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 in the special case k = 2. Doing so give rise to a non normal (except for k = 2) operator arising from the splitting of a self-adjoint projection into the convex sum of k unitary operators. This binomial expansion is then used to derive a pde satisfied by the moment generating function of this non normal operator and for which we determine the corresponding characteristic curves.

Introduction and Motivation

1.1. Random matrices in quantum information theory. Randomness lies at the heart of Shannon's pioneering work on classical information theory (see the expository paper [START_REF] Ss | Fifty Years of Shannon Theory[END_REF]). It also plays a key role in quantum information theory through the use of techniques from random matrix theory. Actually, the latter open the way to choose typical random subspaces in large-size quantum systems which violate additivity conjectures for minimum output Rényi and von Neumann entropies (see [START_REF] Collins | Random matrix techniques in quantum information theory[END_REF] and references therein). Here, typicality is taken with respect to the uniform measure in the compact complex Grassmann manifold or equivalently with respect to the Haar distribution in the group of unitary matrices. Note that this distribution together with Ginibre random matrices also served in [START_REF] Zyczkowski | Generating random density matrices[END_REF] to generate random density matrices induced from states in bipartite systems (see [START_REF] Kukulski | Generating random quantum channels[END_REF] for similar constructions of quantum channels).

A natural dynamical version of the Haar distribution in the group of unitary matrices is the so-called unitary Brownian motion ( [START_REF] Liao | Lévy processes in Lie groups[END_REF]). This stochastic process was used in [START_REF] Nechita | Random pure quantum states via unitary Brownian motion[END_REF] where the authors introduced and studied a random state drawn from the Brownian motion on the complex projective space (the row vector of a unitary Brownian motion). There, the main problem was to write explicitly the joint distributions of tuples formed by the moduli of the state coordinates. This problem was entirely solved in [START_REF] Demni | Distributions of truncations of the heat kernel on the complex projective space[END_REF] using spherical harmonics in the unitary group. To the best of our knowledge, [START_REF] Nechita | Random pure quantum states via unitary Brownian motion[END_REF] and [START_REF] Demni | Distributions of truncations of the heat kernel on the complex projective space[END_REF] are the only papers where the unitary Brownian motion is used as a random model in quantum information theory, in contrast to the high occurrence of Haar-distributed unitary matrices ( [START_REF] Collins | Random matrix techniques in quantum information theory[END_REF]). Moreover, it is tempting and challenging as well to prove finite-time analogues of important results in quantum information theory proved using Haar unitary matrices and their Weingarten Calculus (as summarized in [START_REF] Collins | Random matrix techniques in quantum information theory[END_REF]).

In this paper, we appeal once more to the unitary Brownian motion in order to introduce a stochastic process valued in the space of density matrices (see (1) below). The large time limit of this process was already constructed in [START_REF] Zyczkowski | Generating random density matrices[END_REF] by partially tracing a pure random state in a bipartite quantum system.

1.2. The dynamical density matrix. Let N ≥ 1 be a positive integer and consider a bipartite quantum system H A ⊗ H B , where H A , H B , are complex N -dimensional Hilbert spaces. If (e A j ) N j=1 , (e B j ) N j=1 , are the canonical basis of H A and H B respectively, then

ψ := 1 √ N N j=1 e A j ⊗ e B j
is referred to as the Bell or maximally-entangled state. Now, consider k ≥ 2 Haar-distributed unitary matrices U 1 ∞ (N ), . . . U k ∞ (N ), and define the vector ψ k ∈ H A ⊗ H B by:

ψ k (N ) := 1 √ N k m=1 N j=1 U m ∞ (N )e A j ⊗ e B j = 1 √ N N j=1 k m=1 U m ∞ (N )e A j ⊗ e B j .
Then the partial trace with respect to H B of the pure state associated with ψ k (N ) yields the following reduced state:

W k ∞ (N ) := (U 1 ∞ (N ) + • • • + U k ∞ (N ))(U 1 ∞ (N ) + • • • + U k ∞ (N )) ⋆ tr[(U 1 ∞ (N ) + • • • + U k ∞ (N ))(U 1 ∞ (N ) + • • • + U k ∞ (N )) ⋆ ]
where tr is the trace operator on the space of N × N matrices. Since the Haar distribution is the stationary distribution of the unitary Brownian motion, it is then natural to introduce the following stochastic process valued in the space of density matrices: [START_REF] Biane | Free Brownian motion, free stochastic calculus and random matrices[END_REF] t → W k t (N ) :=

(U 1 t (N ) + • • • + U k t (N ))(U 1 t (N ) + • • • + U k t (N )) ⋆ tr[(U 1 t (N ) + • • • + U k t (N ))(U 1 t (N ) + • • • + U k t (N )) ⋆ ]
,

where (U j t (N )) t≥0 , 1 ≤ j ≤ k, are k independent unitary Brownian motions. As we shall now explain, introducing this model is not simply a matter of replacing Haar-distributed matrices by unitary Brownian motions. Indeed, the large-size limit of W 2 t (N ) for fixed time t bears a close connection to an instance of the so-called free Jacobi process.

1.3. The large size limit of W k ∞ (N ) and the free Jacobi process. Recall that independent random matrices behave in the large-size limit, under additional law-invariance assumptions, as ⋆-free operators (in Voiculescu's sense) in a tracial non commutative probability space, say (A , τ ) ( [START_REF] Mingo | Free probability and random matrices[END_REF]). For instance, independent Haar-distributed unitary matrices converge strongly and almost surely as N → ∞ to Haardistributed unitary operators (see [START_REF] Collins | The Spectral Edge of Unitary Brownian Motion[END_REF] and references therein). Consequently, the operator norm of W k ∞ (N ) converges almost surely as N → ∞ to

W k ∞ := (U 1 ∞ + • • • + U k ∞ )(U 1 ∞ + • • • + U k ∞ ) ⋆ τ [(U 1 ∞ + • • • + U k ∞ )(U 1 ∞ + • • • + U k ∞ ) ⋆ ]
,

where {U j ∞ , 1 ≤ j ≤ k} is a k-tuple of Haar unitary operators which are ⋆-free in (A , τ ). Note that

W k ∞ := (U 1 ∞ + • • • + U k ∞ )(U 1 ∞ + • • • + U k ∞ ) ⋆ k , since τ (U j ∞ ) = 0 and since τ (U j ∞ (U m ∞ ) ⋆ ) = τ (U j ∞ )τ ((U m ∞ ) ⋆ ) = 0 for any 1 ≤ j < m ≤ k.
In particular, when k = 2, the invariance of the Haar distribution shows further that W 2 ∞ /2 is equally distributed as:

(1 + U 1 ∞ )(1 + U 1 ∞ ) ⋆ 4 = 21 + U 1 ∞ + (U 1 ∞ ) ⋆ 4 .
The spectral distribution of this Hermitian operator is known to be the arcsine distribution ([15]). It also coincides with an instance of the stationary distribution of the so-called free Jacobi process ( [START_REF] Demni | Free Jacobi process[END_REF]). As shown in [START_REF] Demni | Spectral distribution of the free Jacobi process[END_REF], this coincidence actually holds at any time t > 0: the spectral distribution of the free Jacobi process (in the compressed algebra) associated with an orthogonal projection of rank 1/2 is the same as that of

(2) 21 + U 2t + U ⋆ 2t 4 ∈ A ,
where now (U s ) s≥0 is a free unitary Brownian motion. As proved by Biane ( [START_REF] Biane | Free Brownian motion, free stochastic calculus and random matrices[END_REF]), when properly time-rescaled, (U s ) s≥0 is the large-size limit of the unitary Brownian motion ( [START_REF] Biane | Free Brownian motion, free stochastic calculus and random matrices[END_REF]). It is a unitary free Lévy process as well with respect to the free multiplicative convolution on the unit circle ( [START_REF] Hiai | The Semicircle Law, Free Random Variables, and Entropy[END_REF]). In particular, the spectral distribution of (2) coincides with that of

(3) (U 1 t + U 2 t )(U 1 t + U 2 t ) ⋆ 4
where (U 1 s ) s≥0 , (U 2 s ) s≥0 are two free copies of (U s ) s≥0 . Besides, ( 4) is the large-size limit N → ∞ of (properly time-rescaled)

(U 1 t (N ) + U 2 t (N ))(U 1 t (N ) + U 2 t (N )) ⋆ 4 .
Up to a normalization, this Hermitian random matrix is nothing else but (1/2) W 2 t (N ) which converges almost surely and strongly to

(4) (U 1 t + U 2 t )(U 1 t + U 2 t ) ⋆ 2[2 + τ (U 1 t (U 2 t ) ⋆ ) + τ (U 2 t (U 1 t ) ⋆ )] = (U 1 t + U 2 t )(U 1 t + U 2 t ) ⋆ 4(1 + e -t )
,

where the second equality follows from τ (U

1 t (U 2 t ) ⋆ ) = τ (U 1 t )τ ((U 2 t ) ⋆ ) = e -t ([1]
). In a nutshell, the free Jacobi process associated with an orthogonal projection with trace 1/2 is, up to a normalising factor, the large-size limit of (the properly rescaled) W 2 t (N ).

1.4. Main results. The above picture extends to any integer k ≥ 2 as follows. On the one hand, W k t (N ) converges strongly and almost surely (properly time-rescaled), to the self-adjoint and unit-trace operator ( [START_REF] Collins | The Spectral Edge of Unitary Brownian Motion[END_REF]):

W k t := (U 1 t + • • • + U k t )(U 1 t + • • • + U k t ) ⋆ τ [(U 1 t + • • • + U k t )(U 1 t + • • • + U k t ) ⋆ ] = (U 1 t + • • • + U k t )(U 1 t + • • • + U k t ) ⋆ k[1 + (k -1)e -t ]
,

where (U j s ) s≥0 , 1 ≤ j ≤ k are free copies of (U s ) s≥0 in (A , τ ). On the other hand, if

G k t := U 1 t + • • • + U k t , t ≥ 
0, then Nica and Speicher's boxed convolution ( [START_REF] Nica | On the multiplication of free N -tuples of noncommutative random variables[END_REF]) implies that the ⋆-moments of G k t in (A , τ ) coincide with those of P U t P in the compressed space (P A P, kτ ), where P ∈ A is a selfadjoint projection which is free from (U s , U ⋆ s ) s≥0 and has rank τ (P ) = 1/k. Consequently, the corresponding Brown measures coincide and so do the spectral distributions of their radial parts, namely

W k t k 2 := G k t (G k t ) ⋆ k 2 = (U 1 t + • • • + U k t ) k (U 1 t + • • • + U k t ) ⋆ k ,
in (A , τ ) and (P U t P )(P U t P ) ⋆ = P U t P U ⋆ t P in (P A P, kτ ). In particular, the reduced density matrix W k t (N ) and its large-size limit W k t complete the following commutative diagram:

W k t (N ) t -→ ∞ W k ∞ (N ) N →∞     N →∞ W k t t -→ ∞ W k ∞ .
Now, let Q ∈ A be another selfadjoint projection and assume Q is ⋆-free with (U t ) t≥0 . Then, we may consider more generally the operator P U t Q and its radial part P U t QU ⋆ t P . Viewed as an operator in the compressed probability space, the latter defines the free Jacobi process associated with (P, Q). Using free stochastic calculus, we shall prove that for any t > 0, the moment sequences of W k t /k 2 in (A , τ ) and of P U t QU ⋆ t P in (P A P, kτ ) satisfy the same recurrence relation provided that the self-adjoint projections P and Q have common rank 1/k. Of course, the initial values at t = 0 of these moment sequences may be different in which case their corresponding spectral distributions will be different as well. On the other hand, it is straightforward to see that the moments of W k t /k 2 converge as k → ∞ to (e -nt ) n≥0 for fixed time t, which contrasts the weak convergence of W k ∞ /k to the Marchenko-Pastur distribution. This contrast may be explained by the complicated structure of the ⋆-cumulants of U t in comparison with those of U ∞ ( [START_REF] Demni | Star-cumulants of the free unitary Brownian motion[END_REF]).

Back to the case P = Q (for sake of simplicity), the relation between the spectral distributions of W k t /k 2 and of P U t P U ⋆ t P opens the way to compute the moments of the former by studying the latter. Indeed, for

any n ≥ 1, τ [(W k t ) n ] is a linear combination of k 2n factors of the form τ [U i1 t (U i2 t ) ⋆ • • • (U i2m-1 t ) ⋆ U i2m t ], 1 ≤ m ≤ n, i j ∈ {1, . . . , k}.
Apart from constant ones, those where any index i j occurs at most once may be computed using the Lévy property of the free unitary Brownian motions. However, the contributions of the remaining factors may be only computed using the freeness property and as such, the complexity of τ [(W k t ) n ] increase rapidly even for small orders. For that reason, we rather focus on the moments of P U t P U ⋆ t P and our main result (Theorem 2 below) establishes for any n ≥ 1 a binomial-type expansion of kτ [(P U t P U ⋆ t P ) n ] as a linear combination of the moments

τ [(T k U t T k U ⋆ t ) j ], 0 ≤ j ≤ n, where T k := kP -1 = T ⋆ k satisfies τ (T k ) = 0.
This expansion extends to any integer k ≥ 3 the expansion proved in [START_REF] Demni | Spectral distribution of the free Jacobi process[END_REF] for k = 2 for which T 2 = 2P -1 is unitary and self-adjoint, which in turn implies that T 2 U t T 2 U ⋆ t is distributed as U 2t . However, for any k ≥ 3, T k is not even normal: it is the sum of (k -1) unitary operators and satisfies the relation

τ [(T k ) 2 ] = (k -2)T k + k -1.
Of course, the constant term of this expansion is nothing else but the n-th moment of the spectral distribution of P U ∞ P U ⋆ ∞ P which may be written as a weighted sum of Catalan numbers. Surprisingly, the higher order coefficients are still given by the binomial coefficients

2n n -j , 1 ≤ j ≤ n,
up to the multiplicative factors (k -1) n-j , 1 ≤ j ≤ n. Our proof of the binomial-type expansion is enumerative and technical and it would be interesting to seek a combinatorial proof explaining the occurrence of the binomial coefficients above which form the so-called the Catalan triangle ( [START_REF] Shapiro | A Catalan triangle[END_REF]).

Once the binomial expansion derived, we turn it into a relation between the moment generating functions of J t and of T k U t T k U ⋆ t . Using the partial differential equation (hereafter pde) satisfied by the former ( [START_REF] Demni | Free Jacobi process[END_REF]), we derive a pde for the latter. The characteristic curves of this pde seems out of reach for the time present and we postpone their analysis to a future research work.

The paper is organised as follows. In the next section, we discuss the relation between the ⋆-moments of the free average of k free unitary Brownian motion and those of the compression P U t P when τ (P ) = 1/k. There, we also prove that the moment sequences of the radial parts of the free average and of P U t Q satisfy the same recurrence relation and that their limits as k → ∞ is the Dirac mass at e -t . In the third section, we prove the binomial-type formula for the moments of J t then turn it into a relation between moment generating functions whence we deduce a pde for the moment generating function of T k U t T k U ⋆ t . We also include two appendices where we prove two formulas which we could not find in literature and which we think are of independent interest. The first formula has the merit to express the moments of the stationary distribution of the free Jacobi process corresponding to τ (P ) = 1/k as a perturbation of those corresponding to τ (P ) = 1/2. In particular, it involves a family of polynomials with integer coefficients in the variable (k -2) and its derivation relies on special properties of the Gauss hypergeometric function. As to the second formula, it concerns the free cumulants of a self-adjoint projection with arbitrary rank which we express as a difference of two Legendre polynomials.

Relating G t

k and compressions of U t 2.1. Warm up: ⋆-moments of compressions. . Given a collection of operators (a 1 , . . . , a n ) in a non commutative probability space (A , τ ), their joint distribution µ a1,...,an is the linear functional which assigns to any polynomial P in n non commuting indeterminates its trace τ (P (a 1 , . . . , a n )). In this respect, the Nica-Speicher generalized R-transform ( [START_REF] Nica | On the multiplication of free N -tuples of noncommutative random variables[END_REF]) allows to relate the joint distribution of the compressed collection (P a 1 P, . . . , P a n P ) by a free self-adjoint projection P in the compressed algebra to µ a1,...,an . In particular, when n = 2 and if a 1 = a, a 2 = a ⋆ then µ a,a ⋆ is given by all the ⋆-moments of a and we shall simply refer to it as the distribution of a. The following result shows that if τ (P ) = 1/k, k ≥ 2, then the compression of (U t , U ⋆ t ) by P amounts to summing k free copies of (U t , U ⋆ t ) up to dilation. Though we expect that this result is known among the free probability community, we did not find it written anywhere and we include it here for the reader's convenience. Note also that it reduces to the Nica-Speicher convolution semi-group when a is self-adjoint.

Proposition 1. Let P be a self-adjoint projection freely independent from {U t , U ⋆ t } t≥0 with τ (P ) = 1/k, k ≥ 2.
Then, the distribution of P U t P in (P A P, kτ ) coincides with that of G k t /k in (A , τ ). Proof. Given an operator a ∈ A , let R(µ a,a ⋆ ) be its generalized R-transform ( [START_REF] Nica | On the multiplication of free N -tuples of noncommutative random variables[END_REF], section 3.9) and recall that it entirely determines the distribution of a. Then, one has on the one hand:

R µ 1 k U 1 t +...+ 1 k U k t ,( 1 k U 1 t ) ⋆ +...+( 1 k U k t ) ⋆ = kR µ 1 k Ut, 1 k U ⋆ t
due to the ⋆-freeness of (U j t ) k j=1 ([22]). On the other hand, [22, Application 1.11] entails

R µ P UtP,P U ⋆ t P = kR µ 1 k Ut, 1 k U ⋆ t ,
where the distribution µ P UtP,P U ⋆ t P is considered in the compressed space (P A P, kτ ). The Brown measure of a non normal operator plays a key role in random matrix theory since it supplies a candidate for the limiting empirical distribution of a non normal matrix. In a tracial non commutative probability space, it is fully determined by ⋆-moments and one immediately deduces from the previous proposition that the Brown measures of G k t /k and of P U t P coincide when τ (P ) = 1/k. In general, the description of the Brown measure of P U t P is a quite difficult problem: the main result proved in [START_REF] Demni | Support of the Brown measure of the product of a free unitary Brownian motion by a free self-adjoint projection[END_REF] already provides a Jordan domain containing its support. As a matter of fact, Proposition 1 offers another way to compute the Brown measure of P U t P in the particular case τ (P ) = 1/k relying on operator-valued free probability as explained in [START_REF] Belinschi | Eigenvalues of non-Hermitian random matrices and Brown measure of non-normal operators: Hermitian reduction and linearization method[END_REF]. However, it turns out that the computations are already tedious even for k = 2 and as such, we postpone them to a future research work.

In the long-time regime t → ∞, the fact that the R-diagonal operator P U ∞ P and the average of k free Haar unitaries share the same Brown measure is transparent from Haagerup-Laarsen results ( [START_REF] Haagerup | Brown's spectral distribution measure for R-diagonal elements in finite von Neumann algebras[END_REF], examples 5.3 and 5.5) though not being explicitly pointed out there. Indeed, this measure is radial and absolutely continuous with density given by ( [START_REF] Haagerup | Brown's spectral distribution measure for R-diagonal elements in finite von Neumann algebras[END_REF]):

k -1 π(1 -|λ| 2 ) 2 1 (0,1/ √ k) (|λ|)dλ,
with respect to Lebesgue measure dλ.

Radial parts and beyond.

If we consider the radial parts of P U t P and of G k t /k, then the equality between the moments of P U t P U ⋆ t P and of W k t /k 2 may be readily deduced from the moment-cumulant formula for the compression by a free projection (see Theorem 14.10, [START_REF] Nica | Lectures on the Combinatorics of Free Probability[END_REF]). Actually, if (a 1 , . . . , a m ) is collection of operators in A which is free from P , then (5) 1 τ (P ) τ (P a i1 P a i2 P . . . P a

in P ) = π∈N C(n) κ π [a i1 , . . . , a in ][τ (P )] n-|π| , for any indices 1 ≤ i 1 , . . . , i n , ≤ m.
Here N C(n) is the lattice of non crossing partitions, |π| is the number of blocks of the partition π ∈ N C(n) and κ π is the multiplicative functional of free cumulants of blocks of π (see Lectures 10 and 11 in [START_REF] Nica | Lectures on the Combinatorics of Free Probability[END_REF] for more details). Specializing ( 5) with (a i2j+1 , a i2j+2 ) = (U t , U ⋆ t ), 0 ≤ j ≤ n -1, and τ (P ) = 1/k, we get: [START_REF] Zyczkowski | Generating random density matrices[END_REF] kτ

(P U t P U ⋆ t P . . . P U t P U ⋆ t P ) = π∈N C(2n) κ π [U t , U ⋆ t . . . , U t , U ⋆ t 2n ]k |π|-2n .
On the other hand, the moment-cumulant formula (11.8) in [START_REF] Nica | Lectures on the Combinatorics of Free Probability[END_REF] entails:

(7) 1 k 2n τ [(W k t ) n ] = 1 k 2n π∈N C(2n) k π [G t , (G k t ) ⋆ , . . . , G t , (G k t ) ⋆ ]
where we recall that 1) , (U j2 t ) ǫ(2) , . . . , (U j2n t ) ǫ(2n) ], where ǫ(1), . . . , ǫ(2n) ∈ {1, ⋆} and 1 ≤ j 1 , . . . , j 2n ≤ k. All these terms vanish due to the ⋆-freeness of (U j t ) k j=1 except those of the form 1) , (U j t ) ǫ(2) , . . . , (U j t ) ǫ(2n) ], for a single index 1 ≤ j ≤ k. There are k such terms and all give the same contribution 1) , (U j t ) ǫ(2) , . . . , (U t ) ǫ(2n) ], since U 1 t , . . . , U k t have the same spectral distribution as U t . Consequently, the RHS of ( 7) and ( 6) are equal. More generally, we shall prove below that given two orthogonal projections P and Q which are ⋆-free from (U t ) t≥0 , the moments of P U t QU ⋆ t P and those of W k t /k 2 coincide provided that τ (P ) = τ (Q) = 1/k. Our main tool is free stochastic calculus and we refer to [START_REF] Biane | Stochastic calculus with respect to free Brownian motion and analysis on Wigner space[END_REF] for further details on this calculus. To proceed, recall from [START_REF] Biane | Free Brownian motion, free stochastic calculus and random matrices[END_REF] the stochastic differential equation satisfied by the free unitary Brownian motion (U t ) t≥0 :

G k t = U 1 t + • • • + U k t and W k t = G k t (G k t ) ⋆ . But if V is a block of π then κ V is the sum of terms of the form κ |V | [(U j1 t ) ǫ(
κ |V | [(U j t ) ǫ(
κ |V | [(U t ) ǫ(
dU t = iU t dX t - U t 2 dt, U 0 = 1,
where (X t ) t≥0 is a free additive Brownian motion. Hence, there exists a k-tuple free additive Brownian motions (X j t ) t≥0 , 1 ≤ j ≤ k, which are free in A and such that (8)

dU j t = iU j t dX j t - U j t 2 dt, U j 0 = 1.
With the help of the free Itô formula ([1]), we shall prove:

Theorem 1. For any n ≥ 1, t > 0, set 1 s n (t) := τ [(W k t ) n ]. Then, (9) ∂ t s n (t) = -ns n (t) + nks n-1 (t) + nk n-2 j=0 s n-j-1 (t)s j (t) - n k n-2 j=0 s n-j-1 (t)s j+1 (t),
where an empty sum is zero. 1 We omit the dependence on k for sake of clarity.

Proof. Using (8), we get

dG k t = i k j=1 U j t dX j t - G k t 2 dt whence dW k t = d[G k t (G k t ) ⋆ ] = dG k t (G k t ) ⋆ + G k t (dG k t ) ⋆ + (dG k t )((dG k t ) ⋆ ),
where (dG k t )((dG k t ) ⋆ ) is the bracket of the semimartingales dG k t and (dG k t ) ⋆ . Since (X j t ) t≥0 are assumed free then (dX j t )(dX m t ) = δ jm dt, 1 ≤ j, m ≤ k, so that

dW k t = k j=1 (iU j t )dX j t (G k t ) ⋆ + G t dX j t (iU j t ) ⋆ + (k -W k t )dt.
Now, borrowing the terminology and the notations of [START_REF] Biane | Stochastic calculus with respect to free Brownian motion and analysis on Wigner space[END_REF], we introduce the bi-processes: andwrite:

F j t := (iU j t ) ⊗ (G k t ) ⋆ + (G k t ) ⊗ (iU j t ) ⋆ , 1 ≤ j ≤ k,
dW k t = k j=1 F j t ♯dX j t + (k -W k t )dt.
Consequently, for any n ≥ 1, Proposition 4.3.2 in [START_REF] Biane | Stochastic calculus with respect to free Brownian motion and analysis on Wigner space[END_REF] entails:

d[(W k t ) n ] = Martingale part + n-1 j=0 (W k t ) j ⊗ (W k t ) n-1-j ♯(k -W k t )dt - k j=1 m,l≥0 m+l≤n-2 (W k t ) l U j t (G k t ) ⋆ (W k t ) n-m-l-2 τ [(W k t ) m U j t (G k t ) ⋆ ]dt - k j=1 m,l≥0 m+l≤n-2 (W k t ) l G k t (U j t ) ⋆ (W k t ) n-m-l-2 τ [(W k t ) m G k t (U j t ) ⋆ ]dt + k j=1 m,l≥0 m+l≤n-2 (W k t ) n-m-2 τ [(W k t ) m+1 ] + (W k t ) n-m-1 τ [(W k t ) m ] .
Taking the expectation with respect to τ of both sides and differentiating with respect to the variable t2 , we get:

∂ t s n (t) = -ns n (t) + nks n-1 (t) - k j=1 m,l≥0 m+l≤n-2 τ [(W k t ) n-m-2 U j t (G k t ) ⋆ ]τ [(W k t ) m U j t (G k t ) ⋆ ] - k j=1 m,l≥0 m+l≤n-2 τ [(W k t ) n-m-2 G k t (U j t ) ⋆ ]τ [(W k t ) m G k t (U j t ) ⋆ ] + k j=1 m,l≥0 m+l≤n-2 τ [(W k t ) n-m-2 ]τ [(W k t ) m+1 ] + τ [(W k t ) n-m-1 ]τ [(W k t ) m ] .
The last (triple) sum yields the following contribution (the summands there do not depend on the indices j, l):

k n-2 m=0 (n -m -1)τ [(W k t ) n-m-2 ]τ [(W k t ) m+1 ] + k n-2 m=0 (n -m -1)τ [(W k t ) n-m-1 ]τ [(W k t ) m ] = nk n-2 m=0 τ [(W k t ) n-m-1 ]τ [(W k t ) m ],
where the last equality follows from the index change m → n -m -2. Finally, the summands

τ [(W k t ) n-m-2 U j t (G k t ) ⋆ ]τ [(W k t ) m U j t (G k t ) ⋆ ], 1 ≤ j ≤ k, do not depend on j since W k
t and G k t are symmetric (invariant under permutations) and since the unitary operators U j t , 1 ≤ j ≤ k, are free and have identical distributions. As a result,

S 1 : = k j=1 m,l≥0 m+l≤n-2 τ [(W k t ) n-m-2 U j t (G k t ) ⋆ ]τ [(W k t ) m U j t (G k t ) ⋆ ]dt = k j=1 n-2 m=0 (n -m -1)τ [(W k t ) n-m-2 U j t (G k t ) ⋆ ]τ [(W k t ) m U j t (G k t ) ⋆ ]dt = 1 k n-2 m=0 (n -m -1) k j,l=1 )τ [(W k t ) n-m-2 U j t (G k t ) ⋆ ]τ [(W k t ) m U l t (G k t ) ⋆ ]dt = 1 k n-2 m=0 (n -m -1)τ [(W k t ) n-m-1 ]τ [(W k t ) m+1 ].
Similarly,

S 2 : = k j=1 m,l≥0 m+l≤n-2 τ [(W k t ) n-m-1 G k t (U j t ) ⋆ ]τ [(W k t ) m G k t (U j t ) ⋆ ]dt = 1 k n-2 m=0 (n -m -1)τ [(W k t ) n-m-1 ]τ [(W k t ) m+1 ].
Performing the index change m → n -m -2 in S 2 , we end up with:

S 1 + S 2 = n k n-2 m=0 τ [(W k t ) n-m-1 ]τ [(W k t ) m+1 ].
Gathering all the contributions above, we obtain [START_REF] Demni | Star-cumulants of the free unitary Brownian motion[END_REF].

Setting

r n (t) := s n (t)/k 2n = τ [(W k t /k 2 ) n ],
we readily infer from (9): Corollary 1. For any n ≥ 1, (10)

∂ t r n (t) = -nr n (t) + n k r n-1 (t) + n k n-2 j=0 r n-j-1 (t)[r j (t) -r j+1 (t)].
The moment relation ( 10) is an instance of the one derived in Corollary 6.1 in [START_REF] Demni | Free Jacobi process[END_REF]. More precisely, let J t ; = P U t QU ⋆ t P be the free Jacobi process associated with the self-adjoint projections (P, Q). Viewed as an operator in the compressed algebra (P A P, τ /τ (P )), its moments

m n (t) = τ (J n t ) τ (P ) , n ≥ 1, m 0 (t) = 1,
satisfy the following differential system:

(11) ∂ t m n (t) = -nm n (t) + nθm n-1 (t) + nλθ n-2 j=0 m n-j-1 (t)[m j (t) -m j+1 (t)],
where [START_REF] Demni | Support of the Brown measure of the product of a free unitary Brownian motion by a free self-adjoint projection[END_REF] and [START_REF] Demni | Relating moments of self-adjoint polynomials in two orthogonal projections[END_REF] coincide and in turn both sequences coincide provided that m n (0) = r n (0) for all n ≥ 0.

τ (P ) = λθ ∈ (0, 1], τ (Q) = θ ∈ (0, 1]. Consequently, if λ = 1, θ = 1/k then
2.3. Limit as k → ∞. Let U ∞ ∈ A be a Haar unitary operator and assume that U ∞ is free with {P, Q}.

If τ (P ) = τ (Q) = 1/k then the spectral distribution of J ∞ := P U ∞ QU ⋆ ∞ P in the compressed algebra (P A P, τ /τ (P )) is given by (see e.g. [START_REF] Demni | Free Jacobi process[END_REF], p. 130):

μk ∞ (dx) = 1 2π 4(k -1)x -k 2 x 2 x(1 -x) 1 [0,4(k-1)/k 2 ] (x)dx,
Its pushforward under the dilation x → kx is readily computed as

µ k ∞ (dx) = 1 2π 4k(k -1)x -k 2 x 2 kx -x 2 1 [0,4(k-1)/k] (x)dx,
and converges weakly to the Marchenko-Pastur distribution of parameter one ( [START_REF] Zyczkowski | Generating random density matrices[END_REF]):

ν MP (du) := 1 2π 4 -u u 1 [0,4] (u)du. IF W k ∞ = (U 1 ∞ + • • • + U k ∞ )(U 1 ∞ + • • • + U k ∞ )
⋆ then we can rephrase the weak convergence above as follows: for any n ≥ 0 [START_REF] Demni | Spectral distribution of the free Jacobi process[END_REF] lim

k→∞ lim t→∞ τ [(W k t ) n ] k n = lim k→∞ τ [(W k ∞ ) n ] k n = 1 0 u n ν MP (du) = 4 n (1/2) n (n + 1)! .
The normalization by k n may be guessed from the moment-cumulant expansion:

τ [(W k ∞ ) n ] = π∈N C(2n) κ π [U ∞ , U ⋆ ∞ . . . , U ∞ , U ⋆ ∞ 2n ]k |π| ,
since partitions π ∈ N C(2n) with more than (n + 1) blocks have zero contribution. Indeed, in any such partition, at least one block admits an odd number of elements in which case the corresponding free ⋆cumulant vanishes (see [START_REF] Nica | Lectures on the Combinatorics of Free Probability[END_REF], Proposition 15.1). For fixed time t > 0, the situation becomes different since the free ⋆-cumulants of U t admit a considerably more complicated structure compared with those of U ∞ ( [START_REF] Demni | Star-cumulants of the free unitary Brownian motion[END_REF]). In this respect, we can prove the following limiting result under the stronger normalization k 2 , which shows that reversing the order of the (k, t) limits in [START_REF] Demni | Spectral distribution of the free Jacobi process[END_REF] does not lead to a finite limit. Proposition 2. For any n ≥ 0, t ≥ 0:

lim k→∞ τ (W k t ) n k 2n = [τ (U t )] 2n = e -nt .
In particular, the free Jacobi process (P U t P U ⋆ t P ) t≥0 with τ (P ) = 1/k converges weakly as k → ∞ to the constant e -t in the compressed algebra.

Proof. From (6), we readily see that the limit as k → ∞ of kτ (J n t ) is given by the (non crossing) partition with 2n blocks. Therefore,

lim k→∞ τ (W k t ) n k 2n = c 1 (U t )c 1 (U ⋆ t ) . . . c 1 (U t )c 1 (U ⋆ t ) 2n terms . Since c 1 (U t ) = c 1 (U ⋆ t ) = τ (U t ) = e -t/2
(see e.g. [START_REF] Demni | Spectral distribution of the free Jacobi process[END_REF] and references therein), the proposition follows.

3. Analysis of the moments of the free Jacobi process 3.1. Moments binomial-type formula. For sake of simplicity, we restrict our study from now on to the free Jacobi process associated with a single projection P . Recall from [START_REF] Demni | Spectral distribution of the free Jacobi process[END_REF] that when τ (P ) = 1/2, the moments of the free Jacobi process are linear combinations of those of U 2t . Indeed, it was observed there that

(13) 2τ (J n t ) = 1 2 2n 2n n + 2 2 2n n j=1 2n n -j τ [(SU t SU ⋆ t ) j ],
where S = 2P -1 satisfies S = S ⋆ = S -1 . Moreover, Lemme 3.8 in [START_REF] Haagerup | Brown's spectral distribution measure for R-diagonal elements in finite von Neumann algebras[END_REF] together with the semi-group property of (U t ) t≥0 show that the spectral distributions of SU t SU ⋆ t and of U 2t coincide. More generally, write:

P = 1 k k-1 j=0 S j,k , S j,k := e 2iπj(1-P )/k .
Then S j,k is a unitary operator satisfying (S j,k ) k = 1 and

S j,k = 1 + (ω j,k -1)(1 -P ),
where ω j,k = e 2iπj/k is the k-th root of unity. Set

T k := kP -1 = k-1 j=1 S j,k .
Then T k is self-adjoint and (T k

) 2 = k(k -2)P + 1 = (k -2)T k + (k -1)1.
In this respect, we shall prove the following generalization of (13):

Theorem 2. For any k ≥ 2 and any n ≥ 1,

m n (t) = kτ (J t ) = m n (∞) + k k 2n n j=1 (k -1) n-j 2n n -j τ [(T k U t T k U ⋆ t ) j ],
where m n (∞) is the n-th moment of J ∞ in (P A P, kτ ), given by ( 21) and (34).

The proof of this Theorem relies on the following four key lemmas.

Lemma 1. Let a, b ∈ A be two operators satisfying a 2 = (k -2)a + (k -1)1, b 2 = (k -2)b + (k -1)1.
Then, the expansion of [(a + 1)(b + 1)] n is uniquely written as:

(14) [(1 + a)(1 + b)] n = m n 1 + n j=1 c n,j (ab) j + n-1 j=1 d n,j (ba) j + n-1 j=0 e n,j (ab) j a + n-1 j=0 f n,j (ba) j b
for some integer sequences m n , (c n,j ), (d n,j ), (e n,j ), (f n,j ) satisfying

m n = f n,0 = e n,0 , c n,j = f n,j-1 = e n,j-1 , 1 ≤ j ≤ n, d n,j = c n,j+1 , 1 ≤ j ≤ n -1.
Proof. For sake of clarity, we shall omit the notation 1 in front of the constant terms. Firstly, the uniqueness follows from the fact that the expansion is a reduced expression. Now, since a(a + 1) = (k -1)(a + 1) then

(k -1)[(a + 1)(b + 1)] n = a[(1 + a)(1 + b)] n = m n a + n j=1 c n,j a(ab) j + n-1 j=1 d n,j a(ba) j + n-1 j=0
e n,j a(ab

) j a + n-1 j=0 f n,j a(ba) j b = m n a + (k -2) n j=1 c n,j (ab) j + (k -1) n-1 j=0 c n,j+1 (ba) j b + n-1 j=1 d n,j (ab) j a + n-1 j=0 e n,j [(k -2)(ab) j a + (k -1)(ba) j ] + n j=1 f n,j-1 (ab) j . = (k -1)e n,0 + n j=1 [(k -2)c n,j + f n,j-1 ](ab) j + (k -1) n-1 j=1
e n,j (ba

) j + + (m n + (k -2)e n,0 )a + n-1 j=1 [(k -2)e n,j + d n,j ](ab) j a + (k -1) n-1 j=0 c n,j+1 (ba) j b.
Multiplying ( 14) by (k -1) and using the uniqueness of the coefficients, we readily get: e n,j-1 (ab

(15) m n = e n,0 , c n,j = f n,j-1 , 1 ≤ j ≤ n, e n,j = d n,j , 1 ≤ j ≤ n -1. Similarly, b(b + 1) = (k -1)(b + 1) so that (k -1)[(a + 1)(b + 1)] n = [(1 + a)(1 + b)] n b = m n b + n j=1 c n,j (ab) j b + n-1 j=1 d n,j (ba) j b + n-1 j=0 e n,j (ab) j ab + n-1 j=0 f n,j (ba) j b 2 = m n b + (k -2)
) j + (k -2) n-1 j=0 f n,j (ba) j b + (k -1) n-1 j=0 f n,j (ba) j . = (k -1)f n,0 + n j=1 [(k -2)c n,j + e n,j-1 ](ab) j + (k -1) n-1 j=1 f n,j (ba) j + (m n + (k -2)f n,0 )b + (k -1) n-1 j=0 c n,j+1 (ab) j a + n-1 j=1 [(k -2)f n,j + d n,j ](ba) j b.
The uniqueness property again yields:

(16) m n = f n,0 , c n,j = e n,j-1 , 1 ≤ j ≤ n, f n,j = d n,j , 1 ≤ j ≤ n -1.
Combining ( 15) and ( 16), the lemma is proved.

According to Lemma 1, we only need to focus on the sequences (m n ) n , (c n,j ) 1≤j≤n . The former is closely related to the moment sequence m n (∞) of μ∞ . As to the latter, it satisfies the following relations:

Lemma 2. For any 2 ≤ j ≤ n -1, (17) c n+1,j = (k -1)c n,j + c n,j-1 + (k -1) 2 e n,j + (k -1)e n,j-1 , while (18) 
     c n+1,n+1 = c n,n = 1 c n+1,n = c n,n-1 + (k -1) + (k -1)e n,n-1 c n+1,1 = (k -1)c n,1 + (k -1) 2 e n,1 + (k -1)e n,0 + m n .
Proof. Follows readily from

[(1 + a)(1 + b)] n+1 = [(1 + a)(1 + b)] n (1 + a + ab),
together with the identities:

(ab) j = (ab) j-1 (ab), (ab

) j b = (k -2)(ab) j + (k -1)(ab) j-1 a, ((ab) j-1 a)b = (ab) j , ((ab) j a)a = (k -2)(ab) j a + (k -1)(ab) j , ((ab) j a)ab = (k -2)(ab) j+1 + (k -1)(ab) j b = (k -2)(ab) j+1 + (k -1)(k -2)(ab) j + (k -1) 2 (ab) j-1 a.
Note that Lemma (1) allows to rewrite ( 17) and ( 18) as ( 19)

c n+1,j = 2(k -1)c n,j + c n,j-1 + (k -1) 2 c n,j+1 , 2 ≤ j ≤ n + 1, c n+1,1 = (2k -1)c n,1 + (k -1) 2 c n,2 ,
where we set c n,j = 0, j > n. Next, we need the following routine computations to prove Lemma 4 below and which give our first formula for m n (∞):

Lemma 3. For any n ≥ 1, we have

(20) m n (∞) -m n+1 (∞) = (k -1) n+1 k 2n+1 C n , where C n is the n-th Catalan number. In particular, (21) m n (∞) = 1 - n-1 j=0 (k -1) j+1 k 2j+1 C j .
Proof.

m n (∞) -m n+1 (∞) = 1 2π x n-1/2 4(k -1) -k 2 x1 [0,4(k-1)/k 2 ] (x)dx = 2 2n+2 (k -1) n+1 2πk 2n+1 x n-1/2 √ 1 -x1 [0,1] (x)dx = 2 2n (k -1) n+1 √ πk 2n+1 Γ(n + 1/2) (n + 1)! = (k -1) n+1 k 2n+1 (2n)! (n + 1)!n! = (k -1) n+1 k 2n+1 C n .
The expression of m n (∞) follows.

Remark. Taking the expectation in [START_REF] Haagerup | Brown's spectral distribution measure for R-diagonal elements in finite von Neumann algebras[END_REF], we infer that m n (∞) = m n /k 2n-1 . Consequently, the last relation may be written as

k 2 m n -m n+1 = (k -1) n C n , or equivalently, (22) c n,1 -c n,2 = (k -1) n-1 n + 1 2n n .
This elementary identity will be used in the proof of Lemma 4 below.

Now, set (23) 
K n,0 := 2(k -1) c n,1 + (k -2) n l=2 (k -1) l-2 c n,l , n ≥ 1,
where an empty sum is zero. Then Lemma 4. For any n ≥ 1, we have

(24) K n,0 = (k -1) n 2n n .
Proof. We proceed by induction:

K 1,0 = 2(k -1)c 1,1 = 2(k -1)
. Next, assume the result is valid up to order n and write (we recall that c n,j = 0, j > n):

K n+1,0 =2(k -1) c n+1,1 + (k -2) n+1 l=2 (k -1) l-2 c n+1,l =2(k -1) (2k -1)c n,1 + (k -1) 2 c n,2 + (k -2) n+1 l=2 (k -1) l-2 [2(k -1)c n,l +c n,l-1 + (k -1) 2 c n,l+1 =2(k -1) (2k -1)c n,1 + (k -1) 2 c n,2 + 2(k -2) n l=2 (k -1) l-1 c n,l + (k -2) n l=1 (k -1) l-1 c n,l + (k -2) n l=3 (k -1) l c n,l+1 =2(k -1) 3(k -1)c n,1 + (k -1)c n,2 + 4(k -2) n l=2 (k -1) l-1 c n,l =4(k -1)K n,0 -2(k -1) 2 (c n,1 -c n,2 ).
Appealing to the induction hypothesis and to the identity ( 22), we end up with

K n+1,0 =4(k -1)(k -1) n 2n n -2(k -1) 2 (k -1) n-1 n + 1 2n n =(k -1) n+1 2n + 2 n + 1 ,
as desired.

We are now ready to prove Theorem 2.

Proof of Theorem 2. We apply Lemma 1 to a = T k and b = U t T k U ⋆ t and take the expectation with respect to τ . By the trace property and the fact that τ

(T k ) = τ (U t T k U ⋆ t ) = 0, we have τ ((ab) j ) = τ ((ba) j ), τ ((ab) j a) = (k -2) j l=1 (k -1) j-l τ ((ab) l ) = τ ((ba) j b), whence τ [(1 + T k )(1 + U t T k U ⋆ t )] n =m n + n j=1 K n,j τ ((T k U t T k U ⋆ t ) j ) (25) 
where

(26) K n,j = c n,j + d n,j + (k -2) n-1 l=j (k -1) l-j (e n,l + f n,l ), 1 ≤ j ≤ n -1 1, j = n .
Equivalently, Lemma 1 again entails:

K n,j = c n,j + c n,j+1 + 2(k -2) n-1 l=j (k -1) l-j c n,l+1 = c n,j + c n,j+1 + 2(k -2) n l=j+1 (k -1) l-(j+1) c n,l , 1 ≤ j ≤ n.
Appealing further to [START_REF] Manocha | A treatise on generating functions[END_REF], we obtain

K n+1,j = (k -1) 2 K n,j+1 + 2(k -1)K n,j + K n,j-1 , 1 ≤ j ≤ n + 1, (27) 
with the convention K n,j = 0, j > n and with K n,0 given by [START_REF] Nica | Lectures on the Combinatorics of Free Probability[END_REF]. Finally, ( 27) is satisfied by the sequence (k -1) n-j 2n n -j as readily seen from the identity

n j + n j + 1 = n + 1 j + 1 .
Moreover, Lemma 4 and the obvious value K n,n = 1, n ≥ 1, show that the boundary conditions coincide, whence we deduce:

K n,j = (k -1) n-j 2n n -j . Noting that τ [(P U t P U ⋆ t ) n ] = 1 k 2n τ [(1 + T k )(1 + U t T k U ⋆ t )] n , the Theorem is proved.
Remark (Combinatorial approach). Applying the moment formula with product as entries, it follows that:

τ (J n t ) = N C(2n) κ π (P, . . . , P 2n )τ K(π) (U t , U ⋆ t , . . . , U t , U ⋆ t )).
When τ (P ) = 1/2, it is known that the free cumulants of P are given by ( [START_REF] Nica | Lectures on the Combinatorics of Free Probability[END_REF], Exercise 11.35):

(28) τ 2j+1 (P ) = δ j0 2 , τ 2j (P ) = (-1) j-1 2 2j C j-1 .
It would be interesting to recover (13) using these formulas together with properties of non crossing partitions. More generally, we can prove (see Appendix B) that if P is a self-adjoint projection with τ (P ) = α, then

(29) κ 1 (P ) = α, κ n (P ) = 1 2(2n -1) [P n-2 (1 -2α) -P n (1 -2α)] , n ≥ 2.
where (P n ) n≥0 is the family of Legendre polynomials defined through the Gauss hypergeometric function by:

P n (x) = 2 F 1 -n, n + 1, 1; 1 -x 2 , x ∈ [-1, 1].
3.2. PDE for the moment generating function. Let

M t,k (z) := k n≥0 τ (J n t )z n , ρ t,k := n≥1 τ [(T k U t T k U ⋆ t ) n ]
z n (k -1) n , be the moment generating functions of J t in the compressed space (P A P, kτ ) and of T k U t T k U ⋆ t in (A , τ ). Both series have positive convergence radii since the corresponding operators are bounded. From Theorem 2, we deduce the following relation: Corollary 2. For any k ≥ 2 and any t > 0,

M t,k (z) = M ∞,k (z) + k 2 k 2 -4(k -1)z ρ t,k α 4(k -1)z k 2 .
where

(30) M ∞,k (z) := n≥0 m n (∞)z n = 2 -k + k 2 -4(k -1)z 2(1 -z) , |z| < 1,
is the moment generating function of J ∞ and

α(z) = 1 - √ 1 -z 1 + √ 1 -z , z ∈ C \ [1, ∞[. Proof. It is obvious from Theorem 2 that M t,k (z) = M ∞,k (z) + k n≥1 ((k -1)z) n k 2n n j=1 2n n -j τ [(T k U t T k U ⋆ t ) j ] (k -1) j .
The expression of M ∞,k is already known (see e.g. section 5 in [START_REF] Demni | Free Jacobi process[END_REF]). Now, recall the following result ( [START_REF] Manocha | A treatise on generating functions[END_REF], p.357): if (a n ) n≥0 , (b n ) n≥0 are two real sequences satisfying

b n = n j=0 2n n -j a j , then n≥0 b n w n 4 n = 1 + α(w) 1 -α(w) n≥0 a n [α(w)] n
whenever both series converge absolutely. Applying this result with

a 0 = b 0 = 0, a j = τ [(T k U t T k U ⋆ t ) j ] (k -1) j , j ≥ 1, w = 4(k -1)z k 2 ,
and noting that 1 + α(w)

1 -α(w) = 1 √ 1 -w conclude the proof.
From this corollary, we can derive a pde for ρ t,k : Proposition 3. The moment generating function ρ t,k (z) satisfies the pde:

(31) ∂ t ρ t,k (z) = -z∂ z ρ t,k (z) + 4(k -1) -k 2 α -1 (z) 4(k -1)(1 -α -1 (z)) ρ 2 t,k (z) ,
in a neighborhood of the origin with the initial condition :

ρ 0,k (z) = (k -1)z(1 -z) (k -1 -z)(1 + z -kz) . Proof. Let G t,k (z) := 1 z M t,k 1 z , |z| > 1,
be the Cauchy Stieltjes transform of the free Jacobi process P U t P U ⋆ t P with τ (P ) = 1/k, and recall from [START_REF] Demni | Free Jacobi process[END_REF] that it satisfies the pde:

∂ t G t,k (z) = 1 k ∂ z [(k -2)zG t,k (z) + z(z -1)G 2 t,k (z)].
Then the variable change z → 1/z shows that (32)

∂ t M t,k (z) = - z k ∂ z [(k -2)M t,k (z) + (1 -z)M 2 t,k (z)] Now set R t,k := M t,k -M ∞,k
, then we further get:

∂ t R t,k (z) = - z k ∂ z [(k -2)R t,k (z) + 2(1 -z)R t,k (z)M ∞,k + (1 -z)R 2 t,k (z)] = - z k ∂ z [ k 2 -4(k -1)zR t,k (z) + (1 -z)R 2 t,k (z)],
where the first equality follows from the fact that M ∞,k is a stationary solution of the pde (32):

∂ z [(k -2)M ∞,k (z) + (1 -z)M 2 ∞,k (z) 
] = 0, and the second one follows from (30). Noting that

k 2 -4(k -1)zR t,k (z) = k 2 ρ t,k α 4(k -1)z k 2 ,
it follows that the map (t, z) → ρ t,k (α(z)) satisfies:

∂ t ρ t,k (α(z)) = -z √ 1 -z∂ z ρ t,k (α(z)) + 4(k -1) -k 2 z 4(k -1)(1 -z) ρ 2 t,k (α(z)) .
Next, α is a one-to-one holomorphic map in C \ [1, ∞[ onto the open unit disc with inverse given by:

α -1 (z) = 4z (1 + z) 2 . Moreover α ′ (z) = α(z) z √ 1 -z whence [α -1 ] ′ (z) = α -1 (z) √ 1 -α -1 (z) z .
The sought pde satisfied by ρ t,k (z) follows after few computations. Finally,

ρ 0,k (z) = n≥1 τ [(T k ) 2n ] z n (k -1) n .
Letting h n := τ [(T k ) n ], n ≥ 0, then we can easily prove using the relation

T 2 k = (k -2)T k + (k -1) that h n+2 = (k -2)h n+1 + (k -1)h n , h 0 = 1, h 1 = 0.
This is a generalized Fibonacci sequence for which a Binet formula already exists ( [START_REF] Horzum | On some properties of Horadam polynomials[END_REF]):

h n = (k -1) n + (-1) n (k -1) k , n ≥ 0. Then, ρ 0,k (z) = n≥1 h 2n z n (k -1) n = (k -1)z(1 -z) (k -1 -z)(1 + z -kz) .
Setting η t,k (z) := ρ t,k (e t z) then

∂ t η t,k = ∂ t ρ t,k (e t z) + e t z∂ z ρ t,k (e t z).
Which yields,

∂ t η t,k = -z∂ z 4(k -1) -k 2 α -1 (e t z) 4(k -1)(1 -α -1 (e t z)) η 2 t,k (z) . (33) In particular, if k = 2 then ∂ t η t,2 (z) = -z∂ z η 2 t,2 (z) , while η 0,2 (z) = z 1 -z .
In this case, it is known that η t,2 is the moment generating function of the free unitary Brownian motion e t U 2t ( [START_REF] Demni | Spectral distribution of the free Jacobi process[END_REF]):

η t,2 (z) = n≥1 z n n L (1) 
n-1 (2nt)

where L

n-1 is the (n -1)-th Laguerre polynomial of parameter one. However, it turns out that for k ≥ 3 the computations becomes very complicated due to the high non-linearity of the pde (33), we then postpone its analysis to a future research work.

Characteristic curves of the pde. Denote

λ k (z) := 4(k -1) -k 2 α -1 (z) 4(1 -α -1 (z)) ,
so that the pde (31) reads:

∂ t ρ t,k (z) = -z∂ z ρ t,k (z) + λ k (z) (k -1) ρ 2 t,k (z) .
Elementary transformations show that ρt,k (z) = [ρ t,k (z)]/(k -1) satisfies

∂ t ρt,k (z) = -z∂ z ρt,k (z) + λ k (z)ρ 2 t,k ( 
z) . Let z be fixed in a neighborhood of the origin. Then a characteristic curve starting at z is locally the unique solution of the Cauchy problem:

z ′ k (t) = z(t)[1 + 2λ k (z k (t))f k (t)], z k (0) = z, where we set f k (t) := ρt,k (z k (t)). Along such curve, it holds that: (f k ) ′ (t) = -z(t)(λ k ) ′ (z k (t))f 2 k (t), f k (0) = ρt,k (z) = z(1 -z) (k -1 -z)(1 + z -kz) . Now, set H(u) := u + 1 u -1 and note that H is an involution (H -1 = H), H ′ (u) = -(H(u) -1) 2 /2 and λ k (z) = 1 4 [k 2 -(k -2) 2 H 2 (z)].
Then the curve defined by y k (t) := H(z k (t)) solves locally around -1 the Cauchy problem:

y ′ k (t) = 1 -y 2 k (t) 2 1 + k 2 -(k -2) 2 y 2 k (t) 2 f k (t) , y k (0) = z + 1 z -1 := y. Besides, (f k ) ′ (t) = - (k -2) 2 4 y k (t)H(y k (t))(y k (t) -1) 2 f 2 k (t) = (k -2) 2 (1 -y 2 k (t)) 4 y k (t)f 2 k (t). Consequently, y ′ k (t)y k (t) (k -2) 2 (1 -y 2 k (t)) 4 f 2 k (t) = 1 -y 2 k (t) 2 1 + k 2 -(k -2) 2 y 2 k (t) 2 f k (t) (f k ) ′ (t), or equivalently (k -2) 2 4 (y 2 k ) ′ (t)f 2 k (t) + y 2 k (t)(f 2 k ) ′ (t) = 1 + k 2 2 f k (t) (f k ) ′ (t).
This equation is integrable and yields:

(k -2) 2 4 (y 2 k )(t)f 2 k (t) -y 2 k (0)(f 2 k )(0) = k 2 4 f 2 k (t) + f k (t) - k 2 4 f 2 k (0) -f k (0) .
Written differently leads to the functional equation: λk

(y(t))f 2 k (t) + f k (t) -λk (y)f 2 k (0) -f k (0) = 0, where we simply wrote λk (y) = 1 4 [k 2 -(k -2) 2 y 2 ] = λ k (z).
Setting g k (0) := λk (y)f 2 k (0) + f k (0), then one has locally:

f k (t) = -1 + 1 + 4g k (0) λk (y k (t)) 2 λk (y k (t)) ,
where the principal determination of the square root is considered. It follows that:

y ′ k (t) = 1 + 4g k (0) λk (y k (t)) 1 -y 2 k (t) 2 = 1 -y 2 k (t) 2 1 + k 2 g k (0) -(k -2) 2 g k (0)(y 2 k (t)).
Now, consider the indefinite integral

I A,B (u) = 2 u du (1 -u 2 ) √ A -Bu 2
for two indeterminates (A, B) independent of the variable u. Then

I A,B (u) = 1 √ A -B log ( √ A -Bu 2 + √ A -Bu) 2 A(1 -u 2 ) ,
provided the square root is well-defined (we can take any determination of the logarithm). Taking A = 1 + k 2 g k (0), B = (k -2) 2 g k (0), one gets

I A,B (y(t)) -I A,B (y) = t,
or after exponentiating this identity: If we denote the LHS of the second equality ξ 2t ( √ A -B), then lengthy computations yield: Thus, it holds locally:

( A -B(y k (t)) 2 + √ A -By k (t)) 2 A(1 -y k (t) 2 ) = e √ A-Bt ( A -By 2 + √ A -By) 2 A(1 -y 2 ) Noting that f k (0) = - 1 + y 2 λk (y) 4g k (0) = y 2 -1 λk ( 
y 2 k (t) = A(1 -ξ 2t ( √ A -B)) 2 A(1 + ξ 2t ( √ A -B)) 2 -4Bξ 2t ( √ A -B) = A (A -B)H 2 [ξ 2t ( √ A -B)] + B = 1 + k 2 g k (0)
y 2 (t) = H[-ξ 2t (-y)] ⇒ z 2 (t) = (-ξ 2t ) 1 + z 1 -z = ze t(1+z)/(1-z) .
For fixed t > 0, the map z → z 2 (t) is known as the Σ-transform of the spectral distribution of U 2t ( [START_REF] Biane | Free Brownian motion, free stochastic calculus and random matrices[END_REF]).

Concluding remarks

So far, we introduced a dynamical random density matrix by means of k ≥ 2 independent unitary Brownian motions whose large size limit has, up to a normalization, the same moments as those of the free Jacobi process P U t P U ⋆ t P (in the compressed algebra) subject to τ (P ) = 1/k. Motivated by our previous results proved in [START_REF] Demni | Spectral distribution of the free Jacobi process[END_REF] valid for k = 2, we derived for any k ≥ 2 a binomial-type expansion for these moments and gave rise to a non normal (except when k = 2) operator. In [START_REF] Hamdi | Spectral distribution of the free Jacobi process, revisited[END_REF], another approach is undertaken and relies rather on the spectral dynamics of the unitary operator T 2 U t T 2 U ⋆ t . Specializing Theorem 1.1. there to P = Q with τ (P ) = 1/k, the spectral distribution of P U t P U ⋆ t P admits a density given by:

µ k t (x) = 1 2π g k t (2 arccos( √ x)) √ x -x 2 ,
where g k t is the density of the spectral distribution of T 2 U t T 2 U ⋆ t . However, for k ≥ 3, g k t admits a very complicated expression compared to the simple one corresponding to k = 2.

On the other hand, it was recently proved in [START_REF] Demni | Relating moments of self-adjoint polynomials in two orthogonal projections[END_REF] (see eq. Equivalently, the moments of the free Jacobi process associated with 1 -P may be deduced from those of the free Jacobi process associated with P :

k k -1 τ [((1 -P )U t (1 -P )U ⋆ t (1 -P )) n ] = k k -1 τ [(P U t P U ⋆ t P ) n ] + k -2 k -1 .
This fact reminds the duality between linear subspaces and their complementaries in Grassmann manifolds and is not surprising since the free Jacobi process is the large size limit of the radial part of the Brownian motion in the complex Grassmann manifold (see [START_REF] Demni | Free Jacobi process[END_REF] for further details).

Appendix A. Moments of stationary distribution

In this appendix, we derive another expression of

m n (∞) = x n μk ∞ (dx) = 1 2π
x n-1/2 4(k -1) -k 2 x (1 -x) 1 [0,4(k-1)/k 2 ] (x)dx.

To the best of our best knowledge, formula (34) below never appeared in literature. Compared to (34), it has the merit to separate the case k = 2 corresponding to the arcsine distribution from other values k ≥ 3.

Our main ingredients are two properties satisfied by the Gauss hypergeometric function.

  j (ab) j + (k -1)

  y) , then A -By 2 = 1 + 4g k (0) λk (y) = y 2 which in turn entails:( A -B(y k (t)) 2 + √ A -By k (t)) 2 A(1 -y k (t)

( 1 +

 1 4(k -1)g k (0))[H 2 [ξ 2t ( 1 + 4(k -1)g k (0)] -1] + (1 + k 2 g k (0)) .The map (-ξ 2t ) is the inverse of the Herglotz transform 1 + 2η t,2 of the spectral distribution of U 2t in a neighborhood of u = 1. As a matter of fact, the mapu → 1 + k 2 u (1 + 4(k -1)u)[H 2 [ξ 2t ( 1 + 4(k -1)u] -1] + (1 + k 2 u)is a locally invertible in a neighborhood of the origin u = 0. Let ζ 2t be its inverse theng k (0) = ζ 2t (y

( 3 )

 3 there) thatτ [(P QP ) n ] -τ [((1 -P )(1 -Q)(1 -P )) n ] = τ (P ) + τ (Q) -1,for any self-adjoint projections (P, Q) with arbitrary traces τ (P ), τ (Q) ∈ (0, 1). In particular, if Q = U t P U ⋆ t and τ (P ) = 1/k then we readily deduce:τ [((1 -P )U t (1 -P )U ⋆ t (1 -P )) n ] = τ [(P U t P U ⋆ t P ) n ] + 1 -2 k .

  + 1 + 4ζ 2t (y 2 k (t)) λk (y k (t)) 2 λk (y k (t)) = 2 ζ 2t [H 2 (z k (t))] 1 + 1 + ζ 2t [H 2 (z k (t))][k 2 -(k -2) 2 H 2 (z k (t))]= ρt,k (z k (t)).

	and in turn				
	f k (t) = -1 Remark. If k = 2 then				
	y 2 2 (t) =	1 H 2 [ξ 2t ( 1 + 4g 2 (0)]	=	1 H 2 [ξ 2t (-y)]	= H 2 [-ξ 2t (-y)].
				2 k (t)),	

The state τ is tracial and all the processes are continuous in the strong topology.

To proceed, perform the variable change x = 4(k -1)y/k 2 to write:

Here 2 F 1 is the hypergeometric function, the second equality follows from its Euler integral representation, the third and fourth ones follow from the variational formula (25), p.102 and formula (6), p.101 in Erdelyi's book. Using direct computations, we readily see that

for some polynomial of degree n. For instance

Appendix B. Free cumulants of an orthogonal projection

The first part of the proof is a routine computation in free probability theory and we refer the reader to [START_REF] Hiai | The Semicircle Law, Free Random Variables, and Entropy[END_REF] for further details on this machinery. Start with the Cauchy transform of P :

Next, consider the equation yz 2 -z(y + 1) + 1 -α = 0, for y lying in a neighborhood of zero. Then the K-transform of P reads:

and in turn, its R-transform is given by

It remains to write down the Taylor expansion of the function:

To this end, we appeal to the generating series of Legendre polynomials:

where the last equality follows from the recurrence relation:

Extracting the Taylor coefficients of f α and recalling the definition

we get (29). Note that since Legendre polynomials are orthogonal with respect to the uniform distribution in [-1, 1], they are parity preserving. In particular, P 2n+1 (0) = 0, P 2n (0) = (-1) n (1/2) n n! , so that one recovers (3.1) after some computations.