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This paper is devoted to the mathematical analysis of the contact capabilities of the fluid-

structure interaction (FSI) model with seepage reported in [Comput. Methods Appl.

Mech., 392:114637, 2022]. In the case of a rigid disk moving over a fixed horizontal
plane, we show that this model encompasses contact and hence removes the non collision

paradox of traditional FSI models which rely on Dirichlet or Dirichlet/Navier boundary
conditions. Numerical evidence on the theoretical results is also provided.
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1. Introduction

The numerical simulation of systems involving fluid-structure-contact interaction is

of fundamental importance in many engineering and biomedical applications. For

1



October 4, 2023 23:59 WSPC/INSTRUCTION FILE paper˙m3as

2 Champion, Fernández, Grandmont, Vergnet, Vidrascu

instance, contact modeling is a crucial ingredient in the simulation of the dynamics

of native or artificial cardiac valves (see, e.g., 19, 20).

Modeling contact between solids within a fluid-structure interaction (FSI) frame-

work raises many modeling, mathematical and numerical issues. First, in the case

of a ball immersed in a viscous incompressible fluid with no-slip boundary condi-

tions and falling over a fixed horizontal plane, the resulting FSI models are unable

to predict contact, both in 2D (see, e.g., 14) and in 3D (see, e.g.,16), which is

known as the no collision paradox. One of the most widespread explanation of

this paradox is that one can no longer consider ideal smooth surfaces when solids

come into contact: roughness-induced effects play a fundamental role into enabling

collision. Indeed, contact between smooth solids with no-slip boundary conditions

seem possible only in very specific configurations like, for example, grazing collision

in 3D (see 17). On the other hand, many studies show the no collision paradox is

circumvented by taking into account roughness in FSI models, either by enabling

the fluid to slip through Navier-type boundary conditions (see, e.g., 22, 18 in 2D

and 9, 12, 10 in 3D) or by considering rough solids (see, e.g., 8 in 2D and 9

in 3D). A second major difficulty is related to the mechanical consistency of the

model. Indeed, for FSI models which allow for contact, the simple addition of a

non-penetration constraint to the solid can lead to unphysical void creation (at re-

lease from contact) or unbalanced stresses at contact. Recently, these mechanical

inconsistencies have been avoided by considering a poroelastic modeling of the fluid

seepage induced by the roughness of the contacting wall (see, e.g., 1, 4). Yet, very

little is known on the mathematical foundations of these modeling approaches.

In this work, we investigate the capability to encompass contact of the FSI

model with seepage reported in 4. For this purpose, we consider a simplified 2D

setting of a rigid disk immersed in a Stokesian flow and falling over an horizontal

plane (the contacting wall), modeled as porous layer. We provide a well-posedness

analysis for the fluid problem and describe the asymptotics with respect to the

porous layer parameters. By building on the arguments reported in 9, we also derive

an estimate of the fluid drag force, acting on the disk boundary, with respect to the

gap between the disk and the porous layer. A salient feature of this analysis is that

it shows that the considered FSI model with seepage allows for contact between

the disk and the wall. In other words, since the porous layer allows for seepage, the

incompressibility constraint does not create any singularity which prevents contact.

To the best of our knowledge, this is the first time in which contact is allowed in a

FSI model with Dirichlet interface conditions on the falling disk, for the considered

geometrical setting. From the analysis reported in 14, 9, one can indeed show that

the combination of Dirichlet and Navier boundary conditions prevents contact. The

mathematical analysis of the paper is complemented by a comprehensive numerical

study which illustrates the theoretical results obtained.

The rest of the paper is organized as follows. Section 2 presents the considered

2D simplified setting and the fluid-structure-contact interaction model of 4. An ap-

propriate velocity scaling of the problem (see, e.g., 9) reduces the coupled problem
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to the evaluation of the drag force operator in terms of the distance to the con-

tacting wall. Section 3 represents the theoretical core of the paper. It provides a

mathematical and asymptotic analysis of the resulting scaled fluid system and ana-

lytical estimations of the drag force, which allow to describe the contact dynamics

of the disk. Numerical evidence on these theoretical results is provided in Section 4.

Finally, the main results of the paper are summarized in Section 5 together with

some perspectives of future work.

2. Mathematical models

In order to investigate the effect of the surface porous medium on the contact

dynamics of fluid-structure interaction, we consider a simplified fluid-structure in-

teraction system involving a quasi-steady Stokes flow with an immersed rigid disk.

This simplified setting has already been investigated in previous studies (see, e.g.,

14, 9, 18), but with a different treatment of the contact wall (notably in terms of

boundary conditions).

The Stokesian fluid is assumed to be contained in a rectangular domain Ω
def
=

(−L,L)× (0, L̃) and the current configuration of the immersed rigid disk is denoted

by S(t) ⊂ Ω, for all t > 0. We can hence introduce the fluid domain Ω(t)
def
= Ω\S(t)

and its associated non-cylindrical trajectory

T def
=
⋃

t∈R+

Ω(t)×
{
t
}
.

The boundary of Ω is partitioned as ∂Ω = Γ ∪ Σ, where Σ denotes the bottom

contacting wall (see Figure 1). In what follows, the rigid disk is assumed to be

of radius one and to move only vertically (without rotation), so that S(t) can be

defined as follows:

S(t)
def
= B

(
(d(t) + 1)e2, 1

)
,

where (e1, e2) denotes the canonical basis of R2, B(x, R) the disk of radius R

centered in x ∈ R2, and d : R+ → R stands for the so so called gap function,

viz., the quantity d(t) represents the (signed) distance function between S(t) and

the contacting wall Σ. Owing to the geometrical symmetry of the problem, it is

worth noting that this purely vertical motion can be (physically) expected under

appropriate initial conditions.

The fluid. The state of the fluid can be described in terms of its velocity u : T →
R2 and pressure p : T → R fields, which are governed by the following Stokes system





−divσ(u, p) = 0 in Ω(t),

divu = 0 in Ω(t),

u = 0 on Γ,

(2.1)

where the fluid Cauchy stress tensor σ reads

σ(u, p)
def
= 2D(u)− pI, D(u)

def
=

1

2
(∇u+∇uT ).
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Figure 1: Geometrical description.

The fluid viscosity is assumed to be one, and no-slip boundary conditions are con-

sidered on the exterior boundary �.

The solid. Owing to the vertical motion of the rigid disk, the dynamics of the

solid is simply given in terms of the momentum conservation law. Assuming that

the solid has unit mass, the following relation holds

d̈(t) + F(t) = 0, (2.2)

for t 2 R+ and where F(t) stands for the external force acting on the solid.

Fluid-solid coupling. The fluid and solid equations (2.1)-(2.2) have to be coupled

with standard geometric, kinematic and dynamic interface conditions on @S(t),

namely:

8
>>><
>>>:

S(t) = B
�
(d(t) + 1)e2, 1

�
, ⌦(t) = ⌦ \ S(t),

u = ḋe2 on @S(t),

F(t) =

Z

@S(t)

�(u, p)n · e2,

(2.3)

where n denotes the exterior unit normal to @⌦(t). Note that the last expression

simply relates F(t) to the fluid drag force exerted on the rigid disk at time t.

Surface roughness model on the contact wall. Traditionally, fluid-structure

interaction models based on (2.1)–(2.3) involve a no-slip boundary condition on

the contact wall ⌃, which is known to prevent contact (see, e.g. 14) in contrast

to what is physically observed. In order to circumvent this issue, we consider the

Figure 1: Geometrical description.

The fluid viscosity is assumed to be one, and no-slip boundary conditions are con-

sidered on the exterior boundary Γ.

The solid. Owing to the vertical motion of the rigid disk, the dynamics of the

solid is simply given in terms of the momentum conservation law. Assuming that

the solid has unit mass, the following relation holds

d̈(t) + F(t) = 0, (2.2)

for t ∈ R+ and where F(t) stands for the external force acting on the solid.

Fluid-solid coupling. The fluid and solid equations (2.1)-(2.2) have to be coupled

with standard geometric, kinematic and dynamic interface conditions on ∂S(t),

namely:




S(t) = B
(
(d(t) + 1)e2, 1

)
, Ω(t) = Ω \ S(t),

u = ḋe2 on ∂S(t),

F(t) =

∫

∂S(t)

σ(u, p)n · e2,
(2.3)

where n denotes the exterior unit normal to ∂Ω(t). Note that the last expression

simply relates F(t) to the fluid drag force exerted on the rigid disk at time t.

Surface roughness model on the contact wall. Traditionally, fluid-structure

interaction models based on (2.1)–(2.3) involve a no-slip boundary condition on

the contact wall Σ, which is known to prevent contact (see, e.g. 14) in contrast

to what is physically observed. In order to circumvent this issue, we consider the

alternative modeling approach reported in 4, which consists in taking into account

the roughness of the contact wall through a surface model of fluid seepage.

The matrix of the porous wall is assumed to be rigid and of thickness εp. The
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normal and tangential conductivities of the porous medium are denoted by κ and η,

respectively. We denote by τ the tangential vector on the surface Σ; here τ is simply

equal to e1. The porous fluid pressure p̂ : Σ × R+ → R can be described by the

following surface Darcy model (obtained after averaging the bulk Darcy problem

across the thickness, see 4, 21):

{
−divτ

(
εpη∇τ p̂

)
= uΣ on Σ,

∇τ p̂ = 0 on ∂Σ,
(2.4)

where uΣ denotes the seepage velocity.

Remark 2.1. As Σ is a 1D line, the symbols divτ and ∇τ , denoting respectively

the divergence and gradient along the direction τ , are here both equivalent to ∂
∂x .

The above system has to be coupled with the bulk fluid equations (2.1) on Σ,

via appropriate kinematic and dynamic relations, namely,





uΣ = u · n on Σ,

σ(u, p)n · n = −
(
p̂+

εp
4κ

u · n
)

on Σ,

σ(u, p)n · τ = 0 on Σ.

(2.5)

Note that free slip tangential stress is enforced with the last relation.

Fully coupled problem. The considered coupled problem can be summarized as

follows: Find the gap d : R+ → R, the fluid velocity u : T → R2, the fluid pressure

p : T → R and the porous pressure p̂ : Σ× R → R such that:





−divσ(u, p) = 0 in Ω(t),

divu = 0 in Ω(t),

u = 0 on Γ,

u = ḋe2 on ∂S(t),

σ(u, p)n · n = −
(
p̂+

εp
4κ

u · n
)

on Σ,

σ(u, p)n · τ = 0 on Σ,

− divτ
(
ηεp∇τ p̂

)
= u · n on Σ,

∇τ p̂ · τ = 0 on ∂Σ,

d̈(t) + F(t) = 0, F(t) =

∫

∂S(t)

σ(u, p)n · e2,

S(t) = B
(
(d(t) + 1)e2, 1

)
, Ω(t) = Ω \ S(t),

(2.6a)

(2.6b)

(2.6c)

(2.6d)

(2.6e)

(2.6f)

(2.6g)

(2.6h)

(2.6i)

(2.6j)

with d(0) = d0 and ḋ(0) = ḋ0 as initial conditions.
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Velocity scaling. System (2.6) is a highly non-linear coupled problem, notably

due to the fact that the fluid domain Ω(t) is unknown. In order to mitigate this

difficulty, we adopt here a scaling argument, considered for instance in 9, which

leverages the linearity of problem (2.6) with respect to ḋ and basically consists in

performing the following change of variables for t > 0:




u(t) = ḋ(t)ud(t) in Ωd(t),

p(t) = ḋ(t)pd(t) in Ωd(t),

p̂(t) = ḋ(t)p̂d(t) in Ωd(t).

(2.7)

By inserting the above relations into (2.6) and since the equations are linear for a

given location of the rigid disk, we infer that, for a given gap d ∈ (0, L̃ − 2) and

associated solid and fluid domains

Sd
def
= B

(
(d+ 1)e2, 1

)
, Ωd

def
= Ω \ Sd,

the triplet ud : Ωd → R2, pd : Ωd → R, p̂d : Σ → R is solution of the following pure

(steady) fluid coupled problem:





−divσ(ud, pd) = 0 in Ωd,

divud = 0 in Ωd,

ud = 0 on Γ,

ud = e2 on ∂Sd,

σ(ud, pd)n · n = −
(
p̂d +

εp
4κ

ud · n
)

on Σ,

σ(ud, pd)n · τ = 0 on Σ,

−divτ
(
ηεp∇τ p̂d

)
= ud · n on Σ,

∇τ p̂d · τ = 0 on ∂Σ.

(2.8a)

(2.8b)

(2.8c)

(2.8d)

(2.8e)

(2.8f)

(2.8g)

(2.8h)

Note that the velocity scaling (2.7) yields a constant unit velocity as kinematic con-

straint in (2.8d), and hence independent of ḋ. The analysis reported in Section 3.1

below shows that the operator d ∈ (0, L̃− 2) 7→ (ud, pd, p̂d) is well defined, so that

the change of variables (2.7) is feasible.

By inserting the scaling (2.7) into (2.6i), it follows by linearity that

F(t) = ḋ(t)Fd(t),

with the notation

Fd
def
=

∫

∂Sd

σ(ud, pd)n · e2 (2.9)

for any given d ∈ (0, L̃ − 2). As a result, the rigid disk dynamics can be rewritten

as:

d̈(t) + ḋ(t)Fd(t) = 0. (2.10)
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We will show in Section 3.3 that Fd ≥ 0, so that from (2.10) we can infer that the

fluid-solid coupling (2.6) acts as a friction force into the dynamics of the rigid disk.

The amount of this friction is nothing but the scaled drag force (2.9), which only

depends on the instantaneous gap d, trough the solution of the pure fluid problem

(2.8). The analysis of the system (2.8) and, more specifically, of the behavior of its

associated drag force Fd with respect to d provides a practical way to estimate the

disk dynamics near the wall and, in particular, to conclude on the possibility of

contact between the rigid disk and the bottom boundary Σ.

Previous studies (see, e.g., 14, 9, 10, 22, 16) have shown that Dirichlet or Navier

boundary conditions on the contact wall Σ lead to a singularity of Fd when d→ 0.

In 2D with Dirichlet boundary conditions on both the wall and the disk or a Navier

boundary conditions on one side and a Dirichlet boundary conditions on the other

side, the singularity of Fd is

Fd ∼
d→0

d−
3
2

and it prevents collision, as proven in Theorem 1 of the seminal paper 14. If Navier

boundary conditions are considered on both the wall and the disk, the singularity

is weaker (see Proposition 6.1 of 22) and allows collision:

Fd ∼
d→0

d−
1
2 .

In this paper, we investigate the case in which Dirichlet boundary conditions are

applied on the disk and a porous layer is considered on the bottom wall. To the best

of our knowledge, this new setting has not yet been investigated from a mathemat-

ical analysis perspective. In the next section, we prove existence and uniqueness of

weak solution to the coupled system (2.8). Then we study the asymptotic behavior

of the system with respect to the porous layer parameters κ and η. Finally, we

provide an estimate of the drag force when d→ 0 and show that

0 ⩽ Fd ⩽ C(κ, η),

from which we conclude that the porous layer enables contact in the 2D case.

3. Mathematical analysis

This section gathers the main theoretical results of the paper. We provide a thorough

mathematical analysis of system (2.8), whose main distinctive feature lies in the

coupling with the porous layer on the bottom wall Σ. As, to our knowledge, this

system has not yet been studied, we address its well-posedness in Section 3.1, using

standard arguments from saddle point problems theory. Then, in order to highlight

the role of the normal and tangential conductivity parameters κ and η, we provide

an asymptotic analysis of (2.8) with respect to these parameters in Section 3.2.

Finally, in Section 3.3 we investigate the influence of the porous layer on the disk

contact dynamics, by estimating analytically the drag force acting on the disk.
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3.1. Existence and uniqueness

In this section, the existence and uniqueness of weak solution for system (2.8) is

investigated. We also derive a priori estimates satisfied by this weak solution.

Let ω be a given bounded domain of R2 and let Υ denote a subset of its boundary.

We denote by L2
0(ω) the space of L2(ω) functions with zero mean value in ω and

byH1
0,Υ(ω) the space of functions inH

1(ω) with zero trace on Υ. The scalar product

in L2(ω) is denoted by (·, ·)0,ω, the L2(ω) norm by ∥ · ∥0,ω and the H1(ω) norm

by ∥ · ∥1,ω. We recall that the H1 semi-norm | · |1,ω is a norm in H1
0,Υ(ω), since

the Poincaré inequality holds true for functions in H1
0,Υ(ω). On Υ, we also consider

the Hs norms, denoted by ∥ · ∥s,Υ, for every 0 < s ⩽ 1, and the H1 semi-norm,

denoted by | · |1,Υ.
Since only the gradient of pd and of p̂d is involved in (2.8a) and (2.8g), respec-

tively, both pd and p̂d are in principle defined up to a constant. Nonetheless, owing

to (2.8e), once one of the constats is fixed, the other is uniquely defined, therefore,

only one of them needs to be fixed to guarantee uniqueness. In the analysis below,

we choose to fix the constant of the Darcy pressure p̂d by considering the space

D def
= H1 (Σ) ∩ L2

0 (Σ) , (3.1)

so that the fluid pressure belongs to L2(Ωd). As regards the fluid velocity, we denote

by Ud and U0
d the following spaces,

Ud
def
=
{
u ∈ H1

Γ(Ωd)
2 : u = e2 on ∂Sd

}
, U0

d
def
= H1

Γ∪∂Sd
(Ωd)

2.

In order to derive a weak formulation for problem (2.8), we test the fluid mo-

mentum equation (2.8a) with v ∈ U0
d , the incompressibility condition (2.8b) with

q ∈ L2(Ωd) and the surface Darcy equation (2.8g) with q̂ ∈ D. The weak formu-

lation then follows by integrating by parts and using the different boundary and

coupling conditions: Find (ud, p̂d, pd) ∈ Ud ×D × L2(Ωd) such that

2
(
D(ud),D(v)

)
0,Ωd

+
εp
4κ

(ud · n,v · n)0,Σ + εpη
(∇τ p̂d,∇τ q̂

)
0,Σ

+ (p̂d,v · n)0,Σ − (ud · n, q̂)0,Σ − (pd,div v)0,Ωd
+ (divud, q)0,Ωd

= 0 (3.2)

for all (v, q̂, q) ∈ U0
d ×D × L2(Ωd).

The main results of this section are stated in the following theorem.

Theorem 3.1. For any d ∈ (0, L̃ − 2), problem (3.2) admits a unique solution

(ud, pd, p̂d) ∈ Ud × L2(Ωd) × D. Moreover, there exist three positive constants

C1, C2, C3 > 0, which only depend on Ωd, such that (ud, pd, p̂d) satisfies the fol-
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lowing a priori estimates

∥D(ud)∥20,Ωd
+
εp
4κ

∥ud · n∥20,Σ + εpη∥∇τ p̂d∥20,Σ ⩽ C1∥e2∥21
2 ,∂Sd

, (3.3)

∥p̂d∥1,Σ ⩽ C2ε
− 3

2
p

√
κ

η
∥e2∥ 1

2 ,∂Sd
, (3.4)

∥pd∥0,Ωd
⩽ C3

(
1 +

√
εp
4κ

+

√
1

εpη

)
∥e2∥ 1

2 ,∂Sd
. (3.5)

Proof. The sketch of the proof is as follows. We first introduce a lifting of the

non-homogeneous Dirichlet boundary condition (2.8d) and we derive the associated

homogeneous weak formulation. Then, we establish an inf-sup condition in order to

prove existence and uniqueness of a solution to problem (3.2). The end of the proof

deals with the derivation of estimates (3.3)–(3.5). For the sake of clarity, we drop

the d subscript of all variables in the remaining of the proof, since d > 0 is fixed.

The steps of the proof are detailed hereafter.

Homogeneous problem. We first consider a lifting of the non-homogeneous

boundary condition (2.8d). Since
∫
∂Sd

e2 · n = 0, it follows from Theorem 5.1 and

Remark 5.3 of 11 that there exists a unique (w, q) ∈ H1(Ωd)× L2
0(Ωd), solution of

the Stokes system (2.8a)-(2.8b) with the following Dirichlet boundary conditions:
{
w = e2 on ∂Sd,

w = 0 on Σ ∪ Γ.
(3.6)

Moreover, there exists a constant C1 > 0 which only depends on Ωd such that

∥w∥1,Ωd
⩽ C1∥e2∥1/2,∂Sd

. (3.7)

Therefore, we define for every u ∈ Ud the new velocity ū ∈ U0
d given by

ū = u−w. (3.8)

Rewriting (3.2) with u = ū + w, we obtain that the triplet ū : Ωd → R2, p :

Ωd → R, p̂ : Σ → R is solution of the following homogeneous problem: Find

(ū, p̂, p) ∈ U0
d ×D × L2(Ωd) such that

2 (D(ū),D(v))0,Ωd
+
εp
4κ

(ū · n,v · n)0,Σ + εpη (∇τ p̂,∇τ q̂)0,Σ

+(p̂,v · n)0,Σ−(ū · n, q̂)0,Σ−(p,div v)0,Ωd
+(div ū, q)0,Ωd

= −2 (D(w),D(v))0,Ωd

(3.9)

for all (v, q̂, q) ∈ U0
d×D×L2(Ωd). Problems (3.9) and (3.2) are obviously equivalent.

We will then prove existence and uniqueness of a solution (ū, p̂, p) to problem (3.9)

and deduce that problem (3.2) is also well-posed.

For the sake of simplicity, we rewrite the weak formulation (3.9) with usual

notations for saddle point problem so the reader can easily find his way through



October 4, 2023 23:59 WSPC/INSTRUCTION FILE paper˙m3as

10 Champion, Fernández, Grandmont, Vergnet, Vidrascu

the standard arguments to prove existence and uniqueness. We consider the Hilbert

spaces

X
def
= U0

d ×D, M
def
= L2(Ωd).

Let a : X ×X → R, b : X ×M → R and l ∈ X ′ be the bi-linear and linear forms

defined by

a
(
(u, p̂), (v, q̂)

) def
=2 (D(u),D(v))0,Ωd

+
εp
4κ

(u · n,v · n)0,Σ
+ εpη (∇τ p̂,∇τ q̂)0,Σ + (p̂,v · n)0,Σ − (u · n, q̂)0,Σ ,

b
(
(v, q̂), q

) def
= − (q,div v)0,Ωd

,

⟨l, (v, q̂)⟩X′,X
def
= (D(w),D(v))0,Ωd

.

(3.10)

Problem (3.9) can therefore be reformulated in an abstract fashion as:

Find ((ū, p̂), p) ∈ X ×M such that
{
a
(
(ū, p̂), (v, q̂)

)
+ b
(
(v, q̂), pd

)
= ⟨l, (v, q̂)⟩X′,X ∀(v, q̂) ∈ X,

b
(
(ū, p̂), q

)
= 0 ∀q ∈M.

(3.11)

The form l is continuous on X, the form b is continuous on X×M , by continuity

of the divergence operator and, using the continuity of the trace operator, we show

that a is continuous on X ×X. Moreover, using Körn’s inequality (see, e.g., 7 ), it

follows that form a is coercive on X ×X.

Inf-sup condition. To prove that problem (3.11) is well-posed, it remains to

show that the continuous bilinear form b satisfies the usual inf-sup condition. W

first observe that

sup
(v,q̂)∈U0

d×D\{(0,0)}

| (div v, q) |
∥(v, q̂)∥U0

d×D∥q∥0,Ωd

⩾ sup
v∈U0

d\{0}

| (div v, q) |
∥v∥1,Ωd

∥q∥0,Ωd

,

for all q ∈ L2(Ωd) \ {0}. From Theorem 3.3 of 6 and by adapting the Bogovskii’s

lemma stated in 2 to the case of homogeneous boundary condition on part of the

boundary, there exists a constant C > 0 such that for any q ∈ L2(Ωd) there exists

wq ∈ U0
d such that divwq = q and ∥wq∥1,Ωd

⩽ C∥q∥0,Ωd
. As a result

sup
v∈U0

d\{0}

| (div v, q) |
∥v∥1,Ωd

⩾ | (divwq, q) |
∥wq∥1,Ωd

=
∥q∥20,Ωd

∥wq∥1,Ωd

⩾ 1

C
∥q∥0,Ωd

,

for all q ∈ L2(Ωd) \ {0}, which yields the inf-sup condition

inf
q∈L2(Ωd)\{0}

sup
(v,q̂)∈U0

d×D\{(0,0)}

| (div v, q) |
∥(v, q̂)∥U0

d×D∥q∥0,Ωd

⩾ 1

C
. (3.12)

Therefore, since the bilinear form a is continuous and coercive on X ×X, that l

is continuous on X and that b is continuous on X ×M and satisfies the inf-sup

condition (3.12), we conclude that problem (3.11) admits a unique solution inX×M
(see, e.g., Corollary 4.1 of 11). Moreover, it also proves that problem (3.2) admits

a unique solution in Ud ×D × L2(Ωd).
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A priori estimates. To obtain a priori estimates on u and p̂, we first con-

sider (ū, p̂) ∈ X as a test function in the weak formulation (3.9), which yields

2∥D(ū)∥20,Ωd
+
εp
4κ

∥ū · n∥20,Σ + εpη∥∇τ p̂∥20,Σ = −2
(
D(w),D(ū)

)
Ωd
.

Thus, from (3.6) and (3.8), we obtain

2∥D(u)∥20,Ωd
+
εp
4κ

∥u · n∥20,Σ + εpη∥∇τ p̂∥20,Σ = 2(D(w),D(u))0,Ωd
.

Finally, by using the Cauchy-Schwarz and Young inequalities, we get

2∥D(u)∥20,Ωd
+
εp
4κ

∥u ·n∥20,Σ + εpη∥∇τ p̂∥20,Σ ⩽ ∥D(w)∥20,Ωd
+ ∥D(u)∥20,Ωd

. (3.13)

The a priori estimate (3.3) then simply follows from (3.13) and (3.7).

Thanks to (3.3) on ud ·n, we can derive a sharper estimate on p̂d. Indeed using

the variational formulation (3.2) with v = 0 and q̂ = p̂d, we obtain

εpη∥∇τ p̂d∥20,Σ = (ud · n, p̂d)0,Σ ,

so that, by using Cauchy-Schwarz and Poincaré-Wirtinger inequalities we get

εpη∥p̂d∥1,Σ ⩽ C∥ud · n∥0,Σ,

with C > 0. Finally, from (3.3) on ud · n we get estimate (3.4) with C2 = C
√
C1.

Then, to estimate the fluid pressure p, we test the weak formulation (3.9) with

q̂ = 0, which yields

(p, div v)0,Ωd
=2 (D(ū),D(v))0,Ωd

+ 2 (D(w),D(v))0,Ωd
+
εp
4κ

(ū · n,v · n)0,Σ
+ (p̂,v · n)0,Σ ,

for all v ∈ U0
d . Therefore, owing to (3.8), we have

(p, div v)0,Ωd
= 2 (D(u),D(v))0,Ωd

+
εp
4κ

(u · n,v · n)0,Σ + (p̂,v · n)0,Σ , (3.14)

for all v ∈ U0
d . Using once more Theorem 3.3 of 6, as p ∈ L2(Ωd) there exists a

constant C > 0 such that there exists ṽ ∈ U0
d that satisfies both div ṽ = p and

|ṽ|1,Ωd
⩽ C∥p∥0,Ωd

. (3.15)

Taking ṽ as a test function in (3.14) gives

∥p∥20,Ωd
= 2
(
D(u),D(ṽ)

)
0,Ωd

+
εp
4κ

(u · n, ṽ · n)0,Σ + (p̂, ṽ · n)0,Σ ,

so that, using Cauchy-Schwarz inequality, the continuity of the trace operator and

estimate (3.15) on ṽ, we get

∥p∥20,Ωd
⩽ C3

(
|u|1,Ωd

+
εp
4κ

∥u · n∥0,Σ + ∥p̂∥0,Σ
)
∥p∥0,Ωd

,

with C3 > 0 a positive constant. Estimate (3.5) then follows after division by ∥p∥0,Ωd

in the previous bound and by using (3.3), which concludes the proof of Theorem 3.1.
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Estimates (3.3)–(3.5) will be essential for the asymptotic analysis (with respect

to κ and η) conducted in Section 3.2. On one hand, we can infer from (3.3) that

the fluid velocity ud is bounded in H1(Ωd), independently of κ and η. On the other

hand, we loose control on the fluid pressure in (3.5) when either κ or η vanish.

The purpose of the next proposition is to show that the zero-mean part of the fluid

pressure can be bounded independently of κ and η. We hence decompose the fluid

pressure pd = p∗d + cd, using the direct sum L2 = L2
0 ⊕ R, so that

cd =
1

|Ωd|

∫

Ωd

pd, p∗d = pd − cd ∈ L2
0(Ωd).

Proposition 3.1. For any d ∈ (0, L̃− 2), there exists a positive constant C4 > 0,

independent of of the conductivity parameters, such that the zero-mean part p∗d of

the fluid pressure pd, solution of system (2.8), satisfies the a priori estimate

∥p∗d∥0,Ωd
⩽ C4. (3.16)

Proof. The proof is very similar to the proof of estimate (3.5). We use the notations

introduced in the proof of Theorem 3.1 and, as before, we drop the subscript d of

all variables for readability.

We consider a test function v ∈ U0
d which also satisfies v ·n = 0 on the bottom

wall Σ. Thus, the constant c does not play any role in the weak formulation (3.9)

since

(c,div v)0,Ωd
= c

∫

Ωd

div v = c

∫

∂Ωd

v · n = 0.

The weak formulation (3.2) with q̂ = 0 therefore gives

(p∗,div v)0,Ωd
= 2
(
D(ū),D(v)

)
0,Ωd

(3.17)

for all v ∈ U0
d∩
{
v ∈ H1(Ωd)

2, v · n = 0 on Σ
}
. According to Bogovskii’s Lemma 2,

there exists C4 > 0 such that for all p∗ ∈ L2
0(Ωd) there exists ṽ ∈ H1

0 (Ωd) such that

div ṽ = p∗ and

|ṽ|1,Ωd
⩽ C4∥p∗∥0,Ωd

.

Taking v = ṽ in (3.17), applying the Cauchy-Schwarz inequality and using estimate

(3.3) yields

∥p∗∥20,Ωd
= 2 (D(ū),D(ṽ))0,Ωd

⩽ |ū|1,Ωd
|ṽ|1,Ωd

⩽ C4∥p∗∥0,Ωd
.

This completes the proof.

Remark 3.1. Now, to bring insight on the fluid pressure constant cd, let us note

that the weak formulation (3.2) gives the following link between p̂d, p
∗
d and cd

〈
σ(ud, p

∗
d + cd)n · n,v · n

〉
(H

1/2
00 (Σ))′,H

1/2
00 (Σ)

= −
(
p̂d +

εp
4κ

ud · n,v · n
)
0,Σ
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for all quad v ∈ U0
d . Thanks to the H1 regularity of p̂d and the H

1
2 regularity of

the trace of ud ·n and using the Hahn-Banach theorem and density arguments, we

infer that

σ(ud, p
∗
d + cd)n · n = −

(
p̂d +

εp
4κ

ud · n
)

in L2(Σ). (3.18)

We can get rid of the Darcy pressure term by integrating this relation over Σ and

by using that p̂d ∈ L2
0(Ωd) and

∫
Σ
ud · n = 0, which yields

∫

Σ

σ(ud, p
∗
d)n · n− 2Lcd = −

∫

Σ

p̂d −
εp
4κ

∫

Σ

ud · n = 0,

so that the pressure constant is given by

cd =
1

2L

∫

Σ

σ(ud, p
∗
d)n · n. (3.19)

Note that it is not obvious to obtain an a priori estimate on cd with respect to the

data of the problem.

3.2. Asymptotic analysis

In this section, we use the a priori estimates of Theorem 3.1 to study the asymp-

totic behavior of system (2.8) with respect to κ or η. These results are stated in

Theorem 3.2 and summarized in Table 1 below.

3.2.1. Preliminary definitions

We first introduce the different boundary conditions on Σ that can be obtained as

a limit of problem (2.8). We look for the fluid velocity ud : Ωd → R2 and the fluid

pressure pd : Ωd → R solution of (2.8a)-(2.8d), that we recall here,




−divσ(ud, pd) = 0 in Ωd,

divud = 0 in Ωd,

ud = 0 on Γ,

ud = e2 on ∂S,

supplemented with either one of the following boundary conditions on the bottom

wall Σ:

• Navier boundary conditions:
{

ud · n = 0 on Σ,

σ(ud, pd)n · τ = 0 on Σ.
(3.20)

• Neumann boundary conditions:

σ(ud, pd)n = 0 on Σ. (3.21)
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• Robin boundary conditions:



σ(ud, pd)n · n = − εp

4κ
ud · n on Σ,

σ(ud, pd) · n · τ = 0 on Σ.
(3.22)

• Darcy boundary conditions without correction term




σ(ud, pd)n · n = −p̂d on Σ,

σ(ud, pd)n · τ = 0 on Σ,

−divτ
(
εpη∇τ p̂d

)
= ud · n on Σ,

∇τ p̂d · τ = 0 on ∂Σ.

(3.23)

In what follows, we shall denote the weak solutions of system (2.8a)-(2.8d) with

boundary conditions of type Navier (3.20), Neumann (3.21), Robin (3.22) or Darcy

without correction (3.23) by

(uNa
d , pNa

d ) ∈ U0
d × L2

0(Ωd),

(uNe
d , pNe

d ) ∈ U0
d × L2(Ωd),

(uR
d , p

R
d ) ∈ U0

d × L2(Ωd),

(uDwc
d , p̂Dwc

d , pDwc
d ) ∈ U0

d ×D × L2(Ωd),

respectively. The Navier, Neumann and Robin boundary conditions are classical

in different fluid-structure interaction settings. Existence and uniqueness of the

associated weak solutions can be established using standard arguments. For the

coupling with the Darcy without correction (3.23), the well-posedness of the solution

can be proved by using the same arguments as for system (2.8) in Section 3.1.

In what follows, we shall make use of the following functional spaces involving

Navier boundary conditions

UNa
d

def
=
{
u ∈ H1 (Ωd)

2
: u = e2 on ∂Sd, u = 0 on Γ, u · n = 0 on Σ

}
,

U0,Na
d

def
=
{
u ∈ H1 (Ωd)

2
: u = 0 on ∂Sd ∪ Γ, u · n = 0 on Σ

}

and the divergence-free subspace Vd
def
=
{
u ∈ H1(Ωd)

2 : divu = 0
}
.

3.2.2. Main result

The following result provides the asymptotic behavior of system (2.8) with respect

to the parameters of the Darcy layer.

Theorem 3.2 (Asymptotic analysis). Let d > 0 be given and let (ud, p̂d, pd) ∈
Ud ×D×L2(Ωd) be the solution of (2.8) which depends on the conductivity param-

eters κ and η. The following propositions hold true:

(i) When either κ or η goes to zero, (ud, pd − 1
|Ωd|

∫
Ωd
pd) weakly converges to-

wards (uNa
d , pNa

d ) in H1(Ωd)×L2(Ωg) solution of (2.8a)-(2.8d) with Navier

boundary conditions (3.20) on Σ;
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(ii) When both κ and η go to infinity, (ud, pd) weakly converges towards

(uNe
d , pNe

d ) in H1(Ωd)
2 × L2(Ωg) solution of (2.8a)-(2.8d) with Neumann

boundary conditions (3.21) on Σ;

(iii) When κ fixed and η → ∞, (ud, pd) weakly converges towards (uR
d , p

R
d ) in

H1(Ωd)
2×L2(Ωg) solution of (2.8a)-(2.8d) with Robin boundary conditions

(3.22) on Σ;

(iv) When κ → ∞ and η fixed, (ud, pd, p̂d) weakly converges towards

(uDwc
d , pDwc

d , p̂Dwc
d ) in H1(Ωd)

2×L2(Ωg)×H1(Σ) solution of (2.8a)-(2.8d)

coupled with Darcy without correction system (3.23) on Σ.

Remark 3.2. Theorem 3.2 mainly focuses on the asymptotic behavior of the pure

fluid part of (2.8). Some asymptotic results for p̂ in the limit cases mentioned above

are discussed in Remark 3.3. In particular, it is worth mentioning that, in the

different cases studied in Theorem 3.2 (except in case (iv)), the fluid unknowns (u, p)

and the porous pressure p̂ are not coupled anymore.

Proof. We first gather the cases which converge towards the Navier boundary

conditions (κ or η goes to 0) and then derive the other cases. This distinction is

motivated by estimates (3.3) and (3.5), in which some control on the solution is lost

when either κ or η goes to 0, so that the passage to the limit is more involved than

in the other cases.

In this proof, we assume the gap distance d is fixed and we drop the d subscript

in all variables. Instead, we introduce the notations uκ,η, pκ,η and p̂κ,η, that makes

the dependence on the conductivity parameters explicit. Thanks to a priori estimate

(3.3) on uκ,η, we know there exists a subsequence that converges weakly inH1(Ωd)
2.

By abuse of notation, we also denote by uκ,η the subsequence and ul its limit:

uκ,η
H1

−−−−−⇀
κ or η → 0

ul.

By continuity of the trace and of the divergence operators, we have ul ∈ Vd ∩ Ud.

We now consider the different cases.

Proof of (i). When κ or η goes to 0, to show that ul ·n = 0, we have to consider

two cases. When κ → 0, a priori estimate (3.3) gives straightforwardly ul · n = 0

in L2(Σ). When η → 0, taking the weak formulation (3.2) with v = 0 yields

(uκ,η · n, q̂)0,Σ =
√
εpη(

√
εpη∇τ p̂κ,η,∇τ q̂)0,Σ ∀q̂ ∈ D.

Owing to (3.3), we have
√
εpη∥p̂κ,η∥1,Σ ⩽ C, so that we can pass to limit in the

previous identity and obtain

(ul · n, q̂)0,Σ = 0 ∀q̂ ∈ D

and, by the density of H1(Σ) in L2(Σ), we have

(ul · n, q̂)0,Σ = 0 ∀q̂ ∈ L2
0(Σ),
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which implies that ul · n is constant on Σ. Moreover, since ul · n ∈ H
1
2
00(Σ), we

recover ul · n = 0 also in this case. We therefore have that ul ∈ Vd ∩ UNa
d either

when κ or η goes to zero.

Testing (3.2) with v ∈ U0,Na
d ∩ Vd and q̂ = 0, yields

(
2D(uκ,η),D(v)

)
= 0 ∀v ∈ U0,Na

d ∩ Vd,
so that, passing to the limit,

(
2D(ul),D(v)

)
= 0 ∀v ∈ U0,Na

d ∩ Vd.
By uniqueness of the weak solution associated to the Navier problem (2.8a)-(2.8d)

with boundary conditions (3.20), we obtain that ul = uNa. Furthermore, thanks to

the sequential characterization of the limit, we conclude that

uκ,η
H1

−−−−−⇀
κ or η → 0

uNa. (3.24)

For the pressure, we consider its the zero mean part

p∗κ,η
def
= pκ,η −

1

|Ωd|

∫

Ωd

pκ,η,

which, according to Proposition 3.1, is bounded independently of κ and η. We then

have a subsequence (uκ,η, p
∗
κ,η) in Ud × L2

0(Ωg) which weakly converges towards

(uNa, p∗l ). Testing (3.2) with v ∈ U0,Na
d and q̂ = 0, yields

2
(
D(uκ,η),D(v)

)
0,Ωd

− (p∗κ,η,div v)0,Ωd
= 0 ∀v ∈ U0,Na

d ,

which, passing to the limit, gives

2
(
D(uNa),D(v)

)
0,Ωd

− (p∗l ,div v)0,Ωd
= 0 ∀v ∈ U0,Na

d .

We hence have p∗l = pNa and

p∗κ,η
L2

−−−−−⇀
κ or η → 0

pNa. (3.25)

This concludes the proof of (i).

Proof of (ii) and (iii). When neither η nor κ vanish, we have control on uκ,η,

pκ,η and p̂κ,η thanks to the estimates (3.3) and (3.5). When η → ∞, from (3.3) we

get that

p̂κ,η
H1

−−−−→
η→∞

0.

So, passing to the limit in the weak formulation (3.2) with q̂ = 0, gives

(
2D(uκ,η),D(v)

)
0,Ωd

+
εp
4κ

(uκ,η · n,v · n)0,Σ − (pκ,η,div v)0,Ωd
= 0 ∀v ∈ U0

d .

For κ fixed, we recover Robin by uniqueness

uκ,η
H1

−−−−−⇀
κ fixed, η→∞

uR, pκ,η
L2

−−−−−⇀
κ fixed, η→∞

pR.
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Whenever κ→ ∞, the term
εp
4κ (uκ,η · n,v · n)0,Σ disappears as the bound on uκ,η

in H1(Ωd) implies that the trace uκ,η · n on Σ is bounded in L2(Σ), so that we

retrieve the Neumann boundary conditions at the limit and have

uκ,η
H1

−−−−−⇀
κ→∞, η→∞

uNe, pκ,η
L2

−−−−−⇀
κ→∞, η→∞

pNe.

Proof of (iv). For η fixed and κ→ ∞, we can pass to the limit in the weak for-

mulation (3.2) and note that only the correction term
εp
4κ (uκ,η ·n,v ·n)0,Σ vanishes.

One can easily prove that this limit problem admits a unique solution corresponding

to the Darcy without correction, using the same arguments than for the proof of

Theorem 3.1. This concludes the proof.

κ

η
0 cst. → ∞

0

Navier Navier Navier

ud
H1

−−−−−⇀ uNa
d ud

H1

−−−−−⇀ uNa
d ud

H1

−−−−−⇀ uNa
d

p∗d
L2

−−−−−⇀ pNa
d p∗d

L2

−−−−−⇀ pNa
d p∗d

L2

−−−−−⇀ pNa

p̂d
H1

−−−−→ 0 p̂d
H1

−−−−→ 0

cst.

Navier Robin

ud
H1

−−−−−⇀ uNa
d Darcy ud

H1

−−−−−⇀ uR
d

p∗d
L2

−−−−−⇀ pNa
d pd

L2

−−−−−⇀ pRd

p̂d − 1
Ωd

∫
Ωd
pd

(
H

1/2
00

)′

−−−−−⇀ −σNan · n p̂d
H1

−−−−→ 0

→ ∞

Navier Darcy no cor. Neumann

ud
H1

−−−−−⇀ uNa
d ud

H1

−−−−−⇀ uDwc
d ud

H1

−−−−−⇀ uNe
d

p∗d
L2

−−−−−⇀ pNa
d pd

L2

−−−−−⇀ pDwc
d pd

L2

−−−−−⇀ pNe
d

p̂d − 1
Ωd

∫
Ωd
pd

(
H

1/2
00

)′

−−−−−⇀ −σNa
d n · n p̂d

H1

−−−−−⇀ p̂Dwc
d p̂d

H1

−−−−→ 0

Table 1: Asymptotic behavior of the solution (ud, pd, p̂d) of system (2.8), with re-

spect to the normal and tangential conductivity parameters κ and η. We denote by

p∗d
def
= pd − 1

|Ωd|
∫
Ωd
pd the zero mean value of pd.

Remark 3.3. The following asymptotic behaviors for the Darcy pressure can also
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be proved:

p̂d
H1

−−−−→
η →∞

0, p̂d
H1

−−−−→
κ→0, η fixed

0, p̂d
H1

−−−−→√
κ

η →0

0,

p̂d −
1

|Ωd|

∫

Ωd

pd

(
H

1/2
00

)′

−−−−−−−−−⇀
κ fixed or →∞, η→0

−σ(uNa
d , pNa

d )n · n.

Indeed, from (3.3), we have |p̂d|21,Σ ⩽ C1

εpη
, so that p̂d strongly convergences to

0 in H1(Σ) when η → ∞. When κ → 0 and η is fixed, from estimate (3.4) we

straightforwardly deduce that

p̂d
H1

−−−−→
κ→0, η fixed

0.

When η → 0 and κ is fixed or goes to ∞, we loose the control on p̂d provided by

(3.3). Nevertheless, from (3.2) with q̂ = 0, we have

(p̂d,v · n)0,Σ = −2
(
D(ud),D(v)

)
0,Ωd

− εp
4κ

(ud · n,v · n)0,Ωd
+ (pd,div v)0,Ωd

for all v ∈ U0
d . By splitting the fluid pressure in terms of its zero mean part,

pd = p∗d + cd, we have

(p̂d − cd,v · n)0,Σ = −2
(
D(ud),D(v)

)
0,Ωd

− εp
4κ

(ud · n,v · n)0,Ωd
+ (p∗d,div v)0,Ωd

(3.26)

for all v ∈ U0
d . As κ does not vanish, we can pass to the limit in this expression

using the weak convergences (3.24) and (3.25), so that

lim
η→0

(p̂d − cd,v · n)0,Σ = −2
(
D(uNa

d ),D(v)
)
0,Ωd

+ (pNa
d ,div(v))0,Ωd

∀v ∈ U0
d .

By density arguments, we conclude that

p̂d − cd

(
H

1/2
00

)′

−−−−−−−−−⇀
η→0, κ fixed or → ∞

−σ(uNa
d , pNa

d )n · n.

Finally, when κ and η both go to 0, we cannot pass to the limit in (3.26), but we

can conclude in some particular cases. Indeed, from (3.4), we have

∥p̂d∥1,Σ ⩽ C

√
κ

η
.

When
√
κ converges faster than η towards 0, the Darcy pressure p̂d converges

strongly in H1 towards 0. If η and
√
κ converges at the same speed, p̂d is bounded

in H1 and therefore admits a subsequence weakly convergent in H1 towards an

indeterminate limit. Nothing can be said when η converges faster than
√
κ towards

0.

We conclude this section by summarizing all the obtained convergence results

in Table 1. It should be noted that, in principle, the sole cases which are physically

relevant are those where the conductivity parameters are small. It is interesting to
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note also that we always recover the solution of the Stokes equations with Navier

boundary conditions on the bottom wall when either κ or η goes to 0. This is

in agreement with the following physical intuition: reducing κ or η makes the fluid

seepage through the porous medium more difficult, as u·n converges weakly towards

zero. In terms of the contact dynamics of the disk moving towards the bottom wall,

this means that in the limit cases where either κ or η goes to 0, the drag force acting

on it is expected to behave like the one with the Navier boundary conditions on the

bottom wall. The next section is devoted to the estimation of this drag force.

3.3. Drag force

This section is devoted to the main result of the paper: modeling seepage with a

porous layer on the bottom wall, as in (2.6), enables contact even with Dirichlet

boundary conditions on the disk. The proof of this result is based on an estimate

(Theorem 3.3 below) of the asymptotic behavior of the drag force (2.9) acting on

the disk as it gets closer to the wall (i.e., d→ 0). To this purpose, we build on the

approach reported in 14, 9. For Navier or Dirichlet boundary conditions, similar

arguments have previously shown that the drag force becomes singular as d → 0

(see, e.g., 14, 22 in 2D and 16, 10 in 3D). In some cases, such as Dirichlet boundary

conditions on both the disk and the wall or the combination of Navier and Dirichlet,

the singularity in the drag force scales as d−
3
2 in 2D. This prevents the disk to reach

the wall in finite time, which is known as the no-collision paradox.

3.3.1. Main result - Collision result

The next result states that the drag force associated to the scaled fluid problem

(2.8) is bounded as d→ 0.

Theorem 3.3 (Drag force estimate). The drag force Fd given by (2.9) is non-

negative and bounded from above independently of d. More precisely, we have the

following estimate

|Fd| = Od→0

(
1 +

6∑

i=1

1

(εpη)i
+
εp
4κ

4∑

i=2

1

(εpη)i

)
. (3.27)

Before proceeding with the proof of Theorem 3.3, we can already combine esti-

mate (3.27) with the disk dynamics equation (2.10) to conclude that system (2.6)

enables contact between the disk and the bottom wall. This is the purpose of the

next corollary.

Corollary 3.1 (Collision result). Assume that equation (2.10), with initial con-

ditions ḋ(0) = ḋ0 < 0 and d(0) = d0 > 0, admits a solution d ∈ C2(0, tc),

where tc ∈ R+ ∪ {+∞} denotes the time at which the disk hits the bottom wall.

There exists a constant C > 0, depending only on κ and η, such that for ḋ0 < −Cd0
we have tc < +∞ with d(tc) = 0 and ḋ(tc) < 0.
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Proof. We first recall that the disk dynamics associated to the FSI system (2.6)

are given by the ordinary differential equation (2.10), namely,

d̈+ Fdḋ = 0,

as long as d remains positive. Owing to Theorem 3.3, there exists a con-

stant C(κ, η) > 0 such that, for all d > 0, the drag force satisfies

Fd ⩽ C(κ, η). (3.28)

The drag force is also positive Fd ⩾ 0. This is a direct consequence of the result,

shown in the next section (see (3.35) and (3.36)), that the drag force is the minimum

of an energy.

Assume that, at time t = 0, the disk is located at position x0 = d0e2 and has

the initial velocity ẋG = ḋ0e2 with ḋ0 < 0. In other words, it falls towards the

bottom wall. By continuity, the velocity ḋ is still negative for a short time interval

0 ⩽ t ⩽ t1, so that from (2.10) and (3.28) we get

d̈ = Fd (−ḋ)︸ ︷︷ ︸
⩾0

=⇒ d̈ ⩽ −C(κ, η)ḋ (3.29)

for all 0 ⩽ t ⩽ t1, and thus

ḋ(t) ⩽ ḋ0e
−Ct. (3.30)

This implies that, for all t > 0 such that d(t) > 0, the velocity ḋ(t) remains negative

and (3.30) holds true. Integrating over time gives for any t > 0 such that d(t) > 0,

we have

d(t) ⩽ d0 + ḋ0

∫ t

0

e−Csds =⇒ d(t) ⩽ d0 +
ḋ0
C

(
1− e−Ct

)
︸ ︷︷ ︸

def
= f(t)

.

The right-hand side function f is obviously decreasing and its limit when t→ ∞ is

given by

lim
t→∞

f(t) = d0 +
ḋ0
C
.

If ḋ0 < −Cd0, there exists a time tc > 0 such that f(tc) = 0, namely,

tc = −
ln
(
1 + C(κ, η)d0

ḋ0

)

C(κ, η)
. (3.31)

By continuity, we show that the disk touches the wall at a time t∗ ⩽ tc, with ḋ(t
∗) <

0. This completes the proof.

Remark 3.4. Note that in the current model nothing prevents the disk of pen-

etrating the bottom wall. Indeed, if the initial velocity |ḋ0| is large enough, the

distance d can vanish with a negative velocity. To avoid this, one often adds a non-

penetration constraint in the fluid-structure interaction model (2.6). Usually, this
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constraint is imposed by duality with a Lagrange multiplier λ that represents the

upward force acting on the disk at contact. The resulting problem writes
{
d̈+ Fdḋ = λ,

d ⩾ 0, λ ⩾ 0, λd = 0,

where the last three conditions represent the so-called non-penetration, compress-

ibility and complementary conditions.

The next sections are devoted to the proof of Theorem 3.3. The first idea consists

in expressing the drag force Fd as the minimum of the energy of the system. This

is the purpose of Section 3.3.2. Then, in Section 3.3.3, we construct an admissible

minimizer which catches the contact dynamics. Finally, in Section 3.3.4, we estimate

the energy associated to the minimizer which yields the bound (3.27). Since the

proof builds on 14, we put particular emphasis on the main difficulties arising in

the present model with the porous layer.

3.3.2. Energy minimization problem

Let Ad be the admissible function space for the fluid velocity defined by

Ad
def
= Ud ∩ Vd =

{
u ∈ H1

Γ (Ωd)
2
: divu = 0 in Ωd, u = e2 on ∂Sd

}
. (3.32)

In this section, we express the Darcy pressure p̂ in terms of the fluid velocity via

the following operator.

Definition 3.1 (Operator A). For any f ∈ L2
0(Σ) the problem

Find p̂ ∈ D such that εpη

∫

Σ

∇τ p̂ ·∇τ q̂ =

∫

Σ

f q̂, ∀q̂ ∈ D, (3.33)

is well-posed. Therefore, we denote by A : L2
0(Σ) → D the operator that associates,

to any f in L2
0(Σ), the unique solution p̂ of problem (3.33): A f = p̂.

In particular, for all v ∈ Ad, v · n|Σ ∈ L2
0(Σ) as v is divergence free. We have

that A(v · n) is the solution of the following strong form of problem (3.33) with

f = v · n:
{
−divτ (εpη∇τ p̂) = v · n on Σ,

∇τ p̂(−L) = 0, ∇τ p̂(L) = 0.

(3.34a)

(3.34b)

The following proposition is the cornerstone of our approach to prove Theo-

rem 3.3.

Proposition 3.2 (Energy minimization problem). We introduce the energy

functional Ed : Ad → R+ defined by

Ed(u) def
= 2

∫

Ωd

∥D(u)∥2 + εpη

∫

Σ

|∇τ A(u · n)|2 + εp
4κ

∫

Σ

|u · n|2 (3.35)
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for all u ∈ Ad. The drag force of (2.8) satisfies

Fd = min
u∈Ad

Ed(u). (3.36)

Moreover, the energy minimization problem (3.36) admits a unique solution in Ad

which is precisely ud, the solution of (3.2).

Proof. We first prove that

Fd = Ed(ud). (3.37)

Owing to the weak formulation (3.2), we have

div(σ(ud, pd)) = 0 in D′(Ωd),

which by a standard density argument and thanks to Hahn-Banach Theorem leads

to

div(σ(ud, pd)) = 0 in L2(Ωd).

Since div(σ(ud, pd)) ∈ L2(Ωd), the trace of σ(ud, pd)n can be defined by duality

as follows:

⟨σ(ud, pd)n, ξ⟩
H− 1

2 (∂Ωd),H
1
2 (∂Ωd)

= 2
(
D(ud),D(L ξ)

)
0,Ωd

− (pd,div(L ξ))0,Ωd

for all ξ ∈ H
1
2 (∂Ωd), where the symbol L denotes a standard lifting operator from

H
1
2 (Σ)2 to H1(Ωd)

2. Taking ξ = ud|Σ and L ξ = ud, and using that ud ∈ Ud ∩ Vd
yields

⟨σ(ud, pd)n,ud⟩
H− 1

2 (Σ∪Γ),H
1
2 (Σ∪Γ)

+ ⟨σ(ud, pd)n, e2⟩
H− 1

2 (∂Sd),H
1
2 (∂Sd)

= 2∥D(ud)∥20,Ωd
, (3.38)

where drag force appears in the term on ∂Sd. It is standard to check that

σ(ud, p)nn ∈ L2(∂Sd). Indeed, the C∞ regularity of the disk and the Dirichlet

boundary condition on ∂Sd guarantee H2 regularity for the fluid velocity ud and

H1 regularity for the pressure pd near the ball (see, e.g., 3), so that we have

Fd = ⟨σ(ud, pd)n, e2⟩
H− 1

2 (∂Sd),H
1
2 (∂Sd)

=

∫

∂Sd

σ(ud, pd)n · e2. (3.39)

As regards the first term (3.38), we use the relation (3.18) and the fact that ud|Γ = 0

to get

⟨σ(ud, pd)n,ud⟩
H− 1

2 (Σ∪Γ),H
1
2 (Σ∪Γ)

= ⟨σ(ud, pd)n,ud⟩
(H

1
2
00(Σ))′,H

1
2
00(Σ)

=− (p̂d,ud · n)0,Σ − εp
4κ

(ud · n,ud · n)0,Σ .

Since by construction p̂d = A(ud · n), taking q̂ = A(ud · n) in (3.33) yields

(p̂d,ud · n)0,Σ = (A(ud · n),ud · n)0,Σ = εpη

∫

Σ

|∇τA(ud · n)|2,
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so that

⟨σ(ud, pd)n,ud⟩
H− 1

2 (Γ∪Σ),H
1
2 (Γ∪Σ)

= −εpη
∫

Σ

|∇τA(ud · n)|2 −
εp
4κ

∫

Σ

|ud · n|2.
(3.40)

Finally, by inserting (3.39) and (3.40) into (3.38), we obtain

Fd =

∫

∂Sd

σ(ud, pd)n · e2

=

∫

Ωd

2∥D(ud)∥2 + ηεp

∫

Σ

|∇τ A(ud · n)|2 +
εp
4κ

∫

Σ

|ud · n|2

=Ed(ud),

which yields (3.37).

In order to show that ud is a minimizer of the functional Ed, we introduce the

tangent Hilbert space to Ad:

A0
d

def
=
{
u ∈ H1 (Ωd)

2
, divu = 0 in Ωd, u = 0 on ∂Sd ∪ Γ

}
. (3.41)

Straightforward computations give

Ed(ud + v) = Ed(ud) + 2
(
D(ud),D(v)

)
0,Ωd

+
εp
4κ

(ud · n,v · n)0,Σ
+ εpη

(∇τ A(ud · n),∇τ A(v · n)
)
0,Σ

+ (A(ud · n),v · n)0,Σ
− (ud · n,A(v · n))0,Σ + Ed(v).

for all v ∈ A0
d. Testing (3.2) with v ∈ A0

d ⊂ U0
d , q = 0 and q̂ = A(v · n) and since

p̂d = A(ud · n), we finally have

Ed(ud + v) = Ed(ud) + Ed(v) ∀v ∈ A0
d,

which, since Ed(v) ⩾ 0, yields (3.36).

Finally, to prove the uniqueness of the minimizer, we can use the equivalence

min
v∈Ad

Ed(v) ⇔ min
v∈A0

d

Jd(v), Jd(v)
def
= Ed(ud + v)

and evaluate the second differential of Jd to show that

D2Jd(w)(v,v) = a
(
(v, A(v · n)), (v, A(v · n))

)
> α|v|21,Ωd

,

for all non zero v ∈ A0
d and w ∈ A0

d, where the last inequality follows from the

coercivity of the bilinear form a given in (3.10). This guarantees the strict convexity

of Jd, which implies the uniqueness of the solution of the minimization problem

(3.36) and, hence, completes the proof.

In order to ease the computations, we rewrite the minimization problem, in an

equivalent form, in terms of stream functions. This is the purpose of the next result.
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Lemma 3.1 (Stream function). The admissible space Ad, defined in (3.32), is

also given by

Ad =
{
u ∈ H1 (Ωd) : ∃!φ ∈ H2(Ωd), ∂1φ|∂S = 1, ∂2φ|∂S = 0,

∂1φ|Γ = 0, ∂2φ|Γ = 0, φ(−L, 0) = 0 : u = −∂2φe1 + ∂1φe2

}
. (3.42)

Moreover, we have

Ed(u) = Ed
(
u(φ)

)
=

∫

Ωd

(
4|∂1∂2φ|2 + |∂21φ|2 + |∂22φ|2 − 2|∂22φ∂21φ|

)

+
1

εpη

∫

Σ

|φ|2 + εp
4κ

∫

Σ

|∂1φ|2
(3.43)

for all u ∈ Ad.

Proof. We start by proving (3.42). Given u ∈ Ad, u is a 2D divergence-free vector

field so there exist a streamfunction φ ∈ H2(Ωd), unique up to an additive constant,

such that u = −∂2φe1+∂1φe2 (see, e.g., Theorem 3.1 of 11). In (3.42), this constant

is fixed by imposing φ(−L, 0) = 0. The reasons of this choice will be made clear

later in the proof. One can easily check that

u|∂Sd
= e2, u|Γ = 0,

enforce

∂1φ|∂Sd
= 1, ∂2φ|∂Sd

= 0, ∂1φ|Γ = 0, ∂2φ|Γ = 0. (3.44)

Conversely, given φ ∈ H2(Ωd), if φ satisfies (3.44) then obviously u = −∂2φe1 +
∂1φe2 belongs to Ad.

In order to get (3.43), we simply replace u by its associated stream-function φ

in (3.35). Computations are straightforward for the bulk term D(u) and the last

boundary term. For the term involving ∇τ A(u · n) we proceed as follows. The

Darcy pressure p̂ = A(u · n) satisfies (3.34) which gives
{
divτ

(
εpη∇τ p̂(x)

)
= u(x, 0) · e2 = ∂1φ(x, 0) in (−L,L),

∇τ p̂(−L) = 0.
(3.45)

Integrating the first relation yields

εpη (∇τ p̂(x)−∇τ p̂(−L)) =
∫ x

−L

∂1φ(s, 0)ds = φ(x, 0)− φ(−L, 0) in (−L,L).

On the other hand, using (3.45)2, we have

εpη∇τ p̂ = φ− φ(−L, 0) in Σ. (3.46)

As a result, since φ(−L, 0) = 0, we get

εpη

∫

Σ

|∇τ A(u · n)|2 = εpη

∫

Σ

|φ|2
(εpη)2

=
1

εpη

∫

Σ

|φ|2,

which completes the proof.
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3.3.3. Focus on contact dynamics - Relaxed energy minimization problem

In the section, the energy functional is split into two contributions: one part leads

to a relaxed problem, that we can solve analytically, while the remaining terms will

be bounded in Section 3.3.4. In order to both catch the contact dynamics and to

be able to simplify the computations, two main choices are made to relax problem

(3.36).

First, we limit the analysis to the following region under the disk

Ωd,δ
def
=
{
(x, y) ∈ Ωd : |x| < δ, 0 < y < d+ γ(x)

}
, (3.47)

for all d > 0 and 0 < δ < 1, and where γ : x ∈ [−δ, δ] 7−→ 1 −
√
1− x2 is a

parametrization of a subset of the boundary of the disk (see Figure 2). We also

consider the notations

∂Sd,δ
def
= ∂Sd ∩ Ωd,δ =

{
(x, γ(x)), x ∈ (−δ, δ)

}
, Σδ

def
= Σ ∩ Ωd,δ = (−δ, δ).

Second, we introduce the relaxed energy functional Ẽd given by
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3.3.3. Focus on contact dynamics - Relaxed energy minimization problem

In the section, the energy functional is split into two contributions: one part leads

to a relaxed problem, that we can solve analytically, while the remaining terms will

be bounded in Section 3.3.4. In order to both catch the contact dynamics and to

be able to simplify the computations, two main choices are made to relax problem

(3.36).

First, we limit the analysis to the following region under the disk

⌦d,�
def
=
�
(x, y) 2 ⌦d : |x| < �, 0 < y < d + �(x)

 
, (3.47)

for all d > 0 and 0 < � < 1, and where � : x 2 [��, �] 7�! 1 �
p

1 � x2 is a

parametrization of a subset of the boundary of the disk (see Figure 2). We also

consider the notations

@Sd,�
def
= @Sd \ ⌦d,� =

�
(x, �(x)), x 2 (��, �)

 
, ⌃�

def
= ⌃ \ ⌦d,� = (��, �).

Second, we introduce the relaxed energy functional eEd given by

e2

e1(0, 0)
⇥

⇥
(xG, yG)

••
�-�

y = d + �(x)

•
d

⌦d,�

Figure 2: Contact zone ⌦d,�.

eEd(u)
def
=

Z

⌦d,�

|@2u1|2 + "p⌘

Z �

��

|r⌧ (A u2)|2 =

Z

⌦d,�

��@2
2'
��2 +

1

"p⌘

Z �

��

|'(x, 0)|2 .

(3.48)

Note that only the contribution @2u1 = @2
2' has been kept in the volumetric energy

term. This is motivated by physical intuition and previous studies (see, e.g, 14, 22,

9) that show that, in the case of Dirichlet or Navier boundary conditions, the term

@2u1 = @2
2' causes the no-collision paradox. Indeed, high velocity gradients arise

when the fluid has to escape tangentially in the narrow vertical space between the

disk and the bottom wall. The boundary term in u2 = @1' has been removed to

Figure 2: Contact zone Ωd,δ.

Ẽd(u) def
=

∫

Ωd,δ

|∂2u1|2 + εpη

∫ δ

−δ

|∇τ (Au2)|2 =

∫

Ωd,δ

∣∣∂22φ
∣∣2 + 1

εpη

∫ δ

−δ

|φ(x, 0)|2 .

(3.48)

Note that only the contribution ∂2u1 = ∂22φ has been kept in the volumetric energy

term. This is motivated by physical intuition and previous studies (see, e.g, 14, 22,

9) that show that, in the case of Dirichlet or Navier boundary conditions, the term

∂2u1 = ∂22φ causes the no-collision paradox. Indeed, high velocity gradients arise

when the fluid has to escape tangentially in the narrow vertical space between the

disk and the bottom wall. The boundary term in u2 = ∂1φ has been removed to

avoid having to deal with terms on the side boundaries ∂Ωd,δ \ (∂Sd,δ ∪ Σδ). It

should be noted that, all the left out terms will be estimated in Section 3.3.
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Similarly, we introduce the relaxed admissible function space Ãd as the restric-

tion of functions of Ad to the contact zone Ωd,δ, viz.,

Ãd
def
=
{
u|Ωd,δ

: u ∈ Ad

}
. (3.49)

In order to give a precise characterization of Ãd, we need the following two technical

lemmas.
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avoid having to deal with terms on the side boundaries @⌦d,� \ (@Sd,� [ ⌃�). It

should be noted that, all the left out terms will be estimated in Section 3.3.

Similarly, we introduce the relaxed admissible function space fAd as the restric-

tion of functions of Ad to the contact zone ⌦d,�, viz.,

fAd
def
=
n

u|⌦d,�
: u 2 Ad

o
. (3.49)

In order to give a precise characterization of fAd, we need the following two technical

lemmas.

Lemma 3.2 (Symmetry of the solution). Solution of (2.8) satisfies the follow-

ing symmetries:

u1(�x, y) = �u1(x, y),

u2(�x, y) = u2(x, y),

p(�x, y) = p(x, y),

bpd(�x) = bpd(x).

e2

e1(0, 0) ⌃

@S

u(x, y)u(�x, y)

Proof. The proof is straightforward thanks to the symmetries of the problem and

the uniqueness of the solution of (2.8).

The next lemma gives the characterization of fAd.

Lemma 3.3. Let eAd be the relaxed space given by (3.49). There holds

eAd =

⇢
u 2 H1 (⌦d,�) : 9!' 2 H2(⌦d,�), '|@Sd,�

= x, @2'|@Sd,�
= 0 :

u = �@2'e1 + @1'e2,

�
. (3.50)

Proof. Let u = �@2'e1 +@1'e2 2 Ad. The boundary conditions u|⌃ = e2 implies

@1'|@Sd,�
= 1, @2'|@Sd,�

= 0,

from which we deduce

d

dx
'(x, �(x)) = @1'(x, �(x)) + �0(x)@2'(x, �(x)) = 1 in (��, �),

@2'|@Sd,�
= 0,

so that

'|@Sd,�
= x + c, @2'|@Sd,�

= 0.

Figure 3: Symmetries of the problem.

Lemma 3.2 (Symmetry of the solution). Solution of (2.8) satisfies the follow-

ing symmetries:

u1(−x, y) = −u1(x, y),
u2(−x, y) = u2(x, y),

p(−x, y) = p(x, y),

p̂d(−x) = p̂d(x).

Proof. The proof is straightforward thanks to the symmetries of the problem (see

Figure 3) and the uniqueness of the solution of (2.8).

The next lemma gives the characterization of Ãd.

Lemma 3.3. Let Ãd be the relaxed space given by (3.49). There holds

Ãd =

{
u ∈ H1 (Ωd,δ) : ∃!φ ∈ H2(Ωd,δ), φ|∂Sd,δ

= x, ∂2φ|∂Sd,δ
= 0 :

u = −∂2φe1 + ∂1φe2,

}
. (3.50)

Proof. Let u = −∂2φe1+∂1φe2 ∈ Ad. The boundary conditions u|Σ = e2 implies

∂1φ|∂Sd,δ
= 1, ∂2φ|∂Sd,δ

= 0,
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from which we deduce

d

dx
φ(x, γ(x)) = ∂1φ(x, γ(x)) + γ′(x)∂2φ(x, γ(x)) = 1 in (−δ, δ),

∂2φ|∂Sd,δ
= 0,

so that

φ|∂Sd,δ
= x+ c, ∂2φ|∂Sd,δ

= 0.

As we already fixed the constant by imposing φ(0,−L) = 0 in (3.42), the constant

c cannot be arbitrarily chosen. We have c = φ(0, d). Owing to Lemma 3.2, by a

symmetry argument on u, we have u1(0, y) = 0 in (0, d), so that

0 =

∫ d

0

∂2φ(0, y)dy ⇒ φ(0, d) = φ(0, 0) = c.

As p̂ is also symmetric and thanks to (3.46), we have

0 = ∇τ p̂(0) =
1

εpη

(
φ(0, 0)− φ(0,−L)

)
=

1

εpη
φ(0, 0),

which gives c = 0. As a result, we finally recover the following boundary conditions

on ∂Sd,δ

φ|∂Sd,δ
= x, ∂2φ|∂Sd,δ

= 0.

For the boundary conditions on ∂Ωd,δ \ (Σδ ∪ ∂Sd,δ), we remark that for all δ < 1

the following restriction function on Ωd,δ

{
φ ∈ H2(Ωd), ∂1φ|Γ = ∂2φ|Γ = 0

}
−→ H2(Ωd,δ)

φ 7−→ φ|Ωd,δ

is surjective (see for example the extension φ̂ in Section 3.3.4) that is why the

boundary conditions on ∂Ωd,δ \ (Σδ ∪ ∂Sd,δ) do not appear in the relaxed space

definition (3.50). This completes the proof.

The relaxed minimization problem reads therefore as follows: Find ũ =

−∂2φ̃e1 + ∂1φ̃e2 ∈ Ãd such that

Ẽd(ũ) = min
ṽ∈Ãd

Ẽd(ṽ). (3.51)

We finally define the relaxed drag force as the energy minimum of this relaxed

energy, namely,

F̃d
def
= Ẽd(ũ). (3.52)

The next proposition solves explicitly the relaxed minimization problem (3.51).

Proposition 3.3 (Explicit expression of φ̃). The relazed minimization problem

(3.51) admits a unique solution ũ = −∂2φ̃e1 + ∂1φ̃e2 ∈ Ãd, given by

φ̃(x, y) = xϕ

(
x,

y

d+ γ(x)

)
, (3.53)
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with

αd(x)
def
=

(d+ γ(x))
3

εpη
, ϕ(x, t)

def
= − αd(x)t

3

6 + 2αd(x)
+

3αd(x)t

6 + 2αd(x)
+

6

6 + 2αd(x)
. (3.54)

Proof. As in the proof of Proposition 3.2, we can rewrite (3.51) as a minimization

problem in the tangent Hilbert space Ã0
d:

Ã0
d

def
=

{
u ∈ H1 (Ωd,δ) , u = −∂2φe1 + ∂1φe2,

∃!φ ∈ H2(Ωd), φ|∂Sd,δ
= 0, ∂2φ|∂Sd,δ

= 0

}
.

So, let u0 ∈ Ãd be given, instead of (3.51), we consider the auxiliary equivalent

problem

min
v∈Ã0

d

J̃d(v), J̃d(v)
def
= Ẽd(v + u0). (3.55)

For all u ∈ Ã0
d, we have

D2J̃d(u)(v,v) = 2

(∫

Ωd,δ

|∂2v1|2 + εpη

∫ δ

−δ

|∇τ (A v2)|2
)

⩾ 0 ∀v ∈ Ã0
d.

Let v ∈ Ã0
d and ψ its associated streamfunction. The relation D2J̃d(u)(v,v) = 0

implies that

{
∂22ψ = 0 in Ωd,δ,

ψ = 0 on Σδ.

Therefore, there exists a function g such that ψ(x, y) = g(x)y in Ωd,δ. Since ψ(x, d+

γ(x)) = 0, we conclude that ψ = 0, so that v = 0. As a result, D2J̃d(u)(v,v) > 0

for all v ∈ Ã0
d\{0}. This guarantees the strict convexity of J̃d, so that, if a minimum

exists for problem (3.55), it is unique.

The minimum ũ ∈ Ãd of (3.51) can be characterized by the Euler equations

associated to the auxiliary minimization problem (3.55), which writes J ′
d(ũ−u0)v =

0 for all v ∈ Ã0
d. After integration by parts, we obtain

∫

Ωd,δ

∂42 φ̃ · ψ +

∫ δ

−δ

(
∂32 φ̃+

1

εpη
φ̃

)
· ψ −

∫ δ

−δ

∂22 φ̃ · ∂2ψ = 0 ∀ψ ∈ B, (3.56)

where B simply denotes the stream-function space associated to Ã0
d, namely,

B =
{
φ ∈ H2 (Ωd,δ) , φ|∂Sd,δ

= 0, ∂2φ|∂Sd,δ
= 0
}
.
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From (3.50) and (3.56) we obtain, using standard density and trace arguments, the

following PDE system for φ̃




∂42 φ̃ = 0 in Ωd,δ,

∂32 φ̃+
1

εpη
φ̃ = 0 on Σδ,

∂22 φ̃ = 0 on Σδ,

∂2φ̃ = 0 on ∂Sd,δ,

φ̃ = x on ∂Sd,δ.

whose solution is given by (3.53), which characterizes the unique minimizer ũ of

(3.51). This completes the proof.

The next theorem shows that the relaxed drag force F̃d is bounded irrespectively

of d.

Theorem 3.4. The relaxed drag force (3.52) is given by

F̃d = 12

∫ δ

−δ

αd(x)
2 + 3αd(x)

(6 + 2αd(x))
2

x2

(d+ γ(x))
3 dx. (3.57)

In particular, we have that

F̃d = Od→0

(
δ3
(

1

(εpη)2
+

1

εpη

))
. (3.58)

Proof. By inserting αd(x) into (3.57), we have

F̃d =
12

εpη

∫ δ

−δ

fd(x)x
2dx, fd(x)

def
=

3 + αd(x)

(6 + 2αd(x))2
.

Since limd→0 fd(x) =
3+

γ(x)3

εpη(
6+2

γ(x)3

εpη

)2 , the dominated convergence theorem gives

lim
d→0

F̃d =
12

εpη

∫ δ

−δ

3 + γ(x)3

εpη(
6 + 2γ(x)3

εpη

)2 · x2dx ⩽ 1

36εpη

(
3 +

1

εpη

)
· δ

3

3
,

which yields (3.58) and completes the proof.

We conclude this section with a series of remarks.

Remark 3.5 (Darcy versus Navier or Dirichlet). A salient difference of the of

the porous surface model considered in this paper with respect to Navier or Dirichlet

boundary conditions lies in the fact that the fluid can escape vertically, i.e. u ·n can

be non-zero on Σ, so that ∂1φ can play an important role in the estimation of the

drag force. On the contrary, the work reported in 9 only focuses on the horizontal

velocity of the fluid. Note that we neglected the impact of κ in the relaxed energy
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(3.48) in order to facilitate the solution of (3.51) (Proposition 3.3). However, we will

retrieve the effect of κ in the bound of the full drag force Fd, provided in the next

section. It should be noted we do not have a natural lower bound on the drag force

because the cross derivatives ∂22φ∂
2
1φ cannot be simplified in the energy functional

(3.43), so hat we we do not have F̃d ⩽ Fd as in the Navier or Dirichlet case (see 9).

Remark 3.6 (Asymptotic of F̃d for εpη = O(dp), p ⩾ 3). If εpη = O(dp) with

p ⩾ 3, we obtain an asymptotic behavior for the relaxed drag force (3.4) similar to

the case with Dirichlet boundary conditions on both the disk and the wall:

F̃d ∼ d−
3
2 . (3.59)

Indeed, by using εpη = O(dp), p ⩾ 3, in (3.54) we infer that αd ⩾ 1. Since f : x 7→
x2+x

(6+2x)2 is continuous in [1,+∞) and limx→∞ f(x) = 1
4 , we have

c ⩽ f(α) =
α2 + 3α

(6 + 2α)2
⩽ C,

from which we deduce

c

∫ δ

−δ

x2

(d+ γ(x))3
dx ⩽ F̃d = Ẽd(φ̃) ⩽ 12C

∫ δ

−δ

x2

(d+ γ(x))3
dx.

We therefore recover Dirichlet asymptotic behavior as
∫ δ

−δ
x2

(d+γ(x))3 dx ∼ d−
3
2 . We

recall that the idea to retrieve this behavior consists in combining the expansion of

γ(x) = x2

2 + Ox→0(x
4) with the change of variables u = v√

d
to exhibit d−

3
2 out of

the integral (see 9 for the no-slip case).

Note that the obtained asymptotic (3.59) of the relaxed drag force is consistent

with the asymptotic analysis carried out at the Section 3.2. Indeed, as stated in

Theorem 3.2, when η tends to zero the solution of problem (2.8) converges weakly

towards solution of a problem with Navier boundary conditions on the wall and

Dirichlet boundary conditions on the disk. So, for εpη = O(dp), p ⩾ 3 we expect to

recover (3.59) as the asymptotic of the drag force associated to the Navier-Dirichlet

boundary conditions, which is known to behave like the Dirichlet-Dirichlet case (see,

e.g., 10). Yet, the proved asymptotic behavior (3.59) only concerns the relaxed drag

force F̃d. Nothing can be said of the asymptotic of the whole drag force due to the

lack of lower bound on Fd (see Remark 3.5).

Remark 3.7 (Asymptotic of F̃d for εpη = O(dp), 0 < p < 3). In this case, it

can be shown that

F̃d ∼
d→0

d−
p
2 .

by combining the Taylor expansion γ(x) = x2

2 + Ox→0(x
4) with the change of

variable t = x

d
p
6
.
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3.3.4. Proof of Theorem 3.3

The main idea to complete the proof consists in extending φ̃ to the whole domain

Ωd in order to obtain an admissible velocity ǔd ∈ Ad. To obtain a bound on Fd,

we have to estimate the whole energy Ed(ûd) and, in particular, all the terms left

out above in the introduction of the relaxed energy functional Ẽd. We consider the

same extension as in 14 and use similar notations for the auxiliary functions.

Proof. We consider the following extension of φ̃d (see 14):

φ̌d(x, y)
def
=

{
χ2δ

(
1 + |x|

)
φ̃d(x, y) +

[
1− χ2δ(1 + |x|)

]
φ̂d(x, y) (x, y) ∈ Ωd,2δ,

φ̂d(x, y) otherwise,

(3.60)

where the auxiliary functions χ2δ and φ̂d are given by

χδ(x)
def
=

{
1 if x ⩽ 1 + δ/2

0 if x ⩾ 1 + δ
φ̂d(x, y)

def
= xχδ (∥x− xd∥) , (3.61)

with xd
def
= (0, 1 + d) denoting the center of the disk. In between 1 + δ

2 and 1 + δ,

χδ has a smooth C2 decreasing transition. The different zones have been depicted

in Figure 4 for illustration purposes.
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Proof. We define an extension of e'd

'̌d(x, y) =

(
�2�(1 + |x|) · e'd(x, y) + (1 � �2�(1 + |x|)) · '̂d(x, y), 8(x, y) 2 ⌦d,2�,

'̂d(x, y), otherwise,

(3.61)

where the auxiliary functions �2� and '̂d are defined by

��(x) =

⇢
1 if x 6 1 + �/2

0 if x > 1 + �
and '̂d(x, y) = x · �� (kx � xdk) , (3.62)

with xd = (0, 1 + d) being the center of the disk. I In between 1 + �
2 and 1 + �, ��

has a smooth C2 decreasing transition. The di↵erent definition zones can be seen

on Figure 3. We emphasize on the fact that '̌d is compact: far away from the disk

and the contact zone ⌦d,� the fluid velocity is set to 0.

e2

e1(0, 0)
⇥

⇥
xd = (0, 1 + d)

• •
� 2�

�

•

Under the ball ⌦d,�

'̌d = '̃d

Transitional zone ⌦d,2��⌦d,�

'̌d = �2�(1 + |x|)'̃d + (1 � �2�(1 + |x|)) '̂d

�

'̌d = '̂d = 0

Outside zone ⌦d�⌦d,2�

'̌d = '̂d =

(
x if kx � xdk 6 1 + �

2

x · ��(kx � xdk) otherwise

•
d

Figure 3: Definition of the extension '̌d.

We denote ǔd = �@2'̌de1 + @2'̌de2. We first check ǔd is admissible. We skip the

tedious computations, letting them to the attention of the reader. According to

Figure 4: Definition of the extension φ̌d.



October 4, 2023 23:59 WSPC/INSTRUCTION FILE paper˙m3as

32 Champion, Fernández, Grandmont, Vergnet, Vidrascu

We denote ǔd = −∂2φ̌de1 + ∂2φ̌de2. We first check ǔd is admissible. We skip the

tedious computations, letting them to the the reader. According to Proposition 3.2,

we have the following bound on Fd

Fd ⩽ Ed(ǔd). (3.62)

Thus in order to derive (3.27), we estimate the following energy,

Ed(ǔd(φ̌d)) =

∫

Ωd

2D(ǔd(φ̌d)) : D(ǔd(φ̌d)) +
1

εpη

∫

Σ

|φ̌d|2 +
εp
4κ

∫

Σ

|∂1φ̌d|2

=Ẽd(φ̃d) +

∫

Ωd,δ

[
2D(ũd(φ̃d)) : D(ũd(φ̃d))−

∣∣∂22 φ̃d

∣∣2
]

+
εp
4κ

∫

Σ∩Ωd,δ

|∂1φ̃d|2 +
∫

Ωd,2δ⧹Ωd,δ

2D(ǔd(φ̌d)) : D(ǔd(φ̌d))

+
1

εpη

∫

Σ∩Ωd,2δ⧹Ωd,δ

|φ̌d|2 +
εp
4κ

∫

Σ∩Ωd,2δ⧹Ωd,δ

|∂1φ̌d|2

+

∫

Ωd⧹Ωd,2δ

2D(ûd(φ̂d)) : D(ûd(φ̂d)).

We notice that the first term corresponds to the relaxed drag force, already esti-

mated in Theorem (3.4). We proceed by bounding all the remaining terms.

Under the disk. We consider the following energy

Ed(φ̃d)
def
=

∫

Ωd,δ

(
2D(φ̃d) : D(φ̃d)− |∂22 φ̃2

d|
)
+
εp
4κ

∫ δ

−δ

|∂1φ̃d|2

=

∫

Ωd,δ

(∣∣∂21 φ̃d

∣∣2 + 4 |∂1∂2φ̃d|2 − 2∂21 φ̃d∂
2
2 φ̃d

)
+
εp
4κ

∫ δ

−δ

|∂1φ̃d|2 .

We then estimate each term separately. For the first term, we have

∂21 φ̃d(x, y) = − 1

εpη
f ′′(x)y3 +

3

εpη
g′′(x)y + f ′′(x),

with αd defined in (3.54) and the auxiliary functions

f(x)
def
=

x

6 + 2αd(x)
, g(x)

def
=
x (d+ γ(x))

2

6 + 2αd(x)
.

Since d < L̃, the derivatives of αd can be bounded for all x ∈ [−δ, δ] as

|αd(x)| ⩽
(L̃+ 1)3

εpη
, |α′

d(x)| ⩽
3(L̃+ 1)2

εpη
γ′(δ), |α′′

d(x)| ⩽
C(L̃)

εpη
(γ′′(δ) + γ′(δ)) .

We can show that if δ < 1 there exist strictly positive constants C1 and C2 depending

only on L̃ and δ such that

|f ′′(x)| ⩽ C1(L̃, δ)

(
1

εpη
+

1

(εpη)
2

)
, |g′′(x)| ⩽ C2(L̃, δ)

(
1 +

1

εpη
+

1

(εpη)
2

)
.
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We finally obtain the estimate of the first term

∫

Ωd,δ

∣∣∂21 φ̃(x, y)
∣∣2 ⩽ C3(L̃, δ)

(εpη)
2

(
1 +

1

εpη
+

1

(εpη)
2 +

1

(εpη)
3 +

1

(εpη)
4

)
.

Similarly, we can obtain the following estimates for the other terms

∫

Ωd,δ

|∂1∂2φ̃ (x, y)|2 ⩽ δC4(L̃, δ)

(εpη)
2

(
1 +

1

εpη
+

1

(εpη)
2

)
,

∫

Ωd,δ

|∂1∂2φ̃ (x, y)|2 ⩽ δC5(L̃, δ)

(εpη)
2

(
1 +

1

εpη
+

1

(εpη)
2

)
,

εp
4κ

∫

Σ∩Ωd,δ

|∂1φ̃ (x, 0)|2 ⩽ εp
4κ

δC6(L̃, δ)

(εpη)
2

(
1 +

1

εpη
+

1

(εpη)
2

)
.

Finally, we obtain the following estimate

|Ed (φ̃)| ⩽
C7(L̃, δ)

(εpη)
2

(
1 +

1

εpη
+

1

(εpη)
2 +

1

(εpη)
3 +

1

(εpη)
4

)

+
εp
4κ

C8(L̃, δ)

(εpη)
2

(
1 +

1

εpη
+

1

(εpη)
2

)
. (3.63)

It is worth noting that if κ or η vanishes we loose the upper bound.

Away from the disk Ωd \ Ωd,2δ. Outside of Ωd,2δ, φ̌d = φ̂d and φ̂d depends on

the gap distance d only through a translation (see proof of Lemma 8 of 14). Thus,

energy in Ω⧹Ωd,2δ of ǔd = ∇⊥φ̌d does not depend on d and is therefore bounded.

So, there exists a constant C9(δ) > 0 such that
∫

Ωd⧹Ωd,2δ

2D(ǔd) : D(ǔd) ⩽ C9(δ). (3.64)

for d < L̃.

Transitional zone Ωd,2δ \ Ωd,δ. Since |χδ| ⩽ 1, using Young’s inequality, we have

φ̌d = χδφ̃d+(1−χδ)φ̂d ⇒ |φ̌d| ⩽ |φ̃d|+|φ̂d| ⇒ |φ̌d|2 ⩽ C10

(
|φ̃d|2 + |φ̂d|2

)
.

So, the estimate of the transitional term can simply be obtained by combing the

bounds (3.63) and (3.64).

Finally, (3.27) then follows by combining the previous bounds with (3.58), which

concludes the proof of Theorem 3.3.

4. Numerical results

In this section we provide numerical evidence of the theoretical results obtained

in the previous sections by performing a series of numerical experiments. To this

purpose, we consider finite element approximations of the solution to the static

system (2.8), for different values of d (viz., the distance between the disk and the
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bottom wall), and of κ and η (the normal and tangential conductivity parameters,

respectively). We recover numerically the theoretical upper bound of the drag force

of Theorem 3.3, and the weak convergence results stated in Theorem 3.2 when either

κ or η vanishes. Then, we numerically investigate the ability of the porous layer to

enable collision as stated Corollary 3.1. Finally, we provide numerical insight on

the validity of the fluid-reduced Darcy model (2.8) by comparing it against the full

model.

4.1. Experiment setup

In what follows, we consider a disk of radius r = 1 centered at position (40, d+ r),

immersed in a rectangular box of width L = 80 and of height L̃ = 40, whose

bottom-left corner lies at position (0, 0). We numerically solve the system (2.8) for

different values of the gap d between the disk and the bottom wall, decreasing from

1 to 10−3. We do the same with system (2.8a)-(2.8d) supplemented with Navier

boundary conditions (3.20). The values for d are chosen to be equidistant in log

scale

d ∈ {0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.126, 0.252, 0.502, 1} . (4.1)

This experiment setup is very similar to the one considered in 15. Therein the

authors retrieve the d−
3
2 asymptotic behavior of the drag force for the problem

with Dirichlet boundary conditions (on both the disk and the bottom wall).

For a more intuitive visualization and without loss of generality, we choose the

disk to move down with unit velocity, instead of going up as originally in system

(2.8). One can straightforwardly check that this only changes the sign of the com-

puted drag force, so it does not affect the expected theoretical results.

For a given gap distance d, let T f
d denote a triangulation of the fluid domain Ωd

and let T p
d the 1D triangulation of the porous mid-surface Σ, given simply as the

edges of T f
d lying on Σ. For the Navier problem, we consider the standard space

of continuous piecewise polynomial functions of degree two for the fluid velocity,

namely,

UNa
d,h

def
=

{
vh ∈ C0(Ωd)

2 : vh|K ∈ P2(K)2 ∀K ∈ T f
d , vh = e2 on ∂Sd,

vh = 0 onΓ, vh · n = 0onΣ

}
,

and of continuous piecewise linear functions for the fluid pressure

Qd,h
def
=
{
qh ∈ C0(Ωd) : qh|K ∈ P1(K) ∀K ∈ T f

d

}
.
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We also introduce the homogeneous counterpart of UNa
d,h

U0,Na
d,h

def
=

{
vh ∈ C0(Ωd)

2 : vh|K ∈ P2(K)2 ∀K ∈ T f
d ,

vh = 0 on Γ ∪ ∂Sd, vh · n = 0 on Σ

}
.

For any d > 0, the corresponding finite element approximation of (2.8a)-(2.8d) with

the Navier boundary conditions writes

Find (uh, ph) ∈ UNa
d,h ×Qh such that

2 (D(uh),D(vh))Ωd
+ (divuh, qh)Ωd

− (ph,div vh)Ωd
+ εs (ph, qh)Ωd

= 0

∀(vh, qh) ∈ U0,Na
d,h ×Qd,h.

(4.2)

Here, the small perturbation εs (ph, qh)Ωd
, with εs = 10−10, serves to guarantee

that the pressure has zero mean.

To formulate the finite element approximation of (3.2), we consider a slightly

different trial space for the fluid velocity, without any constraint on Σ,

Ud,h
def
=

{
vh ∈ C0(Ωd)

2 : vh|K ∈ P2(K)2 ∀K ∈ T f
d , vh = e2 on ∂Sd,

vh = 0 on Γ

}
,

with its homogeneous counterpart

U0
d,h

def
=
{
vh ∈ C0(Ωd)

2 : vh|K ∈ P2(K)2 ∀K ∈ T f
d , vh = 0 on Γ ∪ ∂Sd

}
.

The finite element approximation of (3.2) finally writes

Find (uh, p̂h, ph) ∈ Ud,h ×Dd,h ×Qd,h such that

2 (D(ud,h),D(vd,h))Ωd
+
εp
4κ

(ud,h · n,vh · n)Σ
+ (divud,h, qh)Ωd

− (pd,h,div vh)Ωd
+ εpη (∇τ p̂d,h,∇τ q̂h)Σ

+ (p̂h,vh · n)Σ − (uh · n, q̂h)Σ + ε−1
s

∫

Σ

p̂h

∫

Σ

q̂h = 0,

∀(vh, q̂h, qh) ∈ U0
d,h ×Dd,h ×Qd,h.

(4.3)

The last term enforces the mean value of the Darcy pressure p̂h to be 0, with again

εs = 10−10.

For each value of the gap (4.1), a mesh of Ωd has been generated. The mesh size

between the disk and the bottom wall depends on the gap d: we have at least ten

triangles between the disk and the bottom wall in order to properly catch the fluid

dynamics in the contact zone. The mesh size below the disk is defined by

hmin = min

{
d

10
, 0.01

}
.
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The meshes are not structured uniform?, to avoid unnecessary refinement outside

of the contact zone. Away from the disk, the mesh size is hmax = 0.1. In order to

ensure a smooth transition between the small mesh elements below the disk and

the bigger mesh elements away from the gap, we first build the meshes using the

FreeFem++ (see 13) integrated mesh generator then we optimize them with the

Mmg remeshing software (see 5). The resulting meshes have between 104 and 105

nodes.

Figure 5: Mesh for the smaller gap distance d = 10−3. Zooms on the disk and on

the contact zone.

4.2. Results

First, we numerically validate the porous layer model. We then investigate that

we can numerically recover the main theoretical results of the paper, that is, the

asymptotic analysis in κ and η of Theorem 3.2 and the estimate of the drag force

stated in Theorem 3.3. Finally, we use the numerical simulations to bring insight on

the way the porous layer model influences the fluid and solid dynamics, by reporting

the fluid velocity and pressure fields and also by simulating the disk fall towards

the wall.

Validation of the porous layer model. The porous layer model is derived in

4 by averaging the original Darcy system across the thickness of the bottom wall

under suitable assumptions. In order to investigate the validity of the surface Darcy

model, we simulate the fall of the disk on a 2D porous layer of the same thickness

εp = 0.01. Figures 6 and 7 report the velocity and pressure field obtained in both

cases and indicate that the behavior of 2D Darcy is very similar to the Darcy surface

model considered in this paper. In Figures 6b and 7b, the porous layer thickness

has been amplified by a factor 25 to better visualize the Darcy pressure.

Drag force asymptotics. In Figure 8, we report the drag force Fd for d ∈ [10−3, 1]

arising from system (2.8) where the fluid is coupled to the porous layer model.
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(a) Darcy 1D (b) Darcy 2D

Figure 6: Comparison of velocity field with the porous layer model versus Darcy

2D.

(a) Darcy 1D (b) Darcy 2D

Figure 7: Comparison of pressure field with the porous layer model versus Darcy

2D.

For the sake of simplicity, we call it the Darcy drag force. We also plot the drag

force asymptotic arising from system (2.8a)-(2.8d) with Navier boundary conditions

(3.20), that we similarly call Navier drag force asymptotic.

We test various set of values for the conductivity parameters κ and η, notably

to investigate the behavior when the conductivity parameters gets smaller. Thus,

we can compare with the asymptotic results of Theorem 3.2 and the estimate of the

Darcy drag force (3.27) stated in Theorem 3.3.

Away from the disk at d = 1, the wall does not have any influence on the disk,

so there is practically no difference between Navier and Darcy drag force. When

the disk gets closer of the wall, the Darcy drag force asymptotic reaches a plateau

which is consistent with the result of Theorem 3.3, whereas for Navier the drag

force explodes. The very good recovery of the theoretical slope of −0.5 for Navier

drag force is clearly visible.

As expected from the estimate on the drag force (3.27), the plateau value of

the Darcy asymptotic increases when κ and η goes to 0. We can also note that

the conductivity parameters κ and η play a role in the switch from the Navier
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Figure 8: Drag force asymptotic when d→ 0 and (κ, η) → 0.

asymptotic to a plateau, smaller conductivity values leading to a switch to a plateau

closer to the wall. The combination of both effects make that the Darcy drag force

asymptotic converges towards the Navier one, when η and/or κ goes to 0, which is

consistent with the asymptotic analysis results of Theorem 3.2. It is worth noting
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that the convergence is faster when the tangential conductivity η vanishes than

when the normal one κ vanishes.

It is interesting to see that the porous layer simply removes the singularity of

the drag force arising in the case of Navier boundary conditions. The introduction

of a porous modeling of the asperities solves the no-collision paradox by enabling

contact, but it also changes the contact dynamics with respect to Navier.

Navier versus Darcy velocity and pressure fields. In order to better un-

derstand the fundamental difference between the Navier and Darcy drag force

asymptotics, Figures 9 and 10 show the velocity and pressure fields, respectively

obtained with the Navier and Darcy models, when the disk is very close to the wall

(d = 0.032).

Figure 9: Velocity and pressure fields for a gap distance d = 0.032 obtained with

Navier boundary conditions on the below wall.

Figure 10: Velocity and pressure fields for a gap distance d = 0.032 and a porous

layer model with conductivity parameters κ = 1 and η = 1 on the below wall.

In the case of the coupling with a porous layer, Figure 10, we can clearly see that

the fluid velocity on the wall right below the disk is vertical and of magnitude 1,

which yields a plateau of fluid entering into the porous layer below the disk. In this

new regime where the disk is in the close vicinity of the wall, all the fluid escapes

vertically through the porous layer without any tangential leak. Thus, reducing the

gap does not affect the flow of the fluid. On the contrary, with Navier boundary

conditions on the wall, Figure 9 indicates that size of the escaping jet can only

increase whenever d gets smaller, as only tangential escape is allowed.
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Porous layer dynamics when η → 0 or κ → 0. We now focus on the influence

of κ and η on the porous layer dynamics. For that purpose, we fix the disk at a tiny

distance d = 4.10−3 from the wall and we look at the evolution of the incoming fluid

flow uh ·n on Σ and of the Darcy pressure p̂h when κ or η vanishes, see Figures 11

and 12. We zoom around the contact point at x = 40.

36 37 38 39 40 41 42 43
x

−1.0

−0.5

0.0

0.5

u
·n

κ = 1, η = 1

κ = 10−2, η = 1
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κ = 10−8, η = 1

κ = 10−10, η = 1

36 37 38 39 40 41 42 43
x

0

20

40

60

80

p̂
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κ = 10−8, η = 1

κ = 10−10, η = 1

Figure 11: Zoom below the disk of ud · n and p̂d when κ→ 0.

For κ = η = 1, a plateau that stagnates at −1 is observed, which corresponds

to the velocity of the disk. When the disk is in the close vicinity of the wall, all

the fluid leaks into the porous medium without any tangential escape, as we have

already seen in Figure 10. Reducing the conductivity hinders the fluid escape: the

plateau first narrows then it shrinks to 0. We recover in both cases κ→ 0 and η → 0

the convergence of uh ·n to 0, which is consistent with weak convergence results of

Darcy solutions towards Navier when either κ or η tend to 0, see Theorem 3.2.

It is interesting to highlight the differences between the two cases. Let us look

at the behavior of the Darcy pressure. When η → 0, it becomes more and more

singular below the disk, converging towards the Navier normal stresses accordingly

to the proved weak convergence of Theorem 3.2, with a huge peak of the Darcy

pressure up to 8.103 at η = 10−6, see Figure 12. This singularity makes it difficult

to run the simulation for smaller values of η because of numerical instabilities. It
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Figure 12: Zoom below the disk of ud · n and p̂d − 1
|Ωd|

∫
Ωd
pd when η → 0.

also explains why the Darcy drag force converges much faster towards the Navier

one for η → 0 than κ → 0, as we can see on Figure 8. On the contrary, reducing κ

makes p̂h flatter, consistently with the H1 strong convergence of p̂h towards 0 when

κ→ 0 proved in Theorem 3.2.

The difference between the two asymptotics κ→ 0 and η → 0 is also noticeable

if we look at the way the fluid escapes in Figures 11 and 12: the two flat bosses on

both side of the disk when the normal conductivity η goes to 0 contrast with the

two narrow peaks of outing fluid appearing when the tangential conductivity η goes

to 0.

Disk trajectories with Darcy layer on the wall versus with Navier bound-

ary conditions. The numerical approximations obtained for the drag force, can

be combined with the ODE (2.2) to simulate the evolution of the gap distance d(t).

We recall that the disk dynamics are given by the relation

d̈(t) + ḋ(t)Fd(t) = 0, (4.4)

where the drag force depends on the roughness model considered for the bottom

wall (here, Navier boundary conditions or the porous layer model).

In order to approximate d, we first consider a linear interpolation of log(Fd)

that we then insert in an explicit time-stepping of (4.4). In the following, we fix
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ḋ0 =-1
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Figure 13: Evolution of the gap distance for a ball starting at distance d0 = 1 with

reduced Darcy on the wall and for various initial condition.
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Figure 14: Comparison of the evolution of the gap distance between Navier and

Darcy porous layer for a ball starting at distance d0 = 1.

the conductivity parameters κ and η to be equal to 1. In Figure 8, we see that the

bound of the Darcy drag force is around C = 100. We first consider d0 = 1 and then

start a downward motion with |ḋ0| going from 1 to 100, see Figure 13. As expected
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from Corollary 3.1, we have collision for |ḋ0| ⩽ Cd0.

We now compare the effect of Darcy and Navier on the ball dynamics in Fig-

ure 14, which provides the trajectories obtained in both cases for different initial

velocities. For ḋ0 = −30, we see that the disk reaches the wall in the case of the

Darcy layer, whereas with Navier boundary conditions the wall stops the disk at a

distance d = 0.1.

5. Conclusion

In this paper, we have analyzed the contact capabilities of a fluid-structure in-

teraction model with seepage reported in 4. The key feature of this model lies in

taking into account the surface roughness of the contacting wall in terms of a re-

duced Darcy model. The analysis shows that this modeling approach removes the

no-collision paradox. The contact dynamics are also modified with respect to more

standard boundary conditions, such as Navier, since contact is allowed with a non-

zero velocity. A non penetration condition must hence be added in order to prevent

the solid to go through the contacting wall.

Extensions of this work can explore several directions. From the mathematical

analysis point of view, one interesting question would be the study of the complete

fluid-structure-contact interaction model, with appropriate non penetration condi-

tions. Another interesting question would be the formulation of the model in the

case of multiple solids getting into contact.
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Appliquées 103 (2015) 1–38.

11. V. Girault and P.-A. Raviart, Finite element approximation of the Navier-Stokes equa-
tions, volume 749 (Springer Berlin, 1979).

12. D. Gérard-Varet and M. Hillairet, Existence of weak solutions up to collision for
viscous fluid-solid systems with slip, Comm. Pure Appl. Math. 67 (2014) 2022–2075.

13. F. Hecht, New development in freefem++, J. Numer. Math. 20 (2012) 251–265.
14. M. Hillairet, Lack of collision between solid bodies in a 2d incompressible viscous flow,

Communications in Partial Differential Equations 32 (2007) 1345–1371.
15. M. Hillairet, A. Lozinski and M. Szopos, On discretization in time in simulations of

particulate flows, 2010.
16. M. Hillairet and T. Takahashi, Collision in 3d fluid structure interactions problems,

SIAM Journal on Mathematical Analysis .
17. M. Hillairet and T. Takahashi, Blow up and grazing collision in viscous fluid solid

interaction systems, Annales de l’Institut Henri Poincaré C, Analyse non linéaire 27
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