is exactly the same, independently of 𝑡.

Let us now see what is the steady state of the diffusive dynamics in a graph.

Lemma 10 Let 𝐶0
𝑖

be the state of the vertex 𝑖 at time 𝑡 = 0. Then, when 𝑡 → ∞ the

solution of the diffusion equation of the graph converges to𝐶𝑖 (𝑡 → ∞) = 1
𝑛

∑𝑛
𝑖=1 𝐶

0
𝑖
,

i.e., to the average of the state of nodes in the initial condition. The rate of convergence
of the diffusion is dictated by the smallest nontrivial eigenvalue of 𝐿. □

Proof Let 0=𝜇1 < 𝜇2 ≤ · · · ≤ 𝜇𝑛 be the eigenvalues of 𝐿 and let 𝜑𝑖 the orthonor-
malized eigenvector associated with 𝜇𝑖 . Then, we can write

𝐶 (𝑡) = 𝑒−𝑡𝐿𝐶0

= 𝜑1𝑒
−𝑡 𝜇1

(
𝜑𝑇1𝐶

0
)
+ 𝜑2𝑒

−𝑡 𝜇2
(
𝜑𝑇2𝐶

0
)
+ · · · + 𝜑𝑛𝑒−𝑡 𝜇𝑛

(
𝜑𝑇𝑛𝐶

0
)
.

(15)

When 𝑡 is sufficiently large we have

lim
𝑡→∞

𝐶 (𝑡) = 𝜑1𝑒
−𝑡 𝜇1

(
𝜑𝑇1𝐶

0
)

=
1
√
𝑛

1
(

1
√
𝑛

1𝑇𝐶0
)

= 1

(
1
𝑛

𝑛∑︁
𝑖=1

𝐶0
𝑖

)
,

(16)

which proves the first part of the result. Because 𝜇2 is the second smallest eigenvalue
of 𝐿, it will dictate the rate of convergence of the process. □

3.3 Intuition of the conservative diffusion on graphs

We start here by writing an iterative form of the diffusion dynamics on graphs in
discrete-time:

𝐶𝑖 (𝑟 + 1) = 𝐶𝑖 (𝑟) − 𝜀𝐶𝑖 (𝑟) 𝑘𝑖 + 𝜀
∑︁

( 𝑗 ,𝑖) ∈𝐸
𝐶 𝑗 (𝑟) , (17)

where 𝜀 > 0 is the step-size. If we introduce the following matrix 𝑃 := 𝐼 −𝜀𝐿, which
was proposed to be called the Perron matrix by Olfati-Saber et al. [79], we can write
the discrete-time diffusion dynamics as:

𝐶 (𝑟 + 1) = 𝑃𝐶 (𝑟) . (18)
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This formulation allows us to interpret what is happening in the diffusive process
on a graph in a step-by-step basis. That is, if the “concentration” of an item at the
vertex 𝑖 at time step 𝑟 is equal𝐶𝑖 (𝑟), then the node 𝑖 will transfer the amount 𝜀𝐶𝑖 (𝑟)
to every of its nearest neighbors at time step 𝑟 +1, at the same time that it will receive
𝜀𝐶 𝑗 (𝑟) from every of its 𝑗 th nearest neighbors. This means that at every time step
there is a trade off in which pairs of connected vertices interchange concentrations
between each other, but such a process goes in the direction of lower concentration.

Let us explain this with an example based on the graph illustrated in Fig. 1.
Let us consider the following initial condition: 𝐶0 = [3, 2, 5, 4, 1]𝑇 . That is, the
vertex 𝐴, which is connected to vertices 𝐵 and 𝐶, has an initial concentration of
𝐶0

𝐴
= 3. At the next time step, 𝑟 = 1, 𝐴 will transfer to 𝐵 the amount 𝜀𝐶0

𝐴
= 3𝜀

and will receive from 𝐵 the amount 𝜀𝐶0
𝐵

= 2𝜀. This means that the net balance
of 𝐴 for its tradeoff with 𝐵 is: 𝐶𝐴⇌𝐵 (1) = −3𝜀 + 2𝜀 = −𝜀, which implies that 𝐴
has transferred more to 𝐵 than what it has received from that vertex. If we do the
same analysis for the tradeoff between 𝐴 and 𝐶, which has initial concentration 5,
we have: 𝐶𝐴⇌𝐶 (1) = −3𝜀 + 5𝜀 = 2𝜀, clearly indicating that 𝐴 receives more from
𝐶 than what it transfers to that node. Because 𝐴 is connected only to 𝐵 and 𝐶, we
have: 𝐶𝐴 (1) = 𝐶0

𝐴
+ 𝐶𝐴⇌𝐵 (1) + 𝐶𝐴⇌𝐶 (1) = 3 − 𝜀 + 2𝜀 = 3 + 𝜀, indicating that in

the first step 𝐴 increases its concentration in spite of the fact that it has transferred
more to 𝐵 than what it has received from it, but such a loss is compensated by the
gains from 𝐶 which has a high initial concentration. The process continues with
these “negotiations” of concentrations between pairs of connected vertices so that
the steady state is eventually reached as illustrated in Fig. 1. This kind of negotiation
is the main reason why this process is known in engineering as the “consensus
protocol” (see for instance [74]).

4 Non-conservative diffusion

Let us consider the following matrix: ℒ𝜒 := 𝜒𝐼 − 𝐴, which was first analyzed in [44]
(see also [45]) and we propose here to call it the Lerman-Ghosh Laplacian of a graph.
Let us then consider the following diffusive process

¤𝐶 (𝑡) = − (𝜒𝐼 − 𝐴) 𝐶 (𝑡) = −ℒ𝜒𝐶 (𝑡) . (19)

At the local level, the concentration of items at a vertex 𝑖 at time 𝑡 is given by

¤𝐶𝑖 (𝑡) =
©«

∑︁
(𝑖, 𝑗 ) ∈𝐸

𝐶 𝑗 (𝑡)
ª®¬ − 𝜒𝐶𝑖 (𝑡) . (20)

We now analyze the solution of this dynamics. Let 𝜆1 > 𝜆2 ≥ · · · ≥ 𝜆𝑛 be the
eigenvalues of the adjacency matrix of a simple, connected graph 𝐺, and let 𝜓 𝑗 be
the (orthonormalized) eigenvector associated with 𝜆 𝑗 . Then, we have the following
result.
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Theorem 11 Let ℒ𝜒 = 𝜒𝐼 − 𝐴 be the Lerman-Ghosh Laplacian and let

¤𝐶 (𝑡) = −ℒ𝜒𝐶 (𝑡) (21)

with initial condition 𝐶 (𝑡) = 𝐶0. Then,

lim
𝑡→∞

𝐶 (𝑡) =


(
𝜓𝑇

1 𝐶
0) 𝜓1𝑒

𝑡 (𝜆1−𝜒) = ∞ for 𝜒 < 𝜆1(∑
𝑗 𝐶

0
𝑗
𝜓1 ( 𝑗)

)
𝜓1 for 𝜒 = 𝜆1(

𝜓𝑇
1 𝐶

0) 𝜓1𝑒
−𝑡 (𝜒−𝜆1 ) = 0 for 𝜒 > 𝜆1.

(22)

Proof The solution of the diffusion equation is given by

𝐶 (𝑡) = 𝑒−𝑡 (𝜒𝐼−𝐴)𝐶0, (23)

which can be written as

𝐶 (𝑡) = 𝑒𝑡 (𝜆1−𝜒)
(
𝜓𝑇

1 𝐶
0
)
𝜓1+𝑒𝑡 (𝜆2−𝜒)

(
𝜓𝑇

2 𝐶
0
)
𝜓2+· · ·+𝑒𝑡 (𝜆𝑛−𝜒)

(
𝜓𝑇
𝑛𝐶

0
)
𝜓𝑛. (24)

Then, when 𝜒 < 𝜆1 we have

lim
𝑡→∞

𝐶 (𝑡) = 𝑒𝑡 (𝜆1−𝜒)
(
𝜓𝑇

1 𝐶
0
)
𝜓1, (25)

which diverges as 𝑡 → ∞.
If 𝜒 = 𝜆1 we have that the first term of Eq. (24) is zero, and the rest are negative,

such that

lim
𝑡→∞

𝐶 (𝑡) =
(
𝜓𝑇

1 𝐶
0
)
𝜓1, (26)

which indicates that the solution is proportional to the entries of the eigenvector
𝜓1 associated with the spectral radius 𝜆1 of 𝐴. This eigenvector was introduced by
Bonacich [9–11] as a centrality index of the vertices in a graph and it is nowadays
known as the eigenvector centrality. Therefore, the current framework provides a dy-
namics interpretation of this centrality index in term of the concentration reached by
a vertex at the steady state of a non-conservative diffusion controlled by the Lerman-
Ghosh Laplacian matrix when 𝜒 = 𝜆1. Because the second smallest eigenvalue of
(𝜆1𝐼 − 𝐴) is 𝜆1 − 𝜆2, it determines the rate of convergence of the diffusive process.
Notice that if 𝐶0 = 𝜓1, then the diffusion process is conservative because:

1𝑇𝐶 (𝑡) =
[
1𝑇𝜓1

]
= 1𝑇𝐶0. (27)

Finally, if 𝜒 > 𝜆1 then,

lim
𝑡→∞

𝐶 (𝑡) = 𝑒−𝑡 (𝜒−𝜆1 )
(
𝜓𝑇

1 𝐶
0
)
𝜓1, (28)

which goes to zero as 𝑡 → ∞.
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Corollary 12 Let 𝐺 be a regular graph, i.e., a graph in which all vertices have the
same degree. Then, the diffusion model (19) with 𝜒 = 𝜆1 is conservative for any

initial condition, where lim
𝑡→∞

𝐶𝑖 (𝑡) =
1
𝑛

∑
𝑗 𝐶

0
𝑗

for all 𝑗 ∈ 𝑉 . If the graph is not

regular, the diffusion process with 𝜒 = 𝜆1 and 𝐶0 ≠ 𝜓1, is non-conservative. This

is because 𝜓1 ( 𝑗) < 1 and then lim
𝑡→∞

𝐶 (𝑡) =
(∑

𝑗 𝐶
0
𝑗
𝜓1 ( 𝑗)

)
𝜓1 <

1
𝑛

∑
𝑗 𝐶

0
𝑗

such that

0 < 𝐶 (𝑡 → ∞) < 𝐶0 < ∞. The exception is when 𝜓1 ( 𝑗) =
1
√
𝑛

for all 𝑗 ∈ 𝑉 , which

is the case of the regular graph. □

Remark 13 The diffusion process (19) is non-conservative for all values of 𝜒 and
initial conditions 𝐶0, except for the specific case in which 𝜒 = 𝜆1 and 𝐶0 = 𝜓1. □

In Fig. 2 we illustrate the three examples of non-conservative diffusion modeled
by Eq. (19) using the Lerman-Ghosh Laplacian for the graph and initial condition
of Fig. 1 with 𝜒 < 𝜆1 (a), 𝜒 = 𝜆1 (b) and 𝜒 > 𝜆1 (c). Notice that when 𝜒 = 𝜆1 and
𝐶0 ≠ 𝜓1 the process can be said to be quasi-conservative as the number of particles
when 𝑡 → ∞ is just a bit smaller than at 𝑡 = 0.

(a) (b) (c)

Fig. 2: Illustration of the non-conservative diffusion process on the graph illustrated
in Fig. 1 for 𝜒 < 𝜆1 (a), 𝜒 = 𝜆1 (b) and 𝜒 > 𝜆1 (c).

4.1 On the intuition of the non-conservative diffusion

In the discrete time setting Eq. (19) indicates that the resulting concentration at every
vertex of the graph at the discrete time step 𝑟 + 1 is given by

𝐶𝑖 (𝑟 + 1) = 𝐶𝑖 (𝑟) − 𝜀𝜒𝐶𝑖 (𝑟) + 𝜀
∑︁

( 𝑗 ,𝑖) ∈𝐸
𝐶 𝑗 (𝑟) . (29)
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If we introduce the following matrix 𝑄 := 𝐼 − 𝜀 (𝜒𝐼 − 𝐴) = (1 − 𝜀𝜒) 𝐼 + 𝐴, then
we can write the discrete-time diffusion dynamics as:

𝐶 (𝑟 + 1) = 𝑄𝐶 (𝑟) . (30)

In order to gain intuition on what is happening let us start by considering that a
graph is connected to a given reservoir in which there could be an infinite reserve of
the item to be diffused across the graph. Every vertex of the graph is connected to
the reservoir by means of a semi-edge, which has one endpoint at the vertex, and the
other one is freely dangling in the reservoir. We then consider a two-step diffusion
process as follows. First every vertex 𝑖 expels 𝜀𝜒𝐶𝑖 (𝑟) to the reservoir, where 𝜒 is a
constant such that 𝜀𝜒 ≤ max𝑖 𝐶0

𝑖
to guarantee that no vertex is left with a negative

concentration. This first step creates a pool of the item being diffused in the reservoir
which adds to the existing reserve of items in the reservoir (in case it exists). In the
second step of the process every vertex sucks from the reservoir an amount equal to
𝜀
∑

( 𝑗 ,𝑖) ∈𝐸 𝐶 𝑗 (𝑟).
For instance, let us consider the graph of Fig. 1, which has 𝜆1 ≈ 2.343, and let

us use 𝜒 = 3 and 𝜀 = 0.25 as before. Then, vertex 𝐴 expels 𝜀𝜒𝐶0
𝐴
= 2.25 of its

initial concentration to the reservoir. The amounts expelled by the other vertices
are: 1.5; 3.75; 3.0; 0.75. In total, the vertices have expelled 11.25 of its initial total
concentrations that sum 15. At every vertex remains a concentration equal to: 0.75;
0.50; 1.25; 1.0; 0.25, respectively, as can be seen in Fig. 3(a). In the second step,
vertex 𝐴 has to suck 𝜀

∑
( 𝑗 ,𝐴) ∈𝐸 𝐶

0
𝑗
= 1.75, while the others will suck: 3.25; 1.25;

0.50; 0.50; respectively, for a total of 7.25. This amount to be sucked from the
reservoir is smaller than the one expelled previously to it. Therefore, in the reservoir
there will remain 11.25 − 7.25 = 4, and the sum of the concentrations at the nodes
will be 11 instead of the 15 that there was initially. This is illustrated in Fig. 3(b).
The repetition of this process makes that the vertices get empty as time evolves
because in every time step there are more “items” deposited in the reservoir than
the ones extracted from it. Notice that in this case the reservoir at 𝑡 = 0 may be
empty. Here, the reservoir isjust a virtual space used to gain an intuition on how
the Kerman-Ghosh Laplacian operates over a diffusive process on the graph. More
physically realistic scenarios can be adapted according to specific situations. It is
worth mentioning that this description suggests that a reservoir can be introduced
as an additional sink or source node to the graph, which is connected to all other
nodes. It has been shown that accounting for asymmetric transition rates (from and
to the reservoir) requires the use of transition matrices, see, e.g., [52] and references
therein. We show here that the Lerman-Ghost Laplacian represents an interesting
alternative way to describe sink/source nodes in graphs.

If 𝜒 < 𝜆1 the amount 𝜀𝜒𝐶𝑖 (𝑟) expelled by the vertices to the reservoir is smaller
than the amount 𝜀

∑
( 𝑗 ,𝑖) ∈𝐸 𝐶 𝑗 (𝑟) that the vertex has to suck from the reservoir. For

instance if we use 𝜒 = 1, the vertices will expel in total 3.75 to the reservoir as
illustrated in Fig. 4(a). However, the vertices have to extract 7.25 from the reservoir,
which means they will take the 3.75 previously expelled plus 3.5 from the reserve
in the reservoir. Here the total amount at the vertices at 𝑡 = 1 is 19 (see Fig. 4(b))
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(a) (b)

Fig. 3: Schematic representation of the non-conservative diffusive process when
𝜒 > 𝜆1.

instead of the amount equal to 15 which existed at 𝑡 = 0. The consequence of the
repetition of this process is that the concentrations at the vertices grows to infinity
as time evolves due to the fact that vertices extract more “items” from the reservoir
than the ones they previously expel to it.

(a) (b)

Fig. 4: Schematic representation of the non-conservative diffusive process when
𝜒 < 𝜆1.
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5 Logistic diffusion

It is certainly unrealistic to think about systems in which a non-conservative diffusion
blows up when 𝑡 → ∞. This situation is avoided in the so-called reaction-diffusion
models, where we allow that the vertices create or annihilate items to avoid that their
concentrations go to zero or to infinity:

¤𝐶 (𝑡) = −𝐿𝐶 (𝑡) + 𝑓 (𝐶 (𝑡)) . (31)

An example of this model is the Fisher-Kolmogorov-Petrovsky-Piskunov [38,62]

(see also [21]) where 𝑓 (𝐶 (𝑡)) = 𝛼𝐶 (𝑡)
(
1 − 𝐶 (𝑡)

𝒞

)
with 𝛼 being the growth rate

and 𝒞 being the carrying capacity. The model represents the linear growth of the
particle population in proportion to its current size, and the negative quadratic one
has the effect of curtailing the items population growth.

Let us here consider a general model of the form

¤𝐶 (𝑡) = − (𝜒𝐼 − 𝐴) 𝐶 (𝑡) + 𝑓 (𝐶 (𝑡)) , (32)

such that although it is non-conservative it reaches a steady state in which the
concentration at every vertex in the graph is equal. We consider the non-conservative
diffusion with Lerman-Ghosh Laplacian, 𝛾 = 1, 𝜒 < 𝜆1 and 𝐶 (0) = 𝐶0 with
0 ≤ 𝐶0

𝑖
< 1. Then, because the graphs considered here are never the trivial graph

we have that 𝜆1 > 0, so that by setting 𝜒 = 0 we always guarantee the condition that
0 = 𝜒 < 𝜆1. If we consider 𝑓 (𝐶 (𝑡)) = 0, the model ¤𝐶 (𝑡) = 𝐴𝐶 (𝑡) always blows
up because the adjacency operator sums the concentrations of the newest neighbors
of every node, which continuously increases:

¤𝐶𝑖 (𝑡) =
∑︁

( 𝑗 ,𝑖) ∈𝐸
𝐴𝑖 𝑗𝐶 𝑗 (𝑡) . (33)

We consider here that a fraction of the concentration increased at the vertex 𝑖 is
removed from the node to the reservoir. Because 𝐶𝑖 (𝑡) < 1 we consider that the
fraction to be removed is equal to 𝐶𝑖 (𝑡) multiplied by the amount in which the
concentration has increased:

¤𝐶𝑖 (𝑡) =
∑︁

( 𝑗 ,𝑖) ∈𝐸
𝐴𝑖 𝑗𝐶 𝑗 (𝑡) − 𝐶𝑖 (𝑡)

∑︁
( 𝑗 ,𝑖) ∈𝐸

𝐴𝑖 𝑗𝐶 𝑗 (𝑡) . (34)

Obviously, we can regroup the terms to obtain:

¤𝐶𝑖 (𝑡) = (1 − 𝐶𝑖 (𝑡))
∑︁

( 𝑗 ,𝑖) ∈𝐸
𝐴𝑖 𝑗𝐶 𝑗 (𝑡) , (35)

which is nothing else than the logistic differential equation [6] (for applications see
also [16, 56, 63, 99]).

The logistic model can be rewritten (see [1]) as
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1
1 − 𝐶𝑖 (𝑡)

𝑑𝐶𝑖 (𝑡)
𝑑𝑡

=
∑︁

( 𝑗 ,𝑖) ∈𝐸
𝐴𝑖 𝑗

(
1 − 𝑒−(− log(1−𝐶 𝑗 (𝑡 )))

)
, (36)

which is equivalent to

𝑑𝑦𝑖 (𝑡)
𝑑𝑡

=
∑︁

( 𝑗 ,𝑖) ∈𝐸
𝐴𝑖 𝑗 𝑓

(
𝑦 𝑗 (𝑡)

)
, (37)

where 𝑦𝑖 (𝑡) := 𝑔 (𝐶𝑖 (𝑡)) = − log (1 − 𝐶𝑖 (𝑡)) ∈ [0,∞], 𝑓 (𝑦) := 1 − 𝑒−𝑦 = 𝑔−1 (𝑦).
Lee et al. [65] have considered for a given 𝐶0 an approximate solution �̂� (𝑡) to

the logistic equation, which is given by �̂� (𝑡) = 𝑓 ( �̂� (𝑡)), where �̂� (𝑡) is the solution
of the following linearized version of the previous nonlinear equation

𝑑�̂� (𝑡)
𝑑𝑡

= 𝐴diag (1 − 𝐶0) �̂� (𝑡) + 𝑏 (𝐶0) , (38)

where diag (1 − 𝐶0) represents a diagonal matrix whose main diagonal entries are
given by the values of 1 − 𝐶0 and the rest of entries are zero. Here, 𝑦0 = 𝑔

(
𝐶0) and

𝑏 (𝐶) := 𝐶 + (1 − 𝐶) log (1 − 𝐶), which can be considered as a reaction-diffusion
equation on the new variable �̂� (𝑡). Let 𝑎 ⪯ 𝑏 means that 𝑎 (𝑖) ≤ 𝑏 (𝑖)for all entries
𝑖 = 1, . . . , 𝑛 of the two vectors 𝑎 and 𝑏. We then reproduce the following result.

Theorem 14 [65] For any 𝑡 it is true that 𝐶 (𝑡) ⪯ �̂� (𝑡) when they have the same
initial conditions, and the solution of the linearized logistic model is □

�̂� (𝑡) = 𝑒 (𝑡−𝑡0 )𝐴diag(1−𝐶0)𝑔
(
𝐶0

)
+

∞∑︁
𝑘=0

(𝑡 − 𝑡0)𝑘+1

(𝑘 + 1)!

[
𝐴diag

(
1 − 𝐶0

)] 𝑘
𝐴𝑏

(
𝐶0

)
,

(39)

which reduces to

�̂� (𝑡) = 𝑔
(
𝐶0

)
+

[
𝑒𝑡 𝐴diag(1−𝐶0) − 𝐼

]
diag

(
1 − 𝐶0

)−1
𝐶0, (40)

when 𝐶0 ≺ 1, and to

�̂� (𝑡) = 𝑔
(
𝐶0

)
+

∞∑︁
𝑘=0

𝑡𝑘+1

(𝑘 + 1)!

[
𝐴diag

(
1 − 𝐶0

)] 𝑘
𝐴𝐶0 (41)

when 𝐶0
𝑖
∈ {0, 1} .

Remark 15 Here we show that both solutions when 𝐶0 ≺ 1, and when 𝐶0
𝑖
∈ {0, 1}

are the same. For that, let us consider 𝐷 = diag
(
1 − 𝐶0) in the solution for 𝐶0

𝑖
∈

{0, 1}. Then,
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�̂� (𝑡) = 𝑔
(
𝐶0

)
+ 𝑡

∞∑︁
𝑘=0

[𝑡𝐴𝐷]𝑘

(𝑘 + 1)! 𝐴𝐶
0

= 𝑔

(
𝐶0

)
+ 𝑡𝐸1,2 (𝐴) 𝐴𝐶0

= 𝑔

(
𝐶0

)
+ 𝑡

(
𝑒𝑡 𝐴𝐷 − 𝐼
𝑡𝐴𝐷

)
𝐴𝐶0

= 𝑔

(
𝐶0

)
+

(
𝑒𝑡 𝐴𝐷 − 𝐼

𝐷

)
𝐶0,

(42)

which is the solution for 𝐶0 ≺ 1. We have used the definition of the Mittag-Leffler
matrix function:

𝐸𝛼,𝛽 (𝑀) :=
∞∑︁
𝑘=0

𝑀𝑘

Γ (𝛼𝑘 + 𝛽) , (43)

where 𝑀 is a matrix, which for 𝛼 = 1 and 𝛽 = 2 is

𝐸1,2 (𝑀) :=
∞∑︁
𝑘=0

𝑀 𝑘

Γ (𝑘 + 2) =

∞∑︁
𝑘=0

𝑀𝑘

(𝑘 + 1)! =
𝑒𝑀 − 𝐼
𝑀

, (44)

where 𝐼 is the identity matrix. This specific Mittag-Leffler matrix function [5,29,43]
is also known as the Ψ-matrix function (see Section 10.7.4 in [57]). Notice that
𝐸1,1 (𝑀) = exp (𝑀) .

Hereafter, we consider the realistic scenario in which the initial concentration of
the item under study at one given vertex 𝑖 is very small 𝐶0

𝑖
≪ 1, and zero elsewhere.

In this scenario,𝐷 ≈ 𝐼 and the solution of the approximate logistic diffusion equation
is □

�̂� (𝑡) ≈ 𝑒𝑡 𝐴𝐶0 −
(
𝐶0 + log

(
1 − 𝐶0

))
, (45)

and

𝑥 (𝑡) = 1 − 𝑒− �̂� (𝑡 ) . (46)

For instance, we illustrate in Fig. 5 the temporal evolution of this diffusion model
on the simple graph of Fig. 1 with both the approximate and exact solutions.

Obviously,

lim
𝑡→∞

�̂� (𝑡) = 𝑒𝑡𝜆1
(
𝜓𝑇

1 𝐶
0
)
𝜓1 −

(
𝐶0 + log

(
1 − 𝐶0

))
= ∞, (47)

such that

lim
𝑡→∞

𝑥 (𝑡) = 1, (48)

implying that the process is non-conservative as 1𝑇𝐶0 = 𝐶0
𝑖
≪ 1, and 1𝑇𝐶 (∞) = 𝑛.
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(a) (b)

Fig. 5: Illustration of the time evolution of the logistic diffusion on the graph of Fig.
1 using the approximation eq. (45) instead of the exact solution of eq. (40). Here
𝐶0

𝐴
= 0.001 and 𝐶0

𝑖
= 0 for 𝑖 = {𝐵,𝐶, 𝐷, 𝐸} .

6 Sending “information” to a target

In order to compare the two diffusion processes considered here, conservative and
non-conservative ones, we select a graph formed by two cliques, which are intercon-
nected by a path. Although these graphs are closely related to the so-called dumbbell
graphs, they are not exactly the same, so we propose here to call them weight-lifting
(WL) graphs. In Fig. 6 we illustrate the WL graph with two cliques of 10 vertices
interconnected by a path of the same size.

Fig. 6: Illustration of a WL graph formed by two cliques of 10 vertices interconnected
by a path of the same size. A vertex which is in the clique but not in the path is
denoted by 𝑣.

This kind of graphs is a good example of a difficult networked environment in
which a particle in one of the cliques have to diffuse to find a target in the other clique.
While it is relatively easy for a diffusive particle to navigate one of the cliques, it is
more difficult to find the only path communicating the two cliques to move to the
other. The WL graph built here has 10 vertices in each clique and 10 vertices in the
path connecting them. Thus, we will call it 𝑊𝐿 (10). In Fig. 7(a) we illustrate the
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temporal evolution of the conservative diffusion of a concentration initially located
in a clique vertex 𝑖 different from the one connecting the clique to the path, such
that 𝐶0

𝑖
= 0.001 and 𝐶0

𝑗
= 0 for all 𝑗 ≠ 𝑖. For the sake of comparison we illustrate

in Fig. 7(b) the same process in an Erdős-Rényi random graph [22]having the same
number of vertices and edges as the 𝑊𝐿 (10) one. That is, this is a graph in which
the difficulties inherent to the structure of the WL graph have been changed by an
environment in which the particle can navigate in an easier way, although having
the same number of vertices and edges. As can be seen in Fig. 7 the conservative
diffusion takes about 100 times more time to reach the steady state in the dumbbell
graph than in its random analogous.

(a) (b)

Fig. 7: Time evolution of conservative diffusion dynamics on a WL graph (a) with
two cliques of 10 vertices interconnected by a linear chain of 10 vertices, and in the
random graph (b)–of the Erdős-Rényi type– having the same number of vertices and
edges like the graph in (a).

Let us now consider what happens with the non-conservative diffusion. To con-
sider a process in which a steady state is reached we will use the non-conservative
logistic diffusion equation on graphs using the approximation of Lee-Tenneti-Eun
and the same initial condition as before.

It is remarkable to notice that the non-conservative diffusion only takes about
two times more time to reach the steady state in the WL graphs than in its random
analogous. This is illustrated in Fig. 8. If we compare this non-conservative process
with the conservative one in the WL graph we observe that the first is about 100
times faster than the second one.

In Fig. 9 we illustrate the differences in the way in which the concentration of
items is diffused from a vertex of the WL graph to the rest of the vertices. In this case
we selected a vertex of the linear chain which is located close to the center (the linear
chain has 10 vertices, and the vertex selected has four vertices to the right and five
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(a) (b)

Fig. 8: Time evolution of non-conservative logistic diffusion dynamics on a WL
graph (a) with two cliques of 10 vertices interconnected by a linear chain of 10
vertices, and in the random graph (b)–of the Erdős-Rényi type–having the same
number of vertices and edges like the graph in (a).

to the left). At very short times, as illustrated in Fig. 9(a), it is already seen that the
logistic diffusion spreads faster the concentration of items to the nearest neighbors
of the central vertex than the standard diffusion. The main fundamental difference
between the two dynamics occurs when the time advances. The standard diffusion
evolves by flattening the peak of concentration at the central node while spreading
the concentration from the closest to the farthest vertices (see 9(b)). The logistic
diffusion progresses by extracting concentration from the central vertex and filling
the two cliques at its expense. That is, it evolves by emptying the vertex in which
the whole concentration is initially located and its nearest neighbors to fill the two
cliques. Once the cliques are filled, as illustrated in Fig. 9(c), the central vertex and
its nearest neighbors are filled again. This mechanism is possible only because the
process is non-conservative and the vertices can “extract” concentration from the
reservoir. The result of the process is that it is faster than the standard diffusion as
we have seen before.

7 Trajectories of “items” to a target

Both the conservative classical diffusion model and the non-conservative ones stud-
ied here have solutions in which the term depending on the structure of the network
is: exp (𝛽𝑀), where 𝛽 is a parameter usually depending on time and diffusion coef-
ficient and where 𝑀 = {−𝐿, 𝐴}. Hereafter we will consider only the case 𝛽 = 1 for
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(a) (b) (c)

Fig. 9: Illustration of the time evolution of the diffusion through the 𝑊𝐿 (10) graph
with 30 vertices. The initial concentration is 𝐶0

𝑖
= 0.001 at a vertex close to the

center of the linear chain connecting the two cliques. The dynamics is controlled by
the standard diffusion equation (solid blue line) and by the logistic diffusion (broken
red line). The plots are for 𝑡 = 0.5 (a), 𝑡 = 3.0 (b), and 𝑡 = 3.5 (c).

the sake of simplicity. Let us focus on a couple of vertices designated by 𝑣 and 𝑤.
Then, at a given time the concentration at these nodes are:

𝐶𝑣 (𝑡) =
∑︁
𝑗

(exp (𝑀))𝑣 𝑗 𝐶0
𝑗 (49)

and

𝐶𝑤 (𝑡) =
∑︁
𝑗

(exp (𝑀))𝑤𝑗 𝐶
0
𝑗 . (50)

Then, let

ℱ
𝑣𝑤

���𝐶0
𝑗
=𝛿 𝑗𝑣

= 𝐶
𝑣

���𝐶0
𝑗
=𝛿 𝑗𝑣

(𝑡) − 𝐶
𝑤

���𝐶0
𝑗
=𝛿 𝑗𝑣

(𝑡) , (51)

be the diffusive flow from 𝑣 to 𝑤 in a graph when the initial concentration is totally
located at the vertex 𝑣,𝐶0 ( 𝑗) = 𝛿 𝑗 ,𝑣 , where 𝛿𝑖, 𝑗 is the Kronecker delta. Let us define
the same in the other direction when the initial concentration is completely located
at the vertex 𝑤,

ℱ
𝑤𝑣

���𝐶0
𝑗
=𝛿 𝑗𝑤

= 𝐶𝑤|𝐶0=𝛿 𝑗𝑤
(𝑡) − 𝐶

𝑣

���𝐶0
𝑗
=𝛿 𝑗𝑤

(𝑡) . (52)
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7.1 Inducing a geometric embedding

Definition 16 Let ℱ
𝑣𝑤

���𝐶0
𝑗
=𝛿 𝑗𝑣

and ℱ
𝑤𝑣

���𝐶0
𝑗
=𝛿 𝑗𝑤

as defined previously. Then, let us

define the sum of the gradients between the two nodes in both directions, which is
given by: □

𝒟𝑣𝑤 (𝑀) := ℱ
𝑣𝑤

���𝐶0
𝑗
=𝛿 𝑗𝑣

+ℱ
𝑤𝑣

���𝐶0
𝑗
=𝛿 𝑗𝑤

= (exp (𝑀))𝑣𝑣+(exp (𝑀))𝑤𝑤−2 (exp (𝑀))𝑣𝑤 .
(53)

We then have the following result [23, 51, 81].

Proposition 17 𝒟𝑣𝑤 (𝑀) is a squared Euclidean distance between the pairs of ver-
tices 𝑣 and 𝑤. □

Let us consider that 𝑀 = 𝑈𝑇Λ𝑈 where Ξ is a diagonal matrix of eigenvalues of
𝑀 and 𝑈 is an orthogonal matrix of eigenvectors. Then, if 𝜑𝑖 is the 𝑖th column of
𝑈𝑇 , we have

𝒟𝑣𝑤 (𝑀) = (𝜑𝑣 − 𝜑𝑤)𝑇 𝑒Λ (𝜑𝑣 − 𝜑𝑤)

=

(
𝑒Λ/2𝜑𝑣 − 𝑒Λ/2𝜑𝑤

)𝑇 (
𝑒Λ/2𝜑𝑣 − 𝑒Λ/2𝜑𝑤

)
= (𝑥𝑣 − 𝑥𝑤)𝑇 (𝑥𝑣 − 𝑥𝑤)
= ∥𝑥𝑣 − 𝑥𝑤∥2 .

(54)

Definition 18 Let 𝑠 = diag
(
𝑒𝑀

)
. Then, we define the diffusion Euclidean Distance

Matrix (EDM) as the matrix

ℳ = 𝑠1𝑇 + 1𝑠𝑇 − 2𝑒𝑀 . (55)

An EDM is called [4, 59, 67, 87] spherical EDM or circum-EDM if the points
𝑝1, 𝑝2, ..., 𝑝𝑛 that generate the EDM lie on a hypersphere. Then, in the case of a
graph, the points represent the vertices of the graph. If the corresponding EDM
ℳ of the graph is circum-EDM it will immediately imply that the vertices of the
graph can be embedded on the surface of a hypersphere such that the length of the
chord separating two vertices 𝑣 and 𝑤 on the sphere is given by the corresponding
Euclidean distance, which is the entry 𝑣, 𝑤 of ℳ. We now prove that ℳ is indeed
circum-Euclidean. □

Proposition 19 ℳ is a circum-Euclidean distance matrix. □

Proof We follow Gower [51] who proved that the points that generate the matrix
𝑀 lie on the surface of a hypersphere if and only if 1𝑇𝑀−11 ≠ 0. Thus, we have to
prove that 𝑀−1 exists. We first use the Sherman-Morrison-Woodbury formula (see
p. 50 in [47]) to have
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ℳ
−1 =

((
−2𝑒𝑀 + 1𝑠𝑇

)
+ 𝑠1𝑇

)−1

= −1
2
𝑒−𝑀 −

(
𝑒−𝑀1𝑠𝑇𝑒−𝑀

)
4 − 2𝑠𝑇𝑒−𝑀1

−

(
−1

2
𝑒−𝐴 −

(
𝑒−𝑀1𝑠𝑇𝑒−𝑀

)
4 − 2𝑠𝑇𝑒−𝑀1

)
𝑠1𝑇

(
−1

2
𝑒−𝑀 −

(
𝑒−𝑀1𝑠𝑇𝑒−𝑀

)
4 − 2𝑠𝑇𝑒−𝑀1

)
1 + 1𝑇

(
−1

2
𝑒−𝑀 −

(
𝑒−𝑀1𝑠𝑇𝑒−𝑀

)
4 − 2𝑠𝑇𝑒−𝑀1

)
𝑠

= −1
2
𝑒−𝑀 − 𝑎𝑏

4 − 2𝜀
−

(
−1

2
𝑏𝑇 − 𝑎𝑐

4 − 2𝜀

) (
−1

2
𝑎𝑇 − 𝑑𝑏

4 − 2𝜀

)
1 +

(
−1

2
𝜀 − 𝑑𝑐

4 − 2𝜀

) ,

(56)

from which we get

ℳ
−1 = −1

2
𝑒−𝐴 + 𝑐𝑎𝑎

𝑇 − (𝜀 − 2) 𝑏𝑇𝑎𝑇 − (𝜀 − 2) 𝑎𝑏 + 𝑑𝑏𝑇𝑏

2
(
𝑐𝑑 − (𝜀 − 2)2

) , (57)

where 𝑎 = 𝑒−𝐴1, 𝑏 = 𝑠𝑇𝑒−𝑀 , 𝑐 = 𝑠𝑇𝑒−𝑀 𝑠, 𝑑 = 1𝑇𝑒−𝑀1, and 𝜀 = 𝑠𝑇𝑒−𝑀1. We
still need to prove that the denominator is not zero: 𝑐𝑑 − (𝜀 − 2)2 ≠ 0. It is easy to
see that 𝑐 ≥ 𝜀, with equality if and only if 𝑠 = 1 which only happen if the graph is
trivial, which is excluded here as the graphs are connected. Therefore,

−𝜀2 + 𝑐𝑑 + 4𝜀 − 4 > −𝜀2 + (𝑑 + 4) 𝜀 − 4 > 0, (58)

where the last inequality is obvious from the roots of the quadratic equation.
We now obtain 1𝑇ℳ−11, as

1𝑇ℳ−11 = −1
2
𝑑 − 𝑑𝜀

4 − 2𝜀
−

(
−1

2
𝜀 − 𝑑𝑐

4 − 2𝜀

) (
−1

2
𝑑 − 𝑑𝜀

4 − 2𝜀

)
1 +

(
−1

2
𝜀 − 𝑑𝑐

4 − 2𝜀

) (59)

=
2𝑑

𝑐𝑑 − (𝜀 − 2)2 . (60)

Because 𝑑 = 1𝑇𝑒−𝑀1 is the sum of all the entries of 𝑒−𝑀 and 𝑀 ≠ 0 (because
the graph is not trivial), we have that 𝑑 > 0 and because we have proved before that
𝑐𝑑 − (𝜀 − 2)2 > 0, we have proved that ℳ is a nonsingular spherical EDM. □

Remark 20 For properties of the circum-EDM ℳ when 𝑀 = 𝐴, the reader is
referred to [30, 36, 37]. For analysis of the circum-EDM ℳ when 𝑀 = 𝐿, see
[17, 82]. □
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7.2 Diffusive trajectories

In order to analyze the trajectories of the diffusive particles in a graph we need to
convert the distances generated in the previous section into geodesics which can
be traversed by these particles. That is, we need a geometrization of the graph.
A graph is geometrized if we consider every edge 𝑒 = 𝑣𝑤 in 𝐸 as a compact 1-
dimensional manifold with boundary 𝜕𝑒 = 𝑣 ∪ 𝑤. We then assign to 𝑒 = 𝑣𝑤 the
metric L𝑣𝑤 (𝑀), such that, 𝑒𝑣𝑤 (𝑀) � [0,𝒟𝑣𝑤 (𝑀)] if 𝑒 ∈ 𝐸 or zero otherwise. In
this way we transform the network into a space which is locally compact, complete
and geodetic [15, 71].

Technically, what we need is to create the corresponding distance matrix 𝒟 (𝑀)
and then multiply it in an entrywise way by 𝐴, creating a weighted adjacency matrix
𝑊 in which every weight corresponds to the length of the corresponding edge. We
now can obtain the weighted shortest paths (SP) connecting every pair of vertices.
While the unweighted shortest paths correspond to the topological ones, those based
on 𝒟 (−𝐿) correspond to the conservative diffusive SP, and the ones based on 𝒟 (𝐴)
are the non-conservative diffusive SP, also known as communicability SP.

In Fig. 10 we illustrate the shortest topological (STP) and diffusive (conservative
(SCP) and non-conservative (SNCP)) paths between a pair of vertices in a random
rectangular graph. As expected, the STP crosses the vertices with the largest degree
in the graph. However, the SNCP goes by a longer path to connect the same pair of
origin-destination vertices, but in a way that avoids those highly connected vertices,
not only in term of their degrees but in term of their general cliquishness. Somehow
unexpected is the fact that the SCP is very similar to the STP, as it also crosses the
most connected vertices in the graph.

Fig. 10: Illustration of the diffusive paths between two vertices in a random rectangu-
lar graph. Blue: shortest non-conservative path (SNCP); Red: shortest conservative
path (SCP); Green: shortest topological path (STP).

To understand the differences between the conservative and non-conservative
diffusion trajectories let us first consider the non-conservative case. The non-
conservative diffusion trajectory between two vertices corresponds to the path with
the minimum sum of the corresponding distances 𝒟𝑣𝑤 (𝐴) along the path. The
distance between individual pairs of vertices can be written as
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𝒟𝑣𝑤 (𝐴) =
(
1 +

(
𝐴2)

𝑣𝑣

2!
+

(
𝐴3)

𝑣𝑣

3!
+ ℎ.𝑜

)
+

(
1 +

(
𝐴2)

𝑤𝑤

2!
+

(
𝐴3)

𝑤𝑤

3!
+ ℎ.𝑜

)
− 2

(
𝐴𝑣𝑤 +

(
𝐴2)

𝑣𝑤

2!
+

(
𝐴3)

𝑣𝑤

3!
+ ℎ.𝑜

)
,

which can be written as

𝒟𝑣𝑤 (𝐴) =
(
1 + 𝑘𝑣

2
+ 𝑡𝑣

3
+ ℎ.𝑜

)
+

(
1 + 𝑘𝑤

2
+ 𝑡𝑤

3
+ ℎ.𝑜

)
− 2

(
𝑃1
𝑣𝑤 + 𝑃

2
𝑣𝑤

2!
+ 𝑃

3
𝑣𝑤

3!
+ ℎ.𝑜

)
,

where 𝑘𝑖 and 𝑡𝑖 are the degree and the number of triangles of 𝑖, and 𝑃𝑙
𝑖 𝑗

is the number
of paths of length 𝑙 between 𝑖 and 𝑗 . Therefore, L𝑣𝑤 (𝐴) avoids the vertices with the
largest degree, largest number of triangles, etc., i.e., it avoids the vertices of largest
cliquishness.

Let us now see what happens to 𝒟𝑣𝑤 (−𝐿) along the path. We can write

𝒟𝑣𝑤 (−𝐿) =
(
1 − 𝑘𝑣

2
− 𝑘3

𝑣

6
−

∑
( 𝑗 ,𝑣) ∈𝐸 𝑘 𝑗

6
+ 𝑡𝑣

6
+ ℎ.𝑜

)
+

(
1 − 𝑘𝑤

2
− 𝑘3

𝑤

6
−

∑
( 𝑗 ,𝑤) ∈𝐸 𝑘 𝑗

6
+ 𝑡𝑤

6
+ ℎ.𝑜

)
− 2

(
−𝐿𝑣𝑤 +

(
𝐿2)

𝑣𝑤

2!
−

(
𝐿3)

𝑣𝑤

3!
+ ℎ.𝑜

)
,

indicating that L𝑣𝑤 (−𝐿) does not necessarily avoid the vertices with high cliquish-
ness as it has been the case of the example on Fig. 10.

7.3 Where to find non-conservative diffusion in graphs

We have seen in this chapter that the non-conservative diffusion has some advantages
relative to conservative diffusion for finding a target on a networked environment.
Namely, the steady state in the non-conservative process is reached much faster
than in the conservative one by tracing trajectories that avoids the potentially most
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connected vertices. Then, it is not surprising to find real-world systems in which
non-conservative diffusion is present, some of which are described below.

The most intuitive of these examples is the one of traffic at rush hour that we have
described in the Introduction. But, where does the “non-conservative” part come
from? The number of cars departing from one intersection is not necessarily the
same that arrives at the next one. The reason is that a few cars will end up their
trajectory in the street leg between two intersections due to the existence of parking
spaces in them. In a similar way some cars can emerge from these spaces, such that
the number of cars can increase/decrease from one vertex to another.

A second illustrative example is the diffusive neurotransmission by means of
chemical synapses in neuronal systems [78,91]. Nowadays it is well-established that
chemical synapses do not only occur by the wiring intercellular communication in
which two neurons interchange neurotransmitters [2]. Apart from this conservative
process, neurons and brain regions also communicate by means of a volume trans-
mission (VT), which uses the extracellular fluid filling channels of the extracellular
space (ECS) and the cerebrospinal fluid filling ventricular space and sub-arachnoidal
space [2, 13, 41, 85, 86, 94, 95]. That is, some amounts of the neurotransmitters are
spilled over to the ECS in the perisynaptic region and from there it can be retaken by
other neurons, or they can even be transported by blood and/or cerebrospinal fluid
over long distances where they can also be retaken. From the point of view of the net-
work of neuronal or brain regions, the process is clearly non-conservative, although
at the organ-level it is of course a conservative process. Although not treated here,
the process in which neurotransmitters, or other substances, are captured at longer
distances from its origen by navigating across the reservoir allowing for long-range
displacements resembles the mechanism of Levy flights in the setting of continuous
diffusion, which is treated in this book. The current approach will be extended in the
near future to consider these spatial nonlocalities as well as temporal ones.

A third example of networked non-conservative diffusion is the communication
in social media [69,80,97] like Twitter or Facebook where a user can post a message
which can be read by her followers, but also (if not constrained by the user) by non-
followers, all of whom can propagate such information to others [88]. By constructing
the network of followers, the propagation of information is non-conservative because
part of the information leaves the network and some other information is subsequently
received by the users from outside the network.

Other areas in which non-conservative diffusion on networks is present include,
for instance, diffusive processes in ecology [12, 14, 83], diffusion of microplastics
and other materials in the ocean [58] where the locations can be recorded by means
of interconnected nodes, among others.

8 Conclusions

When referring to transmission principles in the brain, Tognoli and Scott-Kelso [89]
stated that they “do not scale well upward from simple “channels” of synaptic
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interactions to the larger and more complex web of evolved brains. Thus, it is
without surprise that the brain betrays an essential communicational etiquette: its
parts do not behave in a sequential one-talks-at-a-time manner”. This statement
can be extended to most complex systems where the sender of information does not
necessarily know the global topology of the network in which it is embedded.

The lack of a sequential one-talks-at-a-time communication is a characteristic
feature of diffusive processes in which the sender of information spreads it across all
potential routes to find its target(s). We have seen here that even a conservative dif-
fusive way in which one-talks-to-everybody is not the most efficient way of reaching
potential targets in networked environments. The discovery presented here by first
time that the non-conservative diffusion is more efficient in communicating a source
and a target in a network is somehow surprising. On the light of this discovery it is
then clear why some new ways of social communication, such as online social net-
works, are so efficient in spreading information. They certainly use non-conservative
diffusive ways of finding their targets. However, we should not forget that this process
may be more costly energetically than a conservative one, particularly when diffusive
particles need to be constantly created at the nodes of the network.

In the case of conservative diffusion we have previously extended the mathemat-
ical framework to consider quantum systems via the Schrödinger equation without
potential on graphs [26]. In that case we considered a quantum walker on a graph
which can hop not only to nearest neighbors but also to distant ones. The current
framework of nonconservative diffusion with Lerman-Ghosh Laplacian can be math-
ematically extended to consider quantum nonconservative diffusion. The analysis of
this theoretical scenario opens new avenues for the study of quantum processes on
graphs. Other plausible frameworks for extending the current approaches are the con-
sideration of biased Laplacians [27, 42, 75] or its combination with centrality-based
stochastic resetting of random walks [96].

The current work also opens new avenues that should be explored to better under-
stand the ways in which source-to-target communication occurs in complex systems.
For instance, anomalous diffusion on graphs described by means of the 𝑑-path Lapla-
cians [24, 28, 34, 35] and its combination with fractional temporal derivatives [19],
are all conservative processes. The extension of 𝑑-path Laplacians to 𝑑-path Lerman-
Ghosh Laplacians seems to be a necessary extension of the current work. This will
allow us to investigate, for instance, if the non-conservative anomalous diffusion
is more efficient than its conservative analogous in finding a target on a graph.
Similarly, the Lerman-Ghosh Laplacians can be used in degree-biased advection-
diffusion models on undirected graphs/networks [75] to simulate realistic scenarios
in complex systems. Another avenue is to investigate non-conservative diffusion in
metaplexes [32], where not only the particles diffuse across a discrete space, but also
in a continuous one existing inside the nodes. All in all, we hope this Chapter helps
the readers in their particular “Target Problems” for understanding complex systems.
The author thanks Project OLGRA (PID2019-107603GB-I00) funded by Spanish
Ministry of Science and Innovation and the Maria de Maeztu project CEX2021-
001164-M funded by the MCIN/AEI/10.13039/501100011033.
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