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INTRODUCTION

Difference Scaling Difference scaling methods allow us to measure the relative perceptual differences of multiple stimuli in human observers. Such methods have been used as early as in the 1960s to measure the relative differences of perceived color, contrast or loudness (see [START_REF] Laurence | Maximum likelihood difference scaling[END_REF] and references therein). This is only at the beginning of our century that a fitting method, called Maximum Likelihood Difference Scaling (MLDS), was developed [START_REF] Laurence | Maximum likelihood difference scaling[END_REF][START_REF] Knoblauch | Mlds: Maximum likelihood difference scaling in r[END_REF] to infer the function that maps the physical to the perceptual space. This function is called perceptual scale. The critical assumption behind the fitting methods dates back to Thurstone's law of comparative judgment (see case V Thurstone (1927)): the difference between two values along a psychological dimension is corrupted by noise that has a constant variance. The perceptual scale informs us about how a stimulus is perceived when modified along a continuous physical scale (e.g. color, contrast, . . . ). When the slope of the perceptual scale is steep, perception changes rapidly with small physical changes i.e. the observer is highly sensitive to physical variations. When the slope is shallow, perception is stable even for large physical variations i.e. the observer is weakly sensitive to physical variations. Recently, the MLDS method has been used to measure the perceptual scales of surface texture [START_REF] Emrith | Measuring perceived differences in surface texture due to changes in higher order statistics[END_REF], watercolor effect [START_REF] Devinck | A common signal detection model accounts for both perception and discrimination of the watercolor effect[END_REF], slant-from-texture [START_REF] Aguilar | Comparing sensitivity estimates from mlds and forced-choice methods in a slant-from-texture experiment[END_REF], lightness [START_REF] Aguilar | Toward reliable measurements of perceptual scales in multiple contexts[END_REF] or probabilities [START_REF] Zhang | The bounded rationality of probability distortion[END_REF]. However, perceptual scales of more fundamental physical variables such as orientation and spatial frequency have not been measured nor related to existing probabilistic theory of perception. Additionally, while relations between standard Two-alternative Forced Choice (2AFC) measurements and perceptual scales have been studied [START_REF] Aguilar | Comparing sensitivity estimates from mlds and forced-choice methods in a slant-from-texture experiment[END_REF], it was a theory of perception that was previously described [START_REF] Wei | Lawful relation between perceptual bias and discriminability[END_REF] that has been used to derive predictions.

Probabilistic modeling of perception Thurstone's law of comparative judgment is a first brick in the history of probabilistic modeling of perception [START_REF] Louis L Thurstone | A law of comparative judgment[END_REF]. Indeed, it introduced the incipient concept of random variable [START_REF] Pl Chebyshev | On mean values[END_REF][START_REF] Kolmogoroff | Grundbegriffe der wahrscheinlichkeitsrechnung[END_REF] in psychophysics. Then, the development of computer science and information theory had major impact in perception studies, bringing concepts such as redundancy reduction and information maximization [START_REF] Attneave | Some informational aspects of visual perception[END_REF][START_REF] Barlow | Possible principles underlying the transformation of sensory messages[END_REF]. More specifically, when applied to texture perception, these concepts led to Julesz' hypothesis that perception of textures is statistical [START_REF] Victor | Textures as probes of visual processing[END_REF] i.e. textures with similar statistics are indistinguishable. Later on, together with advances in image processing, Julesz' hypothesis led to modern texture synthesis algorithms [START_REF] Portilla | A parametric texture model based on joint statistics of complex wavelet coefficients[END_REF][START_REF] Gatys | Texture synthesis using convolutional neural networks[END_REF]. In parallel, a core theorem of probabilities, namely Bayes rule, was found to efficiently predicts human perceptual behaviors [START_REF] David | Perception as Bayesian inference[END_REF]. Further works have been dedicated to solve the inverse problem of identifying observers' prior that best explain their perception [START_REF] Stocker | Noise characteristics and prior expectations in human visual speed perception[END_REF][START_REF] Ahna R Girshick | Cardinal rules: visual orientation perception reflects knowledge of environmental statistics[END_REF][START_REF] Vacher | Bayesian modeling of motion perception using dynamical stochastic textures[END_REF][START_REF] Tyler S Manning | A general framework for inferring bayesian ideal observer models from psychophysical data[END_REF]. Inspired by neural population coding models, an optimal observer theory is now described in details by [START_REF] Wei | Lawful relation between perceptual bias and discriminability[END_REF]. The main consequence of this theory is the existence of a simple relation between perceptual bias and sensitivity. Yet, the theory is limited to a hypothesized scalar perceptual variable while it is established that only part of the neurons of the primary visual cortex is tuned to scalar variables such as spatial and temporal frequencies or orientation [START_REF] Bruno | How close are we to understanding v1?[END_REF]. In higher visual areas, it is more and more difficult to identify scalar variables that uniquely drive single neurons as they respond to increasingly complex patterns [START_REF] Bashivan | Neural population control via deep image synthesis[END_REF]. In some previous work, Wainwright [START_REF] Martin | Visual adaptation as optimal information transmission[END_REF] have used higher dimensional natural image statistics (auto-correlation and power spectrum) to explain various psychophysical observations. Though, it is unclear how this approach relates to the univariate Bayesian framework.

Fisher information in neural populations

The theory behind the work of [START_REF] Wei | Lawful relation between perceptual bias and discriminability[END_REF] is largely inspired by previous work on neural population coding [START_REF] Brunel | Mutual information, fisher information, and population coding[END_REF]. In this and subsequent works [START_REF] Yarrow | Fisher and shannon information in finite neural populations[END_REF][START_REF] Kanitscheider | Origin of information-limiting noise correlations[END_REF][START_REF] Bethge | Optimal short-term population coding: When fisher information fails[END_REF][START_REF] Wei | Mutual information, fisher information, and efficient coding[END_REF], it is often ultimately assumed that neurons are Poisson firing neurons parameterized by the tuning curve of a scalar variable. As stated previously, it is a quite restrictive framework as all neurons are not tuned to a scalar variable [START_REF] Bruno | How close are we to understanding v1?[END_REF]. By applying this framework to perception, Wei and Stocker remove these unnecessary assumptions. They derive the relation between perceptual bias and sensitivity which at its core comes from the relation between Fisher information and prior under the optimal coding assumption [START_REF] Brunel | Mutual information, fisher information, and population coding[END_REF])

P S (s) ∝ I(s).
(1)

Fisher information is used to quantify the variance of a stimulus estimator from a neural population encoding (Cramer-Rao lower bound). In contrast, priors are introduced in observer models to explain perceptual biases. Therefore, Equation (1) links neural population models and perceptual models. However, less attention is dedicated to the underlying encoding model, where a stimulus variable S is non-linearly related to an internal measurement M through a function ψ plus an additive Gaussian noise N with constant variance, M = ψ(S) + N.

(2) Interestingly, such an encoding model is very similar to the assumptions behind the observer model underlying the MLDS method. However, the precise nature of these internal measurements has so far remained abstract.

Perceptual distance A perceptual distance is a score of image quality used to quantify and to compare the performances of image restoration or generation methods. Perceptual distances have been introduced to overcome the limitation of the Signal-to-Noise Ratio (also known as SNR). Indeed, images with similar SNR could vary subjectively in quality when presented to human observers [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF]. The Structural SIMilarity index (SSIM) is a score that is popular to provide a better account of perceptual similarity as compared to SNR. Since then, variations of SSIM have been proposed to more specific purposes such as estimating photo retouching [START_REF] Kee | A perceptual metric for photo retouching[END_REF]. However, these scores require to compare the image to be rated to a reference image. In recent years, the success of deep generative modeling have led to the emergence of new scores such as the Inception score [START_REF] Salimans | Improved techniques for training gans[END_REF] or the Fréchet Inception Distance (FID) [START_REF] Heusel | Gans trained by a two time-scale update rule converge to a local nash equilibrium[END_REF]. These scores have in common that they compare the generated image distribution to the true empirical image distribution instead of a generated image to a reference image. In addition, they are based on Deep Neural Network (DNN) features. Overall, it has been shown that such DNN features-based scores are better aligned with human perception than SSIM or SNR for example [START_REF] Zhang | The unreasonable effectiveness of deep features as a perceptual metric[END_REF]. One possible explanation is that DNN are able to capture high-order image statistics and that as hypothesized in vision, our perception is deeply related to image statistics (see [START_REF] Hepburn | On the relation between statistical learning and perceptual distances[END_REF] and references in previous paragraphs). Yet, these coined perceptual distances are not exempt of limitations as they could be subject to bias when classes specific features are present or not [START_REF] Kynkäänniemi | The role of imagenet classes in fréchet inception distance[END_REF]. Overcoming these biases will likely require to move away from training by measuring higher-order statistics on the image directly without relying on some learned or random filters [START_REF] Amir | Understanding and simplifying perceptual distances[END_REF]. One other limitation of perceptual distances is that they do not provide any information about how well a model has captured the perceptual geometry of images. Providing a full account of perceptual geometry is more demanding, it requires to compare the path when moving from one image to another and not only their distance along this path.

Contributions Our work brings several contributions to overcome the limitations introduced above. First, we explain that a convergence theorem of discrete spot noises is a way to resolve the tension between univariate Bayesian theories of perception [START_REF] Wei | Lawful relation between perceptual bias and discriminability[END_REF] and the high dimensionality of images [START_REF] Martin | Visual adaptation as optimal information transmission[END_REF]. Second, we show that the function ψ, introduced in Equation 2, can be interpreted as the perceptual scale as measured by a difference scaling experiment. Then, we demonstrate again that this function ψ can be predicted from the Fisher information of the stimulus when using the true distribution of the noisy internal stimulus representation knowing the presented stimulus i.e. the distribution of the measurements M that we give explicitly. Third, we propose to go further in exploring perceptual distances by estimating how well the geometry of natural images captured by models matches the perceptual geometry. For this purpose, we empirically test the prediction given by the Fisher information of Gaussian vectors and processes in a series of experiments (code and data, texture interpolation code1 ) involving stochastic stimuli characterized by their power spectrum or their higher-order statistics captured by VGG-19 [START_REF] Gatys | Texture synthesis using convolutional neural networks[END_REF]. In particular, we collapse the high dimensionality of these statistics by interpolating between single textures [START_REF] Vacher | Texture interpolation for probing visual perception[END_REF] and we measure the corresponding perceptual scale when going from one texture to another. Finally, we propose a score to quantify the mismatch between the predicted and the measured perceptual scales.

Notations Unless stated differently, upper case letters (e.g. X) are random variables and lower case letters (e.g. x) are samples or realizations of those random variables. The probability density at X = x is denoted P X (x). Similarly, the conditional probability density at X = x knowing Y = y is donoted P X|Y (x, y). The set S = [s init , s final ] is the stimulus segment.

METHODS

STOCHASTIC VISUAL STIMULATION

We recall some theoretical results about the artificial textures we use in the current work. Firstly, we use textures that are stationary Gaussian Random Fields (GRFs) fully characterized by their scalar mean and their auto-correlation function (or equivalently their power spectrum i.e. the autocorrelation Fourier transform). Interestingly, such GRFs can be seen as the limit of high intensity discrete spot noises. This result allows one to relate the densities of local image features such as orientation and scales to the power spectrum of the image (seen as a GRF). In summary, it provides a link between scalar densities and the high-dimensional Gaussian distribution of the image. We will see in later sections that this result leads both approach to similar predictions for perceptual scales. Secondly, we use naturalistic textures that are obtained by imposing high-order and high-dimensional statistics obtained using VGG-19. However, the result mentioned above and detailed below does not hold for naturalistic textures. It is unknown at this stage if similar results could be obtained with some feature under some (non-linear) transformation.

Asymptotic Discrete Spot Noise Let ξ 0 = (1, 0). Let g σ be a Gabor function defined for all σ > 0 and for all x ∈ R 2 by

g σ (x) = 1 2π cos(x • ξ 0 )e -σ 2 2 ||x|| 2 .
In addition, let φ z,θ be a scaled rotation defined for all (z, θ

) ∈ R + × [0, π] by φ z,θ (x) = zR -θ (x)
where R θ is the rotation of angle θ. Now, let F λ,σ be a discrete spot noise of intensity λ > 0 defined as the following random field for all x ∈ R 2

F λ,σ (x) = 1 √ λ k∈N g σ (φ Z k ,Θ k (x -X k ))
where

(X k , Z k , Θ k ) k∈N are iid random variables. Specifically (X k ) k∈N is a 2-D Poisson process of intensity λ > 0 and (Z k , Θ k ) k∈N have densities (P Z , P Θ ).
Proposition 1 (Convergence and Power Spectrum). In the limit of infinite intensity (λ -→ +∞) and pure wave (σ -→ 0), F λ,σ converges towards a Gaussian field F with the following power spectrum for all ξ ∈ R 2 ,

γ(ξ) = 1 ||ξ|| 2 P Z (||ξ||)P Θ (∠ξ) where ξ = (||ξ|| cos(∠ξ), ||ξ|| sin(∠ξ)).
Proof. This is a special case of Proposition 2 in [START_REF] Vacher | Bayesian modeling of motion perception using dynamical stochastic textures[END_REF]. The general result is Theorem 3.1 in [START_REF] Galerne | Stochastic image models and texture synthesis[END_REF].

In practice, the distribution P Z and P Θ are parametrized by (Z 0 , Σ Z ) and (Θ 0 , Σ Θ ) respectively.

By providing a relation between local feature statistics (orientation and scale) and the image power spectrum, Proposition 1 will allow us to justify the common assumption made when modeling psychophysical data that is the feature of interest, and is directly used by the observer instead of the image [START_REF] David | Perception as Bayesian inference[END_REF][START_REF] Stocker | Noise characteristics and prior expectations in human visual speed perception[END_REF][START_REF] Ahna R Girshick | Cardinal rules: visual orientation perception reflects knowledge of environmental statistics[END_REF]. See Section 2.3.

Interpolation of Naturalistic Textures

Even though for experimental purposes the GRFs described above can be parameterized by just a few scalar variables [START_REF] Vacher | Bayesian modeling of motion perception using dynamical stochastic textures[END_REF], naturalistic textures depend on the statistics of high-dimensional features extracted at different layers of VGG-19 [START_REF] Gatys | Texture synthesis using convolutional neural networks[END_REF][START_REF] Vacher | Texture interpolation for probing visual perception[END_REF]. Previous algorithms widely used in vision studies [START_REF] Portilla | A parametric texture model based on joint statistics of complex wavelet coefficients[END_REF][START_REF] Vacher | The Portilla-Simoncelli Texture Model: towards Understanding the Early Visual Cortex[END_REF] were using fewer parameters, but the number was still too large to derive clear and interpretable results [START_REF] Okazawa | Image statistics underlying natural texture selectivity of neurons in macaque v4[END_REF]. One way to efficiently collapse the dimension parameterizing those textures is to use interpolation [START_REF] Vacher | Texture interpolation for probing visual perception[END_REF]. As a consequence the texture features of an interpolation of textures extracted at layers k are interpreted as realizations of a random variable A k (s) with mean µ W (s) and covariance Σ W (s) (see Appendix C). Assuming Gaussiannity, it will become possible to derive predictions for the perceptual scale measured along the interpolation path.

THURSTONE SCALE, FISHER INFORMATION AND MLDS

First, we define more precisely the encoding model given in Equation 2 as follows

M = R + N where R = ψ(S) with ψ : S → S.
(3)

We use the above description to highlight the fact that M , R and N are random variables that are internal to the observer while S is external to them, it is an environment variable, an external stimulus.

In practice, the noise N is often assumed to be Gaussian with variance σ 2 . It corrupts the internal representation of the stimulus R to give what we call the internal measurement M . Then, we define Fisher information for two abstracts unidimensional random variables.

Definition 1 (One-dimensional Fisher information). Let X and Y be two random variables defined respectively on two abstract spaces X and Y and let P X|Y be the conditional density of X knowing Y . The Fisher information carried by X about Y is a function I : Y -→ R defined for all y ∈ Y by

I Y (y) = E X|Y ∂ log(P X|Y ) ∂y (X, y) 2 . ( 4 
)
In statistics, Fisher information is used as a upper bound of the precision of an estimation (see Cramér-Rao bound). This is also how we interpret it for an observer, namely the maximal precision of their estimation of a stimulus S.

The precise definition given above is helpful to realize that the Fisher information carried by M about S (I S ) is different from the one carried by M about R (I R ). We can go one step further though, and establish the following relation between those two

I S (s) = ψ ′ (s) 2 I R (ψ(s)). (5) 
A reformulation of Thurstone law of comparative judgment [START_REF] Louis L Thurstone | A law of comparative judgment[END_REF] is to assume that the Fisher information of an observer's internal representation I R is constant. It is not so obvious to understand why this assumption is relevant. The idea is that an observer has only access to her internal states, she never observes any realization of an external stimulus S. Every external variable is transformed to an internal one through the psychological function ψ. Therefore, without any knowledge about the external world, a fair assumption is to allocate equal resources to every possible internal state in order to be equally precise in our estimates of different states (without knowing to what they correspond to in the external world). This assumption is also equivalent to assuming that internal observer's noise (a common notion used in psychophysics) is constant. If the internal Fisher information is constant we can now express the psychological function simply in terms of external Fisher information. This is summarized in the following proposition. Proposition 2. Assume Equation (3), the internal Fisher information I R is constant if and only if for all s ∈ S the psychological function ψ verifies

ψ(s) ∝ s sinit I S (t)dt. (6) 
Proof. See Appendix D.

Relation to the MLDS observer model. In the MLDS framework, an observer has to judge which pair of stimuli is more similar to another. Assuming three stimuli (s i , s j , s k ), those are transformed through the psychological scale ψ and the observer responds by comparing the difference of differences between the pairs d i,j,k = |ψ(s i )-ψ(s j )|-|ψ(s j )-ψ(s k )|. This difference is assumed to be corrupted by an internal noise N mlds of constant variance σ 2 mlds i.e. ∆ i,j,k = d i,j,k + N mlds . Those assumptions are sufficient to recover an estimate of ψ [START_REF] Knoblauch | Mlds: Maximum likelihood difference scaling in r[END_REF]. In addition, it is often assumed that there is no specific internal ordering of the variables so that the difference d i,j,k can be written without absolute value. In that case, assuming the encoding model ( 3) is enough to recover the MLDS observer model, e have the following relation between the noise variances σ 2 mlds = 4σ 2 .

FISHER INFORMATION CARRIED BY THE IMAGE vs BY THE LOCAL FEATURES

In the previous section, we have introduce an observer model based on an abstract random internal measurement M . It is often unclear what those measurements are. Ideally inspired by neurophysiology, the measurements are responses of neurons to the image often modeled by Linear/Non-linear operations, even though those modeling stages are often dropped in perceptual studies. In the case of GRFs parameterized by spatial frequency (or scale) and orientation distributions, it is often accepted to assume that the measurements are samples of an appropriate distribution e.g. a Log-Normal distribution for the spatial frequency or a Von-Mises distribution for the orientation. Using the notation of the previous section, these cases correspond to measurement M = Z with stimulus S = Z 0 and measurement M = Θ with stimuli S = Θ 0 . We will see that in both cases this is equivalent to consider that measurements are the image itself M = F with S = Z 0 or S = Θ 0 . This is because Fisher information is given in closed-form and that perceptual scale can be predicted using Proposition 2. Similar results hold for S = B Z and S = Σ θ (note that (Z 0 , B Z ) and (Θ 0 , Σ Θ ) are parameters of P Z and P Θ introduced in Section 2.1). The predictions are given in Figure 1.

Fisher Information of Log-Normal and Von-Mises Distributions We give the precise parametrization and the corresponding Fisher information of the Log-Normal and Von-Mises distributions in Appendix A.

Fisher Information of Parametric GRFs Now, we consider a GRF texture F with mean µ ∈ R and autocorrelation function γ (or equivalently power spectrum γ) parameterized by s ∈ S.

Mathematically, the texture can be expressed for all x ∈ R 2 and s ∈ S, as

F (x, s) = µ + R 2 k(x -y, s)dW (y)
where k(•, s) = F -1 ( γ(•, s)) and W is a classical Wiener process.

Proposition 3. The Fisher Information carried by F about S is

I(s) = 1 2 R 2 1 |γ(ξ, s)| 2 ∂γ(ξ, s) ∂s 2 dξ = 1 2 R 2 ∂ log(γ(ξ, s)) ∂s 2 dξ.
Proof. This is a specific case of Whittle formula (Whittle, 1953, Theorem 9).

We combine Proposition 3 with Proposition 1 using the Log-normal and the Von-Mises distributions to express the power spectrum γ parameterized by S = Z 0 , S = B Z , S = Θ 0 or S = Σ θ . Therefore, the Fisher information carried by measurements M = F comes down to the Fisher information carried by measurements M = Z (spatial frequency) or M = Θ (orientation) as described above up to a multiplicative constant of 1 /2. As a consequence both approaches lead to similar predictions about the perceptual scales measured for these parameters.

Fisher Information of Parametric Gaussian Vectors In the case of interpolation between naturalistic textures, we do not have a direct generative model of the texture conditionally on the interpolation parameter s. Instead, the texture is generated using a gradient descent to impose the statistics of VGG-19 features at multiples layers for which we have a generative model. Therefore, at layer k and for s ∈ S the activation

A k (s) of texture F k (s) is A k (s) = µ k (s) + Σ k (s)N with µ k ∈ C 1 S, R d k and Σ k ∈ C 1 S, R d k × d k
where N ∼ N (0, I d k ) is a standard normal random vector and d k is the feature dimension of layer k. Proposition 4. The Fisher Information carried by A k about S is As stated earlier in the manuscript, no link can be made with interpretable feature distributions as it is the case for GRFs. Though, precise expressions for µ k and Σ k are available in close forms in the Gaussian case as assumed here (see Appendix C). In practice, the feature activations are not Gaussian [START_REF] Vacher | Texture interpolation for probing visual perception[END_REF].

I(s) = µ ′ k (s)Σ k (s) -1 µ ′ k (s) + 1 2 Tr Σ k (s) -1 Σ ′ k (s)Σ k (s) -1 Σ ′ k (s) . Proof. See Appendix B.

PREDICTIONS AND EXPERIMENTAL METHODS

The calculated Fisher informations together with Proposition 2 allows us to predict the perceptual scales corresponding to the parameters described in the previous section. These predictions hold under the assumed generative models for measurements.

Predictions In the case of GRFs textures, we recall that assuming that spatial frequency or orientation are directly measured or that the image as a whole is measured makes no differences in the prediction (see bottom-right of Figure 1). In the case of naturalistic textures, the measurements are assumed to be the feature activations of the texture in VGG-19 at layer 2 to 5 (see bottom-right of Figure 2). For the naturalistic, we alternatively propose that measurements are the single pixel gray levels, the image itself (i.e. the power spectrum as for GRFs) or the wavelet activations.

Experimental Methods

The experiment consists of trials where participants have to make a similarity judgment. Participants are presented with 3 stimuli with parameters s 1 < s 2 < s 3 and are required to choose which of the two pairs with parameters (s 1 , s 2 ) and (s 2 , s 3 ) is the most similar. We used four sets of textures (see Figure 1 and 2): (i) the first set consists of parameterized artificial textures where we measured the perceptual scales of spatial frequency, spatial frequency bandwidth and orientation bandwidth (see Appendix E for details); (ii) the other three sets consist of interpolations between arbitrary textures. A set of textures for which the perceptual scale corresponds to an early sensitivity (i.e. steep-to-shallow slope, see top-left of Figure 2). Another one for which the perceptual scale corresponds to late sensitivity (i.e. shallow-to-steep slope, see topright of Figure 2). And a last set for which the predictions are inconsistent from one layer of VGG-19 to another (bottom-right of Figure 2). All stimuli had an average luminance of 128 (range [0, 255]) and an RMS contrast of 39.7. For each texture pair, we use 13 equally spaced (δ s = 0.083) interpolation weights. To ensure that stimulus comparisons are around the discrimination threshold we only use triplets such that |s 1,3 -s 2 | ≤ 3δ s . For each texture pair, a group of 5 naive participants performed the experiment. Participants were recruited through the platform prolific (https://www.prolific.com), performed the experiments online, and were paid 9£/hr. Monitor gamma was measured using a psychometric estimation and corrected to 1. The MLDS model is described at the end of Section 2.2. The protocol was approved by the CER U-Paris (IRB 00012020-54). The perception of spatial frequencies is well-known in vision studies, its perceptual scale is expected to be logarithmic. Such a scale is also predicted by Fisher information as integrating the square-root (Proposition 2) of a squared inverse (Proposition 5) leads to a logarithm. The measured perceptual scale of the spatial frequency mode matches correctly this prediction (left of Figure 3). The spatial frequency and orientation bandwidths are less studied, the predictions are qualitatively the same as for the spatial frequency mode (Proposition 2 and Proposition 6). The Fisher information of the orientation bandwidth is more complex but leads to a similar curve. The measured perceptual scale is more variable for the orientation bandwidth (larger error bars) but is still in line with the prediction (predicted offset from linear behavior is exaggerated, see right of Figure 3). In contrast, the measured perceptual scales of spatial frequency bandwidth is approximately linear for low values while its gets supra-linear at intermediate values and even saturate for the highest values (center of Figure 3). p a i r 0 1 p a i r 0 2 p a i r 0 3 p a i r 0 4 p a i r 0 5 p a i r 0 6 p a i r 0 7 p a i r 0 8 p a i r 0 9 p a i r 1 0 p a i r 1 1 p a i r 1 2 

RESULTS

ORIENTATION AND SPATIAL FREQUENCY

INTERPOLATION BETWEEN NATURALISTIC TEXTURES

We present the perceptual scales measured for the different groups of natural textures in Figure 4 and 5. On these figures, the prediction given by the auto-correlation (i.e. when considering the textures as GRFs) is shown. Predictions assuming alternative measurements (pixel,wavelet, are quantitatively compared in Figure 6 using the following Area Matching Score : AMS = 1 0 sign(fm(x)-x)(fth(x)-x) /|fm(x)-x|dx where f m and f th are respectively the measured and predicted scales. Intuition about score values is given in Figure 6a.

Early and Late Sensitivity For the set of early sensitivity texture pairs, measured perceptual scales are inline with the predictions (Figure 4) in the sense that a linear (pair01, pair04-05) or a supra-linear (pair02-03) perceptual scale is measured in all texture pairs. The same hold for the set of late sensitivity texture pairs (Figure 4), but this time in the sense that a linear (pair06 and pair08) or a sub-linear (pair07 and pair09-10) perceptual scale is measured in all texture pairs. Such a result is also valid for the predictions based on alternative measurement assumptions as shown in Figure 6 by the fact that all scores are positive for pair01-10.

Conflicting predictions

For the set of textures with conflicting predictions (Figure 5), for both texture pairs, we observe that the GRF measurement assumption predicts a late sensitivity while the measured perceptual scale corresponds to an early sensitivity with a late saturation. Other measurement assumptions are not providing better prediction as their score is either close to 0 or negative. However, there is one exception for pair11 under the wavelet measurement assumption which has a ideal score, close to 1 (up to score limitation, see Section 4).

Measurement Assumption Scores As previously stated, all assumptions predict correctly whether the scale corresponds to late or early sensitivity (positive scores) except for the conflicting prediction texture pairs. Note that pair05 has also a score close to 0 under all assumptions (though this might be due to score limitation, see Section 4). On average, the GRF assumption is the best with an average score (±99.7% CI) close to 1 (0.92 ± 0.69). The single pixel distribution assumption only predicts a linear behavior and has therefore a score close to 0. In contrast, the wavelet and VGG-19 assumptions often overestimate the early or late sensitivity (average scores above 1).

DISCUSSION AND CONCLUSION

In the case of GRFs, we have shown that the univariate assumption behind the Bayesian theories of perception and the absence of this assumption (i.e. the observer is using all the information in the image) lead to the same prediction for the perceptual scales of spatial frequencies, orientations and their bandwidths. Such a result is due to the fact that these local feature distributions directly appear in the power spectrum (the Fourier transform of the auto-correlation) of GRFs (Proposition 1) and to our second result that is the perceptual scale is related to the Fisher information of the feature distribution (Proposition 2). In the case of naturalistic textures, it is unknown if such a result relating a (non-linear) transform and some feature distribution holds. Therefore, it is necessary to make new hypotheses about the measurements in order to predict the perceptual scale of an observer. We tested this issue in a series of difference scaling experiments involving GRF and naturalistic textures. Our main result is that the perceptual scale is mainly driven by the auto-correlation (or the power spectrum). However, it does not perfectly explain the measured perceptual scales, and in particular, the perceptual scale of pair11 appears to be driven by the wavelet representation. In addition, exploring those assumptions would require to be able to interpolate between textures while maintaining some measurements constant (e.g. interpolating between deep feature representations while maintaining a constant power spectrum). Another highly interesting future directions is to compare the perceptual scale to a neurometric scale, an equivalent scale but deduced from neurophysiological recordings as the equivalent exists for the psychometric function [START_REF] William T Newsome | Neuronal correlates of a perceptual decision[END_REF][START_REF] Berens | Reassessing optimal neural population codes with neurometric functions[END_REF]. Other limitations lie in the MLDS method. Usually, running a difference scaling experiment requires to know ahead of time an approximation of the observer's sensitivity to the parameter that one would like to test. Here, we have not estimated the sensitivity of each participant and, therefore, have not adapted the stimuli accordingly. Instead, we have only tested the experiment ourselves and judged that it was feasible. Yet, it seems that we were near the participants sensitivity because the raw data do not show responses with very high or very low probabilities. All these questions demonstrate the ambition of our approach and the work that remains to be done to understand, beyond perceptual distance, perceptual metrics.

REPRODUCIBILITY STATEMENT

The reproducibility of our work will be ensured by the links provided to the data and code. Theoretical results are supported by proofs or references to proof.

A FISHER INFORMATION OF LOG-NORMAL AND VON-MISES RANDOM VARIABLES

A random variable Z follows a log-normal distribution (Z ∼ LN (z 0 , b Z )) if it has the following density defined for all z > 0 by z ln(2) Proposition 6. Let Θ ∼ VM(θ 0 , σ Θ ). The Fisher Informations carried by Θ about respectively Θ 0 and Σ Θ are

I(θ 0 ) = 1 σ 2 Θ B 1 ( 1 /4σ 2 Θ ) B 0 ( 1 /4σ 2 Θ )
and

I(σ Θ ) = 1 4σ 6 Θ 1 - B 1 ( 1 /4σ 2 Θ ) B 0 ( 1 /4σ 2 Θ ) 4σ 2 Θ + B 1 ( 1 /4σ 2 Θ ) B 0 ( 1 /4σ 2 Θ )

B FISHER INFORMATION OF PARAMETRIC GAUSSIAN VECTOR

Proof of Proposition 4. We start by reminding the following calculus results [START_REF] Brandt Petersen | The matrix cookbook[END_REF]:

(i) ∇ log (|A|) = A -1 T , (ii) dA -1 = -A -1 dAA -1 .

The log of P X|S is log(P X|S (x|s)) = -1 2 log(2π) -1 2 log(|Σ(s)|) -1 2 (x -µ(s)) T Σ(s) -1 (x -µ(s)).

Then, ∂ log(P X|S ) ∂s (x, s) = -1 2 Tr(Σ(s) -1 Σ ′ (s)) -1 2 (x -µ(s)) T Σ(s) -1 ′ (x -µ(s))

+ (x -µ(s)) T Σ(s) -1 µ ′ (s). Therefore, by squaring this last equation and taking its expectation with respect to M we obtain Equation ( 5). Then, taking the square root and integrating lead to the result.

E EXPERIMENTAL DETAILS

For the GRF textures we used the following parameters (see distributions in Appendix A):

• Spatial freq. mode (z 0 ) : [0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25, 3.5],

• Spatial freq. bandwidth (b Z ) : [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25],

• Orientation bandwidth (σ Θ ) : [1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5].

The code to generate these stimuli is available code and data2 .

For the naturalistic interpolation of textures we use the natural textures available at the address given above and using the following texture interpolation code3 . The interpolation parameters used are given in the main text (see [START_REF] Vacher | Texture interpolation for probing visual perception[END_REF] or Proposition 7 for the interpolation weight definition).
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 12 Figure 1: Texture samples and predicted perceptual scales for the spatial frequency mode (z 0 ), the spatial frequency bandwidth (b z ) and the orientation bandwidth (σ θ ).

Figure 3 :

 3 Figure 3: Measured and predicted perceptual scales for the spatial frequency mode (left), the spatial frequency bandwidth (middle) and the orientation bandwidth (right).

Figure 4 :

 4 Figure 4: Measured and predicted (auto-cor) perceptual scales for the early (top row) and late (bottom row) sensitivity pairs.

Figure 5 :

 5 Figure 5: Measured and predicted (auto-cor) perceptual scales for the conflicting prediction pairs.

Figure 6 :

 6 Figure 6: Prediction scores. (a) Intuition about score values when comparing two perceptual functions. (b) Left : scores for each pair and for different predictions. Right : averaged scores for different predictions with 99.7% confidence intervals.

  z 0 is the mode and b Z is the octave bandwidth of the density. A random variable Θ follows a Von-Mises distribution (Θ ∼ VM(θ 0 , σ Θ )) if it has the following density defined for all θ ∈ [0, π]P Θ (θ; θ 0 , σ Θ Let Z ∼ LN (z 0 , b Z ).The Fisher Informations carried by Z about respectively Z 0 and B Z are I

=where

  C 1 + C 2 + C 3 + C 4 + C 5 + C 6 µ(s)) T Σ(s) -1 ′ (x -µ(s)) 2 , C 3 = (x -µ(s)) T Σ(s) -1 µ ′ (s) s) -1 Σ ′ (s) (x -µ(s)) T Σ(s) -1 ′ (x -µ(s)), C 5 = -Tr Σ(s) -1 Σ ′ (s) (x -µ(s)) T Σ(s) -1 µ ′ (s), C 6 = -(x -µ(s)) T Σ(s) -1 µ ′ (s)(x -µ(s)) T Σ(s) -1 ′ (x -µ(s)).D PERCEPTUAL SCALE AND FISHER INFORMATIONProof of Proposition 2. One has P M |S (m, s) = P M |R (m, ψ(s)) which implies that ∂ log(P M |S ) ∂s (m, s) = ψ ′ (s) ∂ log(P M |R ) ∂s (m, ψ(s)).

https://github.com/JonathanVacher/perceptual_metric, https://github.com/ JonathanVacher/texture-interpolation

https://github.com/JonathanVacher/perceptual_metric

https://github.com/JonathanVacher/texture-interpolation

First, we observe that E(C 1 ) = C 1 and that E (C 5 ) = E (C 6 ) = 0 (odd central moments). Then, following (ii), we have Σ(s) -1 ′ = -Σ(s) -1 Σ ′ (s)Σ(s) -1 . Hence,

[Note : think about the covariance of Σ ′ (s)Σ(s) -1 (x -µ(s)) or see [START_REF]The moments of products of quadratic forms in normal variables[END_REF].] Therefore, the expectation of C 4 is

The expectation of C 2 is the second order moment of a quadratic form (see [START_REF]The moments of products of quadratic forms in normal variables[END_REF]). Thus,

We can now deal with the expectation of the last term C 3 ,

. Summing all the expectations leads to the result.

C MEAN AND COVARIANCE OF A WASSERSTEIN BARYCENTER

Proposition 7 (Wasserstein Barycenter of Gaussian Distributions). Let X 0 ∼ N (µ 0 , Σ 0 ) and X 1 ∼ N (µ 1 , Σ 1 ) be two Gaussian random variables. The Wasserstein interpolation between P X0 and P X1 is defined as

(1 -s)W 2 (P X0 , P) 2 + sW 2 (P X1 , P) 2 where P(P X0 , P X1 ) is the set of probability densities with marginals P X0 and P X1 and where

is the Wasserstein distance between P X and P Y . The probability distribution P s is Gaussian with mean µ W (s) = (1 -s)µ X0 + sµ X1 and covariance

Proof. See [START_REF] Chen | Optimal transport for gaussian mixture models[END_REF].

Corollary 1. Let X s ∼ N (µ W (s), Σ W (s)) where ((µ W (s), Σ W (s))) are defined in Proposition 7, then the Fisher information is given by

where

Proof. Combine Proposition 4 and Proposition 7.