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Geodesics cross any pattern in first-passage percolation without

any moment assumption and with possibly infinite passage times

Antonin Jacquet∗

Abstract

In first-passage percolation, one places nonnegative i.i.d. random variables (T (e)) on the edges
of Z

d. A geodesic is an optimal path for the passage times T (e). Consider a local property of the
time environment. We call it a pattern. We investigate the number of times a geodesic crosses
a translate of this pattern. When we assume that the common distribution of the passage times
satisfies a suitable moment assumption, it is shown in [Antonin Jacquet. Geodesics in first-passage
percolation cross any pattern, arXiv:2204.02021, 2023] that, apart from an event with exponentially
small probability, this number is linear in the distance between the extremities of the geodesic. This
paper completes this study by showing that this result remains true when we consider distributions
with an unbounded support without any moment assumption or distributions with possibly infinite
passage times. The techniques of proof differ from the preceding article and rely on a notion of
penalized geodesic.

1 Introduction

1.1 Settings

Fix an integer d ≥ 2. In this paper, we consider first passage percolation on the hypercubic lattice Z
d.

We denote by 0 the origin of Z
d and by E the set of edges in this lattice. The edges in E are those

connecting two vertices x and y such that ‖x − y‖1 = 1. The basic random object consists of a family
T = {T (e) : e ∈ E} of i.i.d. random variables taking values in [0, ∞] and defined on a probability
space (Ω, F ,P). The random variable T (e) represents the passage time of the edge e. Their common
distribution is denoted by L.

A finite path π = (x0, . . . , xk) is a sequence of adjacent vertices of Zd, i.e. for all i = 0, . . . , k − 1,
‖xi+1 − xi‖1 = 1. We say that π goes from x0 to xk. Sometimes we identify a path with the sequence
of edges it visits, writing π = (e1, ..., ek) where for i = 1, . . . , k, ei = {xi−1, xi}. We say that k is the
length of π and we denote |π| = k. The passage time T (π) of a path π = (e1, . . . , ek) is the sum of the
variables T (ei) for i = 1, . . . , k.

We do not exclude the case L(∞) > 0. In this case, there are vertices between which all paths have
an infinite passage time. Thus, we define the following random set:

C = {(x, y) ∈ Z
d × Z

d : ∃ a path π from x to y such that T (π) < ∞}.

Throughout the article, we assume that

L([0, ∞)) > pc, (1.1)

where pc denotes the critical probability for Bernoulli bond percolation model on Z
d. We refer to [5]

for background on percolation. Say that an edge e is open if its passage time T (e) is finite and closed
otherwise. Thanks to (1.1), this percolation model is supercritical. Therefore there exists a unique
infinite component which we denote by C∞. When L(∞) = 0, note that every couple of vertices belongs
to C and that C∞ is equal to the whole graph.

Now, for two vertices x and y, we define the geodesic time

t(x, y) = inf{T (π) : π is a path from x to y}. (1.2)

∗Institut Denis Poisson, UMR-CNRS 7013, Université de Tours, antonin.jacquet@univ-tours.fr

1



Note that C = {(x, y) ∈ Z
d × Z

d : t(x, y) is finite}. A self-avoiding path γ from x to y such that
T (γ) = t(x, y) is called a geodesic between x and y.

For the following and for the existence of geodesics, we need some assumptions on L. Let tmin denote
the minimum of the support of L. We extend a definition introduced in [9]. A distribution L with
support in [0, ∞] is called useful if the following holds:

L(tmin) < pc when tmin = 0,

L(tmin) < −→pc when tmin > 0,
(1.3)

where pc has been introduced above and where −→pc is the critical probability for oriented Bernoulli bond
percolation on Z

d (see Section 12.8 in [5]). Throughout the article, we also assume that L is useful.
Geodesics between any pair of vertices belonging to C exist with probability one. This is Proposition

4.4 in [2] when L(∞) = 0 and Proposition A.1 in Appendix A when L(∞) > 0. Thus, geodesics between
any pair of vertices belonging to C∞ exist with probability one.

1.2 Patterns

For a set B of vertices, we denote by ∂B its boundary, this is the set of vertices which are in B and
which are linked by an edge to a vertex which is not in B. We make an abuse of notation by saying that
an edge e = {u, v} belongs to a set of vertices if u and v are in this set.

Let L1, . . . , Ld be non-negative integers. To avoid trivialities we assume that at least one of them

is positive. We fix Λ =

d∏

i=1

{0, . . . , Li} and two distinct vertices uΛ and vΛ on the boundary of Λ.

These points uΛ and vΛ are called endpoints. Then we fix an event AΛ, with positive probability, only
depending on the passage time of the edges of Λ. We say that P = (Λ, uΛ, vΛ, AΛ) is a pattern. Let
x ∈ Z

d. Define:

• for y ∈ Z
d, θxy = y − x,

• for e = {u, v} an edge connecting two vertices u and v, θxe = {θxu, θxv}.

Similarly, if π = (x0, . . . , xk) is a path, we define θxπ = (θxx0, . . . , θxxk). Then θxT denotes the
environment T translated by −x, i.e. the family of random variables indexed by the edges of Zd defined
for all e ∈ E by

(θxT ) (e) = T (θ−xe) .

Let π be a self-avoiding path and x ∈ Z
d. We say that x satisfies the condition (π;P) if these two

conditions are satisfied:

1. θxπ visits uΛ and vΛ, and the subpath of θxπ between uΛ and vΛ is entirely contained in Λ,

2. θxT ∈ AΛ.

Note that, if x satisfies the condition (π;P) when π is a geodesic, then the subpath of θxπ between uΛ

and vΛ is one of the optimal paths from uΛ to vΛ entirely contained in Λ in the environment θxT . When
the pattern is given, we also say "π takes the pattern in θ−xΛ" for "x satisfies the condition (π;P)". We
denote:

NP(π) =
∑

x∈Zd

1{x satisfies the condition (π;P)}. (1.4)

Note that the number of terms in this sum is actually bounded from above by the number of vertices
in π. If NP(π) ≥ 1, we say that π takes the pattern. The aim of the article is to investigate, under
reasonable conditions on P, the behavior of NP(γ) for all geodesics γ from 0 to x with ‖x‖1 large. The
first step is to determine these reasonable conditions, that is why we define the notion of valid patterns.

Definition 1.1. Denote by {ε1, . . . , εd} the vectors of the canonical basis. An external normal unit
vector associated to a vertex z of the boundary of Λ is an element α of the set {±ε1, . . . , ±εd} such that
z + α does not belong to Λ.

Definition 1.2. We say that a pattern is valid if the following three conditions hold:
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• AΛ has a positive probability,

• when AΛ occurs, there exists a path between the two endpoints, entirely contained in Λ, whose
passage time is finite,

• one of the following two conditions holds:

– the support of L is unbounded,

– there exist two distinct external normal unit vectors, one associated with uΛ and one associated
with vΛ.

Remark 1.3.

• The second condition is always satisfied when L(∞) = 0.

• The existence of the two distinct vectors in the third condition of Definition 1.2 is equivalent to the
fact that the endpoints of the pattern belong to two different faces. As explained in Remark 1.3 in
[6], a real obstruction can appear when the support of L is bounded and this third condition is not
satisfied.

1.3 Main result and applications

Here is our main result. We assume that one of the following two conditions is satisfied:

L(∞) > 0 and L([0, ∞)) > pc,

or L(∞) = 0 and the support of L is unbounded.
(1.5)

Theorem 1.4. Let P = (Λ, uΛ, vΛ, AΛ) be a valid pattern, assume (1.5) and that L is useful. Then
there exist α > 0, β1 > 0 and β2 > 0 such that for all x ∈ Z

d,

P
(
(0, x) ∈ C and ∃ a geodesic γ from 0 to x such that NP(γ) < α‖x‖1

)
≤ β1e−β2‖x‖1 .

In [6] we proved the following result.

Theorem A (Theorem 1.4 in [6]). Let P = (Λ, uΛ, vΛ, AΛ) be a valid pattern, assume that L is useful,
L(∞) = 0 and one of the following two conditions is satisfied:

(I) L has a bounded support,

(II) L has an unbounded support and we have

Emin
[
T d

1 , . . . , T d
2d

]
< ∞, (1.6)

where T d
1 , . . . , T d

2d are independent with distribution L.

Then there exist α > 0, β1 > 0 and β2 > 0 such that for all x ∈ Z
d,

P
(
∃ a geodesic γ from 0 to x such that NP(γ) < α‖x‖1

)
≤ β1e−β2‖x‖1 .

Combining Theorems 1.4 and A we immediately get:

Theorem 1.5. Let P = (Λ, uΛ, vΛ, AΛ) be a valid pattern, assume that L is useful and L([0, ∞)) > pc.
Then there exist α > 0, β1 > 0 and β2 > 0 such that for all x ∈ Z

d,

P
(
(0, x) ∈ C and ∃ a geodesic γ from 0 to x such that NP(γ) < α‖x‖1

)
≤ β1e−β2‖x‖1 .

Theorem 1.5 is a generalization of Theorem 2.3 in [1] (stated below as Theorem B) since, to get this
result, we can take the pattern (reduced to one edge) P = ({uΛ, vΛ}, uΛ, vΛ, AΛ) where uΛ = (0, . . . , 0),
vΛ = (1, 0, . . . , 0) and AΛ is the event on which the passage time of the only edge of the pattern is greater
than M .
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Theorem B (Theorem 2.3 in [1]). Let L be a useful distribution on [0, +∞) with unbounded support.
Then, for each M positive there exists ε = ε(M) > 0 and α = α(M) > 0 so that for all x, we have

P

(
∃ geodesic π from 0 to x such that

∑

e∈π

1T (e)≥M ≤ α‖x‖1

)
≤ e−ε‖x‖1 . (1.7)

The proof of Theorem 1.4 is given in Section 2. It is partly inspired by the proof of Theorem 2.3
in [1]. The proofs of Theorems 1.4 and A are independent and the only intersection between these two
theorems is the case (II) above. Theorem 1.5 is an extension of Theorem 1.4 in [6]. We refer to [6] for an
account of the history of such results and for applications. As an example of application we prove the
following result, which is a generalization of the main result of [9].

The van den Berg-Kesten comparison principle without any moment assumption. Let L
and L̃ be two distributions taking values in [0, ∞] such that:

(H1) L is useful,

(H2) L([0, ∞)) > pc and L̃([0, ∞)) > pc,

(H3) L 6= L̃,

(H4) there exists a couple of random variables τ , τ̃ on some probability space, with marginal distributions
L and L̃, respectively, and satisfying

E[τ̃ |τ ] ≤ τ. (1.8)

We consider a family T = {T (e) : e ∈ E} of i.i.d. random variables with distribution L and another
family T̃ = {T̃ (e) : e ∈ E} of i.i.d random variables with distribution L̃. The geodesic time defined at
(1.2) is denoted by t in the environment T and by t̃ in the environment T̃ . With these assumptions, a
time constant for each distribution can be defined thanks to [3]. We refer to [3] for an extensive account.
Here we recall what we need for our purpose. By (H2), there exists M ∈ R such that

L([0, M ]) > pc and L̃([0, M ]) > pc. (1.9)

Fix such a M . Let CM (resp. C̃M ) be the infinite cluster for the Bernoulli percolation (1{T (e)≤M}, e ∈ E)

(resp. (1{T̃ (e)≤M}, e ∈ E)) which exists and is unique a.s. To any x ∈ R
d, we associate a random point

ϕ(x) (resp. ϕ̃(x)) in CM (resp. in C̃M ) such that ‖x − ϕ(x)‖1 (resp. ‖x − ϕ̃(x)‖1) is minimal, with a
deterministic rule to break ties.

Theorem 1 in [3] gives the existence of two deterministic functions µ : R
d → [0, ∞) and µ̃ : R

d →
[0, ∞) such that

∀x ∈ Z
d, lim

n→∞

t(ϕ(0), ϕ(nx))

n
= µ(x) a.s. and in L1, and lim

n→∞

t̃(ϕ̃(0), ϕ̃(nx))

n
= µ̃(x) a.s. and in L1.

(1.10)
Theorem 4 in [3] ensures that the functions µ and µ̃ do not depend on the choice of the constant M
satisfying (1.9). Furthermore, when

Emin[τ1, . . . , τ2d] < ∞, (1.11)

where τ1, . . . , τ2d are i.i.d. copies of τ , Theorem 4 in [3] also ensures that for all x ∈ R
d,

lim
n→∞

t(0, ⌊nx⌋)

n
= µ(x) a.s. and in L1. (1.12)

This is the usual definition of the time constant. We refer to Theorem 2.18 in [7] and Section 2.1 in [2]
for more details on the result (1.12). The same holds for the environment T̃ if (1.11) holds for 2d i.i.d.
copies of τ̃ .

Remark 1.6. We warn the reader that notations T̃ and µ̃ are used in [3] with a different meaning. We
refer in particular to Remark 2 in [3] for explanations.

We can now state the van den Berg-Kesten comparison principle for these time constants.
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Theorem 1.7 (Extension of the van den Berg-Kesten comparison principle). Let L and L̃ be two
distributions taking values in [0, ∞] satisfying (H1), (H2), (H3) and (H4). For all x ∈ Z

d such that
x 6= 0,

µ̃(x) < µ(x). (1.13)

The proof of Theorem 1.7 is given in Section 3. In [9], van den Berg and Kesten prove the following
theorem.

Theorem C (Theorem 2.9 in [9]). Let L and L̃ be two distributions taking values in [0, ∞), having a
finite first moment, satisfying1 (H1), (H3) and (H4). Then,

µ̃(ε1) < µ(ε1).

Theorem 1.7 is an extension of Theorem C. With Theorem 1.2 in [8], Marchand extends Theorem C
in another direction.

Theorem D (Theorem 1.2 in [8]). Assume that d = 2 and let L and L̃ be two distributions taking values
in [0, ∞), such that L(0) < pc, satisfying2 (H3) and (H4). Then,

µ̃(ε1) < µ(ε1).

In dimension 2, the result of Marchand is stronger than Theorem C on two aspects: on the one hand,
there is no moment assumption and on the other hand, the condition

L(tmin) < −→pc when tmin > 0 (1.14)

is removed. When tmin > 0 and L(tmin) > −→pc , the problem involves oriented percolation, where the open
edges correspond to those with the smallest time values. In this context, the largest part of each geodesic
linking the origin to a distant point within the cone of percolation is a directed path made of minimal
edges, highlighting a distinct behavior.

For a point x inside this cone, µ(x) = tmin‖x‖1. Moreover, when t̃min = tmin and the (H2) condition
is met, µ̃(x) = tmin‖x‖1 as well. Notably, (1.13) does not apply to such x values. Establishing (1.13)
for x outside the cone, like ε1, requires specific arguments, in particular large deviations for supercritical
oriented percolation. We have opted not to explore this case in this article. We refer to [8], and more
specifically to Theorem 1.5 in [8], for further explanations.

1.4 Sketch of the proof

In this section, we give an informal sketch of the proof of Theorem 1.4. Fix a pattern P and x ∈ Z
d with

‖x‖ large. Consider the event:

M = {(0, x) ∈ C and there exists a geodesic from 0 to x which does not take the pattern}.

The aim is to prove that M has a probability small enough in ‖x‖. More precisely, we want to prove

P(M) ≪
1

‖x‖d−1
. (1.15)

From this result, by a standard re-normalization argument, we easily get Theorem 1.4 (see Proposition
1.8 in Section 1.5 for a formal statement of (1.15)).

1It is stated in [9] with the definition of a distribution more variable than another, but Theorem 2.6 in [9] ensures that
the fact that L̃ is more variable than L is equivalent to (H4) when L and L̃ have a finite first moment.

2It is also stated in [8] with the definition of a distribution more variable than another, but Lemma 6.1 in [8] ensures
that this definition is also equivalent to (H4) when L and L̃ takes value in [0, ∞).
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General idea. As in [6], to get (1.15), the idea is to define a suitable event G and a suitable sequence
of events M(ℓ) for 0 ≤ ℓ ≤ q such that, for some positive constant c < 1,

1. q ≥ c‖x‖,

2. M ⊂ M(q) ∪ Gc where P(Gc) ≪
1

‖x‖d−1
,

3. for all ℓ ≥ 1,
P(M(ℓ)) ≤ cP(M(ℓ − 1)). (1.16)

If the above holds, we get P(M) ≤ cc‖x‖1 + P(Gc), which allows us to conclude.

Penalized geodesics. We now introduce the notion of penalized path. This is an idea which comes
from the article [1] by Andjel and Vares in their proof of Theorem 1.7. A penalized path is a path which
does not take the pattern. In other words, this is a path π such that NP(π) = 0. This allows us to
define the penalized passage time for every z ∈ Z

d:

tP (0, z) = inf{T (π) : π is a penalized path from 0 to z},

with the convention inf ∅ = ∞. Then, for every z ∈ Z
d, if it exists, a penalized geodesic from 0 to z is a

penalized path γ from 0 to z such that T (γ) = tP (0, z). With these definitions, we have

M ⊂ {(0, x) ∈ C and tP (0, x) = t(0, x)}. (1.17)

Shortcuts. A good way to get that the event {(0, x) ∈ C and tP (0, x) = t(0, x)} does not occur is to
prove that a penalized geodesic has a shortcut. The formal definition of a shortcut is given in Section
2.1.4. Informally, a shortcut for a penalized geodesic γ is a path going from a vertex u of γ to another
vertex v of γ which takes the pattern and which has a passage time lower than the passage time of the
subpath of γ going from u to v. Hence, if a penalized geodesic γ from 0 to x has a shortcut, it implies
that there exists a path from 0 to x which is not penalized and such that its passage time is strictly
lower than the passage time of γ. It gives t(0, x) < tP (0, x).

Events G and M(ℓ). A successful box for a path π is a box satisfying one of the following two
conditions:

• it is a typical box,

• the path π has a shortcut taking the pattern inside the box.

We say that a box is shortcut-equipped for a path π or not shortcut-equipped for π depending on whether
the second condition is satisfied or not. We define G as the event on which (0, x) ∈ C and there exists
a penalized geodesic π whose passage time is finite and which crosses at least q successful boxes for π.
On this event, we define the selected penalized geodesic denoted by γ: it is the first (for an arbitrary
deterministic order) of the penalized geodesics satisfying the condition which appears in the definition
of G. We define the sequence of successful boxes crossed by γ as the sequence of the first q successful
boxes crossed by γ indexed in the order in which they are crossed by γ. It allows us to define, for every
ℓ ∈ {1, . . . , q} the event

M(ℓ) = G ∩ {the ℓ first successful boxes of the sequence of γ are not shortcut-equipped for γ}.

This gives us ℓ opportunities to modify the environment in each of these ℓ typical boxes to create a
shortcut for γ. The aim is now reduced to proving (1.16).
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k-boxes. We describe a small change of the plan above. This change does not create any complications.
In particular, the entire plan describe above works with these new objects. The advantage is to avoid a
number of complications, such as, for example, those related to what happens at the boundary of a box
when we modify the environment in it.

The idea is to only consider a family of boxes (called the k-boxes, see Section 2.1.4) that partitions Zd.
We also replace "penalized paths" -the paths which does not take the pattern- by "k-penalized paths" -the
paths which does not take any pattern contained in a k-box-. We similarly replace "penalized geodesics"
by "k-penalized geodesics" : the geodesics which does not take any pattern contained in a k-box. We say
"k-geodesic" instead of "k-penalized geodesic" for short.

Modification and stability. For all ℓ, we have M(ℓ) ⊂ M(ℓ − 1). Thus (1.16) is equivalent to the
existence of a constant η > 0 (by taking η = 1

c
− 1) such that

P(M(ℓ − 1) \ M(ℓ)) ≥ ηP(M(ℓ)). (1.18)

Fix ℓ ∈ {1, . . . , q} and denote by Bs the ℓ-th successful k-box crossed by γ. The aim is to prove (1.18).
The idea is to resample the passage times of edges of Bs in an environment in which M(ℓ) occurs to get
a new environment in which M(ℓ − 1) \ M(ℓ) occurs. When the resampled passage times satisfy good
conditions (to be determined), the following properties are satisfied:

1. The event G still occurs and the selected k-geodesic is still γ in the new environment.

2. The box Bs is shortcut-equipped for γ in the new environment.

3. The sequence of successful boxes crossed by γ is the same in the two environments.

4. The event M(ℓ − 1) \ M(ℓ) occurs in the new environment.

By the fourth property, we get roughly

P(M(ℓ))P(good conditions on the resampled passage times) ≤ P(M(ℓ − 1) \ M(ℓ)).

Since η is fixed according to the probability of the good conditions on the resampled passage times, which
is positively bounded from below independently of the box, we get (1.18). See the proof of Lemma 2.12
using Lemma 2.13 in Section 2.2.1.

The third property follows from the first two. Indeed, the box Bs is typical in the first environment
(since it is a successful box for γ and it is not shortcut-equipped for γ as M(ℓ) holds) and is shortcut-
equipped for γ in the new environment. Furthermore, the other boxes have the same status (successful
or not for γ) in the two environments since the passage times of the edges of the other boxes have not
been modified.

The fourth property follows from the first three by similar ideas. We thus see that, in order to get
the fourth property, we do not only need to get the second one. We also need the first and the third
ones. We call these two additional properties "stability properties". The proof is thus reduced to getting
the first two properties.

Some more details. Recall that we assume (1.5). There are two cases to be considered differently:

(INF) L(∞) > 0,

(FU) L(∞) = 0 and the support of L is unbounded.

(INF) stands for "infinite" and (FU) stands for "finite unbounded".
In what follows, when we say "after the modification" or "in the new environment", we mean "in the

new environment where passage times of the edges in the box Bs have been resampled and on the event
where the resampled passage times satisfy some good properties that we do not explicit here". In this
paragraph, we focus on the first property of the previous paragraph. To get it, it is sufficient to prove
the following properties:

(i) The path γ still has a finite passage time in the new environment. There are no difficulties with
this property.
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(ii) The path γ remains a k-penalized path in the new environment. Since the passage times of the
k-boxes different from Bs have not been modified, it is sufficient to prove that γ does not take the
pattern in Bs in the new environment. This is based on the two following ideas.

• We identify forbidden zones which are subsets of Bs where γ can not go. In the case (INF)
the forbidden zones are simply balls whose edges have infinite passage time. In the case (FU)
we refer to Lemma 2.5. By definition, a typical box possesses many forbidden zones (see the
third item of the definition of a typical box in Section 2.1.2).

• We make sure that, after a successful modification, there is a unique pattern inside Bs. The
uniqueness is ensured by replacing the original pattern by a new larger pattern, containing
the original one, and by requiring that the behavior of passage times in the boundary of the
new pattern is very atypical (see Lemma 2.4 and in particular its last item). In the case (FU)
we just require that the passage times on the boundary of the new pattern are very high and
contained in a special interval (see Remark 2.3 and (AF-4’)). These will be the unique edges
with passage times in this interval after the modification. In the case (INF) we require the
existence of a large connected component of edges with finite passage time (see Definition 2.1
and (AI-4)). This will be the unique such large component not touching the boundary of Bs

after the modification.

We place the pattern in a forbidden zone. By this we mean that, after the modification, the pattern
lies in what was a forbidden zone before the modification. Recall that the pattern is unique in Bs

and that γ does not enter into forbidden zones. Therefore γ does not take the pattern in Bs after
the modification.

(iii) A k-penalized path π with finite passage time in the new environment is also a k-penalized path in
the initial environment. Once again, it is sufficient to prove that π does not take a pattern entirely
contained in Bs in the initial environment. The proof differs between the case (INF) and the case
(FU).

• In the case (FU), this is a consequence of the fact that Bs is a typical box and that there is
no pattern is a typical box. Indeed, the passage times on the boundary of the pattern are
bigger (in the case (FU)) than they can be in a typical box.

• In the case (INF), it comes from the fact that, in the new environment, a path with a finite
passage time taking edges in Bs is very constrained (see Figure 4 where a path with a finite
passage time can only take edges of the green, red, blue and orange parts). If π does not
take the pattern in the new environment, it can only take edges of γ. Since γ does not take a
pattern entirely contained in Bs in the initial environment, neither does π.

(iv) A k-penalized path in the new environment has a passage time greater than or equal to the passage
time of γ in the new environment. The proof comes from the fact that a path with a reasonable
passage time in the new environment is very constrained in Bs. The edges that do not belong to
γ, the shortcut for γ or the unique pattern in Bs have a prohibitive passage time in the case (FU)
and an infinite passage time in the case (INF). Based on this observation and on the fact that γ
has a lower passage time in the new environment than in the initial environment, we simply prove
that a k-penalized path can not save more time than γ during the modification.

(v) With the same ideas as above, we also prove that a k-geodesic in the new environment is also a
k-geodesic in the initial environment.

Indeed, by (i), (ii) and (iv) we get that γ is a k-geodesic with a finite passage time in the new environment.
Using the same arguments as before, we get that γ crosses at least q successful k-boxes in the new
environment. Hence, the event G occurs in the new environment. Furthermore, we also get that every k-
geodesic crossing at least q successful k-boxes in the new environment crosses at least q successful k-boxes
in the initial environment. Adding (iii) and (v), we get that the set of potential selected k-geodesics in
the new environment is contained in the set of potential selected k geodesic in the initial environment,
and then γ remains the first geodesic (and thus the selected one) among the geodesics of this set.
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Advantages of a strategy using penalized geodesics. In [6] the proof does not rely on penalized
geodesics. Using penalized geodesics has two main advantages:

• In [6], proving the result for all geodesics (and not only for one selected geodesic) requires further
technicalities (see the use of concentric annuli in Section 2.1 in [6]). Here, it comes for free from
the fact that the existence of one k-geodesic having a shortcut implies that t(0, x) < tP (0, x) and
thus that every geodesic from 0 to x takes the pattern.

• It allows us to remove Assumption (1.6). Indeed, in item 3 in the paragraph on the modification
and stability above, we need to have the same sequence of successful boxes crossed by γ in the two
environments. Assume that we do not use penalized geodesics and, to make things easier, assume
(only in this item) that we are in the case where there is a unique geodesic between any couple
of vertices. Then the modification consists in replacing a subpath (denoted by γ) of the geodesic
from 0 to x (denoted by γ) by a path (denoted by π) with a shorter passage time which takes the
pattern. It implies that in the new environment, γ does not belong to the new geodesic (which is
the concatenation of the part of γ from 0 to π, then π and then the part of γ from π to x). It can
create a problem of stability if a box of the sequence of successful boxes crossed by γ was crossed
by γ: the sequence of successful boxes crossed by the geodesic from 0 to x would not be the same
in the two environments. To avoid this problem when we do not use penalized geodesics, we use
the Cox-Durett shape theorem (Theorem 2.16 in [2]) in order to control the length of geodesics
excursions from a box (see for example the proof of Lemma 2.1 in [6]). This is why we need
Assumption (1.6) in the strategy developed in [6].

Hence, by making a modification which guarantees that the penalized geodesic is the same in the
initial environment as in the modified one, we avoid this problem without using the Cox-Durett
shape theorem and thus without requiring Assumption (1.6).

1.5 Organization of the proof of Theorem 1.4

Recall that, in this article, we assume (1.5). One can check, using a standard re-normalization argument,
that Theorem 1.4 is a simple consequence of the following proposition (see for example the proof of
Theorem 2.3 in [1]).

Proposition 1.8. Let P = (Λ, uΛ, vΛ, AΛ) be a valid pattern. Assume (1.5) and that L is useful. Then
there exist C > 0 and D > 0 such that for all n ≥ 0, for all x such that ‖x‖1 = n,

P
(
(0, x) ∈ C and ∃ a geodesic γ from 0 to x such that NP(γ) = 0

)
≤ De−Cn. (1.19)

Thus, the aim is now to prove Proposition 1.8. Recall that there are two cases to be considered
differently:

(INF) L(∞) > 0,

(FU) L(∞) = 0 and the support of L is unbounded.

The proof of Proposition 1.8 is the aim of Section 2. This section is divided in two parts.
Section 2.1 is devoted to patterns and typical boxes. We replace the original pattern by a larger

pattern containing the original one and which satisfies several assumptions. Some of the assumptions
are simply convenient: they simplify some parts of the proof. The assumption on the boundary is more
crucial as explained in item (ii) in the paragraph "Some more details" in Section 1.4. In the case (FU),
the requirement on the passage times on the boundary depends on the size of the boxes we consider in
the proof. But the size of the boxes depends on the notion of typical boxes which in turn depends on
parts of the definition of the pattern we consider. The definitions are thus intertwined. This is why
we first start defining the new pattern in Section 2.1.1 (postponing the boundary conditions in the case
(FU)), we then define and study typical boxes in Section 2.1.2 and we finally choose the boundary of the
pattern in the case (FU) in Section 2.1.3. We then introduce the notions of k-penalized paths, shortcuts
and successful boxes in Section 2.1.4.

The second part of Section 2 is divided in four parts. In Section 2.2.1, the proof of Proposition 1.8
is reduced to the proof of a key lemma : Lemma 2.13. In this lemma, we introduce some sets of edges
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which correspond to the edges whose passage times have to be modified. The exact definitions of these
sets are postponed to Section 2.2.2. It corresponds to the modification we want to make. The more
difficult part in the proof of Lemma 2.13 is item (iii), which is the key to get (1.18). To get this item
and also item (i), we state and prove several properties which are consequences of the modification in
Section 2.2.3 before using them to conclude in Section 2.2.4.

1.6 Some tools and notations

In this subsection, we recall some results and fix some notations. First, we denote by N the set of all
non-negative integers, by N

∗ the set N \ {0}, and by R+ the set of all x ∈ R such that x ≥ 0.
For a self-avoiding3 path π = (x0, ..., xk) going from x0 to xk, we say that xi is visited by π before

xj if i < j; we say that an edge {xi, xi+1} is visited before an edge {xj , xj+1} if i < j. A subpath of π
going from xi to xj (where i, j ∈ {0, . . . , k} and i < j) is the path (xi, . . . , xj) and is denoted by πxi,xj

.
We say that a path, whose endpoints are denoted by u and v, is oriented if this path has exactly

‖u−v‖1 edges. In other words, its number of edges is minimal among those of all the other paths linking
u and v.

For a set B of vertices, we denote by ∂B its boundary, this is the set of vertices of B which can be
linked by an edge to a vertex which is not in B. We denote by Bc the set of all vertices which does
not belong to B. When we define a set of vertices of Zd, sometimes we also want to say that an edge
belongs to this set. So we make an abuse of notation by saying that an edge e = {u, v} belongs to a set
of vertices if u and v are in this set. Since now a subset B of Zd can be seen as a set of vertices or as a
set of edges, we denote by |B|v the number of vertices of B and by |B|e its number of edges.

Then, for all c ∈ Z
d and r ∈ R+, we denote

B∞(c, r) = {u ∈ Z
d : ‖u − c‖∞ ≤ r},

B1(c, r) = {u ∈ Z
d : ‖u − c‖1 ≤ r},

and for n ∈ N
∗, we denote by Γn the boundary of B1(0, n), i.e.

Γn = {u ∈ Z
d : ‖u‖1 = n}. (1.20)

Constants related to the distribution. One can check that Lemma 5.5 in [9] can be adapted for
a useful distribution L such that L(∞) > 0 and L([0, ∞)) > pc. Thus there exist δ = δ(L) > 0 and
D0 = D0(L) fixed for the remaining of the article such that for all u, v ∈ Z

d,

P(there exists a path π from u to v such that T (π) ≤ (tmin + δ)‖u − v‖1) ≤ e−D0‖u−v‖1 . (1.21)

Furthermore, when tmin = 0,

• even if it means reducing δ, in the cases (INF) and (FU), we assume that δ > 0 is such that
L([0, δ]) < pc,

• even if it means reducing δ, in the case (INF), we can fix ν0 such that

ν0 > δ and L((δ, ν0)) > 0. (1.22)

Note that it is possible since in the case (INF), we have L(0) + L(∞) < 1. Indeed, it comes from
the fact that L is useful and that L([0, ∞)) > pc.

Then, still in the case where tmin = 0, we fix

β > 0, β′ > 0 and ρ > 0 (1.23)

such that (1.24) below holds with τ = δ. The existence of such constants is guaranteed by Lemma 1.9
below whose proof is given in Appendix B.

Lemma 1.9. Assume that L is useful and that tmin = 0. Let τ > 0 such that L([0, τ ]) < pc. Then there
exists β > 0, β′ > 0 and ρ > 0 such that for all v, w ∈ Z

d,

P(there exists a self-avoiding path from v to w taking at most ρ‖v − w‖1 edges e such that

T (e) > τ) ≤ β′e−β‖v−w‖1 .
(1.24)

3The definition can be extended to not necessarily self-avoiding paths by saying that a vertex x is visited by π before y

if there exists i0 ∈ {0, . . . , k} such that xi0
= x and for all j ∈ {0, . . . , k}, xj = y implies that j > i0.
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B∞(s, ℓΛ − 3)

B∞(s, ℓΛ)

•
s

Figure 1: Example of a ball satisfying the boundary condition. The set Ss,ℓΛ is represented in red. The
edges of the gray area have an infinite passage time and the edges in green and red have a finite passage
time.

2 Proof of Proposition 1.8

Let P = (Λ, uΛ, vΛ, AΛ) be a valid pattern. We assume (1.5) and that L is useful. Thus one of the
cases (INF) or (FU) stated in Section 1.5 is realized. The proofs in these two cases are almost the same.
However, throughout this section, it will sometimes be necessary to distinguish the cases.

2.1 Settings for the proof

2.1.1 Assumptions on the patterns

We begin by making some assumptions on P for the remaining of the proof. At first sight, these
assumptions can be seen as a restriction but Lemma 2.4 guarantees that we can make them with no loss
of generality.

In the case (INF).

Definition 2.1 (Boundary condition). For every s ∈ Z
d and ℓΛ ≥ 3, define the set Ss,ℓΛ as the set of

edges belonging to the path going from s − (ℓΛ − 1)ε1 + (ℓΛ − 1)ε2 to s + (ℓΛ − 1)ε1 + (ℓΛ − 1)ε2 in the
shortest way by 2(ℓΛ − 1) steps in the direction ε1.

Then, we say that B∞(s, ℓΛ) satisfies the boundary condition in the environment T if for all edges e
belonging to B∞(s, ℓΛ) but not to B∞(s, ℓΛ − 3),

• either e belongs to Ss,ℓΛ ∪ (s + Zε1) and T (e) is finite,

• or T (e) is infinite.

Remark 2.2. Let s ∈ Z
d and ℓΛ ≥ 3. If B∞(s, ℓΛ) satisfies the boundary condition in the environment

T , then there is no path from ∂B∞(s, ℓΛ) to ∂B∞(s, ℓΛ) with finite passage time which takes an edge of
Ss,ℓΛ (see Figure 1 for a representation of the boundary condition in two dimensions).

Let us consider the following assumptions:

(AI-1) there exists an integer ℓΛ ≥ 3, fixed for the remaining of the proof, such that4 Λ = B∞(0, ℓΛ),

(AI-2) uΛ = −ℓΛε1 and vΛ = ℓΛε1,

(AI-3) there exist a constant T Λ > 0 and a path π∞ from uΛ to vΛ entirely contained in Λ such that,
when AΛ occurs,

T (π∞) < T Λ. (2.1)

(AI-4) if AΛ occurs, Λ satisfies the boundary condition

4We make a very slight abuse of notation: we also consider patterns where 0 is in the center of Λ.
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In the case (FU). Let us consider the following assumptions:

(AF-1) there exists an integer ℓΛ > 0, fixed for the remaining of the proof, such that Λ = B∞(0, ℓΛ),

(AF-2) uΛ = −ℓΛε1 and vΛ = ℓΛε1,

(AF-3) when AΛ occurs, there exists a constant MΛ such that for every edge e belonging to Λ but not to
∂Λ, T (e) ≤ MΛ,

(AF-4) for all M > 0, the event AΛ ∩ {∀e ∈ ∂Λ, T (e) > M} has a positive probability.

Remark 2.3. The aim of wanting the pattern to satisfy the condition (AF-4) above is to be able to
choose the passage times of the edges on its boundary once we have fixed some constants. Thus, from
Section 2.1.3 onwards the condition (AF-4) is replaced by the condition (AF-4’) stated at this point.

In the two cases.

Lemma 2.4. Let P0 = (Λ0, uΛ
0 , vΛ

0 , AΛ
0 ) be a valid pattern. There exists a pattern P = (Λ, uΛ, vΛ, AΛ)

such that:

• Λ0 ⊂ Λ,

• P
(
AΛ
)

is positive,

• on AΛ, any path from uΛ to vΛ optimal for the passage time among the paths entirely inside Λ
contains a subpath from uΛ

0 to vΛ
0 entirely inside Λ0,

• AΛ ⊂ AΛ
0 ,

• in the case (INF), P satisfies the conditions (AI-1), (AI-2), (AI-3) and (AI-4), and in the case
(FU), P satisfies the conditions (AF-1), (AF-2), (AF-3) and (AF-4).

Consider a valid pattern P0 and a pattern P satisfying the conditions of Lemma 2.4 above. Then, by
this lemma, for every path π, if a vertex x satisfies the condition (π;P), x satisfies the condition (π;P0).
Thus we get NP0 (π) ≥ NP(π) and to prove Proposition 1.8 for the pattern P0, it is sufficient to prove
it for the pattern P. That is why from now on, we can assume that the pattern P introduced at the
beginning of Section 2 satisfies the conditions (AI-1), (AI-2), (AI-3), (AI-4) in the case (INF) and the
conditions (AF-1), (AF-2), (AF-3) and (AF-4) in the case (FU). The proof of Lemma 2.4 is postponed
in Appendix C.

For the remaining of the proof, fix ℓΛ given by (AI-1) and (AF-1). In the case (INF), fix T Λ given
by (AI-3) and in the case (FU), fix

MΛ satisfying (AF-3) and T Λ > |Λ|eMΛ. (2.2)

2.1.2 Typical boxes

Recall that δ is fixed at (1.21) and that, when tmin = 0, ν0 is fixed at (1.22).

Technical lemma. We state in this paragraph the lemma used to create a "forbidden zone" in the
case (FU) (see item (ii) of the seventh paragraph of Section 1.4).

Fix rP an integer such that

rP > max

(
ℓΛ + 2,

2(|B∞(0, ℓΛ + 1)|e(tmin + 1) + T Λ)

δ
,

|B∞(0, ℓΛ + 1)|e(tmin + 1) + T Λ + 1

2tmin

)
. (2.3)

Lemma 2.5. In the case (FU), we can define an event T , whose probability is positive, only depending
on the edges of B∞(0, rP ) and such that for all x, y ∈ ∂B∞(0, rP ), for every self-avoiding path π going
from x to y and using only edges in ∂B∞(0, rP ) and every path π̃ going from x to y using edges of
B∞(0, rP ) and at least one edge which is not in ∂B∞(0, rP ), we have

T (π) < T (π̃).
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Proof. Fix
ν > |∂B∞(0, rP )|e(tmin + 1).

Define the event T as the event on which for all edge e ∈ B∞(0, rP ),

• T (e) < tmin + 1 if e ∈ ∂B∞(0, rP ),

• T (e) > ν else.

Since the support of F is unbounded, the event T has a positive probability. Assume that T occurs.
Then, let x, y ∈ ∂B∞(0, rP ). Let π be a self-avoiding path going from x to y and using only edges in
∂B∞(0, rP ) and π̃ be a path going from x to y using edges of B∞(0, rP ) and at least one edge e′ which
is not in ∂B∞(0, rP ). We get

T (π) ≤ |∂B∞(0, rP )|e(tmin + 1),

and
T (π̃) ≥ T (e′) ≥ ν > |∂B∞(0, rP )|e(tmin + 1).

Hence, T (π) < T (π̃).

Boxes. Recall that, when tmin = 0, ρ is fixed at (1.23). Fix

r1 = 1, r2 > 4drP and

when tmin > 0, r3 > 2d(r2 + 1) (2.4)

when tmin = 0, r3 > max

(
2d(r2 + 1),

2ν0

ρδ

)
.

Note that, in particular, we have the following inequalities:

• r2 > 4r1 > 2r1 since r1 = 1 and rP ≥ 1,

• r3 > 2r2 and r3 > r2 + 1.

Then, for all N ≥ 1, we define

B3,s,N = {v ∈ Z
d : (s − r3)N ≤ z < (s + r3)N}.

and for i ∈ {1, 2}, we define

Bi,s,N = {v ∈ Z
d : (s − ri)N ≤ z ≤ (s + ri)N}.

We use the word "box" to talk about B3,s,N . For i ∈ {1, 2, 3}, ∂Bi,s,N is the set of vertices of Bi,s,N

having an adjacent vertex not contained in Bi,s,N .

Definition 2.6 (Directed path and its selected straight segment). Let u ∈ ∂B2,s,N and v ∈ ∂B1,s,N .

• We fix in an arbitrary way ~π(u, v) an oriented5 path from u to v with a subpath ~π[u, v] between
∂B2,s,N and v using only edges in the same direction. We say that ~π(u, v) is the directed path
between u and v. The subpath ~π[u, v] is called the straight segment between u and v and its length
is greater than or equal to (r2 − r1)N .

• We define the selected straight segment between u and v as the set of vertices c belonging to the
straight segment between u and v and such that the distance for the norm ‖.‖1 between c and

(B2,s,N )c is at least
(r2 − r1)N

2
+ drP .

Remark 2.7. The selected straight segment is not the empty set since v belongs to it. Indeed, the distance

between v and (B2,s,N )c is equal to (r2 − r1)N and (r2 − r1)N >
(r2 − r1)N

2
+ drP since r2 > 2r1 and

r2 > 4drP by (2.4).

5Recall that, as it is defined in Section 1.6, a path, whose endpoints are denoted by u and v, is oriented if this path has
exactly ‖u − v‖1 edges.
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u

v

•

•

B2,s,N

B1,s,N

(a)

u

v

•

•

B2,s,N

B1,s,N

(b)

u

v

•

•

B2,s,N

B1,s,N

(r2−r1)N

2 + drP

(c)

Figure 2: Representation of the objects defined in Definition 2.6 in two dimensions. (a) The directed
path ~π(u, v) is in red. (b) The straight segment ~π[u, v] is in red. (c) The selected straight segment
between u and v is in red.

Typical boxes in the case (INF). In these cases, a box B3,s,N is typical if it verifies the following
properties:

(i) if tmin = 0, every path π entirely contained in B3,s,N from uπ to vπ with ‖uπ − vπ‖1 ≥ N has at
least ρ‖uπ − vπ‖1 edges whose passage time is greater than δ,

(ii) every path π entirely contained in B3,s,N from uπ to vπ with ‖uπ − vπ‖1 ≥ N has a passage time
verifying:

T (π) ≥ (tmin + δ)‖uπ − vπ‖1, (2.5)

(iii) for all vertices u ∈ ∂B2,s,N and v ∈ ∂B1,s,N , there exists a vertex c belonging to the selected
straight segment between u and v such that for every edge e ∈ B∞(c, rP ), T (e) = ∞.

Typical boxes in the case (FU). Fix T the event given by Lemma 2.5. We define a sequence
(ν1(N))N∈N∗ such that:

• for all N ∈ N
∗, ν1(N) > T Λ if tmin > 0 and ν1(N) > max(ν0, T Λ) if tmin = 0,

• we have

lim
N→∞

P




∑

e∈B3,0,N

T (e) ≥ ν1(N)


 = 0. (2.6)

Note that by (2.2) and by the first item above, for all N ∈ N
∗, when AΛ occurs, ν1(N) is strictly greater

than the passage time of every edge belonging to Λ but not to ∂Λ. Note also that L((ν1(N), ∞)) > 0
for all N ∈ N

∗ since the support of L is unbounded.
In this case, a box B3,s,N is typical if it verifies the following properties:

(i) if tmin = 0, every path π entirely contained in B3,s,N from uπ to vπ with ‖uπ − vπ‖1 ≥ N has at
least ρ‖uπ − vπ‖1 edges whose passage time is greater than δ,

(ii) every path π entirely contained in B3,s,N from uπ to vπ with ‖uπ − vπ‖1 ≥ N has a passage time
verifying:

T (π) ≥ (tmin + δ)‖uπ − vπ‖1, (2.5)

(iii) for all vertices u ∈ ∂B2,s,N and v ∈ ∂B1,s,N , there exists a vertex c belonging to the selected
straight segment between u and v such that θcT ∈ T ,

(iv)
∑

e∈B3,s,N

T (e) < ν1(N).
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Properties of typical boxes in both cases.

Lemma 2.8. We have these two properties about typical boxes.

1. Let s ∈ Z
d and N ∈ N

∗. The typical box property only depends on the passage times of the edges
in B3,s,N .

2. We have
lim

N→∞
P (B3,0,N is a typical box) = 1.

Proof.

1. Properties (i) and (ii) in the two cases and property (iv) in the case (FU) only depend on the edges
of B3,s,N . Then, for all vertices u ∈ ∂B2,s,N and v ∈ ∂B1,s,N , every vertex c belonging to the
selected straight segment between u and v has a distance with (B2,s,N )c greater than or equal to
(r2 − r1)N

2
+ drP . Hence, property (iii) only depends on the edges of B2,s,N and B2,s,N ⊂ B3,s,N .

2. First, let us prove that, in the two cases, the probability that (i) is satisfied by B3,0,N goes to 1.
For this item, assume that tmin = 0. Let Π denote the set of self-avoiding paths entirely contained
in B3,0,N . For a path π going from a vertex uπ to a vertex vπ , we say that π satisfies the property
Pδ if π takes at least ρ‖uπ − vπ‖1 edges e such that T (e) > δ. Then, using Lemma 1.9,

P(B3,0,N does not satisfy (i))

≤
∑

uπ ,vπ∈B3,0,N

‖uπ−vπ‖1≥N

P (Pδ is not satisfied by a path of Π whose endpoints are uπ and vπ)

≤
∑

uπ ,vπ∈B3,0,N

‖uπ−vπ‖1≥N

P (Pδ is not satisfied by a path whose endpoints are uπ and vπ)

≤|B3,0,N |2vβ′e−βN −−−−→
N→∞

0,

since |B3,0,N |v is bounded by a polynomial in N .

Now, for the remaining of this proof, tmin can be positive. Using (1.21) and a similar computation
as above, we get that

P(B3,0,N does not satisfy (ii)) −−−−→
N→∞

0.

Recall Definition 2.6. To prove that the probability that (iii) is satisfied by B3,0,N goes to 1, we
begin by associating in a deterministic way to each couple of vertices (u, v) ∈ ∂B2,0,N × ∂B1,0,N a
set of vertices, denoted by V (~π(u, v)) such that:

• every vertex of V (~π(u, v)) belongs to the selected straight segment between u and v,

• for all z1, z2 ∈ V (~π(u, v)), B∞(z1, rP ) ∩ B∞(z2, rP ) = ∅,

• there can be no other set satisfying the two conditions above containing strictly more vertices
than V (~π(u, v)).

Note that there exists a constant K1 only depending on r1, r2 and rP such that |V (~π(u, v))| ≥ K1N .
In the case (INF), we denote by T∞ the event on which for all e ∈ B∞(0, rP ), T (e) = ∞. We use
the notation T to designate the event T in the case (FU) and to designate T∞ in the case (INF),
which allows us to conclude this part of proof in the two cases. We have

P(B3,0,N does not satisfy (iii)) ≤
∑

u∈∂B2,0,N

v∈∂B1,0,N

P
(
∀c ∈ ~π(u, v), θcT does not occur

)

≤
∑

u∈∂B2,0,N

v∈∂B1,0,N

P
(
∀c ∈ V (~π(u, v)), θcT does not occur

)
.
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Fix u ∈ ∂B2,0,N and v ∈ ∂B1,0,N . Since for all z1, z2 ∈ V (~π(u, v)), B∞(z1, rP ) ∩ B∞(z2, rP ) = ∅,
the family of events

({
θcT does not occur

})
c∈V (~π(u,v))

are independent and thus

P
(
∀c ∈ V (~π(u, v)), θcT does not occur

)
≤
(
1 − P(T )

)|V (~π(u,v))|
≤
(
1 − P(T )

)K1N
.

Since P(T ) > 0, we get the existence of a constant K2 not depending on u, v and N such that:

P
(
∀c ∈ V (~π(u, v)), θcT does not occur

)
≤ e−K2N .

Hence,
P(B3,0,N does not satisfy (iii)) ≤ |∂B2,0,N |v|∂B1,0,N |ve−K2N −−−−→

N→∞
0,

since |∂B2,0,N |v|∂B1,0,N |v is bounded by a polynomial in N .

Finally, in the case (FU), we get that the probability that (iv) is satisfied by B3,0,N goes to 1 by
(2.6).

Crossing a box. A self-avoiding path crosses a box B3,s,N if it visits one vertex of ∂B3,s,N , then one
of B1,s,N and then another one of ∂B3,s,N .

The following lemma is a consequence of Lemma 5.2 in [9] which applies using Lemma 2.8.

Lemma 2.9. For any N sufficiently large, we can take D1 > 0 and α > 0 such that for all n ≥ 1,

P(∃z ∈ Γn such that (0, z) ∈ C and ∃ a path from 0 to z that crosses

at most ⌊αn⌋ typical boxes) ≤ e−D1n.
(2.7)

Using Lemma 2.9 above, we fix

N ≥ 1 large enough and D1 > 0, α > 0 such that (2.7) holds. (2.8)

For the remaining of the proof, since N is fixed, we write ν1 instead of ν1(N) in the case (FU). We fix
δ′ > 0 such that

δ′ < min

(
δ

2
,

1

N

)
. (2.9)

Note that, in particular, since N ≥ 1, we have δ′ < 1.

2.1.3 Boundaries of the patterns in the case (FU)

In the case (FU), we fix ν2 > ν1 such that

AΛ ∩ {∀e ∈ ∂Λ, T (e) ∈ (ν1, ν2)} has a positive probability. (2.10)

It is possible since by the condition (AF-4) in Section 2.1.1, for all M >, AΛ ∩ {∀e ∈ ∂Λ, T (e) > M}
has a positive probability.

(AF-4’) For the remaining of the proof, we now replace AΛ by

AΛ ∩ {∀e ∈ ∂Λ, T (e) ∈ (ν1, ν2)}.

As announced in Remark 2.3, from now on, the event AΛ of the pattern P has been modified. The
assumption (AF-4) is not satisfied by this new event but it satisfies the assumption (AF-4’) above.

Remark 2.10. In the case (FU), since there is no edge whose passage time is greater than ν1 in a typical
box, there can be no pattern in a typical box.
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2.1.4 k-penalized paths, shortcuts and successful boxes

Recall that r3 is fixed at (2.4) and that N is fixed at (2.8). We partition Z
d with boxes B3,s,N in

K = K(r3) = |B3,0,1|v ways as follows. For each z ∈ B3,0,1, the partition associated with z is

{
B3,s,N , s − z ∈ 2r3Z

d
}

.

For convenience, we index these different partitions from 1 to K. For k ∈ {1, . . . , K}, the boxes belonging
to the k-th partition are called k-boxes.

Recall that we say that a self-avoiding path π takes the pattern if there exists z ∈ Z
d satisfying

the condition (π;P). For k ∈ {1, . . . , K}, we say that a self-avoiding path π takes a pattern entirely
contained in a k-box if there exists z ∈ Z

d such that:

• z satisfies the condition (π,P),

• there exists a k-box containing B∞(z, ℓΛ).

k-penalized paths. For k ∈ {1, . . . , K}, a k-penalized path is a self-avoiding path which takes no
pattern entirely contained in a k-box.

Penalized passage time. For all x ∈ Z
d, and for k ∈ {1, . . . , K}, we define

tk(0, x) = inf{T (π) : π is a k-penalized path from 0 to x},

with the convention inf ∅ = ∞.

k-geodesics. For all x ∈ Z
d, for all k ∈ {1, . . . , K}, a k-geodesic from 0 to x is a k-penalized path γ

from 0 to x such that T (γ) = tk(0, x).

Shortcuts. For all boxes B3,s,N , we say that a path π has a shortcut in B3,s,N if π crosses B3,s,N and
if there exist two vertices u and v of π and a path π′ going from u to v such that:

• π′ is entirely contained in B3,s,N ,

• πu,v and π′ have only u and v as vertices in common,

• π′ takes a pattern entirely contained in B3,s,N ,

• T (π′) < T (πu,v ∩ B3,s,N ).

Successful boxes. Let B3,s,N be a box and π a self-avoiding path. We say that B3,s,N is successful
for the path π if the following two conditions hold:

• π crosses B3,s,N ,

• B3,s,N is a typical box or π has a shortcut in B3,s,N .

Sk-sequences. For every k ∈ {1, . . . , K}, for every k-geodesic γ between two vertices, the Sk-sequence
of γ is the sequence of different k-boxes successful for γ by order of first visit by γ. Note that the boxes
of this Sk-sequence are pairwise disjoint by the definition of k-boxes.

2.2 Proof

2.2.1 Reduction

We begin the proof with some definitions. Recall that α is fixed at (2.8) and that K is fixed at the
beginning of Section 2.1.4. For all n ≥ 1, write

Qn =
⌊αn

K

⌋
.
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Fix
n ≥ 1 and x ∈ Γn (2.11)

From now on, when we talk about a path, a geodesic or a k-geodesic without specifying its extremities,
we mean that it is from 0 to x. For all k ∈ {1, . . . , K}, we define

Gk = {(0, x) ∈ C and there exists a k-geodesic whose passage time is finite having

at least Qn boxes in its Sk-sequence}.

Selected k-geodesic and Sk-variables. For all k ∈ {1, . . . , K}, on the event Gk,

• we define the selected k-geodesic as the first k-geodesic in the lexicographical order6 among those
having at least Qn boxes in their Sk-sequences,

• for all j ∈ {1, . . . , Qn}, we define the random variable Sk
j as the vertex s such that B3,s,N is the

j-th box of the Sk-sequence of the selected k-geodesic.

Events Mk. For all k ∈ {1, . . . , K} and all j ∈ {1, . . . , Qn}, we define

Mk(j) = Gk∩{the selected k-geodesic does not have a shortcut in any of the first j boxes of its Sk-sequence}.

To make the end of this proof easier to read, we define the events

A = {(0, x) ∈ C and there exists a geodesic from 0 to x which does not take the pattern},

B = {every path from 0 to Γn crosses at least ⌊αn⌋ + 1 typical boxes},

Note that A is the event considered in Proposition 1.8 and B the complementary event to the one
considered in Lemma 2.9. The proof of Proposition 1.8 is based on the following two lemmas.

Lemma 2.11. We have A ∩ B ⊂
K⋃

k=1

Mk(Qn).

Lemma 2.12. There exists λ ∈ (0, 1) which does not depend on x and n such that for all k ∈ {1, . . . , K},

P
(
Mk(Qn)

)
≤ λQn .

Proof of Proposition 1.8 using Lemma 2.11 and 2.12. Recall that N is fixed at (2.8) and that n and x
are fixed at (2.11) but that D1 and λ do not depend on x and n. We have

P(A) ≤ P(A ∩ B) + P(Bc)

≤
K∑

k=1

P
(
Mk(Qn)

)
+ P(Bc) by Lemma 2.11,

≤ KλQn + P(Bc) by Lemma 2.12,

≤ KλQn + e−D1n by Lemma 2.9.

As D1 > 0 and λ ∈ (0, 1), and as this inequality holds for any n ≥ 1 and any x ∈ Γn, we get the existence
of two constants C > 0 and D > 0 such that for all n, for all x ∈ Γn,

P(A) ≤ D exp(−Cn).

Proof of Lemma 2.11. Assume that A occurs. Then there exists a self-avoiding path γ from 0 to x such
that:

• γ does not take the pattern,

6The lexicographical order is based on the directions of the consecutive edges of the geodesics.
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• T (γ) = t(0, x) < ∞.

For all k ∈ {1, . . . , K}, we get that:

• γ is a k-penalized path,

• T (γ) = t(0, x) = tk(0, x) < ∞.

Thus, for all k ∈ {1, . . . , K}, γ is a k-geodesic from 0 to x and no k-geodesic has a shortcut in any
box. Assume that B also occurs. Then γ crosses at least ⌊αn⌋ + 1 typical boxes. Hence, there exists

k ∈ {1, . . . , K} such that γ crosses at least Qn =
⌊αn

K

⌋
typical boxes. Since every typical k-box crossed

by γ is a successful box for γ, γ is a k-geodesic having at least Qn boxes in its Sk-sequence. Hence
the event Gk occurs and the selected k-geodesic (which is not necessarily γ) does not have a shortcut in
any of the first Qn boxes of its Sk-sequence since it does not have a shortcut in any box. So the event
Mk(Qn) occurs.

Now, for the remaining of the proof, the aim is to prove Lemma 2.12.

Modification argument. We introduce an independent copy T ′ of the environment T , the two being
defined on the same probability space. It is thus convenient to refer to the considered environment when
dealing with the objects defined above. To this aim, we shall use the notation {T ∈ Mk(j)} to denote
that the event Mk(j) holds with respect to the environment T . In other words, Mk(j) is now seen as a
subset of [0, ∞]E where E is the set of all the edges. Similarly, we denote by Sk

j (T ′) the random variables
defined above but in the environment T ′.

Fix k ∈ {1, . . . , K} and ℓ ∈ {1, . . . , Qn}. On {T ∈ Mk(ℓ)}, the event Gk occurs and B3,Sk
ℓ

(T ),N is the

ℓ-th box of the Sk-sequence of the selected k-geodesic. From this new environment, we associate a set
of edges E∗

modif(T ) which is contained in B3,Sk
ℓ

(T ),N . It corresponds to the edges for which we want to
modify the time. We get a new environment T ∗ defined for all edges e by:

T ∗(e) =

{
T (e) if e /∈ E∗

modif(T ),
T ′(e) else.

For y and z in Z
d, we denote by t∗(y, z) the geodesic time between y and z in the environment T ∗. Note

that T and T ∗ do not have the same distribution as the set E∗
modif(T ) depends on T .

The proof of Lemma 2.12 relies on the following lemma whose proof is given in the next subsection.
Recall that, in the case (FU), ν2 is fixed at (2.10) and that, if tmin = 0 in the cases= (INF), ν0 is fixed
at (1.22).

Lemma 2.13. There exists η = η(N) > 0 such that for all ℓ in {1, . . . , Qn}, for all k ∈ {1, . . . , K},
there exist measurable functions E∗

−, E∗
mid

, E∗
+, E∗

∞ all from [0, ∞]E to P(E) and a measurable function
C : [0, ∞]E 7→ Z

d such that:

(i) on the event {T ∈ Mk(ℓ)}, E∗
−(T ), E∗

mid
(T ), E∗

+(T ), E∗
∞(T ) and B∞(C(T ), ℓΛ) are pairwise

disjoint and are contained in B3,Sk
ℓ

(T ),N ,

(ii) on the event {T ∈ Mk(ℓ)}, we have P (T ′ ∈ B∗(T )|T ) ≥ η, where {T ′ ∈ B∗(T )} is a shorthand for
the event on which:

• ∀e ∈ E∗
−(T ), T ′(e) ≤ tmin + δ′,

• ∀e ∈ E∗
mid

(T ), T ′(e) ∈ (tmin + δ, ν0),

• ∀e ∈ E∗
+(T ), T ′(e) > ν2,

• ∀e ∈ E∗
∞(T ), T ′(e) = ∞,

• θC(T )T
′ ∈ AΛ.

(iii) {T ∈ Mk(ℓ)} ∩ {T ′ ∈ B∗(T )} ⊂ {T ∗ ∈ Mk(ℓ − 1) \ Mk(ℓ)} and Sk
ℓ (T ∗) = Sk

ℓ (T ).

Remark 2.14. Several of the functions of the previous lemma can be equal to the empty set depending
on the cases. Thus this does not prevent us from having P (T ′ ∈ B∗(T )|T ) ≥ η. In particular, for every
environment T :
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• in the case (INF), E∗
+(T ) = ∅,

• in the case (FU), E∗
∞(T ) = ∅,

• in the two cases, if tmin > 0, E∗
mid

(T ) = ∅.

Proof of Lemma 2.12 using Lemma 2.13. Let ℓ ∈ {1, . . . , Qn} and k ∈ {1, . . . , K}. For every s ∈ Z
d and

E∗ subset of edges of B3,s,N , let us consider the environment T ∗
s,E∗ defined for all edges e by:

T ∗
s,E∗(e) =

{
T ′(e) if e ∈ E∗,
T (e) else.

We define E∗
modif(T ) = E∗

−(T ) ∪ E∗
mid(T ) ∪ E∗

+(T ) ∪ E∗
∞(T ) ∪ B∞(C(T ), ℓΛ). Thus, for every s and E∗,

T ∗
s,E∗ and T have the same distribution and on the event {T ∈ Mk(ℓ)}∩{Sk

ℓ (T ) = s}∩{E∗
modif(T ) = E∗},

T ∗ = T ∗
s,E∗ . So, using this environment and writing with indicator functions the result of Lemma 2.13,

we get:

1{T ∈Mk(ℓ)}1{Sk
ℓ

(T )=s}1{E∗

modif
(T )=E∗}1{T ′∈B∗(T )} ≤ 1{T ∗

s,E∗ ∈Mk(ℓ−1)\Mk(ℓ)}1{Sk
ℓ

(T ∗

s,E∗ )=s}, (2.12)

We compute the expectation on both sides. For the left side, we have

E

[
1{T ∈Mk(ℓ)}1{Sk

ℓ
(T )=s}1{E∗

modif
(T )=E∗}1{T ′∈B∗(T )}

]

=E

[
1{T ∈Mk(ℓ)}1{Sk

ℓ
(T )=s}1{E∗

modif
(T )=E∗}E

[
1{T ′∈B∗(T )}

∣∣T
]]

.

Since on the event {T ∈ Mk(ℓ)} ∩ {Sk
ℓ (T ) = s}, we have P (T ′ ∈ B∗(T )|T ) ≥ η, the left side is

bounded from below by ηP(T ∈ Mk(ℓ), Sk
ℓ (T ) = s, E∗

modif(T ) = E∗). Since T ∗
s,E∗ and T have the

same distribution, using (2.12), we get:

ηP(T ∈ Mk(ℓ), Sk
ℓ (T ) = s, E∗

modif(T ) = E∗) ≤ P
(
T ∈ Mk(ℓ − 1) \ Mk(ℓ), Sk

ℓ (T ) = s
)

.

Then, by writing K ′ the number of subsets of edges of B3,0,N and by summing on all subsets E∗ of edges
of B3,s,N , we get for all s ∈ Z

d,

η

K ′
P(T ∈ Mk(ℓ), Sk

ℓ (T ) = s) ≤ P
(
T ∈ Mk(ℓ − 1) \ Mk(ℓ), Sk

ℓ (T ) = s
)

.

Finally, by summing7 on all s ∈ Z
d, we get

η

K ′
P(T ∈ Mk(ℓ)) ≤ P(T ∈ Mk(ℓ − 1) \ Mk(ℓ)).

Now, since Mk(ℓ) ⊂ Mk(ℓ − 1),

P(T ∈ Mk(ℓ − 1) \ Mk(ℓ)) = P
(
T ∈ Mk(ℓ − 1)

)
− P

(
T ∈ Mk(ℓ)

)
.

Thus,
P(T ∈ Mk(ℓ)) ≤ λP(T ∈ Mk(ℓ − 1)),

where λ =
1

1 + η
K′

∈ (0, 1) does not depend on x and n. Hence, using P(T ∈ Mk(0)) = 1, we get by

induction
P(T ∈ Mk(Qn)) ≤ λQ

n .

7Note that here, we must have the event {Sk
ℓ

(T ∗

s,E∗ ) = s} on the right side of the inequality (2.12) to sum on all s ∈ Z
d.
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2.2.2 Proof of Lemma 2.13: modification

Let ℓ ∈ {1, . . . , Qn}, k ∈ {1, . . . , K} and s ∈ Z
d such that B3,s,N is a k-box. Assume that the event

{T ∈ Mk(ℓ)} ∩ {Sk
ℓ (T ) = s} occurs. Note that (0, x) ∈ C. We denote by γ the selected k-geodesic. We

know that:

(H1) γ has at least Qn boxes in its Sk-sequence,

(H2) γ does not have a shortcut in any of the first ℓ boxes of its Sk-sequence,

(H3) B3,s,N is the ℓ-th box of the Sk-sequence of γ and is a typical box.

Construction of the forbidden zone and definition of C(T ). Let u2 (resp. u1) be the entry point
of γ in B2,s,N (resp. B1,s,N ). Since B3,s,N is a typical box, we can define:

• π as the path ~π(u2, u1) defined in Definition 2.6,

• C(T ) the first vertex belonging to the selected straight segment between u2 and u1 and satisfying
property (iii) of a typical box. Such a vertex exists by Remark 2.7 and since B3,s,N is a typical box
in the environment T . Recall that in the case (INF), for every edge e ∈ B∞(C(T ), rP ), T (e) = ∞
and in the case (FU), θ−C(T )T ∈ T .

We use the expression "forbidden zone" to refer to B∞(C(T ), rP ) \ ∂B∞(C(T ), rP ). This is the place
where we want to place the pattern taken by the shortcut in the modified environment.

Properties of the forbidden zone.

Lemma 2.15. 1. The path γ does not visit any vertex of the forbidden zone.

2. The ball B∞(C(T ), ℓΛ) is contained in the forbidden zone.

3. The forbidden zone is contained in B2,s,N and for every c in the forbidden zone and every z ∈
∂B2,s,N ,

‖z − c‖1 ≥
(r2 − r1)N

2
.

Proof. 1. In the case (INF), every edge of the forbidden zone has an infinite passage time although γ
has a finite passage time. In the case (FU), it follows from Lemma 2.5 and the fact that γ crosses
this box and is a geodesic in the environment T .

2. It comes from the inequality rP > ℓΛ + 1 by (2.3).

3. By Definition 2.6, C(T ) belongs to B2,s,N and the distance between C(T ) and (B2,s,N )c is at

least ‖z − c‖1 ≥
(r2 − r1)N

2
. We get the result using that, for every c in the forbidden zone,

‖c − C(T )‖1 ≤ drP .

Construction of the shortcut π′. Let uπ be the last vertex of π belonging to γ before π visits the
forbidden zone and vπ be the first vertex of π belonging to γ after the forbidden zone. One can check
that we can build a path, denoted by π′ for the remaining of the proof, such that:

• π′ is a self-avoiding path from uπ to vπ,

• π′ is the concatenation of the subpath of π between uπ and the forbidden zone, then of a path
entirely contained in the forbidden zone and then of the subpath of π between the forbidden zone
and vπ,

• π′ visits B∞(C(T ), ℓΛ) for the first time in θ−C(T )u
Λ and for the last time in θ−C(T )v

Λ, and between

these two vertices, π′ is entirely contained in B∞(C(T ), ℓΛ). Furthermore, in the case (INF),
between these two vertices, π′ is equal to θC(T )π∞ where π∞ is defined in Assumption (AI-3). Note
that, if T ′ ∈ B∗(T ) (where B∗(T ) is defined in Lemma 2.13), then θC(T )π∞ has finite passage time
in the environment T ∗,
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B2,s,N

B1,s,N

u2

u1

•

•

uπ

vπ

•

•

γ

π′

Figure 3: Example of construction of the shortcut π′ in two dimensions. The shortcut π′ is represented
in green, the path γ in gray, the ball B∞(C(T ), ℓΛ) in orange and the forbidden zone by the hatched area

• we have an upper bound for the number of edges in π′:

|π′|e ≤ ‖uπ − vπ‖1 + |B∞(0, ℓΛ + 1)|e. (2.13)

Note that, by the second item above and the definition of uπ and vπ, π′ only has uπ and vπ in common
with γ. See Figure 3 for an example of construction of the shortcut π′.

2.2.2.1 Beginning of the modification. There are two cases for the beginning of the modification
depending on whether tmin = 0 or tmin > 0 and on the number of edges in γuπ ,vπ

, denoted by |γuπ ,vπ
|e.

We have to distinguish two cases because we must be able to have a lower bound on the passage time of
γuπ,vπ

. To this aim, if γuπ ,vπ
takes enough edges, we can use the second property of a typical box and if

it is not the case, we can have a lower bound using the number of edges of γuπ,vπ
and tmin if tmin > 0.

If tmin = 0 and if we can not use the second property of a typical box, then we use the modification
to increase the passage times of γuπ ,vπ

. We describe the modification in each case. See Figure 4 for a
representation of the objects involved in the modification.

Case A: assume tmin = 0 and |γuπ ,vπ
|e < N . The beginning of the modification is the following.

• The edges of E∗
mid(T ) are the edges e belonging to γuπ,vπ

and such that T (e) < tmin + δ.

• Recall that C(T ) is defined at the beginning of Section 2.2.2.

• The edges of E∗
−(T ) are the edges e of B3,s,N satisfying the following two conditions:

– e belongs to (γ \ γuπ ,vπ
or to π′) but not to B∞(C(T ), ℓΛ),

– T (e) ≥ tmin + δ′.

Case B: assume tmin > 0 or |γuπ ,vπ
|e ≥ N . The beginning of the modification is the following.

• E∗
mid(T ) = ∅.
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B2,s,N

B1,s,N

u2

u1

•

•
uπ

vπ
• •

γ
π′

Case A: when tmin = 0 and |γuπ,vπ
|e < N .

B2,s,N

B1,s,N

u2

u1 = vπ

•

•
uπ

•

γ

π′

Case B: when tmin > 0 or |γuπ ,vπ
|e ≥ N .

Figure 4: The modification. In the cases A and B, the pattern centered in C(T ) is represented in orange
and the forbidden zone by the hatched area. In the case A, γ is the path composed by the edges in
green up to uπ, then the edges in red and then the edges in green from vπ. In the case B, γ is the path
composed by the edges in blue. In the cases A and B, every edge of E∗

−(T ) belongs to the green part of
the figure. When the modification is successful, the passage times of the edges in green which are greater
than or equal to tmin + δ′ are replaced by passage times smaller than tmin + δ′. In the case A, every
edge of E∗

mid(T ) belongs to the red part. When the modification is successful, the passage times of the
edges in red which are smaller than tmin + δ are replaced by passage times belonging to (tmin + δ, ν0).
In the case B, the passage times of the edges in blue are not modified. The boundary of B3,s,N is not
represented even if B2,s,N is included in B3,s,N . The edges of E∗

∞(T ) or E∗
+(T ) (depending on the case

(INF) or (FU)) are all edges which are not in green, red, orange and blue.

• Recall that C(T ) is defined at the beginning of Section 2.2.2.

• The edges of E∗
−(T ) are the edges e of B3,s,N satisfying the following two conditions:

– e belongs to π′ but not to B∞(C(T ), ℓΛ),

– T (e) ≥ tmin + δ′.

2.2.2.2 End of the modification. Up to now, we have defined E∗
−(T ), E∗

mid(T ) and C(T ). Note
that E∗

−(T ) and E∗
mid(T ) disjoint sets included in B3,s,N ∩ (γ ∪ π′). It remains to define E∗

+(T ) and
E∗

∞(T ). There are two cases depending on whether there can be edges with infinite passage times or
not.

In the case (INF). In this case, E∗
+(T ) = ∅ and the edges of E∗

∞(T ) are the edges of B3,s,N which
does not belong to B∞(C(T ), ℓΛ), to π′ or to γ.

In the case (FU). In this case, E∗
∞(T ) = ∅ and the edges of E∗

+(T ) are the edges of B3,s,N which
does not belong to B∞(C(T ), ℓΛ), to π′ or to γ.

2.2.3 Proof of Lemma 2.13: consequences of the modification

Assume for the remaining of the proof that the event

{T ∈ Mk(ℓ)} ∩ {Sk
ℓ (T ) = s} ∩ {T ′ ∈ B∗(T )} occurs,
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where B∗(T ) is defined in (ii) of Lemma 2.13. We now state some consequences of the modification useful
for the following.

(a) If |γuπ ,vπ
|e < N , every edge in γuπ,vπ

belongs to B3,s,N . Thus, every edge belonging to E∗
mid(T )

belongs to B3,s,N .

(b) B∞(C(T ), ℓΛ) is entirely contained in B3,s,N .

(c) We have T ∗(γ) ≤ T (γ). Furthermore, for all vertices u and v in ∂B3,s,N visited by γ, T ∗(γu,v) ≤
T (γu,v).

(d) T ∗(π′) < T ∗(γuπ ,vπ
∩ B3,s,N ).

(e) There is only one pattern entirely contained in B3,s,N in the environment T ∗, which is the one
centered in C(T ).

(f) Let π0 be a self-avoiding path from ∂B3,s,N to ∂B3,s,N entirely contained in B3,s,N such that in
the environment T ∗:

• in the case (INF), it has a finite passage time,

• in the case (FU), it does not take any edge whose passage time is greater than ν1,

• in the cases (INF) and (FU), it does not take any pattern contained in B3,s,N .

Then every edge of B3,s,N belonging to π0 belongs to γ.

(g) Let π̃ be a k-penalized path from 0 to x in the environment T ∗ with T ∗(π̃) finite. Then

T (π̃) − T ∗(π̃) ≤ T (γ) − T ∗(γ).

In other words, no k-penalized path can save more time than γ during the modification.

Proof of (a). Since π is included in B2,s,N , uπ ∈ B2,s,N . Thus

‖uπ − sN‖1 ≤ r2N. (2.14)

Assume that |γuπ,vπ
|e < N and let z be a vertex visited by γuπ,vπ

. We have

‖z − uπ‖1 ≤ N. (2.15)

Combining (2.14) and (2.15) gives

‖z − sN‖1 ≤ (r2 + 1)N < r3N,

since r3 > r2 + 1 by (2.4). Hence z belongs to B3,s,N . For the second part of the property, in the case
B of the modification, there is no edge in E∗

mid(T ) and in the case A of the modification all the edges of
E∗

mid(T ) belong to γuπ ,vπ
.

Proof of (b). By Lemma 2.15, B∞(C(T ), ℓΛ) is contained in the forbidden zone and the forbidden zone
is contained in B2,s,N . Since r3 > r2, B2,s,N is contained in B3,s,N .

Proof of (c). In the case B of the modification, the passage time of every edge of γ in T ∗ is equal to
its passage time in T . Thus, property (c) holds. Now, assume the case A of the modification and recall
that in this case tmin = 0. The only edges of γ whose passage times in T ∗ are strictly greater than their
passage times in T are those in γuπ ,vπ

and all of these edges are contained in B3,s,N by property (a)
above. Hence, to prove property (c), it is sufficient to prove that T ∗(γu,v) ≤ T (γu,v) when u is the last
vertex in ∂B3,s,N visited by γ before it visits uπ and v is the first vertex in ∂B3,s,N visited by γ after it
visits vπ . So, let u and v be these vertices. First, since uπ belongs to B2,s,N and u to ∂B3,s,N , we have

‖u − uπ‖1 ≥ (r3 − r2)N ≥ N,
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B2,s,N B1,s,Nγ

π′
rP

uπ
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• •

Figure 5: A picture to illustrate (2.22). The legend is the same as in Figure 4. In this example in two
dimensions, when tmin > 0 and |γuπ ,vπ

|e < N (a special case of case B of the modification), γuπ,vπ
has

to take ‖uπ − vπ‖1 edges in the direction ε1 and also at least 2rP edges in the direction ε2 to avoid the
forbidden zone.

since r3 > r2 + 1 by (2.4). Hence, by the first property of a typical box, γu,uπ
takes at least ρ(r3 − r2)N

edges whose passage times is greater than δ. Since δ > δ′ by (2.9), all of these edges belongs to E∗
−(T )

and there are no edges of γu,uπ
whose passage times have been increased. Thus

T ∗(γu,uπ
) − T (γu,uπ

) ≤ −ρ(r3 − r2)N(δ − δ′). (2.16)

The same arguments give

T ∗(γvπ,v) − T (γvπ,v) ≤ −ρ(r3 − r2)N(δ − δ′). (2.17)

Furthermore, since the only edges of γuπ,vπ
whose passage times have been modified belong to E∗

mid(T ),

T ∗(γuπ,vπ
) − T (γuπ,vπ

) ≤ Nν0. (2.18)

Thus, we get

T ∗(γu,v) − T (γu,v) = T ∗(γu,uπ
) − T (γu,uπ

) + T ∗(γuπ,vπ
) − T (γuπ,vπ

) + T ∗(γvπ ,v) − T (γvπ,v)

≤ N(ν0 − 2ρ(δ − δ′)(r3 − r2)) by (2.16), (2.17) and (2.18),

≤ 0,

since r3 > 2r2, δ > 2δ′, r3 is large enough compared to ν0 by (2.4) and N ≥ 1 by (2.8).

Proof of (d). First, in all cases, by (2.13), and by (2.1) and (2.2),

T ∗(π′) ≤ (‖uπ − vπ‖1 + |B∞(0, ℓΛ + 1)|e)(tmin + δ′) + T Λ. (2.19)

To conclude this proof, we distinguish three cases.
If |γuπ,vπ

|e ≥ N (case B of the modification). First, let us prove that

T ∗(γuπ,vπ
∩ B3,s,N) ≥ ‖uπ − vπ‖1(tmin + δ). (2.20)

Since this is the case B of the modification, the edges of γuπ,vπ
have not been modified. Thus, if γuπ,vπ

is
entirely contained in B3,s,N the second property of the typical boxes gives (2.20). If γuπ ,vπ

is not entirely
contained in B3,s,N , let u′ be the first vertex of ∂B3,s,N visited by γuπ,vπ

. The vertex uπ is in B2,s,N , so
‖u′ − uπ‖1 ≥ (r3 − r2)N ≥ N since r3 > r2 by (2.4). Using that ‖uπ − vπ‖1 ≤ d(r2 + r1)N , the fact that
r3 − r2 > d(r2 + r1) by (2.4) and the second property of a typical box gives:

T ∗(γuπ ,vπ
∩ B3,s,N) ≥ ‖u′ − uπ‖1︸ ︷︷ ︸

≥(r3−r2)N

(tmin + δ) ≥ (r3 − r2)N(tmin + δ) ≥ ‖uπ − vπ‖1(tmin + δ).
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This concludes the proof of (2.20). Then, combining (2.19) and (2.20), and using that ‖uπ − vπ‖1 ≥ rP ,
we have

T ∗(γuπ ,vπ
∩ B3,s,N ) − T ∗(π′) ≥ ‖uπ − vπ‖1(δ − δ′) − |B∞(0, ℓΛ + 1)|e(tmin + δ′) − T Λ

≥ rP (δ − δ′) − |B∞(0, ℓΛ + 1)|e(tmin + δ′) − T Λ > 0,

by (2.3) and since δ > 2δ′.
If tmin = 0 and |γuπ ,vπ

|e < N (case A of the modification). In the environment T ∗, all the edges
e belonging to γuπ,vπ

have a time greater than tmin + δ and the property (a), γuπ ,vπ
∩ B3,s,N = γuπ,vπ

.
Hence

T ∗(γuπ,vπ
∩ B3,s,N) ≥ ‖uπ − vπ‖1(tmin + δ). (2.21)

We conclude the proof of this case as the previous one combining (2.19) and (2.21).
If tmin > 0 and |γuπ ,vπ

|e < N (case B of the modification). In this case, since C(T ) belongs to
the selected straight segment between u2 and u1 and since vπ is visited by π after the forbidden zone, vπ

belongs to the selected straight segment. Thus, the distance between vπ and (B2,s,N )c is greater than

or equal to
(r2 − r1)N

2
. Then, since |γuπ,vπ

|e < N , we have ‖uπ − vπ‖1 < N . Since r2 > 4r1 by (2.4),

uπ does not belong to ∂B2,s,N ∩ π and thus πuπ ,vπ
takes edges in only one direction: the direction of the

selected straight segment. Denote this direction by εi. Then γuπ ,vπ
has to take ‖uπ − vπ‖1 edges in the

direction εi but it can not take edges of the forbidden zone (see Figure 5). Hence

|γuπ,vπ
|e ≥ ‖uπ − vπ‖1 + 2rP . (2.22)

By the property (a), we have |γuπ ,vπ
|e = |γuπ ,vπ

∩ B3,s,N |e and thus

T ∗(γuπ ,vπ
∩ B3,s,N ) ≥ (‖uπ − vπ‖1 + 2rP )tmin. (2.23)

Combining (2.19) and (2.23) gives

T ∗(γuπ ,vπ
∩ B3,s,N ) − T ∗(π′) ≥ 2rP tmin − ‖uπ − vπ‖1δ′ − |B∞(0, ℓΛ + 1)|e(tmin + δ′) − T Λ

≥ 2rP tmin − Nδ′ − |B∞(0, ℓΛ + 1)|e(tmin + δ′) − T Λ > 0,

since Nδ′ ≤ 1 by (2.9) and since rP is large enough by (2.3).

Proof of (e). In the case (INF). Recall that the pattern satisfies the boundary condition (see Definition
2.1). Thus, if there is a pattern entirely contained in B3,s,N centered in a vertex z, it implies that there
exists a path of length 2(ℓΛ − 1) such that:

• it goes from z − (ℓΛ − 1)ε1 + (ℓΛ − 1)ε2 to z + (ℓΛ − 1)ε1 + (ℓΛ − 1)ε2 only using edges in the
direction ε1,

• its passage time is finite,

• there exists no path with finite passage time from ∂B3,s,N to one of its vertices.

In the environment T ∗, the only edges with finite passage times are edges belonging to γ, π′, SC(T ),ℓΛ

and B∞(C(T ), ℓΛ − 3). For every vertex z belonging to γ and π′, there exists a path from ∂B3,s,N to z
with finite passage time. Furthermore, there is no path of length 2(ℓΛ − 1) with finite passage time using
only edges in the direction ε1 having at least one edge in B∞(C(T ), ℓΛ − 3) and which does not visit any
vertex of π′. Thus, the only path of length 2(ℓΛ −1) satisfying the three conditions above is the one from
C(T ) − (ℓΛ − 1)ε1 + (ℓΛ − 1)ε2 to C(T ) + (ℓΛ − 1)ε1 + (ℓΛ − 1)ε2 and the only pattern entirely contained
in B3,s,N is the one centered in C(T ).

In the case (FU). If, in the environment T ∗, there is a pattern entirely contained in B3,s,N centered
in a vertex z, then for every edge e ∈ ∂B∞(z, ℓΛ), T (e) ∈ (ν1, ν2) by the assumption (AF-4’) in Section
2.1.3. Since B3,s,N is a typical box in the environment T , for every edge e ∈ B3,s,N , T (e) ≤ ν1. The only
edges e such that T ∗(e) > T (e) are:

• the edges of E∗
mid(T ) when tmin = 0 but for every edge e ∈ E∗

mid(T ), T ∗(e) < ν0 < ν1 since ν1 > ν0,
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• the edges of E∗
+(T ) but for every edge e ∈ E∗

+(T ), T ∗(e) > ν2,

• some edges in B∞(C(T ), ℓΛ).

Thus, if an edge e ∈ B3,s,N is such that T ∗(e) ∈ (ν1, ν2), this edge belongs to B∞(C(T ), ℓΛ). Thus there
is only one pattern entirely contained in B3,s,N which is the one centered in C(T ).

Proof of (f). Let π0 be a path from ∂B3,s,N to ∂B3,s,N entirely contained in B3,s,N such that in the
environment T ∗, it has a finite passage time in the case (INF) and it does not take any edge whose
passage time is greater than ν1 in the case (FU). Then the only edges of B3,s,N that π0 can take are
edges of γ, π′ and some edges of B∞(C(T ), ℓΛ). Furthermore, since by Lemma 2.15, γ does not take any
edge of the forbidden zone, if π0 links two vertices of γ without taking edges of π′, then π0 is exactly γ
between these two vertices.

Now, assume that π0 does not take any pattern entirely contained in B3,s,N . Since π0 can not take
edges of B∞(C(T ), ℓΛ) without taking the pattern centered in C(T ), it remains to prove that π0 does
not take any edge of π′. But since π′ is a self-avoiding path entirely contained in B2,s,N which takes the
pattern centered in C(T ), and which has only two vertices in common with γ, if π0 takes an edge of π′,
π0 takes the pattern centered in C(T ), which is impossible.

Proof of (g). Let π̃ be a k-penalized path from 0 to x in the environment T ∗ with finite passage time in
the environment T ∗. There are three cases.

First case. If π̃ does not take edges of B3,s,N , T ∗(π̃) = T (π̃) since the only edges whose passage
time have been modified are edges of B3,s,N . Property (g) follows from (c).

Second case. Assume that we are in the case (FU) and that π̃ takes an edge e′ ∈ B3,s,N such that
T ∗(e′) ≥ ν1. Then,

T ∗(π̃) =
∑

e∈π̃

T ∗(e) =
∑

e∈π̃∩B3,s,N

T ∗(e) +
∑

e∈π̃∩Bc
3,s,N

T ∗(e).

Since e′ ∈ π̃ ∩ B3,s,N and since B3,s,N is a typical box, we have using the fourth property of a typical
box ∑

e∈π̃∩B3,s,N

T ∗(e) ≥ ν1 >
∑

e∈B3,s,N

T (e) ≥
∑

e∈π̃∩B3,s,N

T (e).

Furthermore, the passage times of the edges outside B3,s,N have not been modified. Hence,

∑

e∈π̃∩Bc
3,s,N

T ∗(e) =
∑

e∈π̃∩Bc
3,s,N

T (e).

Thus,

T ∗(π̃) =
∑

e∈π̃∩B3,s,N

T ∗(e) +
∑

e∈π̃∩Bc
3,s,N

T ∗(e) >
∑

e∈π̃∩B3,s,N

T (e) +
∑

e∈π̃∩Bc
3,s,N

T (e) = T (π̃). (2.24)

In this case, property (g) follows from (2.24) and from property (c).
Third case. Now assume that π̃ takes at least one edge in B3,s,N and that in the case (FU), π̃

does not take any edge in B3,s,N having a passage time greater than or equal to ν1. Since π̃ has a finite
passage time in the environment T ∗, in the case (INF), π̃ does not take any edge e′ in B3,s,N such that
T ∗(e′) = ∞. Since π̃ is a k-penalized path, it does not take any pattern entirely contained in B3,s,N .
Hence, using (f), the only edges in B3,s,N that π̃ can take are edges of γ. So, let u1, v1, . . . , uκ, vκ be the
successive entry and exit points of π̃ in B3,s,N , we get for all i ∈ {1, . . . , κ}, π̃ui,vi

= γui,vi
. Furthermore,

we also get that T (π̃) is finite. Indeed, since the only edges whose passage time have been modified are
the edges in B3,s,N and since T ∗(π̃) is finite, the only edges with infinite passage time in the environment
T that π̃ can take are edges in B3,s,N . But these edges being edges of γ which has a finite passage time
in the environment T , T (π̃) is finite.

Thus, using again that the only edges whose passage time have been modified are the edges of B3,s,N ,
we have

T (π̃) − T ∗(π̃) =
∑

i∈{1,...,κ}

T (π̃ui,vi
) − T ∗(π̃ui,vi

) =
∑

i∈{1,...,κ}

T (γui,vi
) − T ∗(γui,vi

). (2.25)
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Now, using (c), ∑

i∈{1,...,κ}

T (γui,vi
) − T ∗(γui,vi

) ≤ T (γ) − T ∗(γ). (2.26)

Thus, combining (2.25) and (2.26), we also get in this last case that

T (π̃) − T ∗(π̃) ≤ T (γ) − T ∗(γ).

2.2.4 End of the proof of Lemma 2.13

We prove Lemma 2.13 with the sets E∗
−(T ), E∗

mid(T ), E∗
+(T ) and E∗

∞(T ) and the vertex C(T ) defined in
Section 2.2.2. Let us first prove item (i) of this lemma. E∗

mid(T ) is contained in B3,s,N by property (a)
in Section 2.2.3. Using property (b) of Section 2.2.3, we get that B∞(C(T ), ℓΛ) is contained in B3,s,N .
E∗

−(T ), E∗
∞(T ) and E∗

+(T ) are contained in B3,s,N by their definitions. To get that these sets are pairwise
disjoint in both cases, we only have to prove that:

• γuπ,vπ
does not visit any edge of B∞(C(T ), ℓΛ). This comes from the fact that B∞(C(T ), ℓΛ) ⊂

B∞(C(T ), rP ), which comes from the fact that rP > ℓΛ + 1 by (2.3). By property (iii) of a typical
box, in the case (INF), in the environment T , for every edge e ∈ B∞(C(T ), rP ), T (e) = ∞ but
T (γuπ,vπ

) < ∞. Hence, γuπ,vπ
does not take any edge in B∞(C(T ), rP ). In the case (FU), by

property (iii) of a typical box, the event θC(T )T holds with respect to the environment T . Recall
Remark 2.10: there is no pattern in B3,s,N . Since T satisfies the second condition in Lemma 2.5
and since γuπ,vπ

is a k-geodesic, γuπ,vπ
does not visit any edge of the forbidden zone. So γuπ,vπ

does not visit any edge of B∞(C(T ), ℓΛ).

• γuπ,vπ
and π′ do not have any edge in common by the definition of uπ, vπ and π′.

To get item (ii), fix η = P(T ∈ AΛ)p̃|B3,s,N |, where, in the case (INF) and if tmin = 0,

p̃ = min(L([tmin, tmin + δ′)), L((tmin + δ, ν0)), L(∞)),

in the case (INF) and if tmin > 0,

p̃ = min(L([tmin, tmin + δ′]), L(∞)),

in the case (FU) and if tmin = 0,

p̃ = min(L([tmin, tmin + δ′)), L((tmin + δ, ν0)), L((ν2, ∞))),

and in the case (FU) and if tmin > 0,

p̃ = min(L([tmin, tmin + δ′)), L((ν2, ∞))),

Thus, η only depends on L, the pattern and N and we have that

P (T ′ ∈ B∗(T )|T ) ≥ P(T ∈ AΛ)p̃|B3,s,N | = η.

Now, let us prove item (iii) of Lemma 2.13. Let γ∗ be the selected k-geodesic in the environment T ∗ if
it exists. The aim is to prove the following properties in the environment T ∗:

(C1) γ∗ exists, i.e. there exists a k-geodesic having at least Qn boxes in its Sk-sequence,

(C2) γ∗ does not have a shortcut in the first ℓ − 1 boxes of its Sk-sequence,

(C3) γ∗ has a shortcut in the ℓ-th box of its Sk-sequence,

(C4) B3,s,N is the ℓ-th box of the Sk-sequence of γ∗.

To get these four properties, we use the following ones:
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(P1) a k-box different from B3,s,N is a typical box in the environment T if and only if it is a typical box
in the environment T ∗,

(P2) a path has a shortcut in a k-box different from B3,s,N in the environment T if and only if it has a
shortcut in this box in the environment T ∗,

(P3) γ has a shortcut in B3,s,N in the environment T ∗ and then, B3,s,N is successful in the environment
T ∗ for γ,

(P4) γ∗ exists and γ∗ = γ.

To conclude the proof, we have to prove (P1), (P2), (P3) and (P4). Indeed, by (P1) and (P2), a k-box
different from B3,s,N is successful for a path π̃ in the environment T if and only if it is successful for π̃
in the environment T ∗. Thus, since B3,s,N is a typical box for γ in the environment T , using (P3), the
successful boxes crossed by γ in the environments T et T ∗ are the same. Furthermore, if we have (P4),
then γ is a k-geodesic in the environment T ∗ and we can define its Sk-sequence in this environment. We
get that the Sk-sequence of γ is the same in the environments T and T ∗. Hence, using again (P4), we
get (C1), we get (C2) by (H2) and we get (C3) and (C4) by (H3) using again (P3).

At this stage of the proof, we easily get (P1), (P2) and (P3) (which is the aim of the following
paragraph) but the proof of (P4) is a bit longer (this is the aim of Section 2.2.4.2).

2.2.4.1 Proof of properties (P1), (P2) and (P3). We get (P1) using that the fact that a box
is typical only depends on the edges of the box (by Lemma 2.8), that every k-box different from B3,s,N

does not have edges in common with B3,s,N and that the only edges whose time has been modified are
edges belonging to B3,s,N .

(P2) uses the same arguments than above. The fact that a path has a shortcut in a k-box only
depends on the edges of the box.

We get (P3) by considering the path π′ defined at the beginning of Section 2.2.2. By construction
π′ is entirely contained in B3,s,N , π′ and γ only have uπ and vπ in common, π′ takes the pattern and
T ∗(γuπ ,vπ

∩ B3,s,N ) > T ∗(π′) by (d).

2.2.4.2 Proof of (P4): γ is the selected k-geodesic in the environment T ∗. To prove this
property, we prove the following ones in the last four lemmas of this section:

• γ is a k-penalized path in the environment T ∗,

• every k-penalized path from 0 to x in the environment T ∗ has a passage time greater than or equal
to the passage time of γ,

• if a path is a k-geodesic from 0 to x in the environment T ∗, it is also a k-geodesic in the environment
T ,

• if a k-geodesic from 0 to x in the environment T ∗ has at least Qn boxes in its Sk-sequence, it has
also at least Qn boxes in its Sk-sequence in the environment T .

We can conclude with these properties. Indeed, with the first two properties above, γ is a k-geodesic
in the environment T ∗. As a consequence of (P1), (P2) and (P3), it has the same Sk-sequence in the
environments T and T ∗. Thus γ has at least Qn boxes in its Sk-sequence and it can be the selected
k-geodesic. By the last two properties above, we have that the set of the k-geodesics having at least Qn

boxes in their Sk-sequences in the environment T ∗ is included in the set of the k-geodesics having at least
Qn boxes in their Sk-sequences in the environment T . Since γ is the first path in the lexicographical
order among the paths of this last set, it is also the first path in the lexicographical order in the first set.

It remains to prove the four properties above. Before proving them, we begin by the following lemma.

Lemma 2.16. A k-penalized path in the environment T ∗ with finite passage time in the environment
T ∗ is also a k-penalized path in the environment T .
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Proof. Let π̃ be a k-penalized path in the environment T ∗ with T ∗(π̃) finite. Since the edges outside
B3,s,N have not been modified, π̃ takes a pattern entirely contained in a k-box different from B3,s,N in
the environment T if and only if it takes a pattern entirely contained in this box in the environment T ∗.
It remains to prove that π̃ does not take a pattern entirely contained in B3,s,N in the environment T .

In the case (INF), since the time of π̃ is finite and since π̃ is a k-penalized path in the environment
T ∗, by property (f), the only edges of B3,s,N that π̃ can take are edges of γ. It implies that, in the
environment T , if π̃ takes a pattern entirely contained in B3,s,N , γ also takes this pattern, which is
impossible since γ is a k-penalized path in the environment T .

In the case (FU), it is impossible since B3,s,N is a typical box in the environment T and there is no
pattern in a typical box by Remark 2.10.

Lemma 2.17. γ is a k-penalized path in the environment T ∗.

Proof. The fact that a path takes a pattern entirely contained in a k-box only depends on the passage
times of the edges of this k-box. Since γ is a k-penalized path in the environment T , it does not take a
pattern entirely contained in a k-box in this environment. Since the edges of the k-boxes different from
B3,s,N have not been modified, γ does not take a pattern entirely contained in a k-box different from
B3,s,N in the environment T ∗. To conclude, it remains to prove that γ does not take a pattern entirely
contained in B3,s,N in the environment T ∗. By (e), there is only one pattern entirely contained in B3,s,N

which is the one centered in C(T ). By Lemma 2.15, γ does not take any edge of the forbidden zone and
the pattern centered in C(T ) is entirely contained in the forbidden zone, which gives the result.

Lemma 2.18. Every k-penalized path from 0 to x in the environment T ∗ has a passage time for T ∗

greater than or equal to the passage time of γ for T ∗.

Proof. Let γ∗ be a k-penalized path in the environment T ∗. By Lemma 2.16, γ∗ is also a k-penalized
path in the environment T . Thus, since γ∗ is a k-penalized path in the environment T and since γ is a
k-geodesic, we get T (γ) ≤ T (γ∗). Hence, using (g) in Section 2.2.3,

T ∗(γ∗) ≥ T ∗(γ) + T (γ∗) − T (γ)︸ ︷︷ ︸
≥0

≥ T ∗(γ).

Lemma 2.19. If a path from 0 to x is a k-geodesic in the environment T ∗, it is also a k-geodesic in the
environment T .

Proof. Let γ∗ be a k-geodesic in the environment T ∗ from 0 to x. By Lemma 2.17, γ is a k-penalized
path in the environment T ∗. Thus, since T ∗(γ) is finite, T ∗(γ∗) is also finite and by Lemma 2.16, γ∗ is
a k-penalized path in the environment T . Moreover, using (g) in Section 2.2.3, we get

T (γ∗) ≤ T (γ) + T ∗(γ∗) − T ∗(γ).

Since γ∗ is a k-geodesic, by Lemma 2.17 and Lemma 2.18, T ∗(γ∗) = T ∗(γ). So T (γ∗) ≤ T (γ) and γ∗ is
a k-geodesic in the environment T .

Lemma 2.20. If a k-geodesic from 0 to x in the environment T ∗ has at least Qn boxes in its Sk-sequence,
it has also at least Qn boxes in its Sk-sequence in the environment T .

Proof. Let γ∗ be a k-geodesic in the environment T ∗ from 0 to x having at least Qn boxes in its
Sk-sequence. Using (P2) and by the construction of the Sk-sequence, each box different from B3,s,N

belonging to the Sk-sequence of γ∗ in the environment T ∗ belongs to its Sk-sequence in the environment
T . If B3,s,N belongs to its Sk-sequence in the environment T ∗, since B3,s,N is a typical box in the
environment T , then B3,s,N belongs to its Sk-sequence in the environment T , which allows us to conclude.
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3 Extension of the van den Berg-Kesten comparison principle

This section is dedicated to the proof of Theorem 1.7. Let L and L̃ be two distributions taking values
in [0, ∞] such that:

(H1) L is useful,

(H2) L([0, ∞)) > pc and L̃([0, ∞)) > pc,

(H3) L 6= L̃,

(H4) there exists a couple of random variables (τ, τ̃ ) on some probability space, with marginal distributions
L and L̃, respectively, and satisfying

E[τ̃ |τ ] ≤ τ. (3.1)

In what follows, (τ, τ̃ ) is a couple of random variables with marginal distributions L and L̃, and
satisfying (3.1). Such a couple exists by (H4). Note that by (3.1), we have

{τ < ∞} ⊂ {τ̃ < ∞} a.s. (3.2)

Then, we consider a family (T, T̃ ) = {(T (e), T̃ (e)) : e ∈ E} of i.i.d. random variables defined on the
same probability space such that for all e ∈ E , (T (e), T̃ (e)) has the same distribution as (τ, τ̃ ).

The proof of Theorem 1.7 is an application of Theorem 1.5. We begin by defining a valid pattern in
Section 3.1 and then, we apply Theorem 1.5 with this pattern in Section 3.2.

3.1 Definition of the valid pattern

The fact that a pattern is valid or not depends on the distribution of the passage times of the environment.
Here, we use Theorem 1.5 only in the environment T . Thus, when we define a pattern P = (Λ, uΛ, vΛ, AΛ)
below, we consider that the event AΛ only depends on the family (T (e))e∈Λ.

Now, for a valid pattern P = (Λ, uΛ, vΛ, AΛ), denote by ΠP the set of all self-avoiding paths going
from uΛ to vΛ and which are contained in Λ. Denote by G the σ-field generated by the family (T (e))e∈E .
Section 3.1 is devoted to the proof of the following lemma.

Lemma 3.1. There exist a valid pattern P = (Λ, uΛ, vΛ, AΛ) and a constant η > 0 such that on the
event AΛ,

E

[
min

π∈ΠP
T̃ (π)|G

]
< min

π∈ΠP
T (π) − η. (3.3)

To prove Lemma 3.1, there are three different cases to be considered. Noting that, if P(τ̃ < ∞ and τ =
∞) = 0, using (3.2), we get

{τ < ∞} = {τ̃ < ∞} a.s.,

these three cases can be written as follows:

• P(τ̃ < ∞ and τ = ∞) > 0,

• {τ < ∞} = {τ̃ < ∞} a.s. and P(E[τ̃ |τ ] < τ) > 0,

• {τ < ∞} = {τ̃ < ∞} a.s. and P(E[τ̃ |τ ] = τ) = 1.

The most technical case is the third one.

3.1.1 First case: when P(τ̃ < ∞ and τ = ∞) > 0

Proof of Lemma 3.1 in the first case.
Assume that P(τ̃ < ∞ and τ = ∞) > 0. Let ν ∈ (0, ∞) such that

L([ν, ∞)) > 0. (3.4)
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Such a constant exists since we have L(0) + L(∞) < 1 since L is useful by Assumption (H1) and
L([0, ∞)) > pc by Assumption (H2). Let M ∈ [0, ∞) such that

P(τ̃ < M and τ = ∞) > 0. (3.5)

Let η0 > 0. Fix

m >
M + η0

2ν
. (3.6)

Then, define the pattern P = (Λ, uΛ, vΛ, AΛ) where Λ = {0, 1} × {0, . . . , m} ×
∏d

j=3{0}, uΛ = (0, . . . , 0),

vΛ = (1, 0, . . . , 0) and AΛ is defined as follows. Denote by πfin the path going from uΛ to mε2 by m
steps in the direction ε2, then to ε1 + mε2 by one step in the direction ε1 and finally to vΛ

2 by m steps
in the direction ε2. The event AΛ is the event on which for every e ∈ πfin, ν ≤ T (e) < ∞ and for every
edge e ∈ Λ but not in πfin, T (e) = ∞. This pattern is valid since the event AΛ has a positive probability
by (3.4) and (3.5), and since the path πfin is a path between uΛ and vΛ with a finite passage time in the
environment T when the event AΛ occurs.

Now, denote
β = P (τ̃ < M |τ = ∞) .

By (3.5), β > 0. Then, on the event AΛ, we have

E

[
min

π∈ΠP
T̃ (π)|G

]
≤ T (πfin) − β(T (πfin) − M). (3.7)

Indeed, denote by e∞ the edge {uΛ, vΛ} and by π∞ the path going from uΛ to vΛ by taking only this
edge. Then, on the event AΛ, since AΛ ⊂ {T (e∞) = ∞},

E

[
min

π∈ΠP
T̃ (π)|G

]
≤ E

[
min(T̃ (πfin), T̃ (π∞))|G

]

≤ E

[
M1{T̃ (e∞)<M} + T̃ (πfin)1{T̃ (e∞)≥M}|G

]

≤ Mβ +
∑

e∈πfin

E

[
T̃ (e)1T̃ (e∞)≥M |G

]
. (3.8)

But, for every e ∈ πfin,

E

[
T̃ (e)1T̃ (e∞)≥M |G

]
= E

[
T̃ (e)|T (e)

]
P
(
T̃ (e∞) ≥ M |T (e∞)

)

≤ E
[
T̃ (e)|T (e)

]
(1 − β) since AΛ ⊂ {T (e∞) = ∞},

≤ T (e)(1 − β), (3.9)

since (T (e), T̃ (e)) has the same distribution as (τ, τ̃ ) which satisfies (3.1). Thus, combining (3.8) and
(3.9), we get, on the event AΛ,

E

[
min

π∈ΠP
T̃ (π)|G

]
≤ Mβ + (1 − β)T (πfin) = T (πfin) − β(T (πfin) − M),

and (3.7) is proved.
Now, by the definition of the pattern, on the one hand, T (πfin) = min

π∈ΠP
T (π) and on the other hand,

T (πfin) ≥ 2mν. This gives, using (3.6),

T (πfin) − M > η0.

Hence,

E

[
min

π∈ΠP
T̃ (π)|G

]
< min

π∈ΠP
T (π) − βη0,

which allows us to conclude since βη0 > 0.
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3.1.2 Second case: when {τ < ∞} = {τ̃ < ∞} a.s. and P(E[τ̃ |τ ] < τ) > 0

Proof of Lemma 3.1 in the second case.
Assume that P(E[τ̃ |τ ] < τ) > 0 and that {τ < ∞} = {τ̃ < ∞} a.s. Then there exist η > 0 and a

Borel set I ⊂ [0, ∞) such that P(τ ∈ I) > 0 and on the event {τ ∈ I},

E[τ̃ |τ ] < τ − η. (3.10)

Now, define the pattern P = ({uΛ, vΛ}, uΛ, vΛ, AΛ) where uΛ = (0, . . . , 0), vΛ = (1, 0, . . . , 0) and AΛ

is the event on which the passage time of the only edge of the pattern, denoted by e, belongs to I.
Then, this pattern is valid since the event AΛ has a positive probability since P(τ ∈ I) > 0 and since
the passage time of the path (uΛ, vΛ) in the environment T is finite when AΛ occurs since I ⊂ [0, ∞).
Furthermore, on the event AΛ,

E

[
min

π∈ΠP
T̃ (π)|G

]
= E

[
T̃ (e)|G

]
= E

[
T̃ (e)|T (e)

]
< T (e) − η by (3.10),

= min
π∈ΠP

T (π) − η.

3.1.3 Third case: when {τ < ∞} = {τ̃ < ∞} a.s. and P(E[τ̃ |τ ] = τ) = 1

Assume that
P(E[τ̃ |τ ] = τ) = 1, (3.11)

and that
{τ < ∞} = {τ̃ < ∞} a.s. (3.12)

Lemma 3.2. In this case, there exist β > 0 and δ > 0 such that

P

(
τ < ∞ and P(τ̃ ≤ τ − 2δ|τ) ≥ β and P(τ̃ ≥ τ |τ) ≥ β

)
> 0. (3.13)

Proof. Denote A = {τ < ∞ and P(τ̃ < τ |τ) > 0} and B = {P(τ̃ ≥ τ |τ) > 0}. To prove the lemma, it
suffices to prove that

P(A ∩ B) > 0. (3.14)

Let K be a transition probability kernel such that for every measurable function ϕ : [0, ∞] × [0, ∞] →
[0, ∞],

E [ϕ(τ, τ̃ )|τ ] =

∫

[0,∞]

ϕ(τ, t̃)K(τ, dt̃). (3.15)

The existence of such a K is given by Theorem 2.19 in Chapter 4 in [4].
First, let us prove that P(B) = 1. We have

Bc = {E [1τ̃<τ |τ ] = 1} = {K(τ, [0, τ)) = 1} using (3.15),

= {K(τ, [0, τ)) = 1 and τ < ∞} using (3.12)

⊂

{∫

[0,∞]

t̃K(τ, dt̃) < τ

}

= {E [τ̃ |τ ] < τ} .

Now, since P(E [τ̃ |τ ] < τ) = 0 by (3.11), we get P(Bc) = 0 and thus P(B) = 1.
So, to get (3.14), it remains to prove that P(A) > 0. To this aim, we shall prove that

Ac = {τ = τ̃} a.s., (3.16)
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which leads to P(Ac) < 1 by (H3), and thus P(A) > 0. To prove (3.16), observe that

Ac = {τ = ∞ or P(τ̃ < τ |τ) = 0}

= {τ = ∞} ∪ {τ < ∞ and P(τ̃ < τ |τ) = 0},

= {τ = ∞} ∪ {τ < ∞ and K(τ, [τ, ∞]) = 1} using (3.15),

= {τ = ∞} ∪ {τ < ∞ and K(τ, {τ}) = 1},

since
{τ < ∞, K(τ, [τ, ∞]) = 1 and K(τ, (τ, ∞]) > 0} ⊂ {E[τ̃ |τ ] > τ}

and P (E[τ̃ |τ ] > τ) = 0 by (3.11). Thus, using again (3.15), we get

Ac = {τ = ∞} ∪ {τ < ∞ and P(τ̃ = τ |τ) = 1}

= {τ = ∞} ∪ {τ < ∞ and τ̃ = τ} a.s.

Now, since {τ = ∞} = {τ = τ̃ = ∞} a.s. by (3.12), we get (3.16). Hence, (3.14) holds and the lemma is
proved.

Lemma 3.3. In this case, there exists a bounded Borel set I ⊂ (0, ∞) and η > 0 such that

• P(τ ∈ I) > 0,

• and
E[min(τ̃1 + τ̃2, τ̃3 + τ̃4)|F ] < min(τ1 + τ2, τ3 + τ4) − η

on the event I = {τ1, . . . , τ4 ∈ I}, where (τ1, τ̃1), . . . , (τ4, τ̃4) are independent copies of (τ, τ̃ ) and
F = σ(τ1, . . . , τ4).

Proof. Let (τ1, τ̃1), . . . , (τ4, τ̃4) be independent copies of (τ, τ̃ ). Denote F = σ(τ1, . . . , τ4). Fix β > 0 and
δ > 0 given by Lemma 3.2. Using (3.13), we can find a Borel set I0 ⊂ (0, ∞), fixed for the remaining of
the proof, such that P(τ ∈ I0) > 0 and on the event {τ ∈ I0},

τ < ∞ and P(τ̃ ≤ τ − 2δ|τ) ≥ β and P(τ̃ ≥ τ |τ) ≥ β. (3.17)

Now, fix η > 0 such that η < 2δβ4 and then fix

0 < δ0 <
2δβ4 − η

4
. (3.18)

Note that this gives δ0 <
δ

2
as β ≤ 1. Let y0 ∈ I0 such that P(τ ∈ I0 ∩ (y0 − δ0, y0 + δ0)) > 0. Such a y0

exists because P(τ ∈ I0) > 0. Set I = I0 ∩ (y0 − δ0, y0 + δ0).
Then, we have

min(τ̃1 + τ̃2, τ̃3 + τ̃4) + 2δ1{τ̃3≤τ̃1−δ and τ̃4≤τ̃2−δ} ≤ τ̃1 + τ̃2.

Thus, on the event I = {τ1, . . . , τ4 ∈ I}, since (τ1, τ̃1) and (τ2, τ̃2) satisfy (3.1),

E[min(τ̃1 + τ̃2, τ̃3 + τ̃4)|F ] ≤ E[τ̃1 + τ̃2|F ] − 2δP(τ̃3 ≤ τ̃1 − δ|F)P(τ̃4 ≤ τ̃2 − δ|F)

≤ τ1 + τ2 − 2δP(τ̃3 ≤ τ̃1 − δ|F)P(τ̃4 ≤ τ̃2 − δ|F)

≤ 2 sup I − 2δP(τ̃3 ≤ τ3 − 2δ and τ̃1 ≥ τ1|F)P(τ̃4 ≤ τ4 − 2δ and τ̃2 ≥ τ2|F),

since the diameter of I is lower than δ by (3.18). Then, by (3.17)

E[min(τ̃1 + τ̃2, τ̃3 + τ̃4)|F ] ≤ 2 sup I − 2δβ4

< 2 inf I − η,

since 2(sup I − inf I) ≤ 4δ0 < 2δβ4 − η by (3.18). Hence, since on the event I,

min(τ1 + τ2, τ3 + τ4) ≥ 2 inf I,

we get, on the event I,

E[min(τ̃1 + τ̃2, τ̃3 + τ̃4)|F ] < min(τ1 + τ2, τ3 + τ4) − η.
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Proof of Lemma 3.1 in the third case. Fix I ⊂ (0, ∞) and η > 0 given by Lemma 3.3. Define the pattern

P = (Λ, uΛ, vΛ, AΛ) where Λ is the set containing 4 vertices defined by Λ = {0, 1} × {0, 1} ×
∏d

j=3{0},

uΛ
1 = (0, . . . , 0), vΛ

1 = (1, 1, 0, . . . , 0) and AΛ is the event on which for every edge e ∈ Λ, T (e) ∈ I. This
pattern is valid since the event AΛ has a positive probability since P(τ ∈ I) > 0 by Lemma 3.3, and
since on the event AΛ, every edge of the pattern has a finite passage time.

Now denote e1 = {uΛ, uΛ + ε1}, e2 = {uΛ + ε1, vΛ}, e3 = {uΛ, uΛ + ε2} and e4 = {uΛ + ε2, vΛ}. Since
there are only two paths in ΠP, the one taking e1 and then e2 and the one taking e3 and then e4, we get

E

[
min

π∈ΠP
T̃ (π)|G

]
= E

[
min

(
T̃ (e1) + T̃ (e2), T̃ (e3) + T̃ (e4)

)
|G
]

= E
[
min

(
T̃ (e1) + T̃ (e2), T̃ (e3) + T̃ (e4)

)
|σ(T (e1), T (e2), T (e3), T (e4))

]

< min(T (e1) + T (e2), T (e3) + T (e4)) − η by Lemma 3.3,

= min
π∈ΠP

T (π) − η.

3.2 End of the proof of Theorem 1.7

By (H2) and (3.2), we can fix M > 0 such that

P(τ ≤ M and τ̃ ≤ M) > pc. (3.19)

Let C and C̃ be the clusters defined respectively as the clusters CM and C̃M in Section 1.3 for M fixed
above. Recall the definitions of ϕ, ϕ̃, µ and µ̃ also given in Section 1.3, and the convergence given at
(1.10).

Let x ∈ Z
d \ {0}. For any n ∈ N, we define the random path γn as the first geodesic in the

lexicographical order from ϕ(0) to ϕ(nx) in the environment T . As stated in Section 1.1, almost surely,
there exists at least one geodesic from ϕ(0) to ϕ(nx). Recall that G is the σ-field generated by the family
(T (e))e∈E . Note that γn is G-measurable.

Lemma 3.4. We have E
[
t̃(ϕ(0), ϕ(x))

]
< ∞.

Proof. Since γ1 is G-measurable,

E
[
t̃(ϕ(0), ϕ(x))|G

]
≤ E

[
T̃ (γ1)|G

]

=
∑

e∈γ1

E
[
T̃ (e)|T (e)

]

≤
∑

e∈γ1

T (e) = T (γ1) = t(ϕ(0), ϕ(x)).

Note that the last inequality comes from the fact that for every e ∈ E , E
[
T̃ (e)|T (e)

]
≤ T (e). Then,

taking expectation, it gives
E
[
t̃(ϕ(0), ϕ(x))

]
≤ E [t(ϕ(0), ϕ(x))] .

Since by Proposition 2 in [3], E [t(ϕ(0), ϕ(x))] < ∞, we get E
[
t̃(ϕ(0), ϕ(x))

]
< ∞.

With Lemma 3.4, we can use the Subadditive Ergodic Theorem (see for example Theorem 2.2 in [2]),
and thus we get the existence of a finite constant µ(x) such that

lim
n→∞

t̃(ϕ(0), ϕ(nx))

n
= µ(x) a.s. and in L1.

Remark 3.5. There are two main differences between the definitions of µ(x) and µ̃(x):

• µ(x) is defined with the passage times in the environment T although µ̃(x) is defined with the
passage times in the environment T̃ ,
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• µ(x) is defined with geodesic times between vertices obtained with ϕ although µ̃(x) is defined with
geodesic times between vertices obtained with ϕ̃.

In order to compare µ(x) and µ̃(x), it is therefore natural to introduce µ(x), an intermediate object which
has one difference with µ(x) and one difference with µ̃(x) in its definition.

Remark 3.6. The proof of Theorem 1.7 given in this section also holds in the case originally proven
by van den Berg and Kesten in [9], i.e. when we assume that τ has a finite first moment. However, it
is simpler in this case since we do not need the clusters C and C̃ to define µ(x) and µ̃(x). In this case,
for every y ∈ Z

d, we can take ϕ(y) = ϕ̃(y) = y and µ(x) = µ̃(x), and thus in the sequel, we do not need
Lemma 3.7 and the proof of Lemma 3.8 is much simpler.

The following lemma is based on elementary arguments of percolation.

Lemma 3.7. We have µ̃(x) ≤ µ(x).

Proof. Let Ĉ be the infinite cluster for the Bernoulli percolation (1{T (e)≤M and T̃ (e)≤M}, e ∈ E) which

exists and is unique a.s. by (3.19). Note that Ĉ is included in C and in C̃. For any y ∈ R
d, we define ϕ̂(y)

the random point of Ĉ such that ‖y − ϕ̂(y)‖1 is minimal, with a deterministic rule to break ties. For any
n ∈ Z, we have

t̃(ϕ̃(0), ϕ̃(nx)) ≤ t̃(ϕ(0), ϕ̂(0)) + t̃(ϕ̂(0), ϕ̃(0)) + t̃(ϕ(0), ϕ(nx)) + t̃(ϕ(nx), ϕ̂(nx)) + t̃(ϕ̂(nx), ϕ̃(nx))

= A(0) + t̃(ϕ(0), ϕ(nx)) + A(nx), (3.20)

by writing for any y ∈ Z
d, A(y) = t̃(ϕ(y), ϕ̂(y)) + t̃(ϕ̂(y), ϕ̃(y)).

Now, for any y ∈ Z
d, there exists a path between ϕ(y) and ϕ̂(y) contained in C. Thus, it only

takes edges with finite passage times in the environment T , and thus with finite passage times in the
environment T̃ by (3.2). Furthermore, there exists a path between ϕ̂(y) and ϕ̃(y) contained in C̃, which
gives that t̃(ϕ̂(y), ϕ̃(y)) is also finite. Hence A(y) is a finite random variable. It gives that

A(0)

n

converges almost surely, and thus in probability, towards 0. Hence

A(nx)

n

also converges towards 0 in probability. We get that

A(0) + t̃(ϕ(0), ϕ(nx)) + A(nx)

n

converges towards µ(x) in probability. Using (3.20), this gives µ̃(x) ≤ µ(x).

Let η > 0 and P the pattern given by Lemma 3.1. For any path π we denote by NP(π) the maximum
number of disjoint translations of the pattern P crossed by π.

Lemma 3.8. There exists a constant c > 0 such that for any n sufficiently large,

E
[
NP(γn)

]
≥ cn.

Proof. Recall the definition of NP(π) given for any path π at (1.4). Since the pattern P is valid by
Lemma 3.1, L is useful by (H1) and L([0, ∞)) > pc by (H2), we can use Theorem 1.5 and thus there

exist α > 0, β1 > 0 and β2 > 0 such that for every n ∈ N and for every y ∈ B1

(
0,

‖nx‖1

4

)
and

z ∈ B1

(
nx,

‖nx‖1

4

)
,

P
(
(y, z) ∈ C and ∃ a geodesic γ from y to z such that NP(γ) < αn

)
≤ β1e−β2n. (3.21)
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γn

Figure 6: Illustration of the proof of Lemma 3.9. The translations of the pattern P are in gray. The path
γn is the concatenation of the blue parts and of the red parts. In each pattern, the green part corresponds
to the optimal path in the environment T̃ among the paths between the endpoints of the pattern and
entirely contained in the pattern. The idea is to bound from above the geodesic time between ϕ(0) and
ϕ(nx) in the environment T̃ by the passage time in the environment T̃ of the concatenation of the blue
parts and the green parts.

Denote by Vn the set B1

(
0,

‖nx‖1

4

)
× B1

(
nx,

‖nx‖1

4

)
. Then, for every n ∈ N,

P
(
NP(γn) < αn

)
≤ P ((ϕ(0), ϕ(nx)) /∈ Vn)

+
∑

(y,z)∈Vn

P
(
(y, z) ∈ C and ∃ a geodesic γ from y to z such that NP(γ) < αn

)
.

(3.22)

Since x 6= 0, by Theorem 8 in [3], there exist β3 > 0 and β4 > 0 such that for every n ∈ N,

P ((ϕ(0), ϕ(nx)) /∈ Vn) ≤ β3e−β4n.

Hence, using (3.21) and since |Vn| is bounded by a polynomial in n, there exist β5 > 0 and β6 > 0 such
that for every n ∈ N,

P
(
NP(γn) < αn

)
≤ β5e−β6n.

Thus, there exists c′ > 0 such that for any n sufficiently large

E
[
NP(γn)

]
≥ c′n.

We conclude the proof by observing that simple geometric considerations provide a constant c′′ > 0 such
that for all path π,

NP(π) ≥ c′′NP(π).

Lemma 3.9. We have µ(x) < µ(x).

Proof. For any n ≥ 1, denote by SP(γn) the set, chosen according to a deterministic rule if there are
several such sets, of NP(γn) disjoint translations of P crossed by γn. Denote by EP(γn) the set of all
edges of γn which are not in a subpath of γn between the endpoints of a pattern of SP(γn). Recall that
we denote by ΠP the set of all self-avoiding paths going from uΛ to vΛ and which are contained in Λ.
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For a pattern P′ ∈ SP(γn), we can associate a unique s ∈ Z
d such that s satisfies the condition (γn;P)

and such that P′ is located at θsΛ. Then, we denote by ΠP′

the set of all self-avoiding paths π such
that θ−sπ ∈ ΠP. Denote by ΓP(γn) the set of all paths from ϕ(0) to ϕ(nx) following γn outside all the
patterns of SP(γn) and following a path of ΠP′

for every pattern P′ of SP(γn). With these definitions,
we immediately get that

min
π∈ΓP(γn)

T̃ (π) =
∑

e∈EP(γn)

T̃ (e) +
∑

P′∈SP(γn)

min
π′∈ΠP′

T̃ (π′). (3.23)

Let n be sufficiently large such that Lemma 3.8 holds and let c > 0 be the constant given by this
lemma. Recall that G is the σ-field generated by the family (T (e))e∈E . Then, γn, SP(γn) and EP(γn)
are G-measurable and we get

E
[
t̃(ϕ(0), ϕ(nx))|G

]
≤ E

[
min

π∈ΓP(γn)
T̃ (π)|G

]
by the definition of the geodesic time in the environment T̃ ,

=
∑

e∈EP(γn)

E
[
T̃ (e)|T (e)

]
+

∑

P′∈SP(γn)

E

[
min

π′∈ΠP′
T̃ (π′)|G

]
by (3.23),

≤
∑

e∈EP(γn)

T (e) +
∑

P′∈SP(γn)

(
min

π′∈ΠP′
T (π′) − η

)
.

For the first sum, the last inequality comes from the fact that for every edge e ∈ E , (T (e), T̃ (e)) has the
same distribution as (τ, τ̃ ) and thus satisfies E[T̃ (e)|T (e)] ≤ T (e). For the second sum, it comes from
Lemma 3.1.

Then, by the definitions of EP(γn) and SP(γn),

∑

e∈EP(γn)

T (e) +
∑

P′∈SP(γn)

min
π′∈ΠP′

T (π′) = T (γn) = t(ϕ(0), ϕ(nx)).

Furthermore, recall that NP(γn) is the number of elements of ΠP′

. Thus, we get

E
[
t̃(ϕ(0), ϕ(nx))|G

]
≤ t(ϕ(0), ϕ(nx)) − ηNP(γn).

Now, taking expectation and dividing by n gives

E
[
t̃(ϕ(0), ϕ(nx))

]

n
≤

E [t(ϕ(0), ϕ(nx))]

n
− η

E
[
NP(γn)

]

n
≤

E [t(ϕ(0), ϕ(nx))]

n
− ηc,

by Lemma 3.8. We conclude the proof using that

lim
n→∞

E
[
t̃(ϕ(0), ϕ(nx))

]

n
= µ(x) and lim

n→∞

E [t(ϕ(0), ϕ(nx))]

n
= µ(x).

Now, we conclude the proof of Theorem 1.7 by combining Lemma 3.7 and Lemma 3.9.

A Existence of geodesics

Proposition A.1. Assume that L(0) < pc. With probability one, for all x, y such that (x, y) ∈ C, there
exists a geodesic between x and y.

To prove the above proposition, we begin by the following lemma.

Lemma A.2. Assume that L(0) < pc. There exists β > 0, β′ > 0 and ρ > 0 such that for all n ≥ 1,

P(∃ a self-avoiding path π from 0 which contains at least n edges but has T (π) < ρn) ≤ β′e−βn.
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Proof of Lemma A.2. For each environment T , we define a new environment T̃ defined for all edges e by

T̃ (e) =

{
T (e) if T (e) < ∞
1 else.

Since L(0) < pc, we have P(T̃ (e) = 0) = P(T (e) = 0) < pc. Thus, we can use Proposition (5.8) in [7] and
we get β > 0, β′ > 0 and ρ > 0 such that for all n ≥ 1, for all z ∈ Z

d,

P(∃ a self-avoiding path π from z which contains at least n edges but has T̃ (π) < ρn) ≤ β′e−βn.

Now, for every edge e, T̃ (e) ≤ T (e). Therefore,

P(∃ a self-avoiding path π from 0 which contains at least n edges but has T (π) < ρn)

≤ P(∃ a self-avoiding path π from z which contains at least n edges but has T̃ (π) < ρn),

which allows us to conclude.

Proof of Proposition A.1. It is sufficient to prove that for every x and y, with probability one, there
exists a geodesic between x and y if (x, y) ∈ C. Fix x and y in Z

d. Fix β, β′ and ρ given by Lemma A.2.
For every n ≥ 1, denote by An the event on which every path π from x which contains at least n edges
has T (π) ≥ ρn. By the Borel-Cantelli Lemma and by Lemma A.2, with probability one, for all n large
enough, An occurs. We work on this probability one event. Assume that (x, y) ∈ C. Let πx,y be a path
between x and y such that T (πx,y) < ∞. Fix n large enough such that An occurs and

n >
T (πx,y)

ρ
. (A.1)

Then, every path from x to the boundary of B1(x, n) has a passage time greater than or equal to ρn
since the event An occurs, and thus a passage time strictly greater than T (πx,y) by (A.1). Hence, the
infimum in the definition of t(x, y) is over the finite set of paths contained in B1(x, n), and there must
be a geodesic between x and y.

B Edges with positive passage times taken by self-avoiding paths

Proof of Lemma 1.9. Assume that L is useful and that tmin = 0. Let τ > 0 such that L([0, τ ]) < pc. For
each environment T , we define a new environment T̃ defined for all edges e by

T̃ (e) =

{
0 if T (e) ≤ τ
1 else.

We have P(T̃ (e) = 0) = P(T (e) ≤ τ) < pc. By Proposition (5.8) in [7], we get β > 0, β′ > 0 and ρ > 0
such that for all n ≥ 1,

P(∃ a self-avoiding path π from 0 which contains at least n edges but has T̃ (π) < ρn) ≤ β′e−βn.

Thus,

P(∃ a self-avoiding path π from 0 which contains at least n edges but containes at most

ρn edges e such that T (e) > τ) ≤ β′e−βn,

and we get (1.24) for all v, w ∈ Z
d.

C Overlapping patterns

Proof of Lemma 2.4. Let P0 = (Λ0, uΛ
0 , vΛ

0 , AΛ
0 ) be a valid pattern. Denote by L1, . . . , Ld the integers

such that Λ0 =

d∏

i=1

{0, . . . , Li}. Fix

ℓΛ = max(L1, . . . , Ld) + 4. (C.1)
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Let MΛ
0 > 0 such that

P(AΛ
0 ∩ {∀e ∈ Λ0, T (e) ≤ MΛ

0 or T (e) = ∞}) > 0. (C.2)

In the case (INF). Consider the pattern P = (Λ, uΛ, vΛ, AΛ) defined as follows:

• Λ = B∞(0, ℓΛ).

• uΛ = −ℓΛε1 and vΛ = ℓΛε1.

• Let π∞ be a path from uΛ to vΛ such that:

– π∞ is a self-avoiding path.

– In Λ \ B∞(0, ℓΛ − 3), π∞ uses only 6 vertices, all in the set {kε1, −ℓΛ ≤ k ≤ ℓΛ},

– π∞ visits uΛ
0 and vΛ

0 , and the portion of π∞ between these two vertices, denoted by π∞,0 is
entirely contained in Λ0. Furthermore, when AΛ

0 occurs, T (π∞,0) < ∞. Note that this is
possible since P0 is valid.

– π∞ \ π∞,0 does not take any edge of Λ0.

Then, AΛ is the event such that:

– AΛ
0 ∩ {∀e ∈ Λ0, T (e) ≤ MΛ

0 or T (e) = ∞} occurs,

– for all e belonging to Ss,ℓΛ , T (e) < ∞,

– for all e belonging to π∞ \ π∞,0, T (e) ≤ MΛ
0 ,

– for all e which does not belong to Λ0 ∪ π∞, T (e) = ∞.

We get that P satisfies (AI-1), (AI-2) and (AI-4). Then, since π∞ takes only edges whose passage time
is smaller than or equal to MΛ

0 , P satisfies (AI-3) by taking T Λ > |B∞(0, ℓΛ)|eMΛ
0 .

Furthermore, we have AΛ ⊂ AΛ
0 by the definition of AΛ, Λ0 ⊂ Λ by (C.1), AΛ has a positive

probability by (C.2) and when AΛ occurs, every path from uΛ to vΛ whose passage time is finite is equal
to π∞ \ π∞,0 outside Λ0, visits uΛ

0 and vΛ
0 and is entirely contained in Λ0.

In the case (FU). Let MΛ > |B∞(0, ℓΛ)|eMΛ
0 + 1 such that

L((MΛ − 1, MΛ)) > 0. (C.3)

Consider the pattern P = (Λ, uΛ, vΛ, AΛ) defined as follows:

• Λ = B∞(0, ℓΛ).

• uΛ = −ℓΛε1 and vΛ = ℓΛε1.

• Let πf be a path from uΛ to vΛ such that:

– πf is a self-avoiding path.

– πf does not visit any vertex in ∂Λ except uΛ and vΛ.

– πf visits uΛ
0 and vΛ

0 and the portion of πf between these two vertices, denoted by πf,0 is
entirely contained in Λ0.

– πf \ πf,0 does not take any edge of Λ0.

Then AΛ is the event such that:

– AΛ
0 ∩ {∀e ∈ Λ0, T (e) ≤ MΛ

0 } occurs,

– for all e belonging to πf \ πf,0, we have T (e) ≤ MΛ
0 ,

– for all e which does not belong to ∂Λ ∪ Λ0 ∪ πf , T (e) ∈ (MΛ − 1, MΛ),

– for all e ∈ ∂Λ, T (e) ≥ MΛ.

We get that P satisfies (AF-1), (AF-2), (AF-3) and (AF-4). Furthermore,

• Λ0 ⊂ Λ by (C.1).
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• P(AΛ) is positive by (C.2) and (C.3), and then P is a valid pattern.

• On AΛ, any path from uΛ to vΛ optimal for the passage time among the paths entirely inside
Λ contains a subpath from uΛ

0 to vΛ
0 entirely inside Λ0. Indeed, let π be a path from uΛ to vΛ

which does not contain a subpath from uΛ to vΛ entirely inside Λ0. Since πf is a self-avoiding
path, it implies that π takes an edge whose time is greater than MΛ − 1 > |Λ|eMΛ

0 . But we have
T (πf) ≤ |Λ|eMΛ

0 < T (π) and thus π is not an optimal path. Hence, for every optimal path π, if a
vertex x ∈ Z

d satisfies the condition (π;P0), x satisfies the condition (π;P).

• AΛ ⊂ AΛ
0 by the definition of AΛ.
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