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MONOTONE-CEVIAN AND FINITELY SEPARABLE LATTICES

MIROSLAV PLOŠČICA AND FRIEDRICH WEHRUNG

Abstract. A distributive lattice with zero is completely normal if its prime
ideals form a root system under set inclusion. Every such lattice admits a
binary operation (x, y) 7→ x r y satisfying the rules x ≤ y ∨ (x r y) and
(x r y) ∧ (y r x) = 0 — in short a deviation. In this paper we study the
following additional properties of deviations: monotone (i.e., isotone in x and
antitone in y) and Cevian (i.e., x r z ≤ (x r y) ∨ (y r z)). We relate those
matters to finite separability as defined by Freese and Nation. We prove that
every finitely separable completely normal lattice has a monotone deviation.

We pay special attention to lattices of principal ℓ-ideals of Abelian ℓ-groups
(which are always completely normal). We prove that for free Abelian ℓ-
groups (and also free k-vector lattices) those lattices admit monotone Cevian
deviations. On the other hand, we construct an Archimedean ℓ-group with
strong unit whose principal ℓ-ideal lattice does not have a monotone deviation.

1. Introduction

This paper is motivated by the investigation of principal ℓ-ideal lattices of Abelian
ℓ-groups. It has been known for a long time that those lattices are distributive
with 0 and are completely normal. Recall (cf. Wehrung [14]) that a lattice D is
completely normal if it is distributive, has a least element (usually denoted by 0),
and for all a, b ∈ D there are x, y ∈ D such that a ∨ b = a ∨ y = x ∨ b whereas
x∧y = 0. Equivalently, the prime ideals of D form a root system under set inclusion
(cf. Monteiro [10]). It is an easy exercise to verify that D is completely normal iff
it admits a deviation in the following sense.

Definition 1.1. A binary operation r, on a distributive 0-lattice D, is a deviation
on D if the relations x ≤ y ∨ (xr y) and (xr y)∧ (yr x) = 0 both hold whenever
x, y ∈ D. The deviation r is

• left isotone if x ≤ x′ implies that xr y ≤ x′ r y,
• right antitone if y ≤ y′ implies that xr y′ ≤ xr y,
• monotone if it is both left isotone and right antitone;
• Cevian if xr z ≤ (xr y) ∨ (y r z) whenever x, y, z ∈ D;
• monotone-Cevian if it is both monotone and Cevian.

We say that the lattice D is Cevian (resp., monotone-Cevian) if it has a Cevian
(resp., monotone-Cevian) deviation.

Any homomorphic image of the principal ℓ-ideal lattice of an Abelian ℓ-group
is Cevian (cf. Wehrung [15]). It is easy to find small completely normal lattices
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2 M. PLOŠČICA AND F. WEHRUNG

with a non-monotone or non-Cevian deviation. However, in many cases the devi-
ation can be“adjusted” to become monotone and Cevian. By Ploščica [11], every
completely normal lattice with at most ℵ1 elements is Cevian (see also Ploščica
and Wehrung [12]). This does not extend to the cardinality ℵ2: by [15], not every
completely normal lattice with ℵ2 elements is Cevian.

The existence of monotone deviations on completely normal lattices has not
been investigated so far. It is not very difficult to prove that a deviation on a (at
most) countable lattice can be adjusted to become monotone. In this paper we
use the idea of an adjustment to prove the much stronger result that every finitely
separable completely normal lattice has a monotone deviation. Finite separability
is here meant in the sense of Freese and Nation [5]. As an application, we prove
that principal ℓ-ideal lattices of free Abelian ℓ-groups are monotone-Cevian (cf.
Corollary 5.9).

The concept of finite separability, originally invented as one of the conditions
that characterize projective lattices, seems to have potential for more applications.
In that direction, we shall establish two equivalent conditions for finite separability
in lattices and, more generally, posets. One of them (viz. Proposition 3.3) states
that a poset is finitely separable iff it has a finitely shadowing well-ordering. The
other one (viz. Theorem 3.6) states that a poset is finitely separable iff it is a
“strong amalgam” of finite posets over a lower finite poset.

In Section 4 we prove that any deviation on a distributive 0-lattice with a finitely
shadowing well-ordering can be adjusted to become monotone. This implies the
above-mentioned result (cf. Theorem 4.8). In Section 5 we turn our attention to
(necessarily completely normal) lattices that arise as the lattices of all principal ℓ-i-
deals of Abelian ℓ-groups. We verify that for free Abelian ℓ-groups (more generally,
for free k-vector lattices), those lattices are finitely separable (cf. Proposition 5.6),
which implies, with the help of the Belluce map, that they are monotone-Cevian
(cf. Corollaries 5.8 and 5.9). We also verify, invoking the main result of Ploščica
and Wehrung [12], that every finitely separable completely normal lattice with at
most ℵ1 elements is monotone-Cevian (cf. Corollary 5.3).

Our final achievement (cf. Section 6) is a construction of an Archimedean ℓ-group
with strong unit, of cardinality ℵ1, whose principal ℓ-ideal lattice does not have
any left isotone or right antitone deviation. Hence, not only there are completely
normal lattices without a monotone deviation; they can be constructed as principal
ℓ-ideal lattices of Abelian ℓ-groups. This is rather surprising, in view of the above-
mentioned result for free Abelian ℓ-groups.

Let us introduce some notation. Order-preserving maps between posets will be
called isotone, order-reversing ones are antitone. We will denote by MinX (resp.,
MaxX) the set of all minimal (resp., maximal) elements of a subset X in a poset P .

Notation 1.2. For any set P , any A ⊆ P , and any binary relation ✁ on P ,

↓
✁
A

def
= {x ∈ P | (∃a ∈ A)(x✁ a)} ,

↑
✁
A

def
= {x ∈ P | (∃a ∈ A)(a✁ x)} .

For a ∈ P , we will also write ↓
✁
a and ↑

✁
a instead of ↓

✁
{a} and ↑

✁
{a}, respec-

tively.

A poset (P,≤) is lower finite if ↓≤ a is finite whenever a ∈ P .
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For any set X , PowX denotes the powerset of X . “Countable” will always mean
“at most countable”. We will denote by [X ]<ω the set of all finite subsets of a set X .

2. Finite separability, strong amalgams, and shadows

The following definition is stated in Freese and Nation [5]. However, the condition
given in Definition 2.1 already appeared in Freese and Nation [4], in connection
with projective lattices. It was then used in several other works on projectivity. In
Heindorf and Shapiro [7] the condition was given the name Freese/Nation property.
In Fuchino, Koppelberg, and Shelah [6], it is studied from a set-theoretical point of
view.

Definition 2.1. A poset M is finitely separable if there are functions A and B with
domain M such that each A(z) is a finite set of upper bounds of z, each B(z) is a
finite set of lower bounds of z, and for all x, y ∈ M , x ≤ y implies A(x)∩B(y) 6= ∅.
Such a pair (A,B) will be called a separability witness for M .

The following deep result is contained in Freese and Nation [5, Theorem 1].

Theorem 2.2. A lattice L is finitely separable iff every lattice homomorphism
onto L has an isotone section.

It follows from Freese and Nation [5, Theorem 6] that every projective member
(thus, in particular, any free member) of any variety of lattices is finitely separable.
An example of non-finitely separable lattice is the chain ω1 of all countable ordinals.
The following result collects a few elementary observations on finite separability.

Proposition 2.3.

(1) A poset is finitely separable iff its dual poset is finitely separable.
(2) Every countable poset is finitely separable.
(3) Every order-retract of a finitely separable poset is finitely separable.
(4) Every order-convex subset of a finitely separable poset is finitely separable.
(5) Let M ⊔ {1} be the poset obtained by adding a new upper bound 1 atop all

elements of a poset M . Then M is finitely separable iff M ⊔ {1} is finitely
separable. A similar result holds for the poset M ⊔ {0} obtained by adding a
new lower bound 0.

(6) Any finite product of finitely separable posets is finitely separable.

Proof. (1) is trivial. Moreover, as observed on [5, page 246], (2) is easy. The
argument for (3) is established in the course of the proof of the direction (3)⇒(1)
of [5, Theorem 1]. For any separability witness (A,B) for a poset N and any order-
convex subset M of N , x 7→ A(x) ∩ M and x 7→ B(x) ∩ M form a separability
witness for M ; (4) follows. If M ⊔ {1} is finitely separable, then, since M is an
order-convex subset of M ⊔ {1}, so is M . Conversely, for any separability witness
(A,B) for M , x 7→ A(x) ∪ {1} and x 7→ B(x) form a separability witness for
M ⊔ {1}; (5) follows (see also [5, Theorem 10] for a more general fact). Finally,
if (Ai, Bi) is a separability witness for a posetMi whenever i ∈ {1, 2}, then the maps
(x1, x2) 7→ A1(x1) × A2(x2) and (x1, x2) 7→ B1(x1) × B2(x2) form a separability
witness for M1 ×M2; (6) follows. �

As we will see in Example 2.8, the “order-convex subset” assumption cannot be
replaced by “subset” in the statement of Proposition 2.3(4): that is, a sublattice of
a finitely separable lattice need not be finitely separable (cf. Example 2.8).
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Definition 2.4. Let M be a poset, let A ⊆ M , and let x ∈ M . A subset U of A is
a lower shadow of x on A if A∩↓≤ x = A∩↓≤ U ; upper shadows are defined dually.

Definition 2.5. We say that a subset A is finitely shadowing in a poset M if every
element of M has both a finite lower shadow and a finite upper shadow on A.

Of course, if A is finitely shadowing in M , then for every x ∈ M , the smallest
lower shadow (resp., upper shadow) of x, with respect to set inclusion, on A is
Max(A ∩ ↓≤ x) (resp., Min(A ∩ ↑≤ x)).

Definition 2.6. Let P be a poset. We say that a poset M is the strong amalgam
of a family (Mp | p ∈ P ) of subsets of M if the following statements hold:

(1) M =
⋃

p∈P Mp;

(2) for all p ≤ q in P , Mp is a finitely shadowing subset of Mq;
(3) (Interpolation Property) for all p, q ∈ P , all x ∈ Mp, and y ∈ Mq, if x ≤ y,

then there are r ≤ p, q in P and z ∈ Mr such that x ≤ z ≤ y.

We say that the strong amalgam above is lower finite if the poset P is lower finite.

Items (2) and (3) together obviously entail the following:

Mp ∩Mq =
⋃

{Mr | r ≤ p, q} , whenever p, q ∈ P .

Proposition 2.7. The following statements hold, for any lower finite strong amal-
gam M of a family (Mp | p ∈ P ) of subsets:

(1) Each Mp is finitely shadowing in M .
(2) If each Mp is finitely separable, then so is M .

Proof. Ad (1) We must prove that every x ∈ M has (say) an upper shadow on

each Mq. Pick p ∈ P such that x ∈ Mp. Since P is lower finite, R
def
= ↓≤ p∩ ↓≤ q is

finite. For each r ∈ R, it follows from Definition 2.6(2) thatMr is finitely shadowing
in Mp; thus x has a finite upper shadow Ur on Mr. A direct application of the
Interpolation Property (cf. Definition 2.6(3)) then shows that

⋃

r∈R Ur is a finite
upper shadow of x on Mq.

Ad (2). For each x ∈ M , pick ν(x) ∈ P such that x ∈ Mν(x). For every p ∈ P ,
pick a separability witness (Ap, Bp) for Mp. For all x ∈ M and all p ≤ ν(x), it
follows from Definition 2.6(2) that x has a finite upper shadow Ux,p and a finite
lower shadow Vx,p on Mp. The sets

A(x)
def
=

⋃

{Ap(u) | p ≤ ν(x) , u ∈ Ux,p} ,

B(x)
def
=

⋃

{Bp(v) | p ≤ ν(x) , v ∈ Vx,p}

are, respectively, a finite set of upper bounds of x and a finite set of lower bounds of x

in M . Let x ≤ y in M ; set p
def
= ν(x) and q

def
= ν(y). By the Interpolation Property

(cf. Definition 2.6(3)), there are r ∈ ↓≤ p ∩ ↓≤ q and z ∈ Mr such that x ≤ z ≤ y.
By definition, there are u ∈ Ux,r and v ∈ Vy,r such that x ≤ u ≤ z ≤ v ≤ y.
Since u ≤ v within Mr, there exists w ∈ Ar(u) ∩ Br(v); so x ≤ w ≤ y whereas
w ∈ A(x) ∩B(y). Therefore, (A,B) is a separability witness for M . �

Example 2.8. A finitely separable lattice with a non-finitely separable sublattice.

Proof. The lattice P
def
= [ω1]

<ω is the strong amalgam of its finite sublattices [X ]<ω,
for finite X ⊂ ω1; thus, by Proposition 2.7, it is finitely separable, and thus so is
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its opposite lattice P op. It follows from Freese and Nation [5, Lemma 9] that the
ordinal sum P ∔ P op is not finitely separable.

Denote by u a new top element for P (thus also a new bottom element for P op).
It follows from Proposition 2.3(5) that P ∪ {u} and P op ∪ {u} are both finitely
separable, thus so is their product (P ∪ {u}) × (P op ∪ {u}). Moreover, P ∔ P op

embeds into (P ∪ {u}) × (P op ∪ {u}), by mapping each x ∈ P to (x, u) and each
y ∈ P op to (u, y). �

3. Finitely shadowing well-orderings

A typical situation that will arise in this section will involve two distinct order-
ings ≤ and ⊑ on the same universe M , occasionally prompting the need to spell out
which one is in question. For example, Definition 3.1 will begin with “Let (M,≤)
be a poset” instead of “Let M be a poset”.

Definition 3.1. Let (M,≤) be a poset. A binary relation ⊑ of M is finitely
shadowing on (M,≤) if ↓⊑ x is finitely shadowing in (M,≤) whenever x ∈ M .

If ⊑ is a partial ordering, with associated strict ordering ❁, then ↓⊑ x is finitely
shadowing iff ↓

❁
x is finitely shadowing (for these two sets differ by the single-

ton {x}). In particular, ⊑ is finitely shadowing iff ❁ is finitely shadowing.

Proposition 3.2. Let (M,≤) be a poset. Then a well-ordering ⊑ on M is finitely
shadowing in (M,≤) iff every a ∈ M has both a finite upper shadow and a finite
lower shadow on ↓

❁
a.

Proof. We verify the nontrivial direction. Suppose that the given condition holds
and let a, b ∈ M ; we must verify that b has (say) a finite upper shadow on ↓

❁
a.

We argue by ⊑-induction on b. The result is trivial if b ❁ a (for then b ∈ ↓
❁
a);

we may thus suppose that a ⊑ b. By assumption, b has a finite upper shadow A
on ↓

❁
b. By induction hypothesis, every x ∈ ↓

❁
b has a finite upper shadow Ux

on ↓
❁
a. Then

⋃

x∈A Ux is a finite upper shadow of b on ↓
❁
a. �

Proposition 3.3. A poset (M,≤) is finitely separable iff it has a finitely shadowing
well-ordering. Furthermore, for every finitely shadowing well-ordering ⊑ on M ,
there exists a separability witness (A,B) of M such that

x ∈ A(y) ∪B(y) implies that x ⊑ y , for all x, y ∈ M . (3.1)

Proof. The argument of the proof that every finitely separable poset has a finitely
shadowing well-ordering is mostly contained in the proof of Freese and Nation [5,
Theorem 1]. For convenience, we provide a description of the well-ordering. Let
(A,B) be a separability witness for M . We define inductively an ordinal δ and a
partition (Mξ | ξ < δ) of M into countable blocks, as follows. Suppose (Mξ | ξ < α)

already defined and set M<α
def
=

⋃

ξ<α Mξ. If M<α = M then set δ
def
= α and stop.

Suppose that M<α 6= M and pick c ∈ M \ M<α. The smallest subset Mα of M
such that c ∈ Mα and (A(x) ∪B(x)) \M<α ⊆ Mα whenever x ∈ Mα is countable,
and disjoint from M<α. This completes the induction step.

For any x ∈ M , denote by ν(x) the unique ξ < δ such that x ∈ Mξ. Pick a
well-ordering ⊑ξ of Mξ of type at most ω, for each ξ < α, and let

x ⊑ y if
(

ν(x) < ν(y) or (ν(x) = ν(y) and x ⊑ν(x) y)
)

, for all x, y ∈ M .
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Then ⊑ is a well-ordering of M and for any c ∈ M , with γ
def
= ν(c), A(c) ∩M<γ is

a finite upper shadow and B(c) ∩M<γ is a finite lower shadow of c on M<γ . Since

↓
❁
c = M<γ ∪F for the finite set F

def
= {x ∈ Mγ | x ❁γ c}, c also has a finite upper

shadow and a finite lower shadow on ↓
❁
c. Hence, the well-ordering ⊑ is finitely

shadowing in (M,≤).
Conversely, let ⊑ be a finitely shadowing well-ordering on M . For c ∈ M , we

shall define A(c) and B(c) by ⊑-induction, in such a way that A(c) ∪B(c) ⊆ ↓⊑ c;
this will ensure (3.1). By induction hypothesis, c has a finite upper shadow Uc and

a finite lower shadow Vc on ↓
❁
c. Then A(c)

def
= {c} ∪

⋃

u∈Uc
A(u) is a finite set of

upper bounds of c, and for each u ∈ Uc, A(u) ⊆ ↓⊑ u by induction hypothesis, so

A(u) ⊆ ↓
❁
c; whence A(c) ⊆ ↓⊑ c. Symmetrically, B(c)

def
= {c} ∪

⋃

v∈Vc
B(v) is a

finite set of lower bounds of c contained in ↓⊑ c.
We claim that (A,B) is a separability witness for (M,≤). Let a, b ∈ M such

that a ≤ b, we verify that A(a) ∩ B(b) 6= ∅. We argue by ⊑-induction with
respect to max⊑ {a, b} (i.e., the maximum of {a, b} with respect to ⊑). Since each
c ∈ A(c) ∩B(c), we may assume that a < b. If a ❁ b, then a ≤ v for some v ∈ Vb,
so, since {a, v} ⊆ ↓

❁
b and by our induction hypothesis, A(a) ∩ B(v) 6= ∅, and so,

since B(v) ⊆ B(b), we get A(a) ∩B(b) 6= ∅. The argument for b ❁ a is symmetric.
This completes the proof of our claim. �

Definition 3.4. For a map C : M → PowM , we set C0(x) = {x} and Cn+1(x)
def
=

⋃

y∈C(x)C
n(y) whenever n < ω. We say that the map C is locally finite if Cω(x)

def
=

⋃

n<ω Cn(x) is finite whenever x ∈ M .

Proposition 3.5. Every finitely separable poset M has a separability witness (A,B)
such that the set map (A ∪B : x 7→ A(x) ∪B(x)) is locally finite.

Proof. By Proposition 3.3,M has a finitely shadowing well-ordering⊑ and a separa-
bility witness (A,B) satisfying (3.1). If is straightforward to verify, by ⊑-induction
on x, that (A ∪B)ω(x) is finite whenever x ∈ M . �

Theorem 3.6. A poset M is finitely separable iff it is the strong amalgam, over
a lower finite poset (resp., a sublattice of [M ]<ω), of a family of nonempty finite
subsets.

Proof. One direction, that any lower finite strong amalgam of finite posets is finitely
separable, is provided by Proposition 2.7.

Let, conversely, M be a finitely separable poset. By Proposition 3.5, M has a
separability witness (A,B) such that the set map A ∪ B is locally finite. We say
that a subset X of M is closed if A(x) ∪ B(x) ⊆ X whenever x ∈ X . Fix o ∈ M .
Since the map A∪B is locally finite, every finite subset of M is contained in some
finite closed subset of M , thus the collection Λ of all finite closed subsets of M
containing {o} is a sublattice of ([M ]<ω,∪,∩) with M =

⋃

Λ. Now let P,Q ∈ Λ
and let x ∈ P , y ∈ Q such that x ≤ y. Since (A,B) is a separability witness for M ,
there exists z ∈ A(x) ∩ B(y). Since P and Q are both closed, z belongs to P ∩ Q.
Since x ≤ z ≤ y, this yields the Interpolation Property (cf. Definition 2.6(3)) for Λ.
The condition 2.6(2) follows from the finiteness of all members of Λ. �

4. The monotone adjustment of a map

Now we turn our attention to monotone deviations, the original motivation.



MONOTONE-CEVIAN AND FINITELY SEPARABLE LATTICES 7

Definition 4.1. Let M and L be posets. A map d : M ×M → L is monotone on
a subset Z of M ×M if x ≤ x′ and y′ ≤ y implies that d(x, y) ≤ d(x′, y′) whenever
(x, y), (x′, y′) ∈ Z.

The proof of the following lemma is routine and we omit it.

Lemma 4.2. For any elements x, y, x′, y′ in a chain (M,⊑), let {x, y}✂ {x′, y′}
hold if either max⊑ {x, y} ❁ max⊑ {x′, y′} or (max⊑ {x, y} = max⊑ {x′, y′} and
min⊑ {x, y} ⊑ min⊑ {x′, y′}). Then ✂ is a total ordering on M1,2 = {N ⊆ M |
|N | ∈ {1, 2}} and the following statements hold whenever x, y, x′, y′, z ∈ M :

(1) x ⊑ y iff {x, z}✂ {y, z} and x ❁ y iff {x, z}✁ {y, z}.
(2) (x ⊑ x′ and y ⊑ y′) implies that {x, y}✂ {x′, y′}.
(3) {x, y}✁ {x′, y′} implies that x ❁ x′ or y ❁ y′.
(4) If (M,⊑) is well-ordered then so is (M1,2,✂).

The following technical lemma is the key point to our forthcoming definition of
the monotone adjustment of a map.

Lemma 4.3. Let M and L be posets, let d : M ×M → L, and let ⊑ be a finitely
shadowing total ordering on M . Denote by ✂ the total ordering on M1,2 intro-

duced in Lemma 4.2. Let a, b ∈ M and suppose that d is monotone on Da,b
def
=

{(x, y) ∈ M ×M | {x, y}✁ {a, b}}. For each x ∈ {a, b}, let Ux (resp., Vx) be an
upper shadow (resp., lower shadow) of x on ↓

❁
x. We set

A
def
= {d(x, y) | {x, y}✁ {a, b} , a ≤ x , y ≤ b} ,

A
′ def
= {d(x, b) | x ∈ Ua} ∪ {d(a, y) | y ∈ Vb} ,

B
def
= {d(x, y) | {x, y}✁ {a, b} , x ≤ a , b ≤ y} ,

B
′ def
= {d(x, b) | x ∈ Va} ∪ {d(a, y) | y ∈ Ub} .

Then A′ is a coinitial subset of A and B′ is a cofinal subset of B, both finite if Ua,
Va, Ub, Vb are finite.

Proof. We establish for example the part about A and A′; the proof for B and B′

is similar. The containment A′ ⊆ A follows immediately from Lemma 4.2. Now let
{x, y} ✁ {a, b}, a ≤ x, y ≤ b. By Lemma 4.2, either x ❁ a or y ❁ b. In the first
case, there exists u ∈ Ua such that u ≤ x. Since {u, b} ✁ {a, b} (cf. Lemma 4.2),
{x, y}✁ {a, b}, u ≤ x, and y ≤ b, it follows that d(x, y) ≥ d(u, b), with d(u, b) ∈ A′.
In the second case, there exists v ∈ Vb such that y ≤ v. By a similar argument to
the above, d(x, y) ≥ d(a, v) with d(a, v) ∈ A′. �

Definition 4.4. For any poset L and any X ⊆ L, say that an element a is the
finitary join of X if there exists a finite cofinal subset X ′ of X such that a =

∨

X ′

(of course in such a case a =
∨

X as well). Finitary meets are defined dually.

Proposition 4.5. Let M be a poset, let D be a lattice, let d : M×M → D, and let ⊑
be a finitely shadowing well-ordering on M . Denote by ✂ the well-ordering on M1,2

introduced in Lemma 4.2. Then there exists a (necessarily unique) monotone map
d′ : M ×M → D such that for all a, b ∈ M , d′(a, b) = d′∧(a, b) ∨ d′∨(a, b) where

d′∧(a, b)
def
= d(a, b) ∧

∧

{d′(x, y) | {x, y}✁ {a, b} , a ≤ x , y ≤ b} , (4.1)

d′∨(a, b)
def
=

∨

{d′(x, y) | {x, y}✁ {a, b} , x ≤ a , b ≤ y} (4.2)
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(where as usual, the empty meet is a new top element and the empty join is a new
bottom element) are a finitary meet and a finitary join, respectively.

Proof. We argue by ✂-induction. We prove that, for every a, b ∈ M , d′ is correctly
defined and monotone on Da,b ∪ {(a, b), (b, a)}. Our induction hypothesis implies
that d′ is correctly defined and monotone on Da,b. By Lemma 4.3 applied to
the restriction of d′ to Da,b, the meet

∧

{d′(x, y) | {x, y}✁ {a, b} , a ≤ x , y ≤ b}
(i.e., the second meetand of (4.1)) and the join (4.2) are both finitary, so d′∧(a, b),
d′∨(a, b), d

′(a, b), as well as d′∧(b, a), d
′
∨(b, a), d

′(b, a) are all well defined.
It remains to verify that d′ is monotone on Da,b∪{(a, b), (b, a)}. This verification

splits into several cases.
First, we need to argue that for all (x, y) ∈ Da,b, x ≤ a and b ≤ y implies

d′(x, y) ≤ d′(a, b). This is obvious, because d′(x, y) is then a joinand of d′∨(a, b).
The same argument applies when a and b are interchanged.

The second case consists of verifying that for all (x, y) ∈ Da,b, a ≤ x and y ≤ b
implies that d′(a, b) ≤ d′(x, y); that is, d′∧(a, b) ≤ d′(x, y) and d′∨(a, b) ≤ d′(x, y).
The first inequality is obvious, because d′(x, y) is then a meetand of d′∧(a, b). In
order to prove the second inequality, we must verify that for any (u, v) ∈ Da,b,
u ≤ a and b ≤ v implies that d′(u, v) ≤ d′(x, y). This follows from our induction
hypothesis, because u ≤ a ≤ x and y ≤ b ≤ v. The same argument applies when a
and b are interchanged.

Finally, we need to prove that d′(a, b) ≤ d′(b, a) when a < b. If a ⊑ b then
(a, a) ∈ Da,b and we have already proved that d′(a, b) ≤ d′(a, a) ≤ d′(b, a). If b ⊑ a
then (b, b) ∈ Da,b and we have already proved that d′(a, b) ≤ d′(b, b) ≤ d′(b, a). �

Owing to Proposition 4.5, the map d′ will be called the monotone adjustment
of d. It depends not only of d, but also of the chosen finitely shadowing well-
ordering ⊑ of M . Note that d is monotone iff d = d′.

Our next two propositions will entail that if d is a deviation, then so is d′.
Because of possible future applications, we prove them under slightly more general
assumptions.

Proposition 4.6. Let M be a poset, let D be a distributive lattice, let
d : M × M → D, and let f : M → D be an isotone map. We denote by d′ the
monotone adjustment of d with respect to a finitely shadowing well-ordering ⊑ of M .
If f(x) ≤ f(y) ∨ d(x, y) whenever x, y ∈ M , then f(a) ≤ f(b) ∨ d′(a, b) whenever
a, b ∈ M .

Proof. We argue by ✂-induction. Let a, b ∈ M and suppose that the inequal-
ity f(x) ≤ f(y) ∨ d′(x, y) holds whenever {x, y} ✁ {a, b}. In order to prove that
f(a) ≤ f(b)∨d′(a, b) it suffices to verify that f(a) ≤ f(b)∨d′∧(a, b). Since the meet
defining d′∧(a, b) is finitary, it follows from the distributivity of D that it suffices to
verify that for all (x, y) ∈ Da,b, a ≤ x and y ≤ b implies that f(a) ≤ f(b)∨ d′(x, y).
Since f is isotone and by our induction hypothesis, we get the inequalities

f(a) ≤ f(x) ≤ f(y) ∨ d′(x, y) ≤ f(b) ∨ d′(x, y) . �

Say that a 0-lattice D is 0-distributive if x∧ z = y∧ z = 0 implies (x∨ y)∧ z = 0
whenever x, y, z ∈ D.

Proposition 4.7. Let M be a poset, let D be a 0-distributive 0-lattice, and let
d : M ×M → D. We denote by d′ the monotone adjustment of d with respect to a
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finitely shadowing well-ordering ⊑ of M . If d(x, y)∧d(y, x) = 0 whenever x, y ∈ M ,
then d′(a, b) ∧ d′(b, a) = 0 whenever a, b ∈ M .

Proof. We argue by✂-induction. Let a, b ∈ M and suppose that d′(x, y)∧d′(y, x) = 0
whenever {x, y} ✁ {a, b}. Since D is 0-distributive, the proof breaks up into four
statements.

• d′∧(a, b) ∧ d′∧(b, a) = 0. Since d′∧(a, b) ≤ d(a, b), d′∧(b, a) ≤ d(b, a), and
d(a, b) ∧ d(b, a) = 0, this is obvious.

• d′∧(a, b) ∧ d′∨(b, a) = 0. Since D is 0-distributive, it suffices to prove that
for any (x, y) ∈ Da,b, a ≤ x and y ≤ b implies that d′∧(a, b) ∧ d′∨(y, x) = 0.
Since d′(x, y) is a meetand of d′∧(a, b), we get d′(a, b) ≤ d′(x, y). By our
induction hypothesis, d′(x, y) ∧ d′(y, x) = 0, so we are done.

• d′∨(a, b) ∧ d′∧(b, a) = 0. This case is symmetric to the case above.
• d′∨(a, b) ∧ d′∨(b, a) = 0. Since D is 0-distributive, it suffices to prove that
for any (x, y), (u, v) ∈ Da,b, x ≤ a ≤ u and v ≤ b ≤ y implies that
d′(x, y) ∧ d′(v, u) = 0. Since ⊑ is a total ordering, either v ⊑ y or y ⊑ v.
In the first case, then (cf. Lemma 4.2) {x, v}✂{x, y}✁{a, b}, thus, by our
induction hypothesis, d′(x, v) ∧ d′(v, x) = 0. Since d′(x, y) ≤ d′(x, v) and
d′(v, u) ≤ d′(v, x), the desired conclusion follows. In the second case, then
(cf. Lemma 4.2) {u, y}✂{u, v}✁{a, b}, thus, by our induction hypothesis,
d′(u, y) ∧ d′(y, u) = 0. Since d′(x, y) ≤ d′(u, y) and d′(v, u) ≤ d′(y, u), the
desired conclusion follows. �

By taking M = D, f = idD, and d any deviation on D in Propositions 4.5, 4.6,
and 4.7, we obtain immediately the following.

Theorem 4.8. Every finitely separable completely normal lattice has a monotone
deviation.

5. Lattices of principal ℓ-ideals in Abelian ℓ-groups

We will always denote ℓ-groups additively and set |a|
def
= a ∨ (−a) whenever

a ∈ G. The convex ℓ-subgroup generated by a is

〈a〉
def
= {x ∈ G | −n|a| ≤ x ≤ n|a| for some n ∈ ω} .

Clearly, for any a, b ∈ G+, 〈a〉 ⊆ 〈b〉 iff a ≤ mb for some m ∈ ω. All these
convex ℓ-subgroups form a completely normal lattice CscG, often denoted IdcG
if G is Abelian (for in that case, ℓ-ideals and convex ℓ-subgroups are the same). A
deviation on Csc G can be defined by choosing a positive generator for each convex
ℓ-subgroup and setting

〈a〉r 〈b〉
def
= 〈(a− b)+〉 ,

where x+ def
= x ∨ 0. Of course, this operation depends on the choice of the genera-

tors a, b. It is always Cevian (cf. [15, Proposition 5.5]). It will be monotone if we
could choose the generators in an isotone way, that is 〈a〉 ≤ 〈b〉 implies a ≤ b. This
argument yields the following observation.

Theorem 5.1. Let D be a distributive 0-lattice and suppose that there exists a
surjective lattice homomorphism f : CscG ։ D for some ℓ-group G. If D is finitely
separable, then it is monotone-Cevian.
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Note. Since every homomorphic image of a completely normal lattice is completely
normal, our assumptions imply that D is completely normal.

Proof. The map β : G+ ։ CscG, x 7→ 〈x〉 (β is sometimes called the Belluce map),
is a surjective lattice homomorphism (cf. Bigard et al. [3, Proposition 2.2.11]).
Since D is finitely separable, by Theorem 2.2 the composite map f ◦ β has an
isotone section σ : D →֒ G+. The assignment (x, y) 7→ f〈(σ(x) − σ(y))+〉 defines a
monotone-Cevian operation on D. �

Remark 5.2. Theorem 5.1 trivially extends to finitely separable homomorphic im-
ages of ℓ-ideal lattices of vector lattices. Indeed, for any vector lattice E over a
totally ordered division ring k, with underlying Abelian ℓ-group G, the assignment
〈x〉 7→ k · 〈x〉 defines a surjective lattice homomorphism IdcG ։ IdcE (which is an
isomorphism if k is Archimedean).

The main result of Ploščica andWehrung [12] states that every completely normal
lattice with at most ℵ1 elements is a homomorphic image of Idc G for some Abelian
ℓ-group G. Hence, we get the following variant of Ploščica [11, Theorem 3.2],
obtained by strengthening there both the assumption (the lattice is now assumed to
be finitely separable) and the conclusion (“Cevian” becomes “monotone-Cevian”).

Corollary 5.3. Every finitely separable completely normal lattice with at most ℵ1

elements is monotone-Cevian.

By Theorem 5.1, if Idc G is finitely separable, then it is monotone-Cevian. In
the sequel we shall verify that this is the case for free Abelian ℓ-groups. We find it
convenient to work in the slightly more general setting of vector lattices. Let k be
a countable totally ordered division ring and let E = k(I) be the left vector space
over k with basis I. For J ⊆ I we identify k(J) with its canonical copy in E. For
every a ∈ E we set

[a]
def
= {x ∈ E | (a | x) > 0} ,

(where (a | x)
def
=

∑

i∈I aixi). Following Wehrung [14, 16], we denote by Op− k(J)

the 0-sublattice of the powerset of E generated by
{

[x] | x ∈ k(J)
}

. In other words,

Op− k(J) is the lattice of all subsets of E defined as disjunctions of conjunctions of
strict linear inequalities with variables in J . Further, let Op k(J) = Op− k(J)∪{E}.
(Notice that E /∈ Op− k(J), so we are adding a new top element.) With the above
conventions, Opk(J) is thus identified with a 0-sublattice of Op k(I).

Lemma 5.4. For every X ∈ [I]<ω, the lattice Opk(X) is a finitely shadowing
subset of OpE.

Proof. (See also the proof of Ploščica and Wehrung [12, Lemma 12].) We claim that
the upper and lower shadow of any U ∈ OpE are, respectively, {U∗} and {U∗},
where

U∗ def
= {v ∈ E | v↾X = u ↾X for some u ∈ U} ,

U∗
def
= {v ∈ E | u ∈ U whenever v↾X = u↾X} .

First, the above defined sets are both elements of Opk(X): this follows from quan-
tifier elimination for the theory of all nontrivial totally ordered k-vector spaces (cf.
van den Dries [13, Corollary I.7.8]).
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Clearly, U∗ ⊆ U ⊆ U∗. Now let Z ∈ Opk(X), U ⊆ Z. We verify that U∗ ⊆ Z.
It suffices to consider the case when Z =

⋃

a∈M [a] for a finite M ⊆ k(X). Now, if
v ∈ U∗, then v↾X = u↾X for some u ∈ U ⊆ Z. Hence, (a | u) > 0 for some a ∈ M .
Since ai = 0 for i /∈ X , we also have (a | v) = (a | u) > 0, hence v ∈ Z.

Similarly, let Z ∈ Op k(X)), Z ⊆ U . We verify that Z ⊆ U∗. It suffices to
consider the case when Z =

⋂

a∈M [a] for a finite M ⊆ k(X). Now, let v ∈ Z ⊆ U
and u ∈ E with v↾X = u↾X . Then (a | v) = (a | u) > 0 for every a ∈ M , hence
u ∈ U . By the definition, v ∈ U∗. �

Lemma 5.5. Let X,Y ∈ [I]<ω, U ∈ Opk(X), V ∈ Op k(Y ), and U ⊆ V . Then
U ⊆ W ⊆ V for some W ∈ Op k(X∩Y ).

Proof. Since quantifier elimination does not add new variables, the upper shadow
U∗ on k(Y ) belongs to k(X∩Y ). From U ⊆ V we obtain U∗ ⊆ V , so we can set
W = U∗. �

Proposition 5.6. The distributive 0-lattices OpE and Op−E are both finitely
separable.

Proof. By Lemmas 5.4 and 5.5, Op k(I) is the strong amalgam (cf. Definition 2.6)
of all Op k(X) for X ∈ [I]<ω. Since k is countable, so are all Op k(X), which are
therefore finitely separable (cf. Proposition 2.3(2)). By Proposition 2.7, Op k(I) is
finitely separable. By Proposition 2.3(4), so is thus Op− k(I) = (Op k(I))\{E}. �

Note that by the Baker-Bernau-Madden duality (cf. Baker [1], Bernau [2], Mad-
den [9, Ch. III], and also Wehrung [16, page 13] for a summary), Op− k(I) is isomor-
phic to the lattice of all principal ℓ-ideals of the free k-vector lattice on I. Hence,
by applying Theorem 5.1 and Remark 5.2, we obtain the following.

Corollary 5.7. Let E be a left vector space over a countable totally ordered division
ring k. Then the distributive 0-lattices OpE and Op−E are both monotone-Cevian.

If we wanted only “existence of a monotone deviation” instead of “monotone-
Cevian” in Corollary 5.7, then it would be sufficient to use Theorem 4.8 instead of
Theorem 5.1 (the latter itself following from Freese and Nation [5, Theorem 1]).

Corollary 5.8. For any set I and any countable totally ordered division ring k, the
lattice of all principal ℓ-ideals of the free k-vector lattice on I is monotone-Cevian.

If k = Q is the ordered field of rationals, then the free Q-vector lattice F on I is
the divisible hull of the free Abelian ℓ-group G on I, thus the lattices of principal
ℓ-ideals of F and G are both isomorphic to Op− Q(I).

Corollary 5.9. For any set I, the lattice of all principal ℓ-ideals of the free Abelian
ℓ-group on I is monotone-Cevian.

6. An Archimedean vector lattice counterexample

Since the lattice of all principal ℓ-ideals of any countable Abelian ℓ-group G
is countable, thus finitely separable, the Belluce map of G has in that case an
isotone section; hence Idc G is monotone-Cevian (cf. Corollary 5.3). In this section
we will verify that that observation does not extend to the uncountable case, by
constructing an Archimedean vector lattice G with strong unit, of cardinality ℵ1,
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whose lattice of all principal ℓ-ideals does not have any monotone deviation (thus,
a fortiori, no isotone section for the Belluce map; see Theorem 5.1).

We begin with a refinement of Shanin’s classical ∆-Lemma (see for example Jech
[8, Theorem 9.18]).

Lemma 6.1. Let Φ: ω1 → [ω1]
<ω and let X be a cofinal subset of ω1. Then there

are ascending ω1-sequences (τi | i < ω1) and (αi | i < ω1) of ordinals in ω1 such that
for every k < ω1,

(1) αk ∈ X and τk < αk < τk+1;
(2) τk = supj<k τj if k is a limit ordinal;
(3) Φ(αk) ⊆ τ0 ∪ (τk+1 \ τk).

Proof. By the ∆-Lemma, there are a cofinal subset Y of X and a set K such that

Φ(α) ∩ Φ(β) = K whenever α, β ∈ Y and α 6= β . (6.1)

Pick τ0 < ω1 such that K ⊆ τ0. Let i < ω1 and set

i∗
def
=

{

i , if i is a limit ordinal ,

i+ 1 , otherwise .

We argue by induction on i. Suppose having constructed ascending sequences
(τk | k < i∗) and (αk | k < i) satisfying (1)–(3) whenever k < i. If i is either 0 or a

successor, then τi is already defined. If i is a limit, set τi
def
= supj<i τj ; this takes care

of (2) at level i. By the cofinality statement on Y , the countability of τi, and (6.1),
there exists αi ∈ Y such that αi > τi and Φ(αi) ∩ τi ⊆ K. Pick τi+1 < ω1 such
that τi+1 > αi and Φ(αi) ⊆ τi+1. Since K ⊆ τ0, (1) and (3) at level i follow. �

By the Baker-Bernau-Madden duality, the free Q-vector lattice F (ω1) on ω1 +1

is isomorphic to the vector sublattice F of QQω1+1

generated by all canonical pro-
jections xα : Qω1+1 ։ Q for α ∈ ω1+1. (Here, unlike in Section 5, we use Qω1+1 in-

stead ofQ(ω1+1).) Every element of F has the form ḟ (xα | α ∈ ω1 + 1) for some vec-

tor lattice term ḟ . By the above-cited duality, Idc F is isomorphic to the 0-sublattice
of the powerset lattice of Qω1 generated by the cozero sets

{

u ∈ Qω1+1 | g(u) 6= 0
}

,
the latter corresponding to the principal ℓ-ideal 〈g〉. This leads immediately to the
following assertion.

Lemma 6.2. For any g, h ∈ F+, the inequality 〈g〉 ≤ 〈h〉 holds (within Idc F ) iff
h−1 {0} ⊆ g−1 {0}.

Now we introduce our counterexample. Let us denote

ΩM
def
= {u ∈ Qω1 | 0 ≤ uα ≤ 1 whenever α ∈ M

and uγ ≤ 2uβ whenever β, γ ∈ M and 0 < γ < β}

whenever M ⊆ ω1, and set Ω
def
= Ωω1

. In the sequel, let G be the vector sublattice
of QΩ generated by all canonical projections pα : Ω → Q for α ∈ ω1 together with
the constant function Ω → Q, u 7→ 1, which we shall conveniently denote pω1

even
though it is not a “projection”.

Lemma 6.3. Let f0 : {pα | α ∈ ω1} → Q satisfy 0 ≤ f0(pα) ≤ 1 whenever α < ω1

and f0(pγ) ≤ 2f0(pβ) whenever 0 < γ < β < ω1. Then f0 can be extended to a
unique ℓ-homomorphism G → Q mapping pω1

to 1.
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Proof. We only need to verify the existence part. The vector w
def
= (f0(pα) | α ∈ ω1)

belongs to Ω. The evaluation morphism ew : g 7→ g(w) is the desired extension. �

Lemma 6.4. Let f0 : {pα | α ∈ ω1} → G satisfy 0 ≤ f0(pα) ≤ pω1
whenever

α < ω1 and f0(pγ) ≤ 2f0(pβ) whenever 0 < γ < β < ω1. Then f0 can be ex-
tended to a unique ℓ-endomorphism of G mapping pω1

to itself.

Proof. We use the fact that G is a vector sublattice of QΩ via the evaluation

morphisms eu for u ∈ Ω. By Lemma 6.3, each map fu
0

def
= euf0 can be extended

to an ℓ-homomorphism fu : G → Q such that fu(pω1
) = 1. Then the product

homomorphism f
def
=

∏

u∈Ω fu extends f0 and f(pω1
) = pω1

. �

Lemma 6.5. Let M be a subset of ω1. Then for every u ∈ ΩM there exists v ∈ Ω
such that u↾M = v↾M .

Proof. Set M↑ξ
def
= {α ∈ M | α ≥ ξ} whenever ξ < ω1, and define

vξ
def
=

{

uτ , if M↑ξ 6= ∅ and τ = minM↑ξ ,

1 , otherwise ,
whenever ξ < ω1 .

It is easy to see that v ∈ Ω. �

Lemma 6.6. For any g, h ∈ G+, the inequality 〈g〉 ≤ 〈h〉 holds (within Idc G) iff
h−1 {0} ⊆ g−1 {0}.

Proof. We verify the nontrivial direction. Suppose that h−1 {0} ⊆ g−1 {0}. Since

{g, h} ⊆ G there are a finite subset M of ω1 and vector lattice terms ġ and ḣ such
that

g = ġ (pα | α ∈ M ∪ {ω1}) and h = ḣ (pα | α ∈ M ∪ {ω1}) .

We can assume M 6= ∅. Define elements d, g1, h1 of F as

d
def
=

∨

α∈M

(−xα) ∨
∨

α∈M

(xα − xω1
) ∨

∨

γ,β∈M, 0<γ<β

(xγ − 2xβ) ,

then g1
def
= ġ (xα | α ∈ M ∪ {ω1}) ∨ d and h1

def
= ḣ (xα | α ∈ M ∪ {ω1}) ∨ d. We

denote

ΩM
def
= {u ∈ Qω1+1 | 0 ≤ uα ≤ uω1

whenever α ∈ M

and uγ ≤ 2uβ whenever β, γ ∈ M and 0 < γ < β}.

Claim. Let u ∈ ΩM . Then g1(u) ≥ 0 and h1(u) ≥ 0, and, further, h1(u) = 0
implies that g1(u) = 0.

Proof of Claim. The assumption u ∈ ΩM implies d(u) ≤ 0. The case uω1
< 0 is

excluded as 0 ≤ uα ≤ uω1
for α ∈ M 6= ∅. If uω1

= 0 then uα = 0 for every α ∈ M ,
so g1(u) = h1(u) = 0 and we are done. Suppose now that uω1

> 0. Consider the

element u′ def
= u−1

ω1
· u. Then u′↾ω1

belongs to ΩM and it follows from Lemma 6.5
that u′↾M = v↾M for some v ∈ Ω. We obtain

ġ (uα | α ∈ M ∪ {ω1}) = uω1
ġ (u′

α | α ∈ M ∪ {ω1}) = uω1
g(v).

(For the last equality notice that u′
ω1

= 1 = pω1
(v).) Since g ∈ G+ we get g(v) ≥ 0.

Since d(u) ≤ 0, we obtain

g1(u) = uω1
g(v) ∨ d(u) = uω1

g(v) ≥ 0 ,
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and similarly,

h1(u) = uω1
h(v) ≥ 0 .

Hence h1(u) = 0 implies h(v) = 0, thus (since v ∈ Ω) g(v) = 0, and thus g1(u) = 0.
� Claim.

On the other hand, for any u ∈ Qω1+1\ΩM , d(u) > 0 and hence g1(u), h1(u) > 0.
Therefore, it follows from the Claim above that {g1, h1} ⊆ F+ and h−1

1 {0} ⊆
g−1
1 {0} ⊆ ΩM . By Lemma 6.2, the latter relation entails 〈g1〉 ≤ 〈h1〉 (within Idc F ),
that is, g1 ≤ mh1 for some m > 0. Then for every u ∈ Ω (so u a (1) ∈ ΩM ),
g(u) = g1(u a (1)) ≤ mh1(u a (1)) = mh(u), thus g ≤ mh, and thus 〈g〉 ≤ 〈h〉
(within Idc G). �

Lemma 6.7. For every α ∈ ω1 \ {0} and every positive c ∈ Q, 〈(p0 − cpα)
+〉 and

〈(cpα − p0)
+〉 are pseudocomplements of each other within Idc G.

Proof. Trivially 〈(p0 − cpα)
+〉 ∧ 〈(cpα − p0)

+〉 = 0.
Now let t ∈ G+. Assume first that 〈t〉 ∧ 〈(p0 − cpα)

+〉 = 0. By way of contra-
diction, suppose that 〈t〉 � 〈(cpα − p0)

+〉. By Lemma 6.6, there exists z ∈ Ω such
that t(z) > 0 whereas czα ≤ z0. From 〈t〉 ∧ 〈(p0 − cpα)

+〉 = 0 it thus follows that
z0 ≤ czα, thus z0 = czα. We separate cases.

• If z0 < 1, let y ∈ Ω be defined by y0 = z0 + ε whereas yβ = zβ whenever
0 < β < ω1, with ε > 0 chosen small enough to ensure z0 + ε ≤ 1 and
t(y) > 0. This is possible since t(y) depends only on a finite number of
components of y. Then y0− cyα = (z0 − czα)+ ε = ε > 0, in contradiction
with 〈t〉 ∧ 〈(p0 − cpα)

+〉 = 0.
• If z0 = 1, so zα > 0, let y ∈ Ω be defined by y0 = z0 whereas yβ = (1−ε)zβ
whenever 0 < β < ω1, with ε > 0 chosen small enough to ensure t(y) > 0.
Then y0 − cyα = (z0 − czα) + εzα = εzα > 0, in contradiction with
〈t〉 ∧ 〈(p0 − cpα)

+〉 = 0.

Assume now that 〈t〉∧〈(cpα − p0)
+〉 = 0. By way of contradiction, suppose that

〈t〉 � 〈(p0 − cpα)
+〉. By Lemma 6.6, there exists z ∈ Ω such that t(z) > 0 whereas

czα ≥ z0. From 〈t〉∧〈(cpα − p0)
+〉 = 0 it thus follows that czα ≤ z0, thus z0 = czα.

We separate cases.

• If z0 > 0, let y ∈ Ω be defined by y0 = (1−ε)z0 whereas yβ = zβ whenever
0 < β < ω1, with ε > 0 chosen small enough to ensure t(y) > 0. Then
cyα − y0 = (czα − z0) + εz0 = εz0 > 0, in contradiction with
〈t〉 ∧ 〈(cpα − p0)

+〉 = 0.
• If z0 = 0, so zα = 0, let y ∈ Ω be defined by y0 = z0 whereas yβ =
min {zβ + ε, 1} whenever 0 < β < ω1, with ε > 0 chosen small enough to
ensure ε < 1 and t(y) > 0. Then cyα − y0 = (czα − z0) + cε = cε > 0, in
contradiction with 〈t〉 ∧ 〈(cpα − p0)

+〉 = 0. �

Theorem 6.8. The vector lattice G is Archimedean with strong unit. Furthermore,
no deviation on Idc G can be either left isotone or right antitone. In fact, for every
deviation r on Idc G there are ordinals α, β, α′, β′ such that 0 < α < β < ω1,
0 < α′ < β′ < ω1, 〈p0〉r 〈pβ〉 � 〈p0〉r 〈pα〉, and 〈pα′〉r 〈p0〉 � 〈pβ′〉r 〈p0〉.

Proof. Since G is an ℓ-subgroup of a power of Q it is Archimedean. Moreover, pω1

is a strong unit of G.
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Let r be a deviation on IdcG and suppose first that

〈p0〉r 〈pβ〉 ≤ 〈p0〉r 〈pα〉 whenever 0 < α < β < ω1 . (6.2)

Whenever 0 < α < ω1 let sα ∈ G+ with 〈sα〉 = 〈p0〉 r 〈pα〉. There exists a finite
subset Φ(α) of ω1 such that sα belongs to the vector sublattice of G generated by
{pβ | β ∈ Φ(α)∪{pω1

}}.
It is well known that the elements 〈(p0 −mpα)

+〉 (with m ∈ ω) form a coinitial
subset in the set {x ∈ IdcG | 〈p0〉 ≤ 〈pα〉 ∨ x}. Hence, 〈(p0 −mpα)

+〉 ≤ 〈sα〉 for
some positive m. Similarly, 〈(pα − np0)

+〉 ≤ 〈pα〉r〈p0〉 for some positive n. Hence,

〈sα〉 ∧ 〈(pα − np0)
+〉 ≤ (〈p0〉r 〈pα〉) ∧ (〈pα〉r 〈p0〉) = 0 .

By Lemma 6.7, 〈sα〉 ≤ 〈(np0 − pα)
+〉. We have thus obtained the following.

Claim 1. Whenever 0 < α < ω1 there are positive integers m, n such that

〈(p0 −mpα)
+〉 ≤ 〈sα〉 ≤ 〈(np0 − pα)

+〉 .

For all positive integers m, n denote

Xm,n
def
=

{

α ∈ ω1 \ {0} | 〈(p0 −mpα)
+〉 ≤ 〈sα〉 ≤ 〈(np0 − pα)

+〉
}

.

By Claim 1, at least one of those sets must be cofinal in ω1; we choose such (m,n)

and set X
def
= Xm,n. Further, we pick a positive integer k such that 2k−1 > mn.

Applying Lemma 6.1 with X and Φ defined above, we find corresponding ordi-
nals τi and αi (for i < ω1). We may assume that τ0 > 0. Let us keep only those τi,

αi with 0 ≤ i < k, and reset τk
def
= ω1. Let f : {pγ | γ ∈ ω1} → G be defined as

follows:

f(pγ)
def
=

{

p0 , if γ ∈ τ0 ,

pαi
, if γ ∈ τi+1 \ τi

whenever γ ∈ ω1 . (6.3)

Since 0 ≤ f(pα) ≤ pω1
for any α ∈ ω1 and since f(pγ) ≤ 2f(pδ) whenever 0 < γ ≤ δ,

the map f can, by Lemma 6.4, be extended to an ℓ-endomorphism of G, which we
shall also denote by f , such that f(pω1

) = pω1
. The definition of Φ ensures that

each f(sαi
) belongs to the vector sublattice of G generated by {p0, pαi

, pω1
}.

Claim 2. The inequality 〈f(sαk−i
)〉 ≥ 〈(2i−1p0 −mpαk−i

)+〉 holds whenever
1 ≤ i ≤ k.

Proof of Claim. We proceed by induction. For i = 1 our statement follows from the
inequality 〈(p0 −mpαk−1

)+〉 ≤ 〈sαk−1
〉. (Notice that f(p0) = p0 and f(pαj

) = pαj

for every j, thus f((p0 −mpαk−1
)+) = (p0 −mpαk−1

)+.)

Now let i > 1 and suppose for contradiction that 〈f(sαk−i
)〉 � 〈(2i−1p0 −mpαk−i

)+〉.

By Lemma 6.6, there is z ∈ Ω such that f(sαk−i
)(z) ≤ 0 and 2i−1z0 > mzαk−i

. We
define y ∈ Ω by

yβ
def
=











z0 , if β = 0 ,

zαk−i
, if 0 < β ≤ αk−i ,

1
2zαk−i

, if β > αk−i ,

whenever β < ω1 . (6.4)

Since f(sαk−i
) belongs to the vector sublattice of G generated by

{

p0, pαk−i
, pω1

}

,
we get f(sαk−i

)(y) = f(sαk−i
)(z) ≤ 0. Our assumption (6.2) entails the inequality
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〈sαk−i
〉 ≥ 〈sαk−i+1

〉, hence 〈f(sαk−i
)〉 ≥ 〈f(sαk−i+1

)〉 and therefore f(sαk−i+1
)(y) ≤ 0.

Further,

2i−2y0 −myαk−i+1
=

1

2
(2i−1z0 −mzαk−i

) > 0 ,

which contradicts the induction hypothesis 〈f(sαk−i+1
)〉 ≥ 〈(2i−2p0 −mpαk−i+1

)+〉.
� Claim 2.

For i = k, Claim 2 yields 〈f(sα0
)〉 ≥ 〈(2k−1p0 −mpα0

)+〉. On the other hand,
α0 ∈ Xm,n implies 〈sα0

〉 ≤ 〈(np0 − pα0
)+〉, hence 〈f(sα0

)〉 ≤ 〈f((np0 − pα0
)+)〉 =

〈(np0 − pα0
)+〉. Therefore,

〈(2k−1p0 −mpα0
)+〉 ≤ 〈(np0 − pα0

)+〉 .

However, this inequality does not hold. Indeed, by Lemma 6.5 there exists z ∈ Ω
with z0 = 1/n and zα0

= 1. Then nz0 − zα0
= 0, while

2k−1z0 −mzα0
= 2k−1/n−m > 0

according to the choice of k. This contradiction shows that (6.2) cannot hold.
The “left isotone” case is handled similarly. Suppose that

〈pα〉r 〈p0〉 ≤ 〈pβ〉r 〈p0〉 whenever 0 < α < β < ω1 . (6.5)

Whenever 0 < α < ω1 let tα ∈ G+ with 〈tα〉 = 〈pα〉 r 〈p0〉. There exists a finite
subset Φ(α) of ω1 such that tα belongs to the vector sublattice of G generated by
{pβ | β ∈ Φ(α) ∪ {ω1}}.

The proof of the following claim is then, mutatis mutandis, identical to the one
of Claim 1, thus we shall omit it.

Claim 3. Whenever 0 < α < ω1 there are positive integers m, n such that

〈(pα −mp0)
+〉 ≤ 〈tα〉 ≤ 〈(npα − p0)

+〉 .

For all positive integers m, n we now denote

Ym,n
def
=

{

α ∈ ω1 \ {0} | 〈(pα −mp0)
+〉 ≤ 〈tα〉 ≤ 〈(npα − p0)

+〉
}

.

By Claim 3, at least one of those sets must be cofinal in ω1; we choose such (m,n)

and set Y
def
= Ym,n. Again, we pick a positive integer k such that 2k−1 > mn.

Applying Lemma 6.1 with Y and Φ defined above, we find corresponding ordi-
nals τi and αi (for i < ω1) with τ0 > 0. Again, we keep only those τi, αi with

0 ≤ i < k, and reset τk
def
= ω1. The map f : {pγ | γ ∈ ω1} → G defined as in (6.3)

can again be extended to a unique ℓ-endomorphism of G such that f(pω1
) = pω1

,
and the definition of Φ ensures that each f(tαi

) belongs to the vector sublattice
of G generated by {p0, pαi

, pω1
}.

Claim 4. The inequality 〈f(tαk−i
)〉 ≤ 〈(npαk−i

− 2i−1p0)
+〉 holds whenever

1 ≤ i ≤ k.

Proof of Claim. We proceed by induction, following the lines of the proof of Claim 2.
For i = 1 our statement follows from the inequality 〈tαk−1

)〉 ≤ 〈(npαk−1
− p0)

+〉.

Now let i > 1 and suppose for contradiction that 〈f(tαk−i
)〉 � 〈(npαk−i

− 2i−1p0)
+〉.

By Lemma 6.6, there is z ∈ Ω such that f(tαk−i
)(z) > 0 whereas nzαk−i

≤ 2i−1z0.
We define y ∈ Ω as in (6.4) and observe again that f(tαk−i

)(y) = f(tαk−i
)(z) > 0.
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Our assumption (6.5) entails 〈tαk−i
〉 ≤ 〈tαk−i+1

〉, hence 〈f(tαk−i
)〉 ≤ 〈f(tαk−i+1

)〉
and therefore f(tαk−i+1

)(y) > 0. Further,

nyαk−i+1
− 2i−2y0 =

1

2
(nzαk−i

− 2i−1z0) ≤ 0 ,

which contradicts the induction hypothesis 〈f(tαk−i+1
)〉 ≤ 〈(npαk−i+1

− 2i−2p0)
+〉.

� Claim 4.

For i = k, Claim 4 yields 〈f(tα0
)〉 ≤ 〈(npα0

− 2k−1p0)
+〉. On the other hand,

α0 ∈ Ym,n implies 〈(pα0
−mp0)

+〉 ≤ 〈tα0
〉, hence also 〈(pα0

−mp0)
+〉 ≤ 〈f(tα0

)〉.
Therefore,

〈(pα0
−mp0)

+〉 ≤ 〈(npα0
− 2k−1p0)

+〉 .

However, this inequality does not hold. Indeed, by Lemma 6.5 there exists z ∈ Ω
with z0 = 21−k and zα0

= 1/n. Then nzα0
− 2k−1z0 = 0, while

zα0
−mz0 = 1/n−m21−k > 0

according to the choice of k. This contradiction shows that (6.5) cannot hold, thus
concluding the proof of Theorem 6.8. �

Finally, we would like to state some open problems.

Problem 1. Is every finitely separable completely normal lattice Cevian?

By Theorem 4.8, every finitely separable completely normal lattice has a mono-
tone deviation; we do not know whether that deviation can be made Cevian. So
far, the only known examples of non-Cevian completely normal lattices are due to
Wehrung [15, § 7] and [17, § 7], the former lattice satisfying the additional property
of having countably based differences. We do not know whether any of those lattices
is finitely separable.

Problem 2. Is it possible that a completely normal lattice has a deviation mono-
tone in one variable, but none in both variables?

Recall that for the ℓ-group G constructed above, the lattice Idc G does not have
a deviation monotone in either variable.

Problem 3. Is it possible, for an Abelian ℓ-group G, that Idc G has a monotone
deviation but no isotone Belluce section?

Notice that in the proof of Corollary 5.9 we actually constructed an isotone
Belluce section for any free Abelian ℓ-group.
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1954, Centro de Cooperación Cientifica de la UNESCO para América Latina, Montevideo,
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