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Abstract
Continual Learning (CL) aims to endow machines
with the human-like ability to continuously ac-
quire novel knowledge while retaining previously
learned experiences. Recent research on CL has
focused on Domain-Incremental Learning (DIL)
or Class-Incremental Learning (CIL) with well-
defined task boundaries. However, for real-life
applications, e.g., waste sorting, robotic grasp-
ing, etc., the model needs to be constantly up-
dated to fit new data. Additionally, there is usu-
ally an overlap between new and old data. Thus,
task boundaries may not be well defined, and
a more smooth scenario is needed. In this pa-
per, we propose a more general scenario, namely
Distribution-Shift Incremental Learning (DS-IL),
which enables soft task boundaries with possi-
ble mixtures of data distributions over tasks and
thereby subsumes the two previous CL scenar-
ios: DIL and CIL are simply DS-IL. Moreover,
given the increasingly greater importance of data
privacy in real-life applications and, incidentally,
data storage efficiency, we further introduce an
entropy-guided self-regulated distillation process
without memory, which leverages data similar-
ities between tasks with soft-boundaries. Exper-
imented on a variety of datasets, our proposed
method outperforms or matches state-of-the-art
continual learning methods.

1. Introduction
In recent years, intelligent systems have been required to
possess Continual Learning (CL) ability, i.e., the capability
to learn novel knowledge from a new task while preserving
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previously learned knowledge and experience. However,
current intelligent systems usually suffer from a notorious
problem named catastrophic forgetting, i.e., they quickly
forget previously learned knowledge when learning new
tasks.

After years of research, a variety of continual learning sce-
narios have been proposed. Depending upon the assump-
tions made for CL, three different scenarios, namely Task-
Incremental Learning (TIL), Domain-Incremental Learning
(DIL), and Class-Incremental Learning (CIL) (see details
in Figure 1, Figure 3 and Figure 2), were first proposed in
(van de Ven & Tolias, 2019)(Hsu et al., 2019) to evaluate the
performance of different CL methods. TIL assumes that task
identity is provided for both training and inference, whereas
both DIL and CIL assume that task identity is only available
during training and remains unknown during testing. By
definition, it is assumed that novel data of unknown classes
occur in CIL over tasks, while novel data of only known
classes can appear in DIL. However, the previous three CL
settings, as defined in (van de Ven & Tolias, 2019)(Hsu et al.,
2019), assume that during training, task boundaries between
tasks are clear and well-defined. For example, a new task
must only have new unknown classes in CIL, while a new
task must have new images(variety in illumination, back-
ground, texture, etc.) of known classes in DIL. However,
for real-life applications, e.g., waste sorting, data (garbage)
are collected from different regions and on different days. If
the model updates every day, the garbage collected on one
day can be considered to be one single task. In this case,
a new task may or may not have new unknown classes or
new images from different domains, i.e., there may be an
overlap of classes and images between tasks. Thus, there
are no well-defined task boundaries, and neither DIL nor
CIL can describe this situation.

In (Lomonaco & Maltoni, 2017), a new scenario named
New Instances and Classes (NIC) was proposed for their
dataset CORe50(Lomonaco & Maltoni, 2017), where new
instances and new classes can occur in a new task. How-
ever, it did not propose a clear method for generating NIC
on other datasets. In (Zeno et al., 2021), it proposed the
Continuous Task Agnostic scenario, which considers the
continuous linear transition of task distribution. However, it
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only studies the linear transition between two tasks, mean-
ing that application of this scenario is limited. Considering
the generality of different scenarios, DIL and CIL have
attracted much more attention in the literature. Current re-
search, e.g., (Rebuffi et al., 2017), (Douillard et al., 2020),
(Yu et al., 2020), (Verma et al., 2021), mainly considers
DIL and CIL to be two sub-questions of continual learning
that are studied separately. However, both DIL and CIL
involve data distribution shifts (see details in Section 3) .
In this paper, we propose a novel CL perspective, namely
Distribution-Shift Incremental Learning (DS-IL). More gen-
eral and based on data distribution shifts, it can subsume
the previous CL sub-scenarios and enables mixtures of data
distributions over tasks with blurred boundaries.

A general assumption in CL is that past data cannot be
entirely stored for privacy or memory constraint reasons.
However, the previously learned model can be used for the
next training. For a classification problem, the learning
model is generally a discriminative model, so that for a
given input, the softmax output is the probability distribu-
tion of the class labels. However, the information on data
distribution is lost after training, meaning that the previous
objective function cannot be easily reconstructed by only
using a discriminative model. Regularization-based meth-
ods, e.g., EWC(Kirkpatrick et al., 2017), SI(Zenke et al.,
2017), Riemannian Walk(Chaudhry et al., 2018). These
use a second-order approximation (Fisher information, Hes-
sian matrix, etc.) to replace the previous objective function.
These methods work well for Task-Incremental Learning,
i.e., when the system is informed of the task ID from which
the data derive, and struggle against other more challenging
scenarios (van de Ven & Tolias, 2019). Memory-based
methods, e.g., ER(Rolnick et al., 2019), LWF(Li & Hoiem,
2018), iCaRL (Rebuffi et al., 2017), make use of the actual
data, whereas others, e.g., DGR(Shin et al., 2017), Deep-
Inv(Yin et al., 2020), rely upon generated data. They use
memory or pseudo-memory to replace the previous dataset
and approximate the previous objective function. They are
better equipped to overcome forgetting than regularization-
based methods but usually need an extra memory buffer
and more computation. Parameter isolation methods,
e.g., PNN(Rusu et al., 2016), EFT(Verma et al., 2021),
RKR(Singh et al., 2021), dedicate different subsets of the
model parameters to different tasks. These methods only
work when task boundaries are well-defined.

In order to better adapt to real applications, a method that
needs less memory budget, more computation efficiency,
and more flexibility is required. We observe that the task
boundary is not always rigid between tasks, and that there
is usually an overlap of data distributions between different
tasks for many continual learning scenarios. In this case,
these overlapping data can help us reconstruct the previous
objective function, thus retaining knowledge. The remaining

challenge is how to find these data. In this paper, we propose
to make use of the previous model’s entropy information
on the current data to identify data similarity. By using this
information, we can adjust distillation loss more precisely,
based on the degree of familiarity of the learned model with
the current data.

The contributions of this paper can be summarized as fol-
lows:

• We propose a novel continual learning scenario, namely
Domain-Shift Incremental Learning (DS-IL), which
enables mixtures of data distributions over tasks with
soft task boundaries and thereby subsumes both DIL
and CIL;

• In order to deal with mixtures of data distribu-
tions between tasks under DS-IL, we introduce an
entropy-guided self-regulated knowledge distillation
loss which, without memory, preserves previously ac-
quired knowledge based on the degree of familiarity of
the learned model with the current task’s data;

• Using PACS and CIFAR-100 datasets, we define two
novel experimental benchmarks in order to evaluate
continual models w.r.t. the DS-IL scenario;

• Using the proposed novel DS-IL benchmarks on PACS
and CIFAR-100, we show the effectiveness of the pro-
posed ER-LwF (Entropy-Guided Self-Regulated Learn-
ing without Forgetting).

2. Related Work
2.1. Domain-Incremental Learning

(van de Ven & Tolias, 2019)(Hsu et al., 2019) first intro-
duce the concept of Domain-Incremental Learning(DIL), in
which there is no new class, but rather novel instances of
classes from previous tasks. The objective of DIL is to learn
a unified classifier that can classify all samples encountered
so far. The core issue in DIL is how to deal with the shift in
input space distribution, e.g., changes in background, tex-
ture, pose, etc. For example, autonomous driving systems
trained with the data collected in good weather conditions
may encounter extreme weather conditions. DIL needs to
learn from the data in extreme weather conditions while
preserving the knowledge learned in good weather condi-
tions. ER(Rolnick et al., 2019) shows that random selection
of exemplars after training and random sampling of a set
of memories during training with the new data can already
achieve satisfying performances. Furthermore, RM(Bang
et al., 2021) proposes to use diverse data augmentation tech-
niques. MDR(Volpi et al., 2021) introduces the meta-update
combined with rich data augmentation. However, DIL still
assumes that well-defined task boundaries are known during
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training. The proposed DS-IL setting extends DIL by en-
abling mixtures of data distributions over tasks and thereby
enabling soft switching over tasks where task boundaries
are not well-defined.

2.2. Class-Incremental Learning

Class-Incremental Learning (CIL) is currently the most stud-
ied CL scenario, where new classes occur sequentially. Sim-
ilar to DIL, memory-based methods achieve the best perfor-
mance. iCaRL(Rebuffi et al., 2017) first proposes a solution
for CIL. It contains 1) an episodic memory selected by the
herding rule; 2) a distillation loss of the feature’s output; 3) a
nearest-mean-of-exemplars classifier using the mean feature
of the Episodic Memory to classify. PodNet(Douillard et al.,
2020) proposes to distill not only the feature’s outputs but
also the intermediate layers’ outputs. SDC(Yu et al., 2020)
proposes to approximate the drift of the prototype’s feature
by using the current data. BiC(Wu et al., 2019) finds that
the last fully connected layer has a strong bias towards the
new classes and proposes to use a linear model to correct the
bias. GEM(Lopez-Paz & Ranzato, 2017) proposes to use
memory to limit the current gradient. In this paper, we pro-
pose a new memory-free approach that can also cooperate
with memory-based methods.

2.3. Task Agnostic Continual Learning

Task Agnostic Continual Learning(Zeno et al., 2021) is the
scenario in which task boundaries are unknown or not well-
defined. It mainly creates the linear transition between two
successive tasks by adjusting the proportion of the data
of the two tasks. However, since the transition in a real
application is not just linear between two tasks, it is still
limited to a real application.

2.4. Knowledge Distillation

The notion of knowledge distillation was first proposed in
(Hinton et al., 2015) for model compression. It uses the
output of a large model to replace the original label for
given data. This new label can help a small model learn
faster. LWF(Li & Hoiem, 2018) first introduced this no-
tion into CL. It considers the previously learned model as
the teacher model and replays the memory and the teacher
model’s output. As aforementioned, many CL methods
make use of knowledge distillation as a basic technique.
PodNet(Douillard et al., 2020) distills the intermediate layer
output as well. RRR(Ebrahimi et al., 2021) distills the atten-
tion map of the memory exemplar. UD(Kurmi et al., 2021)
distills the previous model’s uncertainty on the memory ex-
emplar. In this paper, we propose to calculate distillation
loss not from memory but from current data, based on the
familiarity of the previous model with the current data using
entropy in a self-regulated process. We will discuss this in

detail in Section 4.

3. Distribution-Shift Incremental Learning
(DS-IL)

For simplicity without loss of generality, let us consider
only two tasks T1 and T2 with their data D1 for T1 :{
x1
i , y

1
i

}
i∈1:n1

drawn from a joint distribution P1(x, y),
and D2 for T2 :

{
x2
i , y

2
i

}
i∈1:n2

drawn from a joint dis-
tribution P2(x, y). Let l be the loss function (cross-entropy
for classification). Let ϕ be the output of the model, and θ
its parameters. Then, we can construct the objectives for T1

and T2, respectively:

T1 : L1 =

n1∑
1

l(ϕ(y|θ, x1
i ), y

1
i )) (1)

T2 : L2 =

n2∑
1

l(ϕ(y|θ, x2
i ), y

2
i )) (2)

Gradient descent, such as Stochastic Gradient Descent
(SGD), can be used to update the parameters θ to mini-
mize the objective function. If P1(x, y) equals P2(x, y), L1

approximates L2. Thus, when training only with D2, L1

will not increase, and the model will not forget T1. How-
ever, if P1(x, y) is very different from P2(x, y), the gradi-
ent direction of L1 may violate the gradient direction of L2

when updating the parameters only with the gradients of L2.
Therefore, the objective function L1 will increase, and the
phenomenon of catastrophic forgetting will occur.

From a Bayesian perspective, joint distribution P (x, y) can
be decomposed as follows:

P (x, y) = P (x|y)P (y) (3)

P (x, y) = P (y|x)P (x) (4)

P (x) and P (y) denote the probability density of the input
and output, respectively. P (x|y) denotes the conditional
probability of an output given an input. P (x|y) denotes
the conditional probability of an input given an output. For
continual learning, the shift of these four terms is primarily
involved, e.g., P (x) mainly changes in Domain-Incremental
Learning (DIL), whereas P (y) mainly changes in Class-
Incremental Learning (CIL). We can create different scenar-
ios by adjusting the proportion of these four terms.

From this data distribution shift perspective, it is easy to
interpret DIL or CIL as DS-IL and extend them for Smooth-
DIL or CIL when task transitions are blurred and data dis-
tributions mixed up. Thus, DS-IL is a continual learning
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scenario in which models are to learn knowledge from the
successive shifting of P (x), P (y), P (x|y), and P (y|x) over
tasks.

3.1. From CIL to DS-IL

For a classic CIL, each new task only contains a few new
classes. Thus, the density probability of the previous classes
equals zero, and some new output variables y appear. The
CIL setting can be considered to be an extreme case of the
DS-IL setting where data labels are only available for the
novel classes of the second task T2. Thus, P (y) changes
rapidly. By smoothing the change of P (y), we can increase
the similarity between tasks and generate a smoother and
more flexible version of CIL, as shown in Figure 2.

Figure 1. Illustration of TIL in which the data have both class id
and task id. Moreover, task id is provided for both training and
testing.

Figure 2. Illustration of CIL and Smooth-CIL using three tasks
with three classes. In the original CIL setting, each task only
contains instances of one class. The Smooth-CIL breaks this limit,
and each task may have multiple classes. Thus, the shift of P (y)
in our scenario is smoother.

3.2. From DIL to DS-IL

The classic DIL defines each domain as a single task with
well-defined task boundaries. This means that the domain
shift is discontinuous. Thus, we can quickly transform a
DIL into a CIL by labeling the data with domain and class
labels as shown in Figure 3, thereby interpreting DIL as
DS-IL. However, in many real-life applications, there are no
clear and well-defined task boundaries with evident domain
labels. Task transitions can be fuzzy, and data distributions
of different tasks can overlap and mix up, resulting in a
Smooth-DIL as shown in Figure 3, which is enabled by

DS-IL.

Figure 3. Assume there are two domains, and each domain contains
the same class labels. The classic DIL considers each domain as a
single task. In Smooth-DIL, each task can contain two domains,
but the distribution of different domains is different for each task.
Therefore, from DIL to CIL, we can label data by using both the
domain label and the class label. In this figure, there are four
different labels, corresponding to four tasks.

4. Entropy-Guided Self-Regulated Learning
without Forgetting

To ensure simplicity without loss of generality, we consider
the same hypotheses as in Section 3. There are only two
tasks. From Equation (1) and Equation (2), we can derive
the joint objective for both task 1 and task 2 as:

Ltotal = L1 + L2 (5)

=
∑
D1

l(ϕ(y|θ, x1
i ), y

1
i )) +

∑
D2

l(ϕ(y|θ, x2
i ), y

2
i ))

(6)

When training on T2, if we could store all the data from T1,
then we can construct the objective L1. However, for CL,
we can only use a small part or none of D1 (dataset for T1).
Thus, the core problem is how to approximate L1.

4.1. LWF (Learning without Forgetting)

LWF(Li & Hoiem, 2018) proposes to use the previous model
to generate a soft label and replaces the cross-entropy loss
with a distillation loss. In this work, to fit our scenario, we
only use the concept of knowledge distillation to represent
LWF . θ∗ represents the parameters learned from T1; llwf

corresponds to the distillation loss; M is the memory set
which is from D1 and D2. Then, the new objective is as
follows:

ˆLtotal = L̂1 + L2 (7)



Entropy-Guided Self-Regulated Learning Without Forgetting

L̂1 =
∑
M

llwf (ϕ(y|θ, x1
i ), ϕ(y|θ∗, x1

i ))) (8)

LWF uses distillation loss to approximate the previous ob-
jective function L1.

4.2. The proposed ER-LWF approach

As we discussed in Section 3, the distribution shift between
tasks is not always rigid and discontinuous. Thus, some
current data may possibly be similar to previous data. Here,
we use D1 ∩D2 to represent the set of similar data. It then
becomes crucial to find this intersection without access to
D1. We propose to use the output of the previously learned
model to verify if the data are similar. Let EI denote the
entropy. Then, EI for given data is defined as follows:

EI(x, y) = EI(P (y|θ∗, x)) = EI(softmax(ϕ(y|θ∗, x)))
(9)

The closer EI is to zero, the more familiar and confident the
model is about the input data, and the more corresponding
data is valuable for reconstructing the L1. On the contrary,
if EI is large, output distribution is close to discrete uniform
distribution. This means that the model hardly classifies the
given input data.

Rather than looking for similar data in D1∩D2, we propose
to use EI to modulate distillation loss. Given an N-class
classifier, the upper-bound of EI over its outputs corre-
sponds to discrete uniform distribution:

EIupper = −
N∑
1

(
1

N
log(

1

N
)) = log(N) (10)

0 ⩽ EI(x, y) ⩽ log(N) (11)

Thus, we can define our Entropy − Guided weight (EG-
weight) for given data as follows:

weg(x, y) = 1− EI(x, y)

log(N)
(12)

Then, the previous objective function could be approximated
as:

L̂1 =
∑
D2

weg(x
2
i , y

2
i )llwf (ϕ(y|θ, x2

i ), ϕ(y|θ∗, x2
i ))) (13)

From Equation (13), we only use the current data D2 and
our EG-weight to approximate the previous loss function.
The benefits of this formulation are threefold:

• Memory is not necessary;

• weg(x, y) can verify if a model is familiar with data
from D2 or not. If the model is familiar with data, then
weg(x, y) will be close to 1, else it will be close to 0;

• It can be used for online updates.

The corresponding algorithm, ER-LWF, is detailed in Algo-
rithm 1.

Algorithm 1 ER-LWF for continual learning
Train(θ,D, n, T )
D: # dataset; θ: # model parameters;
T : # of tasks; N : # of batches
for t = 1:T do

for n = 1:N do
sample data (xn, yn) from Dt;
# CE: Cross-Entropy loss;
lcurrent = CE(ϕ(y|xn, θ), yn);
if t >1 then

# KD: knowledge distillation loss;
# θ∗: previous model parameters;
llwf = KD(ϕ(y|xn, θ), ϕ(y|xn, θ

∗))
# weg(xn, yn) : EG-weight;
lER−LWF = weg(xn, yn) ∗ llwf

else
lER−LWF = 0

end if
ltotal = lcurrent + lER−LWF

Update(ltotal, θ)
end for

end for

5. Experiments
In this section, we first present our experimental protocols
under DS-IL in Section 5.1 and then introduce the methods
we use in Section 5.2. Finally, the results are discussed in
Section 5.3.

5.1. Experimental protocols

As we discussed in Section 3, we can generate a Smooth-CIL
and a Smooth-DIL for classic CIL and DIL, respectively. In
this section, we continue this idea and conduct experiments
on two datasets: PACS and CIFAR-100.

PACS is an image dataset originally for data generaliza-
tion(Li et al., 2017). It consists of four domains: photo, art
painting, cartoon, and sketch. Each domain contains seven
classes. For simplicity, each image is resized to 64×64 for
all scenarios, and 20% of each domain is used to construct
our test set. We repeated each experiment three times.
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First, for DIL, the dataset is divided into four tasks. Each
task has one domain. The learning order arbitrarily chosen
is: art− painting → cartoon → photo → sketch.

We then generate six tasks containing all seven categories
for Smooth-DIL. However, the four domains are mixed up
with different proportions over the six tasks, and also the
domain ratio is randomly generated. To compensate for this
randomness, we generate three experiments with varying
domain ratios.

In our CIL under the DS-IL perspective, each task contains
all the categories. However, there is only one dominant class,
and others have few exemplars. PACS has seven classes.
Thus, we consider seven tasks, where each task contains
only one dominant class.

Similar to Smooth-DIL, Smooth-CIL has six tasks for which
the category ratio changes. The category ratio is randomly
generated. We generate three experiments with varying
proportions of the class.

CIFAR-100 (Krizhevsky, 2009) has 20 superclasses,
where each superclass contains five classes. Each class
comprises 600 images, of which 500 are used for training
and 100 for testing. To use the dataset in our experiments,
we need to create a notion of the domain in CIFAR-100.
For example, there is a superclass fish that corresponds to
five classes: aquarium fish, flatfish, ray, shark, trout. Each
can be seen as a domain of fish. Thus, we use the super-
class label as our new class label and the original class label
as the domain label. Finally, the original CIFAR-100 is
transformed into a dataset containing 20 classes and five
domains. For simplicity, we keep the same training set and
test set as the original version of CIFAR-100(Krizhevsky,
2009). We use the original image size that is 32*32*3. Each
experiment is repeated three times.

Then, the rest is similar to the PACS dataset. For DIL,
each superclass has five domains (subclasses). Thus, we
generate five tasks for DIL. Then, we generate eight tasks
containing different domain distributions for Smooth-DIL.
We created ten tasks for CIL, where each task has two
dominant classes. Finally, for Smooth-CIL, we produced
eight tasks containing different class label distributions. We
provide the details in the supplementary material to ensure
completeness.

5.2. Training Methods

We use the standard PyTorch(Paszke et al., 2019) imple-
mentation of ResNet-18(He et al., 2016) in both protocols.
Because our method does not use memory, we mainly com-
pare our approach to other regularization-based methods
(online-EWC, SI, LWF without memory). We also test ER
and LWF as the baselines of memory-based methods. FOO-

VB(Zeno et al., 2021), which targets the task agnostic CL
scenario, is also tested for comparison.

We use Cumulative and Fine-tuning as the upper bound
and lower bound, respectively. Cumulative means that
all of the data seen so far are available for each training.
Fine-tuning means that the previous model parameters are
used as the initial parameters for the next task. Furthermore,
the memory budget is set to 400 for PACS and to 1000 for
CIFAR-100.

To ensure a fair comparison, we turn off the data aug-
mentation for all experiments. We rely on the Adam opti-
mizer(Kingma & Ba, 2015), which is re-initialized for each
task. All hyperparameters are selected by a grid search on
the validation set. Our network is trained on a single RTX
3070 8GB GPU and an i7-10700 8-core CPU.

5.3. Results

5.3.1. PACS RESULTS

Table 1 and Figure 4 show the results on the PACS dataset(Li
et al., 2017). The results on the Smooth-CIL and Smooth-
DIL show that our ER-LWF outperforms all other methods,
including even the memory-based ones. In the smooth ver-
sion, the similarities between different tasks are magnified.
Thus, current data are more likely to reconstruct the previ-
ous loss function. That is why our method performs well
and can even reach the upper bound.

From the DIL column in Table 1, we find that all
regularization-based methods fail in this scenario, and that
their performance is close to the lower bound (Fine-tuning),
including our ER-LWF approach. In contrast, memory-
based approaches perform better.

For the results on the PACS CIL, our ER-LWF performs
best compared with other regularization-based methods, and
its performance is very close to that of LWF with memory.
However, there is still a big gap between the upper bound
and other methods. This means that only replaying the
previous data is not enough, and that the loss function or the
gradient requires more constraints.

To conclude, our method does not work on DIL but performs
well on the others. Furthermore, it consistently performs
better than the LWF without memory.

5.3.2. CIFAR-100 RESULTS

The results on the CIFAR-100 dataset are presented in Ta-
ble 2 and Figure 5. As for Smooth-DIL, CIL, and Smooth-
CIL, similar phenomena to the PACS experiments can be
observed. Our proposed ER-LWF outperforms all other
regularization-based methods, and its performance is even
better than memory-based methods for smooth scenarios.
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Table 1. Results on DIL, Smooth-DIL, CIL, and Smooth for the PACS dataset(Li et al., 2017). Acc corresponds to Accuracy, while
BF stands for Backward Transfer defined in (Lopez-Paz & Ranzato, 2017).For both of them, the bigger the better. The budget of
memory-based methods is set at 400 images in total. The value here is the percentage and is the average accuracy of the model over all
experiments after training on all tasks. We display the best without-memory method in bold font. Methods with an asterisk ∗ use memory.

Methods DIL Smooth-DIL CIL Smooth-CIL
Acc(%) BF(%) Acc(%) BF(%) Acc(%) BF(%) Acc(%) BF(%)

Cumulative(upper) 54.2 0.8 59.5 6.3 58 14.7 58.91 7.8
Fine-tuning (lower) 30 −38.9 54.2 4.5 30 4.7 50.6 2.4
Online-EWC(Chaudhry et al., 2018) 29.6 −39.7 54.8 4.6 30.7 5.4 50.8 2.3
SI(Zenke et al., 2017) 31.6 −38.5 55.8 5.6 30 4.3 51.1 2.7
FOO-VB(Zeno et al., 2021) 29.6 −21.3 58.5 5.3 38.5 7.5 55.4 3.8
LWF(Li & Hoiem, 2018) 27.7 −26.8 57.4 5.5 29.5 8.2 55 5.4
ER∗(Rolnick et al., 2019) 44.3 −12.1 54.4 4.1 37.8 4.1 52 2.8
LWF(memory)∗(Li & Hoiem, 2018) 47.7 −7.1 57.9 5.9 39.8 4.2 56 5.3
ER-LWF (ours) 30.2 −32.5 58.9 5.6 38.8 10.7 56.1 5.5

Figure 4. Results related to the PACS dataset(Li et al., 2017). Testing accuracy (average on three runs) is provided after training on each
task for different methods and different scenarios.

For the DIL setting with CIFAR-100, we do not observe
the same result as for PACS. The LWF family’s methods
all perform well. This can be explained by the way we
define the DIL scenario with CIFAR-100. As discussed
in Section 5.1, CIFAR-100 has 20 superclasses, and each
superclass contains five subclasses. In the proposed DIL
protocol, each subclass is considered to be a domain, thereby
leading to slight differences between tasks. As a result,
we can reconstruct the previous objective more efficiently
compared with the PACS DIL.

We also find that FOO-VB(Zeno et al., 2021), which initially
targets the task agnostic CL scenario (an extremely smooth
scenario), is close to our method for the Smooth-DIL and
Smooth-CIL scenarios. However, our method performs
much better when data distribution shifts more rapidly, as
shown in the DIL and CIL plots of Figure 5.

Compared to LWF, we designed EG-weight Equation (12)
to self-regulate the original LWF loss. This can give more

weight to similar data and less weight to unrelated data.
Thus, the model can have more plasticity when the current
data are different and more stability when the current data
are similar. This is confirmed by the results obtained on
the CIFAR-100 and PACS, from which we can observe
that our method consistently outperforms or matches the
performance of LWF without memory.

6. Limitations
In this work, to better fit real-life applications, we make an
assumption that task boundaries are blurred, in other words
their data distributions overlap or at least have a certain
degree of similarity. Smooth-CL setting, i.e., Smooth-DIL
and CIL, and regular CL setting, i.e. DIL and CIL, corre-
spond to high-level and low-level similarity, respectively.
However, if the task boundaries are well-defined with no
overlapping of domains, then our method may fail since it
makes use of the current data and the previous model output
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Table 2. Results on the CIFAR-100 dataset(Krizhevsky, 2009). The budget for memory-based methods is set at 1000. It uses the same
setting as Table 1.

Methods DIL Smooth-DIL CIL Smooth-CIL
Acc(%) BF(%) Acc(%) BF(%) Acc(%) BF(%) Acc(%) BF(%)

Cumulative(upper) 38.8 −1.4 41.7 8.8 42.9 14.5 41.4 9.2
Fine-tuning (lower) 28.4 −26.5 35.3 4.7 15.5 1.7 33.1 3.7
Online-EWC(Chaudhry et al., 2018) 30.3 −30.7 36.1 4.6 15.6 2.2 34.4 4.2
SI(Zenke et al., 2017) 31.0 −30.5 37.7 6.7 15.5 1.4 33.1 3.2
FOO-VB(Zeno et al., 2021) 31.4 −29.9 41.4 7.5 18.5 3.4 40.2 6.2
LWF(Li & Hoiem, 2018) 36.9 −19.6 39.8 5.9 23.9 5.9 38 5.2
ER∗(Rolnick et al., 2019) 31.3 −23.0 36.2 4.4 24.1 3.4 36.2 5.5
LWF(memory)∗(Li & Hoiem, 2018) 36.7 −4.8 39.8 5.9 26.0 7.5 38.3 6.9
ER-LWF (ours) 37.0 −12.6 41.4 7.9 25.8 8.2 40.3 7.9

Figure 5. Results related to the CIFAR-100 dataset(Krizhevsky, 2009).Testing accuracy (average over three runs) is provided after training
on each task for different methods and different scenarios.

to approximate the previous loss function. If the previous
model cannot recognize or provide a meaningful output, the
EG-weight Equation (12) will be close to zero. Then, our
method degenerates to Fine-tuning. In our experiments, the
most difficult CL scenario is the DIL setting on the PACS
dataset. Since we assign each domain to a single task in DIL,
the similarity between the data of different domains may be
very slight when the gap between different domains is too
large. In this situation, we cannot find similar data from the
current task, meaning that the previous loss function cannot
be reconstructed. From the DIL plot of Figure 4, we can see
that model performance degenerates rapidly in the final task.
In our experiments, the last task of the DIL corresponds
to sketch, which is the domain that is most different. We
think that this is what accounted for this poor performance.
Figure 4.

7. Conclusion
In this paper, we propose a new continual learning paradigm,
namely Distribution-Shift Incremental Learning (DS-IL),

which, by considering soft task boundaries as encountered
in real-world applications, subsumes traditional Domain-
Incremental Learning (DIL) and Class-Incremental Learn-
ing (CIL) scenarios. Furthermore, we propose ER-LWF,
a novel CL method which extends LWF to deal with CL
under the DS-IL setting where there are no well-defined task
boundaries. It uses the entropy information of the previously
learned model’s output on the current data to self-regulate
the original knowledge distillation loss. This EG-weight
can provide the model with more stability when the current
data are similar to the previous data, or with more plasticity
otherwise. Based on the results of the PACS and CIFAR-100
datasets, we show that our proposed CL method, without
memory, consistently outperforms the classic LWF (without
memory) and can reach the upper bound for the Smooth-CL
scenarios.

In this work, only the previously learned model’s output is
used when learning a new task. However, there is still a lot
of information stored in the weights of the previous model
parameters. Therefore, learning how to use this information
to overcome forgetting is our next research direction.
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