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Abstract—Machine learning (ML) is a promising technology
for network intrusion detection systems. There is a wide range
of ML algorithms that are potential candidates for network
intrusion detection systems, as they exhibit very good detection
accuracy in average. However, significant detection differences
appear when facing different kinds of attacks, some being prone
to better detect some particular attack types. They then often
appear to complement each other. The challenge then lies in
determining the accurate result when several ML models provide
different results, and this without any explanation about their
decision. To address this challenge, our system aims to reconstruct
attack patterns from the outputs of these ML models and
presenting them in an interpretable manner. For that, we propose
an approach combining ensemble learning and stacking with a
meta-learner that works on graphical representation of traffic
flows, that then provides the required explainability level for the
decisions made. The evaluation of our system, using the CSE-
CIC-IDS2018 dataset, demonstrates a significant improvement
achieved through the combination of multiple ML algorithms.
Furthermore, we emphasize the importance of explainability in
network intrusion detection systems and the need for accurate
and interpretable models. Our system goes beyond traditional
detection methods by reporting anomalous feature pairs and
providing visual representations of attack patterns, empowering
analysts to better understand and respond to network threats.

Index Terms—Network security, unsupervised anomaly detec-
tion, explainable AI, ensemble learning, CNN

I. INTRODUCTION

Machine learning (ML) is a promising technology for
network intrusion detection systems (NIDSs) as it enables
the detection of attacks on large amounts of data. However,
a limitation of ML models is their tendency to produce
conflicting results: different models may classify the same
network flow as either an attack or benign. This lack of
consensus among models raises a challenge in identifying the
accurate result, as ML models are often considered as black
boxes and lack transparent explanations about their detection
results. Efforts must be made to address this challenge and
find a solution that can determine the accurate result when ML
models face particular attacks in different traffic environments.

This opens the road to ensemble learning [1], [2], which
is an approach that combines multiple ML models, but that
can provide different classification results on traffic flows.
The problem is then to identify the appropriate model that
provides the right class for traffic flows. Ensemble learning is
nevertheless a promising approach to achieve a more accurate
attack detection system. Specifically, stacking is an ensemble

learning method that combines multiple models, called base-
learners, that perform the same task with a decision process
that finally tries to select the right model(s) with possibly the
right decision e.g., by weighted majority voting. To cope with
the limits of such relatively simple algorithms as majority or
minority voting, a more sophisticated stacking method starts
to be considered for ML-based IDS. This new approach takes
advantage of a meta-learner: the outputs of the multiple base-
learners serve as input to a higher-level model - the meta-
learner - that, based on appropriate learning methods, can
select among all the base-learners the one with the right clas-
sification results for traffic flows. Our contribution develops
this approach.

We then propose a novel ensemble approach that systemat-
ically presents the results of each base-learner in a graphical
way for better visualization as well as explainability purposes
to security analysts. The graphical approach is aimed at
facilitating informed decision-making. Following the principle
explained before, the decision is made by the meta-learner
through the training of a combination of concise visual repre-
sentations of network anomalies.

Explainability is the property of a system that makes its
reasoning and results understandable by humans [3], [4]. Se-
curity analysts play a crucial role in making decisions based on
NIDS analysis, and providing them with intelligible evidence
of the ML models’ detections is essential for building trust
in the system. Explainability not only enhances collaboration
between analysts and artificial intelligence (AI) systems but
also helps engineers and researchers understand the strengths
and weaknesses of the models, enabling them to design more
accurate systems.

We propose a method that simultaneously allows users
to take advantage of ensemble learning from multiple base-
learners to enhance detections and visualize the results of all
the base-learners to gain insights into how these detections are
made. We introduce a visual representation of unsupervised
learning (UL) detections over time that intends to both help
security analysts understand what is happening on the network
and allow our meta-learner – a convolutional neural networks
(CNN) – to identify attack patterns [5], [6]. Our system is
expected to preserve UL properties, including the detection
of unknown attacks, because the layer that is supervised, the
meta-learner, does not train on raw network traffic but on
graphical features historically provided by base-learners, i.e.,
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meta-data.
Overall, our approach combines the advantages of ensemble

learning and explainability to enhance the detection perfor-
mance of NIDSs and empower security analysts in making
informed decisions. We introduce an explainable-by-design
system that analyzes and combines a set of UL models to
detect network attacks. Our contributions can be summarized
as follows:

1) A more transparent ML-based NIDS that enables se-
curity analysts to understand and trust the system’s
detections.

2) Visual representations of network anomalies that allows
security analysts to interpret and gain insights into the
detected network anomalies.

3) An ensemble learning method that uses a CNN as a
meta-learner to combine base-learners.

Main results include that on our evaluation dataset, our
system has only three false positives (FPR 0.0093) and one
false negative (TPR 0.9898) that can be mitigated by the ex-
plainability provided by our system. To ensure explainability,
our system provides intermediate and visual representations of
the data that can be easily understood by an analyst.

The rest of the paper is organized as follows:
• In Section II, we will examine related work on ensemble

learning, attack detection, and explainable AI, and posi-
tion our contribution in such a context.

• In Section III, we will detail the design of our anomaly
detection system. We will explain the different steps of
the process, including network flow aggregation, anomaly
scoring with base-learners, generation of visual represen-
tations of anomalies, and attack pattern recognition.

• Section IV will present the results of each component
of our system. We will present the performance of each
base-learner as well as the final model.

• Section V presents why our system is explainable and
how it helps both the overall accuracy and the decision
process of a network analyst.

• Finally, in Section VI, we summarize our main contribu-
tions and emphasize the advantages of our network attack
detection system.

II. RELATED WORK

Our research investigates mechanisms to reconstruct attack
patterns based on multiple unsupervised learning detection
techniques. Our work addresses issues related to (1) ensemble
learning, (2) attack patterns detection, and (3) explainable AI.

a) Ensemble learning: Regarding ensemble learning sys-
tems for network anomaly detection, Vanerio and Casas [1]
compared multiple meta-learners for detecting attacks. A
meta-learner combines outputs of a set of base-learners to re-
turn a more accurate detection. As an example of meta-learner,
the authors considered a weighted-majority voting algorithm
where the weights were defined depending on the accuracy of
the base-learner. We have taken a different approach in which
the meta-learner is another ML layer, a CNN, that takes as

input a visual representation of the base-learners’ outputs and
detects attack patterns on them. Mirsky et al. [7] proposed
Kitsune, an ensemble of autoencoders for detecting network
anomalies. The system relies on autoencoders, which are often
considered as unsupervised learning techniques because they
use unlabeled data, but autoencoders still require a training
phase on benign data. Kitsune stacks autoencoders, by using
another autoencoder as a meta-learner to process their anomaly
scores. The approach to combine base-learners is close to
ours, except that we address heterogeneous algorithms and
data features combinations.

b) Attack patterns detection: Regarding attack patterns
detection, Zhou et al. [8] proposed a system using LSTM
to detect multi-stage attacks. Their model treats sequences of
alarms generated by the NIDS Snort and addresses the problem
of long-term dependency between the alarms. Ghafir et al. [9]
proposed a system for the detection and prediction of advanced
persistent threats (APT). The system uses the Hidden Markov
Model (HMM) to detect the most probable APT scenario
given the raised alarms. Then, it forecasts the next step of the
ongoing APT. A significant difference with our work is that
their system is trained on a predefined attack lifecycle [10],
[11], whereas our system learns attack patterns directly from
the data, without prior knowledge of specific attack lifecycles.
Wang et al. [6] converted raw traffic data, specifically pcap
files, directly into images. They also observed and identified
attack patterns using this image-based representation.

c) Explainable AI: Wei et al. [12] observed that current
general-purpose explanation methods, such as SHAP [13] and
LIME [3], are not suitable for NIDSs because they do not
handle dependencies of network flows’ features. To overcome
this issue, the authors proposed data-driven explanation meth-
ods for Deep Learning (DL)-based NIDSs, that are based on
history inputs. Based on the extracted feature importance, the
system generates defense rules to block malicious activities.
Han et al. [4] addressed ML explainability by proposing a
system to interpret existing unsupervised, DL-based NIDS.
The system analyzed a given model detection by providing the
most important features and describing their meaning so that a
security expert can understand them. Instead of relying on ad
hoc descriptions of the features, we design a more transparent
system and provide a visual representation of traffic anomalies
that can be easily interpreted by the security analyst.

III. SYSTEM DESIGN

A. System overview

Our system takes networks flows as input (e.g., a pcap
capture), splits them in time frames of ∆T , and outputs, for
each time frame, whether there was an attack or not during
that time frame. Figure 1 shows an overview of our system.

First, the system aggregates flows by source and by desti-
nation on shorter time intervals ∆t. It computes features from
these aggregates, such as, for instance, for an aggregate by
source, the number of destinations that the source exchanged
traffic with during that time interval. These features are similar
to what was used in prior work [14], [15], and a complete list
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is given in Table I. This corresponds to the step 1 of Figure 1,
which is detailed in Section III-B.

Then, the system gives these features to a set of well
selected base-learners. One base-learner can for instance use
Isolation Forest [16], whereas another one can use Local
Outlier Factor [17]. Each of these base-learners outputs an
anomaly score for each aggregate. As we are using three base-
learners (Section III-C2), each aggregate can be represented
as a vector of three values in the three RGB color channels.
Concatenated together, they form color-encoded segments rep-
resenting the anomaly scores of a source or a destination over
time intervals of ∆t. This corresponds to step 2 in Figure 1,
whic is detailed in Section III-C.

Finally, these color-encoded segments are put side-by-side
to form an image that represents network anomalies during a
larger timeframe ∆T . Each line in the image corresponds to
the evolution of anomaly scores for aggregates of a specific
source or destination over the timeframe ∆T . This image is
given to a CNN, which is a layer of supervised learning that
computes whether the image contains an attack or not. This is
shown in step 3 of Figure 1, which is detailed in Section III-D.

The rest of the section will detail, for each step, the
motivation, challenges, and design choices in building each
of these components.

B. Aggregation of network flows

One classic question in designing anomaly detection tech-
niques is how to represent the input traffic data. For in-
stance, the CIC-CSE-IDS2018 dataset [18], that we use in
that paper to evaluate our system, proposes 83 network flow
features to evaluate ML-based NIDSs, where a network flow
is identified by the 5-tuple (source IP, destination IP, source
port, destination port, protocol). A traditional approach is to
directly give these features to a machine learning algorithm
that will compute whether a flow is anomalous or not. There
are two problems with this approach: (1) The number of
features tends to make the anomaly detection problem hard,
also called curse of dimensionality [14], [15] (2) The result is
rarely explainable. For instance, it is hard to understand why a
deep neural network did classify a flow as anomalous [7]. To
overcome these problems, we reduce the number of features by
aggregating the flows by source and by destination (Table I),
reducing the number of features from 83 to 9. This reduction
also helps for improving the explainability of our system
(Section III-C).

We choose to aggregate the flows by source and by desti-
nation, because our intuition is that some types of attacks are
better identified by aggregating by source, and some others are
better identified by aggregating by destination. For instance,
certain types of a DDoS attack will involve a lot of traffic
sent to a particular destination, so we will probably observe
an anomalous value in the n src ip feature. We show that
aggregates by source and by destination are complementary,
and give better results than aggregates by source or by
destination taken individually (Section IV-C).

TABLE I: Aggregates features

Feature Aggregation key Description
n dst ip IPsrc Number of destination IP ad-

dresses
n src ip IPdst Number of source IP addresses
n dst ports IPsrc & IPdst Number of destination ports
n src ports IPsrc & IPdst Number of source ports
n fwd pkts IPsrc & IPdst Number of forward packets
n bwd pkts IPsrc & IPdst Number of backward packets
sum flx dur IPsrc & IPdst Sum of flows duration
tot flx IPsrc & IPdst Number of flows
sum pkts size IPsrc & IPdst Sum of packets size
std pkt size IPsrc & IPdst Standard deviation of packets

size

These aggregates are computed over time intervals of ∆t =
2 minutes. We make this decision to mitigate the impact
of legitimate but sudden changes in network traffic (such
as variations on weekdays or weekends). Through empirical
evaluation, we determined that a time interval of 2 minutes
provides effective results (Section IV-B).

Moreover, to further reduce the dimensionality of our data,
we only compute the aggregates on IP addresses that are
internal to the network under consideration (i.e., the machines
belonging to an enterprise network). To be clear, there are
no aggregates per destination for public destinations in the
Internet.

In summary, aggregating network flows by source IP address
and destination IP address provides both a dimensionality
reduction that benefits unsupervised machine learning algo-
rithms used in Section III-C and a better explainability for
security analysts.

C. Ensemble anomaly scoring

This component of the system (Step 2 on Figure 1) takes
as input the aggregates computed in the previous section, i.e.,
aggregates by source and by destination over time interval of
∆t = 2 minutes. Its goal is to obtain an anomaly score for
each input aggregate. Our idea is to use ensemble learning with
multiple base-learners to achieve this goal, and we identify two
challenges: (1) For our system to be explainable, how can we
compute a score that both represent a degree of anomaly and is
easily understandable by an analyst? (2) Which base-learners
should we select to maximize the performance?

1) Unsupervised anomaly scoring: Different base-learners
can have very different approaches to compute the anomaly
scores, and this represents a challenge for us. Indeed, we
cannot run a base-learner directly on the features computed
from the aggregates, as the anomaly score would probably
not be meaningful for an analyst. For instance, the clusters
computed by DBSCAN [19] in high-dimensional data and thus
the anomalies are hard to interpret. Instead, we run each base-
learner on subspaces of k = 2 features among the n = 9
aggregate features of Table I, similar to what was done in the
UNADA prior work [14], [15]. Each base-learner is therefore
run on

(
2
9

)
= 36 pairs of features. The anomaly score of an

aggregate is then, for each base-learner, the number of pairs
of features that this base-learner considered as anomalous,
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Fig. 1: System overview. The system analyzes a traffic capture over a period ∆T . First, it aggregates network flows from
the capture that belong to the same time interval ∆t and computes their features. Next, it applies a set of three unsupervised
base-learners to assign anomaly scores to the aggregates. After that, the system generates a visual representation of the detected
anomalies, enabling a visualization of potential attack patterns. Finally, these representations are analyzed by an attack pattern
recognition module, here a CNN, which determines whether the network is under attack during the period ∆T .

ranging from 0 to 36. The way a pair of features is considered
anomalous is specific to each base-learner, depending on the
algorithm used. This choice facilitates interpretation, as it
allows one to identify which pairs of network features were
flagged as anomalous, providing valuable information for a
network analyst.

2) Base-learners selection: We select three base-learners
among unsupervised anomaly detection algorithms, to be able
to enlarge the scope of attacks that can be detected. We
use three as their output can then be converted into images,
each base-learner representing a color in the RGB channels
(Section III-D). This choice improves explainability as the

analyst can benefit from a visual representation of the anomaly
scores. Prior work has also shown that adding more base-
learners does not necessarily improve performance [20].

Our approach to select these three algorithms is data-driven:
we evaluate the performance of all the possible combinations
of three algorithms among the algorithms available in the pop-
ular machine learning libraries scikit-learn [21] and PyOD [22]
on the CIC-CSE-IDS2018 dataset [18], and select the best
combination, using the standard metrics of true postive rate
(TPR) and false positive rate (FPR) (Section IV-B).

These algorithms have different approaches, and our intu-
ition is that ensemble learning would work well to improve
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Fig. 2: Anomaly scoring by three unsupervised base-learners
during a time interval ∆t. This analysis generates a vertical
color-encoded segment that is part of the visual representation
of anomalies generated in Figure 4. Four network flows are
grouped into aggregates during a time interval ∆t. Then, the
features of the aggregates are extracted and prepared before
being evaluated by the three unsupervised base-learners. Each
base-learner assigns an anomaly score to each aggregate. A
color is assigned to each model, allowing the representation
of anomaly scores on a monochromatic segment. By overlay-
ing the monochromatic segments from the base-learners, we
obtain a color-encoded segment that represents the anomalies
detected by the set of base-learners.

the accuracy of the system [20]. Namely, we tested:

• Isolation Forest (IF) [16] detects anomalies using iso-
lation. The algorithm recursively constructs a random
feature selection and splits values to isolate data samples.
The anomaly score is determined by the number of
splittings required for isolation.

• Local Outlier Factor (LOF) [17] compares the local
density of a data sample with that of its neighbors to
detect anomalies.

• DBSCAN [19] groups data samples into clusters based
on their proximity. If a group contains enough data
samples, it forms a cluster; otherwise, they are classified
as outliers.

• One-Class SVM (OCSVM) [23] defines a hyperplane to
separate data samples and detects anomalies based on
their distance from the hyperplane.

• Unsupervised KNN [24] is a proximity-based model that
uses the distance to the kth nearest neighbor as an outlier

score.
• COPOD [25] is a probabilistic model for anomaly detec-

tion.
Although our choice of the base-learners depends on the

dataset, in practice, an enterprise could reuse our methodology
to choose the base-learners that are the best suited to its traffic.

D. Attack patterns recognition
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(a) DoS attack. In the label images, a red horizontal line indicates
close emission and reception of attack flows by the victim. In the
destination IP address representation, the UL models detect the entire
attack line as highly anomalous, with some weakly anomalous benign
aggregates. In the source IP address representation, the attack line is
detected as moderately anomalous.
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(b) Brute-force attack. In the label images, the victim is shown to
receive but not emit attack flows. The attack is only visible in the
destination IP address representation, where the UL models detect
the entire attack line as highly anomalous, along with some weakly
anomalous benign aggregates.

Fig. 3: Anomaly Representations and Labels. The figures show
anomaly representations and labels for a brute-force attack
and a DoS. The vertical axis represents IP addresses, while
the horizontal axis represents time intervals. The left images
display base-learner outputs using color channels, while the
right images show attack and benign labels (red and green
pixels, respectively).
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In the previous section, we selected a set of base-learners
which detect anomalous aggregates and output an explainable
result. One problem is that they might disagree on an aggre-
gate, some of them might consider it as anomalous, whereas
some others might not, and there is no simple rule to decide
which one is right. One reason that could make them disagree
is that some base-learners are better than others at identifying
some types of attacks, and the challenge is to take advantage of
their complementarity. Our idea is to use a meta-learner on top
of our three base-learners that will learn which base-learner
is more suited for which type of attack. Indeed, we show in
Section IV-B that we cannot simply select the decision of the
base-learner having the best performance [1].

To translate this idea into a design, we map the anomaly
scores of the three base-learners into colors of the RGB
channels, with the intensity of a color being proportional to the
anomaly score. These pixels, representing aggregates over time
intervals of 2 minutes (Section III-B), are then put together
to form an image of 30 minutes, where a line corresponds
to a source or destination IP address, depending on whether
the aggregation is made by source or destination, and each
column corresponds to a time interval of 2 minutes. The ideas
behind building these images are two-fold: (1) Most of the
attacks last more than 2 minutes, and moreover some of them
can have complex patterns. By building sequences of anomaly
scores, we hope that our meta-learner will perform better
at detecting these complex attacks. (2) The images improve
explainability as they provide a useful visualization of the
anomalous IP addresses and can be easily translated to the
original anomalous networking features.

This image is then given to a CNN. This CNN is used
as a meta-learner to identify attack patterns. The CNN takes
as input the two matrices, one representing the aggregates
by source and the other the aggregates per destination, and
outputs a decision of whether there was an attack during the
30 minutes represented by the image.

The CNN requires a labeled dataset for training and val-
idation. We choose to label an image as an attack if this
image contains at least one pixel representing an attack, i.e.,
the corresponding aggregate is labeled as malicious traffic
in our dataset [18] (Section IV-A). Otherwise, the image is
considered as benign.

An example of how this component works is given in
Figure 3, which represents a DoS and a brute-force attacks.
The output of the base-learners are represented on the images
of the left. A white pixel means that all the base-learners
diagnosed the aggregate as highly anomalous, whereas a black
pixel means that none of the base-learners considered that
aggregate as anomalous. The images on the right represent
our ground truth labeled dataset [18], where a green pixel
represents benign traffic, while a red pixel represents an attack.
Black pixels represent just an absence of traffic for an IP
address during the 2 minutes. We observe that for both the DoS
and the brute-force attack, the anomaly scores given by the
base-learners are generally high as they are closer to the white
color than to the black. However, notice that on the image on

Fig. 4: Attack pattern recognition on a visual representation of
the detected anomalies during a timeframe ∆T . The timeframe
∆T consists of, in this example, 3 consecutive time intervals
∆t. The network flows from each time interval ∆t are an-
alyzed as shown in Figure 2. All the anomalies detected by
the N = 3 base-learners within a specific time interval ∆t are
visually represented using color-coded segments. By arranging
the 3 segments side by side, we obtain a visual representation
of network anomalies detected by the N = 3 base-learners
during the timeframe ∆T .

the top left of the DoS attack, not all the base-learners had
high anomaly scores, as some pixels are turquoise and further
from white, showing the necessity of having a meta-learner to
find the right decision.

IV. RESULTS

Our system achieves an overall performance of a True
Positive Rate 0.9898 and a False Positive Rate of 0.0093,
corresponding to three false positives and one false negative
(Section IV-C) that we can mitigate thanks to explainability
(Section V). We achieve this performance by having the
following intermediate results: (1) A good combination of
three base learners is better than only always trusting the
best of the three (Section III-C). (2) Adding the CNN as a
meta-learner on top of the base-learners greatly improves the
performance (Section III-D) (3) Computing the aggregates by
source and by destination has a better performance than only
computing by source or destination (Section III-D). Finally,
we describe how explainability helps the system to be more
accurate in Section V, as well as how explainability can
improve the decision process for a network security analyst.
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A. Dataset

We evaluated our system on the CIC-CSE-IDS2018
dataset [18], which, to our knowledge, is the only recent,
representative, labeled dataset that is publicly available for
evaluating NIDSs. This dataset represents a realistic enterprise
network with 450 machines, and an attacking infrastructure
consisting of 50 machines. The dataset contains 10 days of
network captures, covering various simulated attack scenarios
including brute-force attacks, denial-of-service (DoS) attacks,
distributed denial-of-service (DDoS) attacks, web attacks, in-
filtration attacks, and botnet attacks. In particular, the dataset
provides the hours of the attacks and the source IP addresses
making the attack and the destination IP addresses receiving it,
so we labeled the network flows accordingly. An aggregate by
source or by destination is labeled as an attack if the source or
the destination emits or receive traffic from or to an attacking
IP address. Finally, an image is labeled as an attack if one
aggregate in the image is labeled as an attack.

1) Aggregation of network flows: Table II describes the
distribution of aggregates for each traffic category. There are
fewer aggregates by source IP addresses compared to desti-
nation IP addresses, indicating that there are more receiving
machines than emitting machines in our dataset. In addition,
the density of attacks is higher in the aggregates by destination
IP than in those by source IP.

2) Transforming the anomaly scores into images: After
putting together the aggregates into images representing the
anomaly scores obtained during time intervals of 30 minutes,
we obtain 4214 pairs of images (one for aggregation by source
and one by destination).

B. Ensemble Anomaly Scoring

The unsupervised anomaly scoring component generates vi-
sual intermediate representations of network anomalies based
on a set of base-learner detections (Figure 3).

Table III shows the performance of the top five combinations
of base-learners, also called stacked models, when using aggre-
gates by source and by destination. It shows their true positive
rates (TPR) and false positive rates (FPR) on the aggregates by
source and destination. We consider that a combination labels
an aggregate as an attack if one of its base-learners detects the
aggregate as an attack.

The top combinations are (LOF, OCSVM, COPOD) for
analyzing the aggregates by source IP address, and (LOF,
KNN, COPOD) for analyzing the aggregates by destination
IP address. If we empirically select the combination with
the best results, our hypothesis is that these combinations
work well in practice because they have different methodology
to detect anomalies. Specifically, LOF is a local density-
based algorithm, OCSVM and KNN rely on distance-based
approaches, and COPOD is probabilistic based.

We retrieve now a known result in ensemble learning that it
is better to use a stacked model rather than always using the
best base-learner [20]. Table IV shows the TPR and the FPR
of each base-learner and the best stacked model. The LOF,
which has the best TPR of the base-learners with 0.8923 on

the aggregates by source, does not detect some of the attacks
identified by the stacked model, which has a TPR of 0.9878.
However, the stacked model has a higher TPR. The process of
reducing this TPR is made by the meta-learner (Section IV-C).

C. Attack Patterns Recognition

This last section of the evaluation looks into the perfor-
mance of our meta-learner, the CNN (Section III-D). Our
dataset of images is split into training, validation, and evalua-
tion sets with an 80-10-10 ratio, respectively. The training set
was used to train the CNN, while the validation set is used for
hyperparameter tuning [26]. The evaluation set is reserved for
the final assessment of the attack patterns recognition module’s
performance.

Table VI shows the F-score and confusion matrix of our
meta-learner, i.e., our CNN, which analyzes aggregates by
source and destination IP address, called the combined model.
There are three main results from this table: (1) The overall
performance of the system is good: it only has three false
positives, and one false negative, but we show that explain-
ability can help understand why the system did not detect
this attack and that it would have been detected in practice
thanks to explainability (Section V). (2) The FPR of the meta-
learner is way better than the FPR of the best combination
of base-learners, with 0.0093 versus 0.6763, while the TPR
is similar (0.9898 versus 0.9878), showing the added value
of the meta-learner. (3) The two representations, aggregates
by source and destination, are complementary. The combined
model has a higher F-score than the two other models, only
using aggregates by source or destination, although the F-score
are close.

It is worth noting that our system does not require the
attack to last throughout the entire capture to detect it, even
if attacks that have been ongoing for a long time are easier
to detect and visualize. In fact, our system demonstrates
the capability to detect most attacks within 2 minutes, as
soon as the first attack aggregate appears in the capture.
Further research could explore reducing the time required for
effective attack detection, potentially by implementing time-
sliding windows [27].

V. EXPLAINABILITY IMPROVES ACCURACY

The goal of our system is not to achieve the best and
perfect accuracy blindly, only relying on statistical methods,
like most prior work. Instead, we aim a perfect accuracy by
involving the end user of an NIDS, i.e., a human analyst
who needs to understand the output of the NIDS to decide
whether to trigger some actions if one considers that their
network is under attack. Our system is explainable-by-design,
as each successive component does not hinder the possibility to
easily retrieve which network features triggered the anomaly
detection. A report is generated whenever the system labels
an image with an attack, easing the process of an analyst.
To illustrate why we can in fact obtain a perfect accuracy on
our dataset thanks to explainability, we looked into the image
corresponding to the undetected attack in Table VI. What we
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TABLE II: Distribution of aggregates by source and destination IP address for each traffic category

Source IP Destination IP
Traffic Category Count Proportion (%) Count Proportion (%)
Brute-force 41 0.004455 97 0.009547
Denial of service 13 0.001412 70 0.004231
Web 0 0 133 0.013089
Infiltration 32 0.003477 76 0.007480
Bot 1500 0.162978 0 0
DDoS 58 0.006302 62 0.006102
Benign 918723 99.821376 1015651 99.956894
Total 920367 100 1016089 438

TABLE III: Top 5 combinations of 3 base-learners for aggregates by source and destination IP address. The combinations are
ranked according to two criteria: the true positive rate (TPR), representing the percentage of accurately detected attacks, and
the false positive rate (FPR), indicating the proportion of false alarms. The subsets of base-learners in these combinations have
demonstrated the highest accuracy in identifying attacks while minimizing false positives.

Source IP Destination IP
Subset of base-learners TPR FPR Subset of base-learners TPR FPR
(LOF, OCSVM, COPOD) 0.9878 0.6763 (LOF, KNN, COPOD) 0.9384 0.3994
(IF, LOF, OCSVM) 0.9811 0.6704 (LOF, OCSVM, COPOD) 0.9811 0.4437
(LOF, OCSVM, KNN) 0.9732 0.6762 (LOF, OCSVM, KNN) 0.9315 0.4312
(LOF, DBSCAN, OCSVM) 0.9726 0.6620 (LOF, DBSCAN, COPOD) 0.9292 0.3917
(IF, OCSVM, COPOD) 0.9690 0.4937 (IF, LOF, COPOD) 0.9292 0.3939

TABLE IV: True positive rate (TPR) and false positive rate (FPR) for the base-learners vs the stacked model.

Source IP Destination IP
Base-learner TPR FPR Base-learner TPR FPR
LOF 0.8923 0.3754 LOF 0.9041 0.3366
OCSVM 0.8394 0.4634 KNN 0.8904 0.1862
COPOD 0.7652 0.1467 COPOD 0.8744 0.1795
Stacked Model 0.9878 0.6763 Stacked Model 0.9384 0.3994

TABLE V: Distribution of attack and benign images in the dataset split. The table presents the distribution of attack and benign
images across the dataset split, which was divided into training, validation, and test datasets in an 80-10-10 ratio.

Attack Benign
Count Proportion (%) Count Proportion (%)

Training 776 23.70 2498 76.30
Validation 102 24.23 319 75.77
Test 98 23.22 324 76.78
Total 976 23.16 3238 76.84

actually observed is that this image corresponded to the end
of an attack, that would have been detected by prior images
as the attack lasted over several images. So in practice, this
attack would have been detected and we would have 0 false
negative on our evaluation dataset.

VI. CONCLUSION

We have proposed an explainable-by-design network attack
detection system. In our approach, we used unsupervised tech-
niques to detect anomalies on aggregates based on source and
destination IP addresses. The results produced by our system
are interpretable and understandable for security analysts. The
outputs include the IP addresses associated with the aggregates
detected as anomalous, allowing analysts to relate them to
specific machines in the network. Additionally, the anomalous
feature pairs are also reported, providing an additional level of
detail on the detected anomalies. To represent these anomalies,
we used images generated from a set of unsupervised base-
learners. These images enable security analysts to visually

observe the attack patterns detected by the system. Finally,
we analyzed these traffic representations using a CNN to
recognize attack patterns.

Our approach aims to design a more transparent attack
detection system that allows security analysts to understand the
decisions made by the system. The evaluation of our system on
the CIC-CSE-IDS2018 dataset [18] demonstrated reasonable
accuracy, but more importantly, the errors made by the system
are easily identifiable and can be analyzed by security analysts.
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TABLE VI: Performance metrics and confusion matrix of CNN on aggregates by source IP address, destination IP address,
and combined CNN

TPR FPR F-score
Confusion Matrix[

TP FP
FN TN

]
CNN Source 0.9796 0.0062 0.9905

[
96 2
2 322

]
CNN Destination 0.9796 0.0093 0.9882

[
96 3
2 321

]
Combined CNN 0.9898 0.0093 0.9906

[
97 3
1 321

]
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