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Introduction

This paper is motivated by the investigation of principal ℓ-ideal lattices of Abelian ℓ-groups. It has been known for a long time that those lattices are distributive with 0 and are completely normal. Recall (cf. Wehrung [START_REF] Wehrung | Spectral spaces of countable Abelian lattice-ordered groups[END_REF]) that a lattice D is completely normal if it is distributive, has a least element (usually denoted by 0), and for all a, b ∈ D there are x, y ∈ D such that a ∨ b = a ∨ y = x ∨ b whereas x∧y = 0. Equivalently, the prime ideals of D form a root system under set inclusion (cf. Monteiro [START_REF] António | L'arithmétique des filtres et les espaces topologiques, Segundo symposium sobre algunos problemas matemáticos que se están estudiando en Latino América, Julio[END_REF]). It is an easy exercise to verify that D is completely normal iff it admits a deviation in the following sense. Definition 1.1. A binary operation , on a distributive 0-lattice D, is a deviation on D if the relations x ≤ y ∨ (x y) and (x y) ∧ (y x) = 0 both hold whenever x, y ∈ D. The deviation is

• left isotone if x ≤ x ′ implies that x y ≤ x ′ y,

• right antitone if y ≤ y ′ implies that x y ′ ≤ x y,

• monotone if it is both left isotone and right antitone;

• Cevian if x z ≤ (x y) ∨ (y z) whenever x, y, z ∈ D;

• monotone-Cevian if it is both monotone and Cevian. We say that the lattice D is Cevian (resp., monotone-Cevian) if it has a Cevian (resp., monotone-Cevian) deviation.

Any homomorphic image of the principal ℓ-ideal lattice of an Abelian ℓ-group is Cevian (cf. Wehrung [START_REF]Cevian operations on distributive lattices[END_REF]). It is easy to find small completely normal lattices with a non-monotone or non-Cevian deviation. However, in many cases the deviation can be"adjusted" to become monotone and Cevian. By Ploščica [START_REF] Ploščica | Cevian properties in ideal lattices of Abelian ℓ-groups[END_REF], every completely normal lattice with at most ℵ 1 elements is Cevian (see also Ploščica and Wehrung [START_REF] Ploščica | Spectral subspaces of spectra of Abelian latticeordered groups in size aleph one[END_REF]). This does not extend to the cardinality ℵ 2 : by [START_REF]Cevian operations on distributive lattices[END_REF], not every completely normal lattice with ℵ 2 elements is Cevian.

The existence of monotone deviations on completely normal lattices has not been investigated so far. It is not very difficult to prove that a deviation on a (at most) countable lattice can be adjusted to become monotone. In this paper we use the idea of an adjustment to prove the much stronger result that every finitely separable completely normal lattice has a monotone deviation. Finite separability is here meant in the sense of Freese and Nation [START_REF]Projective ordinal sums of lattices and isotone sections[END_REF]. As an application, we prove that principal ℓ-ideal lattices of free Abelian ℓ-groups are monotone-Cevian (cf. Corollary 5.9).

The concept of finite separability, originally invented as one of the conditions that characterize projective lattices, seems to have potential for more applications. In that direction, we shall establish two equivalent conditions for finite separability in lattices and, more generally, posets. One of them (viz. Proposition 3.3) states that a poset is finitely separable iff it has a finitely shadowing well-ordering. The other one (viz. Theorem 3.6) states that a poset is finitely separable iff it is a "strong amalgam" of finite posets over a lower finite poset.

In Section 4 we prove that any deviation on a distributive 0-lattice with a finitely shadowing well-ordering can be adjusted to become monotone. This implies the above-mentioned result (cf. Theorem 4.8). In Section 5 we turn our attention to (necessarily completely normal) lattices that arise as the lattices of all principal ℓ-ideals of Abelian ℓ-groups. We verify that for free Abelian ℓ-groups (more generally, for free k-vector lattices), those lattices are finitely separable (cf. Proposition 5.6), which implies, with the help of the Belluce map, that they are monotone-Cevian (cf. Corollaries 5.8 and 5.9). We also verify, invoking the main result of Ploščica and Wehrung [START_REF] Ploščica | Spectral subspaces of spectra of Abelian latticeordered groups in size aleph one[END_REF], that every finitely separable completely normal lattice with at most ℵ 1 elements is monotone-Cevian (cf. Corollary 5.3).

Our final achievement (cf. Section 6) is a construction of an Archimedean ℓ-group with strong unit, of cardinality ℵ 1 , whose principal ℓ-ideal lattice does not have any left isotone or right antitone deviation. Hence, not only there are completely normal lattices without a monotone deviation; they can be constructed as principal ℓ-ideal lattices of Abelian ℓ-groups. This is rather surprising, in view of the abovementioned result for free Abelian ℓ-groups.

Let us introduce some notation. Order-preserving maps between posets will be called isotone, order-reversing ones are antitone. We will denote by Min X (resp., Max X) the set of all minimal (resp., maximal) elements of a subset X in a poset P . Notation 1.2. For any set P , any A ⊆ P , and any binary relation ✁ on P ,

↓ ✁ A def = {x ∈ P | (∃a ∈ A)(x ✁ a)} , ↑ ✁ A def = {x ∈ P | (∃a ∈ A)(a ✁ x)} .
For a ∈ P , we will also write ↓ ✁ a and ↑ ✁ a instead of ↓ ✁ {a} and ↑ ✁ {a}, respectively.

A poset (P, ≤) is lower finite if ↓ ≤ a is finite whenever a ∈ P .

For any set X, Pow X denotes the powerset of X. "Countable" will always mean "at most countable". We will denote by [X] <ω the set of all finite subsets of a set X.

Finite separability, strong amalgams, and shadows

The following definition is stated in Freese and Nation [START_REF]Projective ordinal sums of lattices and isotone sections[END_REF]. However, the condition given in Definition 2.1 already appeared in Freese and Nation [START_REF] Freese | Nation, Projective lattices[END_REF], in connection with projective lattices. It was then used in several other works on projectivity. In Heindorf and Shapiro [START_REF] Heindorf | Nearly Projective Boolean Algebras[END_REF] the condition was given the name Freese/Nation property. In Fuchino, Koppelberg, and Shelah [START_REF] Fuchino | Partial orderings with the weak Freese-Nation property[END_REF], it is studied from a set-theoretical point of view.

Definition 2.1. A poset M is finitely separable if there are functions A and B with domain M such that each A(z) is a finite set of upper bounds of z, each B(z) is a finite set of lower bounds of z, and for all x, y ∈ M , x ≤ y implies A(x) ∩ B(y) = ∅. Such a pair (A, B) will be called a separability witness for M .

The following deep result is contained in Freese and Nation [START_REF]Projective ordinal sums of lattices and isotone sections[END_REF]Theorem 1].

Theorem 2.2. A lattice L is finitely separable iff every lattice homomorphism onto L has an isotone section.

It follows from Freese and Nation [START_REF]Projective ordinal sums of lattices and isotone sections[END_REF]Theorem 6] that every projective member (thus, in particular, any free member) of any variety of lattices is finitely separable. An example of non-finitely separable lattice is the chain ω 1 of all countable ordinals. The following result collects a few elementary observations on finite separability.

Proposition 2.3.

(1) A poset is finitely separable iff its dual poset is finitely separable.

(2) Every countable poset is finitely separable.

(3) Every order-retract of a finitely separable poset is finitely separable. (4) Every order-convex subset of a finitely separable poset is finitely separable. If M ⊔ {1} is finitely separable, then, since M is an order-convex subset of M ⊔ {1}, so is M . Conversely, for any separability witness (A, B) for M , x → A(x) ∪ {1} and x → B(x) form a separability witness for M ⊔ {1}; (5) follows (see also [START_REF]Projective ordinal sums of lattices and isotone sections[END_REF]Theorem 10] for a more general fact ). Finally, if (A i , B i ) is a separability witness for a poset M i whenever i ∈ {1, 2}, then the maps

(x 1 , x 2 ) → A 1 (x 1 ) × A 2 (x 2 ) and (x 1 , x 2 ) → B 1 (x 1 ) × B 2 (x 2 ) form a separability witness for M 1 × M 2 ; (6) follows.
As we will see in Example 2.8, the "order-convex subset" assumption cannot be replaced by "subset" in the statement of Proposition 2.3(4): that is, a sublattice of a finitely separable lattice need not be finitely separable (cf. Example 2.8). Definition 2.4. Let M be a poset, let A ⊆ M , and let x ∈ M . A subset U of A is a lower shadow of x on A if A ∩ ↓ ≤ x = A ∩ ↓ ≤ U ; upper shadows are defined dually. Definition 2.5. We say that a subset A is finitely shadowing in a poset M if every element of M has both a finite lower shadow and a finite upper shadow on A.

Of course, if A is finitely shadowing in M , then for every x ∈ M , the smallest lower shadow (resp., upper shadow) of x, with respect to set inclusion, on A is Max(A ∩ ↓ ≤ x) (resp., Min(A ∩ ↑ ≤ x)). Definition 2.6. Let P be a poset. We say that a poset M is the strong amalgam of a family (M p | p ∈ P ) of subsets of M if the following statements hold:

(1) M = p∈P M p ;

(2) for all p ≤ q in P , M p is a finitely shadowing subset of M q ;

(3) (Interpolation Property) for all p, q ∈ P , all x ∈ M p , and y ∈ M q , if x ≤ y, then there are r ≤ p, q in P and z ∈ M r such that x ≤ z ≤ y. We say that the strong amalgam above is lower finite if the poset P is lower finite. Items (2) and (3) together obviously entail the following:

M p ∩ M q =
{M r | r ≤ p, q} , whenever p, q ∈ P .

Proposition 2.7. The following statements hold, for any lower finite strong amalgam M of a family (M p | p ∈ P ) of subsets:

(1) Each M p is finitely shadowing in M .

(2) If each M p is finitely separable, then so is M .

Proof. Ad (1) We must prove that every x ∈ M has (say) an upper shadow on each M q . Pick p ∈ P such that x ∈ M p . Since P is lower finite, R def = ↓ ≤ p ∩ ↓ ≤ q is finite. For each r ∈ R, it follows from Definition 2.6(2) that M r is finitely shadowing in M p ; thus x has a finite upper shadow U r on M r . A direct application of the Interpolation Property (cf. Definition 2.6(3)) then shows that r∈R U r is a finite upper shadow of x on M q .

Ad (2). For each x ∈ M , pick ν(x) ∈ P such that x ∈ M ν(x) . For every p ∈ P , pick a separability witness (A p , B p ) for M p . For all x ∈ M and all p ≤ ν(x), it follows from Definition 2.6(2) that x has a finite upper shadow U x,p and a finite lower shadow V x,p on M p . The sets

A(x) def = {A p (u) | p ≤ ν(x) , u ∈ U x,p } , B(x) def = {B p (v) | p ≤ ν(x) , v ∈ V x,p }
are, respectively, a finite set of upper bounds of x and a finite set of lower bounds of x in M . Let x ≤ y in M ; set p def = ν(x) and q def = ν(y). By the Interpolation Property (cf. Definition 2.6(3)), there are r ∈ ↓ ≤ p ∩ ↓ ≤ q and z ∈ M r such that x ≤ z ≤ y. By definition, there are u ∈ U x,r and v ∈ V y,r such that x ≤ u ≤ z ≤ v ≤ y. Since u ≤ v within M r , there exists w ∈ A r (u) ∩ B r (v); so x ≤ w ≤ y whereas w ∈ A(x) ∩ B(y). Therefore, (A, B) is a separability witness for M .

Example 2.8. A finitely separable lattice with a non-finitely separable sublattice.

Proof. The lattice P def = [ω 1 ] <ω is the strong amalgam of its finite sublattices [X] <ω , for finite X ⊂ ω 1 ; thus, by Proposition 2.7, it is finitely separable, and thus so is its opposite lattice P op . It follows from Freese and Nation [START_REF]Projective ordinal sums of lattices and isotone sections[END_REF]Lemma 9] that the ordinal sum P ∔ P op is not finitely separable.

Denote by u a new top element for P (thus also a new bottom element for P op ). It follows from Proposition 2.3(5) that P ∪ {u} and P op ∪ {u} are both finitely separable, thus so is their product (P ∪ {u}) × (P op ∪ {u}). Moreover, P ∔ P op embeds into (P ∪ {u}) × (P op ∪ {u}), by mapping each x ∈ P to (x, u) and each y ∈ P op to (u, y).

Finitely shadowing well-orderings

A typical situation that will arise in this section will involve two distinct orderings ≤ and ⊑ on the same universe M , occasionally prompting the need to spell out which one is in question. For example, Definition 3.1 will begin with "Let (M, ≤) be a poset" instead of "Let M be a poset".

Definition 3.1. Let (M, ≤) be a poset. A binary relation ⊑ of M is finitely shadowing on (M, ≤) if ↓ ⊑ x is finitely shadowing in (M, ≤) whenever x ∈ M .
If ⊑ is a partial ordering, with associated strict ordering ❁, then ↓ ⊑ x is finitely shadowing iff ↓ ❁ x is finitely shadowing (for these two sets differ by the singleton {x}). In particular, ⊑ is finitely shadowing iff ❁ is finitely shadowing. Proposition 3.3. A poset (M, ≤) is finitely separable iff it has a finitely shadowing well-ordering. Furthermore, for every finitely shadowing well-ordering ⊑ on M , there exists a separability witness (A, B) of M such that

x ∈ A(y) ∪ B(y) implies that x ⊑ y , for all x, y ∈ M . (3.1)
Proof. The argument of the proof that every finitely separable poset has a finitely shadowing well-ordering is mostly contained in the proof of Freese and Nation [5, Theorem 1]. For convenience, we provide a description of the well-ordering. Let (A, B) be a separability witness for M . We define inductively an ordinal δ and a partition (M ξ | ξ < δ) of M into countable blocks, as follows. Suppose (M ξ | ξ < α)

already defined and set M <α def = ξ<α M ξ . If M <α = M then set δ def = α and stop. Suppose that M <α = M and pick c ∈ M \ M <α . The smallest subset M α of M such that c ∈ M α and (A(x) ∪ B(x)) \ M <α ⊆ M α whenever x ∈ M α is countable,
and disjoint from M <α . This completes the induction step.

For any x ∈ M , denote by ν(x) the unique ξ < δ such that x ∈ M ξ . Pick a well-ordering ⊑ ξ of M ξ of type at most ω, for each ξ < α, and let

x ⊑ y if ν(x) < ν(y) or (ν(x) = ν(y) and x ⊑ ν(x) y) , for all x, y ∈ M .
Then ⊑ is a well-ordering of M and for any c ∈ M , with

γ def = ν(c), A(c) ∩ M <γ is a finite upper shadow and B(c) ∩ M <γ is a finite lower shadow of c on M <γ . Since ↓ ❁ c = M <γ ∪ F for the finite set F def = {x ∈ M γ | x ❁ γ c}, c
also has a finite upper shadow and a finite lower shadow on ↓ ❁ c. Hence, the well-ordering ⊑ is finitely shadowing in (M, ≤).

Conversely, let ⊑ be a finitely shadowing well-ordering on M . For c ∈ M , we shall define A(c) and B(c) by ⊑-induction, in such a way that A(c) ∪ B(c) ⊆ ↓ ⊑ c; this will ensure (3.1). By induction hypothesis, c has a finite upper shadow U c and a finite lower shadow

V c on ↓ ❁ c. Then A(c) def = {c} ∪ u∈Uc A(u) is a finite set of upper bounds of c, and for each u ∈ U c , A(u) ⊆ ↓ ⊑ u by induction hypothesis, so A(u) ⊆ ↓ ❁ c; whence A(c) ⊆ ↓ ⊑ c. Symmetrically, B(c) def = {c} ∪ v∈Vc B(v) is a finite set of lower bounds of c contained in ↓ ⊑ c.
We claim that (A, B) is a separability witness for (M, ≤). Let a, b ∈ M such that a ≤ b, we verify that A(a) ∩ B(b) = ∅. We argue by ⊑-induction with respect to max ⊑ {a, b} (i.e., the maximum of {a, b} with respect to ⊑). Since each c ∈ A(c) ∩ B(c), we may assume that a < b. If a ❁ b, then a ≤ v for some v ∈ V b , so, since {a, v} ⊆ ↓ ❁ b and by our induction hypothesis, A(a) ∩ B(v) = ∅, and so, since

B(v) ⊆ B(b), we get A(a) ∩ B(b) = ∅. The argument for b ❁ a is symmetric.
This completes the proof of our claim. Theorem 3.6. A poset M is finitely separable iff it is the strong amalgam, over a lower finite poset (resp., a sublattice of [M ] <ω ), of a family of nonempty finite subsets.

Definition 3.4. For a map C : M → Pow M , we set C 0 (x) = {x} and C n+1 (x) def = y∈C(x) C n (y) whenever n < ω. We say that the map C is locally finite if C ω (x) def = n<ω C n (x) is finite whenever x ∈ M .
Proof. One direction, that any lower finite strong amalgam of finite posets is finitely separable, is provided by Proposition 2.7.

Let, conversely, M be a finitely separable poset. By Proposition 3.5, M has a separability witness (A, B) such that the set map A ∪ B is locally finite. We say that a subset

X of M is closed if A(x) ∪ B(x) ⊆ X whenever x ∈ X. Fix o ∈ M .
Since the map A ∪ B is locally finite, every finite subset of M is contained in some finite closed subset of M , thus the collection Λ of all finite closed subsets of M containing {o} is a sublattice of ([M ] <ω , ∪, ∩) with M = Λ. Now let P, Q ∈ Λ and let x ∈ P , y ∈ Q such that x ≤ y. Since (A, B) is a separability witness for M , there exists z ∈ A(x) ∩ B(y). Since P and Q are both closed, z belongs to P ∩ Q. Since x ≤ z ≤ y, this yields the Interpolation Property (cf. Definition 2.6(3)) for Λ. The condition 2.6(2) follows from the finiteness of all members of Λ.

The monotone adjustment of a map

Now we turn our attention to monotone deviations, the original motivation. 

M × M → L is monotone on a subset Z of M × M if x ≤ x ′ and y ′ ≤ y implies that d(x, y) ≤ d(x ′ , y ′ ) whenever (x, y), (x ′ , y ′ ) ∈ Z.
The proof of the following lemma is routine and we omit it. Lemma 4.2. For any elements x, y, x ′ , y ′ in a chain (M, ⊑), let {x, y}

✂ {x ′ , y ′ } hold if either max ⊑ {x, y} ❁ max ⊑ {x ′ , y ′ } or (max ⊑ {x, y} = max ⊑ {x ′ , y ′ } and min ⊑ {x, y} ⊑ min ⊑ {x ′ , y ′ }). Then ✂ is a total ordering on M 1,2 = {N ⊆ M | |N | ∈ {1, 2}}
and the following statements hold whenever x, y, x ′ , y ′ , z ∈ M :

(1) x ⊑ y iff {x, z} ✂ {y, z} and x ❁ y iff {x, z} ✁ {y, z}. (2) (x ⊑ x ′ and y ⊑ y ′ ) implies that {x, y} ✂ {x ′ , y ′ }. (3) {x, y} ✁ {x ′ , y ′ } implies that x ❁ x ′ or y ❁ y ′ . (4) If (M, ⊑) is well-ordered then so is (M 1,2 , ✂).
The following technical lemma is the key point to our forthcoming definition of the monotone adjustment of a map. 

= {(x, y) ∈ M × M | {x, y} ✁ {a, b}}. For each x ∈ {a, b}, let U x (resp., V x ) be an upper shadow (resp., lower shadow ) of x on ↓ ❁ x. We set A def = {d(x, y) | {x, y} ✁ {a, b} , a ≤ x , y ≤ b} , A ′ def = {d(x, b) | x ∈ U a } ∪ {d(a, y) | y ∈ V b } , B def = {d(x, y) | {x, y} ✁ {a, b} , x ≤ a , b ≤ y} , B ′ def = {d(x, b) | x ∈ V a } ∪ {d(a, y) | y ∈ U b } . Then A ′ is a coinitial subset of A and B ′ is a cofinal subset of B, both finite if U a , V a , U b , V b are finite.
Proof. We establish for example the part about A and A ′ ; the proof for B and B ′ is similar. The containment A ′ ⊆ A follows immediately from Lemma 4. Definition 4.4. For any poset L and any X ⊆ L, say that an element a is the finitary join of X if there exists a finite cofinal subset X ′ of X such that a = X ′ (of course in such a case a = X as well). Finitary meets are defined dually. Our next two propositions will entail that if d is a deviation, then so is d ′ . Because of possible future applications, we prove them under slightly more general assumptions.

Proposition 4.6. Let M be a poset, let D be a distributive lattice, let d : M × M → D, and let f : M → D be an isotone map. We denote by d ′ the monotone adjustment of d with respect to a finitely shadowing well-ordering

⊑ of M . If f (x) ≤ f (y) ∨ d(x, y) whenever x, y ∈ M , then f (a) ≤ f (b) ∨ d ′ (a, b) whenever a, b ∈ M .
Proof. We argue by ✂-induction. Let a, b ∈ M and suppose that the inequality f (x) ≤ f (y) ∨ d ′ (x, y) holds whenever {x, y} ✁ {a, b}. In order to prove that

f (a) ≤ f (b) ∨ d ′ (a, b) it suffices to verify that f (a) ≤ f (b) ∨ d ′ ∧ (a, b). Since the meet defining d ′ ∧ (a, b
) is finitary, it follows from the distributivity of D that it suffices to verify that for all (x, y) ∈ D a,b , a ≤ x and y ≤ b implies that f (a) ≤ f (b) ∨ d ′ (x, y). Since f is isotone and by our induction hypothesis, we get the inequalities Proof. We argue by ✂-induction. Let a, b ∈ M and suppose that d ′ (x, y)∧d ′ (y, x) = 0 whenever {x, y} ✁ {a, b}. Since D is 0-distributive, the proof breaks up into four statements.

f (a) ≤ f (x) ≤ f (y) ∨ d ′ (x, y) ≤ f (b) ∨ d ′ (x, y) . Say that a 0-lattice D is 0-distributive if x ∧ z = y ∧ z = 0 implies (x ∨ y) ∧ z = 0 whenever x, y, z ∈ D.
• d ′ ∧ (a, b) ∧ d ′ ∧ (b, a) = 0. Since d ′ ∧ (a, b) ≤ d(a, b), d ′ ∧ (b, a) ≤ d(b, a), and d(a, b) ∧ d(b, a) = 0, this is obvious. • d ′ ∧ (a, b) ∧ d ′ ∨ (b, a) = 0. Since D is 0-distributive, it suffices to prove that for any (x, y) ∈ D a,b , a ≤ x and y ≤ b implies that d ′ ∧ (a, b) ∧ d ′ ∨ (y, x) = 0. Since d ′ (x, y) is a meetand of d ′ ∧ (a, b), we get d ′ (a, b) ≤ d ′ (x, y)
. By our induction hypothesis, d ′ (x, y) ∧ d ′ (y, x) = 0, so we are done.

• d ′ ∨ (a, b) ∧ d ′ ∧ (b, a) = 0.
This case is symmetric to the case above.

• d ′ ∨ (a, b) ∧ d ′ ∨ (b, a) = 0. Since D is 0-distributive, it suffices to prove that for any (x, y), (u, v) ∈ D a,b , x ≤ a ≤ u and v ≤ b ≤ y implies that d ′ (x, y) ∧ d ′ (v, u) = 0. Since ⊑ is a total ordering, either v ⊑ y or y ⊑ v.
In the first case, then (cf. Lemma 4.2) {x, v} ✂ {x, y} ✁ {a, b}, thus, by our induction hypothesis,

d ′ (x, v) ∧ d ′ (v, x) = 0. Since d ′ (x, y) ≤ d ′ (x, v) and d ′ (v, u) ≤ d ′ (v, x)
, the desired conclusion follows. In the second case, then (cf. Lemma 4.2) {u, y} ✂ {u, v} ✁ {a, b}, thus, by our induction hypothesis, Note. Since every homomorphic image of a completely normal lattice is completely normal, our assumptions imply that D is completely normal.

d ′ (u, y) ∧ d ′ (y, u) = 0. Since d ′ (x, y) ≤ d ′ (u, y) and d ′ (v, u) ≤ d ′ (y,
Proof. The map β : G + ։ Cs c G, x → x (β is sometimes called the Belluce map), is a surjective lattice homomorphism (cf. Bigard et al. [START_REF] Bigard | Groupes et Anneaux Réticulés[END_REF]Proposition 2.2.11]). Since D is finitely separable, by Theorem 2.2 the composite map f • β has an isotone section σ : D ֒→ G + . The assignment (x, y) → f (σ(x) -σ(y)) + defines a monotone-Cevian operation on D.

Remark 5.2. Theorem 5.1 trivially extends to finitely separable homomorphic images of ℓ-ideal lattices of vector lattices. Indeed, for any vector lattice E over a totally ordered division ring k, with underlying Abelian ℓ-group G, the assignment

x → k • x defines a surjective lattice homomorphism Id c G ։ Id c E (which is an isomorphism if k is Archimedean).
The main result of Ploščica and Wehrung [START_REF] Ploščica | Spectral subspaces of spectra of Abelian latticeordered groups in size aleph one[END_REF] states that every completely normal lattice with at most ℵ 1 elements is a homomorphic image of Id c G for some Abelian ℓ-group G. Hence, we get the following variant of Ploščica [11, Theorem 3.2], obtained by strengthening there both the assumption (the lattice is now assumed to be finitely separable) and the conclusion ("Cevian" becomes "monotone-Cevian").

Corollary 5.3. Every finitely separable completely normal lattice with at most ℵ 1 elements is monotone-Cevian.

By Theorem 5.1, if Id c G is finitely separable, then it is monotone-Cevian. In the sequel we shall verify that this is the case for free Abelian ℓ-groups. We find it convenient to work in the slightly more general setting of vector lattices. Let k be a countable totally ordered division ring and let E = k (I) be the left vector space over k with basis I. For J ⊆ I we identify k (J) with its canonical copy in E. For every a ∈ E we set

[a] def = {x ∈ E | (a | x) > 0} , (where (a | x) def = i∈I a i x i ).
Following Wehrung [START_REF] Wehrung | Spectral spaces of countable Abelian lattice-ordered groups[END_REF][START_REF]Real spectra and ℓ-spectra of algebras and vector lattices over countable fields[END_REF], we denote by Op -k (J) the 0-sublattice of the powerset of E generated by [x] | x ∈ k (J) . In other words, Op -k (J) is the lattice of all subsets of E defined as disjunctions of conjunctions of strict linear inequalities with variables in J. Further, let Op k (J) = Op -k (J) ∪ {E}. (Notice that E / ∈ Op -k (J) , so we are adding a new top element.) With the above conventions, Op k (J) is thus identified with a 0-sublattice of Op k (I) . Lemma 5.4. For every X ∈ [I] <ω , the lattice Op k (X) is a finitely shadowing subset of Op E.

Proof. (See also the proof of Ploščica and Wehrung [START_REF] Ploščica | Spectral subspaces of spectra of Abelian latticeordered groups in size aleph one[END_REF]Lemma 12].) We claim that the upper and lower shadow of any U ∈ Op E are, respectively, {U * } and {U * }, where

U * def = {v ∈ E | v↾ X = u ↾ X for some u ∈ U } , U * def = {v ∈ E | u ∈ U whenever v↾ X = u↾ X } .
First, the above defined sets are both elements of Op k (X) : this follows from quantifier elimination for the theory of all nontrivial totally ordered k-vector spaces (cf. van den Dries [13, Corollary I.7.8]).

Clearly, U * ⊆ U ⊆ U * . Now let Z ∈ Op k (X) , U ⊆ Z. We verify that U * ⊆ Z. It suffices to consider the case when Z = a∈M [a] for a finite M ⊆ k (X) . Now, if v ∈ U * , then v↾ X = u↾ X for some u ∈ U ⊆ Z. Hence, (a | u) > 0 for some a ∈ M . Since a i = 0 for i / ∈ X, we also have (a

| v) = (a | u) > 0, hence v ∈ Z. Similarly, let Z ∈ Op k (X) ), Z ⊆ U . We verify that Z ⊆ U * . It suffices to consider the case when Z = a∈M [a] for a finite M ⊆ k (X) . Now, let v ∈ Z ⊆ U and u ∈ E with v↾ X = u↾ X . Then (a | v) = (a | u) > 0 for every a ∈ M , hence u ∈ U . By the definition, v ∈ U * . Lemma 5.5. Let X, Y ∈ [I] <ω , U ∈ Op k (X) , V ∈ Op k (Y ) , and U ⊆ V . Then U ⊆ W ⊆ V for some W ∈ Op k (X∩Y ) .
Proof. Since quantifier elimination does not add new variables, the upper shadow U * on k (Y ) belongs to k (X∩Y ) . From U ⊆ V we obtain U * ⊆ V , so we can set W = U * . Proposition 5.6. The distributive 0-lattices Op E and Op -E are both finitely separable.

Proof. By Lemmas 5.4 and 5.5, Op k (I) is the strong amalgam (cf. Definition 2.6) of all Op k (X) for X ∈ [I] <ω . Since k is countable, so are all Op k (X) , which are therefore finitely separable (cf. Proposition 2.3( 2)). By Proposition 2.7, Op k (I) is finitely separable. By Proposition 2.3(4), so is thus Op -k (I) = (Op k (I) ) \ {E}.

Note that by the Baker-Bernau-Madden duality (cf. Baker [START_REF] Baker | Free vector lattices[END_REF], Bernau [START_REF] Bernau | Free abelian lattice groups[END_REF], Madden [9, Ch. III], and also Wehrung [16,page 13] for a summary), Op -k (I) is isomorphic to the lattice of all principal ℓ-ideals of the free k-vector lattice on I. Hence, by applying Theorem 5.1 and Remark 5.2, we obtain the following.

Corollary 5.7. Let E be a left vector space over a countable totally ordered division ring k. Then the distributive 0-lattices Op E and Op -E are both monotone-Cevian.

If we wanted only "existence of a monotone deviation" instead of "monotone-Cevian" in Corollary 5.7, then it would be sufficient to use Theorem 4.8 instead of Theorem 5.1 (the latter itself following from Freese and Nation [5, Theorem 1]).

Corollary 5.8. For any set I and any countable totally ordered division ring k, the lattice of all principal ℓ-ideals of the free k-vector lattice on I is monotone-Cevian.

If k = Q is the ordered field of rationals, then the free Q-vector lattice F on I is the divisible hull of the free Abelian ℓ-group G on I, thus the lattices of principal ℓ-ideals of F and G both isomorphic to Op -Q (I) . Corollary 5.9. For any set I, the lattice of all principal ℓ-ideals of the free Abelian ℓ-group on I is monotone-Cevian.

An Archimedean vector lattice counterexample

Since the lattice of all principal ℓ-ideals of any countable Abelian ℓ-group G is countable, thus finitely separable, the Belluce map of G has in that case an isotone section; hence Id c G is monotone-Cevian (cf. Corollary 5.3). In this section we will verify that that observation does not extend to the uncountable case, by constructing an Archimedean vector lattice G with strong unit, of cardinality ℵ 1 , whose lattice of all principal ℓ-ideals does not have any monotone deviation (thus, a fortiori, no isotone section for the Belluce map; see Theorem 5.1).

We begin with a refinement of Shanin's classical ∆-Lemma (see for example Jech [8, Theorem 9.18]). Lemma 6.1. Let Φ : ω 1 → [ω 1 ] <ω and let X be a cofinal subset of ω 1 . Then there are ascending ω 1 -sequences

(τ i | i < ω 1 ) and (α i | i < ω 1 ) of ordinals in ω 1 such that for every k < ω 1 , (1) α k ∈ X and τ k < α k < τ k+1 ; (2) τ k = sup j<k τ j if k is a limit ordinal; (3) Φ(α k ) ⊆ τ 0 ∪ (τ k+1 \ τ k ).
Proof. By the ∆-Lemma, there are a cofinal subset Y of X and a set K such that

Φ(α) ∩ Φ(β) = K whenever α, β ∈ Y and α = β . (6.1) Pick τ 0 < ω 1 such that K ⊆ τ 0 . Let i < ω 1 and set i * def = i , if i is a limit ordinal , i + 1 , otherwise .
We argue by induction on i. Suppose having constructed ascending sequences 1)-(3) whenever k < i. If i is either 0 or a successor, then τ i is already defined. If i is a limit, set τ i def = sup j<i τ j ; this takes care of (2) at level i. By the cofinality statement on Y , the countability of τ i , and (6.1), there exists α i ∈ Y such that α i > τ i and Φ(α i ) ∩ τ i ⊆ K. Pick τ i+1 < ω 1 such that τ i+1 > α i and Φ(α i ) ⊆ τ i+1 . Since K ⊆ τ 0 , (1) and (3) at level i follow.

(τ k | k < i * ) and (α k | k < i) satisfying (
By the Baker-Bernau-Madden duality, the free Q-vector lattice F (ω 1 ) on ω 1 + 1 is isomorphic to the vector sublattice F of Q Q ω 1 +1 generated by all canonical projections x α : Q ω1+1 ։ Q for α ∈ ω 1 +1. (Here, unlike in Section 5, we use Q ω1+1 instead of Q (ω1+1) .) Every element of F has the form ḟ (x α | α ∈ ω 1 + 1) for some vector lattice term ḟ . By the above-cited duality, Id c F is isomorphic to the 0-sublattice of the powerset lattice of Q ω1 generated by the cozero sets u ∈ Q ω1+1 | g(u) = 0 , the latter corresponding to the principal ℓ-ideal g . This leads immediately to the following assertion. Lemma 6.2. For any g, h ∈ F + , the inequality g ≤ h holds (within

Id c F ) iff h -1 {0} ⊆ g -1 {0}.

Now we introduce our counterexample. Let us denote

Ω M def = {u ∈ Q ω1 | 0 ≤ u α ≤ 1 whenever α ∈ M
and u γ ≤ 2u β whenever β, γ ∈ M and 0 < γ < β} whenever M ⊆ ω 1 , and set Ω def = Ω ω1 . In the sequel, let G be the vector sublattice of Q Ω generated by all canonical projections p α : Ω → Q for α ∈ ω 1 together with the constant function Ω → Q, u → 1, which we shall conveniently denote p ω1 even though it is not a "projection".

Lemma 6.3. Let f 0 : {p α | α ∈ ω 1 } → Q satisfy 0 ≤ f 0 (p α ) ≤ 1 whenever α < ω 1 and f 0 (p γ ) ≤ 2f 0 (p β ) whenever 0 < γ < β < ω 1 . Then f 0 can be extended to a unique ℓ-homomorphism G → Q mapping p ω1 to 1.
Proof. We only need to verify the existence part. The vector w def = (f 0 (p α ) | α ∈ ω 1 ) belongs to Ω. The evaluation morphism e w : g → g(w) is the desired extension.

Lemma 6.4. Let f 0 : {p α | α ∈ ω 1 } → G satisfy 0 ≤ f 0 (p α ) ≤ p ω1 whenever α < ω 1 and f 0 (p γ ) ≤ 2f 0 (p β ) whenever 0 < γ < β < ω 1 .
Then f 0 can be extended to a unique ℓ-endomorphism of G mapping p ω1 to itself.

Proof. We use the fact that G is a vector sublattice of Q Ω via the evaluation morphisms e u for u ∈ Ω. By Lemma 6.3, each map 

f u 0 def = e u f 0 can be extended to an ℓ-homomorphism f u : G → Q such that f u (p ω1 ) = 1. Then the product homomorphism f def = u∈Ω f u extends f 0 and f (p ω1 ) = p ω1 .
v ξ def = u τ , if M ↑ξ = ∅ and τ = min M ↑ξ , 1 , otherwise , whenever ξ < ω 1 .
It is easy to see that v ∈ Ω.

Lemma 6.6. For any g, h ∈ G + , the inequality g ≤ h holds (within

Id c G) iff h -1 {0} ⊆ g -1 {0}.
Proof. We verify the nontrivial direction. Suppose that h -1 {0} ⊆ g -1 {0}. Since {g, h} ⊆ G there are a finite subset M of ω 1 and vector lattice terms ġ and ḣ such that g = ġ (p α | α ∈ M ∪ {ω 1 }) and h = ḣ (p α | α ∈ M ∪ {ω 1 }) . We can assume M = ∅. Define elements d, g 1 , h 1 of F as

d def = α∈M (-x α ) ∨ α∈M (x α -x ω1 ) ∨ γ,β∈M, 0<γ<β (x γ -2x β ) , then g 1 def = ġ (x α | α ∈ M ∪ {ω 1 }) ∨ d and h 1 def = ḣ (x α | α ∈ M ∪ {ω 1 }) ∨ d. We denote Ω M def = {u ∈ Q ω1+1 | 0 ≤ u α ≤ u ω1 whenever α ∈ M
and u γ ≤ 2u β whenever β, γ ∈ M and 0 < γ < β}.

Claim. Let u ∈ Ω M . Then g 1 (u) ≥ 0 and h 1 (u) ≥ 0, and, further, h 1 (u) = 0 implies that g 1 (u) = 0.

Proof of Claim.

The assumption u ∈ Ω M implies d(u) ≤ 0. The case u ω1 < 0 is excluded as 0 ≤ u α ≤ u ω1 for α ∈ M = ∅. If u ω1 = 0 then u α = 0 for every α ∈ M , so g 1 (u) = h 1 (u) = 0 and we are done. Suppose now that u ω1 > 0. Consider the element u ′ def = u -1 ω1 • u. Then u ′ ↾ ω1 belongs to Ω M and it follows from Lemma 6.5 that u ′ ↾ M = v↾ M for some v ∈ Ω. We obtain

ġ (u α | α ∈ M ∪ {ω 1 }) = u ω1 ġ (u ′ α | α ∈ M ∪ {ω 1 }) = u ω1 g(v)
. (For the last equality notice that u ′ ω1 = 1 = p ω1 (v).) Since g ∈ G + we get g(v) ≥ 0. Since d(u) ≤ 0, we obtain

g 1 (u) = u ω1 g(v) ∨ d(u) = u ω1 g(v) ≥ 0 , and similarly, h 1 (u) = u ω1 h(v) ≥ 0 .
Hence h 1 (u) = 0 implies h(v) = 0, thus (since v ∈ Ω) g(v) = 0, and thus g 1 (u) = 0. Claim.

On the other hand, for any u ∈ Q ω1+1 \Ω M , d(u) > 0 and hence g 1 (u), h 1 (u) > 0. Therefore, it follows from the Claim above that {g 1 , h 1 } ⊆ F + and h -1 1 {0} ⊆ g -1 1 {0} ⊆ Ω M . By Lemma 6.2, the latter relation entails g 1 ≤ h 1 (within Id c F ), that is, g 1 ≤ mh 1 for some m > 0. Then for every u ∈ Ω (so u (1) ∈ Ω M ), g(u) = g 1 (u (1)) ≤ mh 1 (u (1)) = mh(u), thus g ≤ mh, and thus g ≤ h (within Id c G). Lemma 6.7. For every α ∈ ω 1 \ {0} and every positive c ∈ Q, (p 0 -cp α ) + and (cp α -p 0 ) + are pseudocomplements of each other within Id c G.

Proof. Trivially (p 0 -cp α ) + ∧ (cp α -p 0 ) + = 0. Now let t ∈ G + . Assume first that t ∧ (p 0 -cp α ) + = 0. By way of contradiction, suppose that t (cp α -p 0 ) + By Lemma 6.6, there exists z ∈ Ω such that t(z) > 0 whereas cz α ≤ z 0 . From t ∧ (p 0 -cp α ) + = 0 it thus follows that z 0 ≤ cz α , thus z 0 = cz α . We separate cases.

• If z 0 < 1, let y ∈ Ω be defined by y 0 = z 0 + ε whereas y β = z β whenever 0 < β < ω 1 , with ε > 0 chosen small enough to ensure z 0 + ε ≤ 1 and t(y) > 0. This is possible since t(y) depends only on a finite number of components of y. Then y 0 -cy α = (z 0 -cz α ) + ε = ε > 0, in contradiction with t ∧ (p 0 -cp α ) + = 0. • If z 0 = 1, so z α > 0, let y ∈ Ω be defined by y 0 = z 0 whereas y β = (1-ε)z β whenever 0 < β < ω 1 , with ε > 0 chosen small enough to ensure t(y) > 0.

Then y 0 -cy α = (z 0 -cz α ) + εz α = εz α > 0, in contradiction with t ∧ (p 0 -cp α ) + = 0.

Assume now that t ∧ (cp α -p 0 ) + = 0. By way of contradiction, suppose that t (p 0 -cp α ) + . By Lemma 6.6, there exists z ∈ Ω such that t(z) > 0 whereas cz α ≥ z 0 . From t ∧ (cp α -p 0 ) + = 0 it thus follows that cz α ≤ z 0 , thus z 0 = cz α . We separate cases.

• If z 0 > 0, let y ∈ Ω be defined by y 0 = (1 -ε)z 0 whereas y β = z β whenever 0 < β < ω 1 , with ε > 0 chosen small enough to ensure t(y) > 0. Then cy α -y 0 = (cz α -z 0 ) + εz 0 = εz 0 > 0, in contradiction with t ∧ (cp α -p 0 ) + = 0. • If z 0 = 0, so z α = 0, let y ∈ Ω be defined by y 0 = z 0 whereas y β = min {z β + ε, 1} whenever 0 < β < ω 1 , with ε > 0 chosen small enough to ensure ε < 1 and t(y) > 0. Then cy α -y 0 = (cz α -z 0 ) + cε = cε > 0, in contradiction with t ∧ (cp α -p 0 ) + = 0.

Theorem 6.8. The vector lattice G is Archimedean with strong unit. Furthermore, no deviation on Id c G can be either left isotone or right antitone. In fact, for every deviation on Id c G there are ordinals α, β, α ′ , β ′ such that 0

< α < β < ω 1 , 0 < α ′ < β ′ < ω 1 , p 0 p β p 0 p α , and p α ′ p 0 p β ′ p 0 .
Proof. Since G is an ℓ-subgroup of a power of Q it is Archimedean. Moreover, p ω1 is a strong unit of G.

Let be a deviation on Id c G and suppose first that

p 0 p β ≤ p 0 p α whenever 0 < α < β < ω 1 . (6.2) 
Whenever 0 < α < ω 1 let s α ∈ G + with s α = p 0 p α . There exists a finite subset Φ(α) of ω 1 such that s α belongs to the vector sublattice of G generated by

{p β | β ∈ Φ(α)∪ {p ω1 }}.
It is well known that the elements (p 0 -mp α ) + (with m ∈ ω) form a coinitial subset in the set {x ∈ Id c G | p 0 ≤ p α ∨ x}. Hence, (p 0 -mp α ) + ≤ s α for some positive m. Similarly, (p α -np 0 ) + ≤ p α p 0 for some positive n. Hence,

s α ∧ (p α -np 0 ) + ≤ ( p 0 α ) ∧ ( p α p 0 ) = 0 .
By Lemma 6.7, s α ≤ (np 0 -p α ) + . We have thus obtained the following.

Claim 1. Whenever 0 < α < ω 1 there are positive integers m, n such that

(p 0 -mp α ) + ≤ s α ≤ (np 0 -p α ) + .
For all positive integers m, n denote

X m,n def = α ∈ ω 1 \ {0} | (p 0 -mp α ) + ≤ s α ≤ (np 0 -p α ) + .
By Claim 1, at least one of those sets must be cofinal in ω 1 ; we choose such (m, n)

and set X def = X m,n . Further, we pick a positive integer k such that 2 k-1 > mn. Applying Lemma 6.1 with X and Φ defined above, we find corresponding ordinals τ i and α i (for i < ω 1 ). We may assume that τ 0 > 0. Let us keep only those τ i , α i with 0 ≤ i < k, and reset τ k def = ω 1 . Let f : {p γ | γ ∈ ω 1 } → G be defined as follows:

f (p γ ) def = p 0 , if γ ∈ τ 0 , p αi , if γ ∈ τ i+1 \ τ i whenever γ ∈ ω 1 . (6.3) 
Since 0 ≤ f (p α ) ≤ p ω1 for any α ∈ ω 1 and since f (p γ ) ≤ 2f (p δ ) whenever 0 < γ ≤ δ, the map f can, by Lemma 6.4, be extended to an ℓ-endomorphism of G, which we shall also denote by f , such that f (p ω1 ) = p ω1 . The definition of Φ ensures that each f (s αi ) belongs to the vector sublattice of G generated by {p 0 , p αi , p ω1 }.

Claim 2. The inequality f (s α k-i ) ≥ (2 i-1 p 0 -mp α k-i ) + holds whenever 1 ≤ i ≤ k.
Proof of Claim. We proceed by induction. For i = 1 our statement follows from the inequality (p 0 -mp

α k-1 ) + ≤ s α k-1 . (Notice that f (p 0 ) = p 0 and f (p αj ) = p αj for every j, thus f ((p 0 -mp α k-1 ) + ) = (p 0 -mp α k-1 ) + .) Now let i > 1 and suppose for contradiction that f (s α k-i ) (2 i-1 p 0 -mp α k-i ) + . By Lemma 6.6, there is z ∈ Ω such that f (s α k-i )(z) ≤ 0 and 2 i-1 z 0 > mz α k-i . We define y ∈ Ω by y β def =      z 0 , if β = 0 , z α k-i , if 0 < β ≤ α k-i , 1 2 z α k-i , if β > α k-i , whenever β < ω 1 . (6.4) 
Since f (s α k-i ) belongs to the vector sublattice of G generated by p 0 , p α k-i , p ω1 , we get f (s α k-i )(y) = f (s α k-i )(z) ≤ 0. Our assumption (6.2) entails the inequality

s α k-i ≥ s α k-i+1 , hence f (s α k-i ) ≥ f (s α k-i+1 ) and therefore f (s α k-i+1 )(y) ≤ 0. Further, 2 i-2 y 0 -my α k-i+1 = 1 2 (2 i-1 z 0 -mz α k-i ) > 0 , which contradicts the induction hypothesis f (s α k-i+1 ) ≥ (2 i-2 p 0 -mp α k-i+1 ) + . Claim 2. For i = k, Claim 2 yields f (s α0 ) ≥ (2 k-1 p 0 -mp α0 ) + . On the other hand, α 0 ∈ X m,n implies s α0 ≤ (np 0 -p α0 ) + , hence f (s α0 ) ≤ f ((np 0 -p α0 ) + ) = (np 0 -p α0 ) + . (2 k-1 p 0 -mp α0 ) + ≤ (np 0 -p α0 ) + .
However, this inequality does not hold. Indeed, by Lemma 6.5 there exists z ∈ Ω with z 0 = 1/n and z α0 = 1. Then nz 0 -z α0 = 0, while 2 k-1 z 0 -mz α0 = 2 k-1 /n -m > 0 according to the choice of k. This contradiction shows that (6.2) cannot hold.

The "left isotone" case is handled similarly. Suppose that p α p 0 ≤ p β p 0 whenever 0 < α < β < ω 1 . (

Whenever 0 < α < ω 1 let t α ∈ G + with t α = p α p 0 . There exists a finite subset Φ(α) of ω 1 such that t α belongs to the vector sublattice of G generated by {p β | β ∈ Φ(α) ∪ {ω 1 }}.

The proof of the following claim is then, mutatis mutandis, identical to the one of Claim 1, thus we shall omit it. Applying Lemma 6.1 with Y and Φ defined above, we find corresponding ordinals τ i and α i (for i < ω 1 ) with τ 0 > 0. Again, we keep only those τ i , α i with 0 ≤ i < k, and reset τ k def = ω 1 . The map f : {p γ | γ ∈ ω 1 } → G defined as in (6.3) can again be extended to a unique ℓ-endomorphism of G such that f (p ω1 ) = p ω1 , and the definition of Φ ensures that each f (t αi ) belongs to the vector sublattice of G generated by {p 0 , p αi , p ω1 }. Claim 4. The inequality f (t α k-i ) ≤ (np α k-i -2 i-1 p 0 ) + holds whenever 1 ≤ i ≤ k.

Proof of Claim. We proceed by induction, following the lines of the proof of Claim 2. For i = 1 our statement follows from the inequality t α k-1 ) ≤ (np α k-1 -p 0 ) + . Now let i > 1 and suppose for contradiction that f (t α k-i ) (np α k-i -2 i-1 p 0 ) + . By Lemma 6.6, there is z ∈ Ω such that f (t α k-i )(z) > 0 whereas nz α k-i ≤ 2 i-1 z 0 . We define y ∈ Ω as in (6.4) and observe again that f (t α k-i )(y) = f (t α k-i )(z) > 0.

Our assumption (6.5) entails t α k-i ≤ t α k-i+1 , hence f (t α k-i ) ≤ f (t α k-i+1 ) and therefore f (t α k-i+1 )(y) > 0. Further, ny α k-i+1 -2 i-2 y 0 = 1 2 (nz α k-i -2 i-1 z 0 ) ≤ 0 , which contradicts the induction hypothesis f (t α k-i+1 ) ≤ (np α k-i+1 -2 i-2 p 0 ) + . Claim 4.

For i = k, Claim 4 yields f (t α0 ) ≤ (np α0 -2 k-1 p 0 ) + . On the other hand, α 0 ∈ Y m,n implies (p α0 -mp 0 ) + ≤ t α0 , hence also (p α0 -mp 0 ) + ≤ f (t α0 ) . Therefore, (p α0 -mp 0 ) + ≤ (np α0 -2 k-1 p 0 ) + . However, this inequality does not hold. Indeed, by Lemma 6.5 there exists z ∈ Ω with z 0 = 2 1-k and z α0 = 1/n. Then nz α0 -2 k-1 z 0 = 0, while z α0 -mz 0 = 1/n -m2 1-k > 0 according to the choice of k. This contradiction shows that (6.5) cannot hold, thus concluding the proof of Theorem 6.8.

Finally, we would like to state some open problems.

Problem 1. Is every finitely separable completely normal lattice Cevian? By Theorem 4.8, every finitely separable completely normal lattice has a monotone deviation; we do not know whether that deviation can be made Cevian. So far, the only known examples of non-Cevian completely normal lattices are due to Wehrung [15, § 7] and [17, § 7], the former lattice satisfying the additional property of having countably based differences. We do not know whether any of those lattices is finitely separable. Problem 2. Is it possible that a completely normal lattice has a deviation monotone in one variable, but none in both variables?

Recall that for the ℓ-group G constructed above, the lattice Id c G does not have a deviation monotone in either variable. Problem 3. Is it possible, for an Abelian ℓ-group G, that Id c G has a monotone deviation but no isotone Belluce section? Notice that in the proof of Corollary 5.9 we actually constructed an isotone Belluce section for any free Abelian ℓ-group.
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 5 Let M ⊔ {1} be the poset obtained by adding a new upper bound 1 atop all elements of a poset M . Then M is finitely separable iff M ⊔ {1} is finitely separable. A similar result holds for the poset M ⊔ {0} obtained by adding a new lower bound 0. (6) Any finite product of finitely separable posets is finitely separable. Proof. (1) is trivial. Moreover, as observed on [5, page 246], (2) is easy. The argument for (3) is established in the course of the proof of the direction (3)⇒(1) of [5, Theorem 1]. For any separability witness (A, B) for a poset N and any orderconvex subset M of N , x → A(x) ∩ M and x → B(x) ∩ M form a separability witness for M ; (4) follows.

Proposition 3 . 2 .

 32 Let (M, ≤) be a poset. Then a well-ordering ⊑ on M is finitely shadowing in (M, ≤) iff every a ∈ M has both a finite upper shadow and a finite lower shadow on ↓ ❁ a. Proof. We verify the nontrivial direction. Suppose that the given condition holds and let a, b ∈ M ; we must verify that b has (say) a finite upper shadow on ↓ ❁ a. We argue by ⊑-induction on b. The result is trivial if b ❁ a (for then b ∈ ↓ ❁ a); we may thus suppose that a ⊑ b. By assumption, b has a finite upper shadow A on ↓ ❁ b. By induction hypothesis, every x ∈ ↓ ❁ b has a finite upper shadow U x on ↓ ❁ a. Then x∈A U x is a finite upper shadow of b on ↓ ❁ a.

Proposition 3 . 5 .

 35 Every finitely separable poset M has a separability witness (A, B) such that the set map (A ∪ B : x → A(x) ∪ B(x)) is locally finite. Proof. By Proposition 3.3, M has a finitely shadowing well-ordering ⊑ and a separability witness (A, B) satisfying (3.1). If is straightforward to verify, by ⊑-induction on x, that (A ∪ B) ω (x) is finite whenever x ∈ M .

Definition 4 . 1 .

 41 Let M and L be posets. A map d :

Lemma 4 . 3 .

 43 Let M and L be posets, let d : M × M → L, and let ⊑ be a finitely shadowing total ordering on M . Denote by ✂ the total ordering on M 1,2 introduced in Lemma 4.2. Let a, b ∈ M and suppose that d is monotone on D a,b def

  2. Now let {x, y} ✁ {a, b}, a ≤ x, y ≤ b. By Lemma 4.2, either x ❁ a or y ❁ b. In the first case, there exists u ∈ U a such that u ≤ x. Since {u, b} ✁ {a, b} (cf. Lemma 4.2), {x, y} ✁ {a, b}, u ≤ x, and y ≤ b, it follows that d(x, y) ≥ d(u, b), with d(u, b) ∈ A ′ . In the second case, there exists v ∈ V b such that y ≤ v. By a similar argument to the above, d(x, y) ≥ d(a, v) with d(a, v) ∈ A ′ .

Proposition 4 . 5 .

 45 Let M be a poset, let D be a lattice, let d : M ×M → D, and let ⊑ be a finitely shadowing well-ordering on M . Denote by ✂ the well-ordering on M 1,2 introduced in Lemma 4.2. Then there exists a (necessarily unique) monotone mapd ′ : M × M → D such that for all a, b ∈ M , d ′ (a, b) = d ′ ∧ (a, b) ∨ d ′ ∨ (a, b) where d ′ ∧ (a, b) def = d(a, b) ∧ {d ′ (x, y) | {x, y} ✁ {a, b} , a ≤ x , y ≤ b} ,(4.1)d ′ ∨ (a, b) def = {d ′ (x, y) | {x, y} ✁ {a, b} , x ≤ a , b ≤ y} (4.2)(where as usual, the empty meet is a new top element and the empty join is a new bottom element ) are a finitary meet and a finitary join, respectively.Proof. We argue by ✂-induction. We prove that, for every a, b ∈ M , d ′ is correctly defined and monotone on D a,b ∪ {(a, b), (b, a)}. Our induction hypothesis implies that d ′ is correctly defined and monotone on D a,b . By Lemma 4.3 applied to the restriction of d ′ to D a,b , the meet {d ′ (x, y) | {x, y} ✁ {a, b} , a ≤ x , y ≤ b} (i.e., the second meetand of (4.1)) and the join (4.2) are both finitary, so d ′ ∧ (a, b), d ′ ∨ (a, b), d ′ (a, b), as well as d ′ ∧ (b, a), d ′ ∨ (b, a), d ′ (b, a) are all well defined. It remains to verify that d ′ is monotone on D a,b ∪{(a, b), (b, a)}. This verification splits into several cases. First, we need to argue that for all (x, y) ∈ D a,b , x ≤ a and b ≤ y implies d ′ (x, y) ≤ d ′ (a, b). This is obvious, because d ′ (x, y) is then a joinand of d ′ ∨ (a, b). The same argument applies when a and b are interchanged.The second case consists of verifying that for all (x, y) ∈ D a,b , a ≤ x and y ≤ bimplies that d ′ (a, b) ≤ d ′ (x, y); that is, d ′ ∧ (a, b) ≤ d ′ (x, y) and d ′ ∨ (a, b) ≤ d ′ (x, y). The first inequality is obvious, because d ′ (x, y) is then a meetand of d ′ ∧ (a, b).In order to prove the second inequality, we must verify that for any (u, v) ∈ D a,b , u ≤ a and b ≤ v implies that d ′ (u, v) ≤ d ′ (x, y). This follows from our induction hypothesis, because u ≤ a ≤ x and y ≤ b ≤ v. The same argument applies when a and b are interchanged. Finally, we need to prove that d ′ (a, b) ≤ d ′ (b, a) when a < b. If a ⊑ b then (a, a) ∈ D a,b and we have already proved that d ′ (a, b) ≤ d ′ (a, a) ≤ d ′ (b, a). If b ⊑ a then (b, b) ∈ D a,b and we have already proved that d ′ (a, b) ≤ d ′ (b, b) ≤ d ′ (b, a). Owing to Proposition 4.5, the map d ′ will be called the monotone adjustment of d. It depends not only of d, but also of the chosen finitely shadowing wellordering ⊑ of M . Note that d is monotone iff d = d ′ .

Proposition 4 . 7 .

 47 Let M be a poset, let D be a 0-distributive 0-lattice, and let d : M × M → D. We denote by d ′ the monotone adjustment of d with respect to a finitely shadowing well-ordering ⊑ of M . If d(x, y)∧d(y, x) = 0 whenever x, y ∈ M , then d ′ (a, b) ∧ d ′ (b, a) = 0 whenever a, b ∈ M .

Theorem 4 . 8 . 5 .

 485 u), the desired conclusion follows. By taking M = D, f = id D , and d any deviation on D in Propositions 4.5, 4.6, and 4.7, we obtain immediately the following. Every finitely separable completely normal lattice has a monotone deviation. Lattices of principal ℓ-ideals in Abelian ℓ-groups We will always denote ℓ-groups additively and set |a| def = a ∨ (-a) whenever a ∈ G. The convex ℓ-subgroup generated by a is a def = {x ∈ G | -n|a| ≤ x ≤ n|a| for some n ∈ ω} . Clearly, for any a, b ∈ G + , a ⊆ b iff a ≤ mb for some m ∈ ω. All these convex ℓ-subgroups form a completely normal lattice Cs c G, often denoted Id c G if G is Abelian (for in that case, ℓ-ideals and convex ℓ-subgroups are the same). A deviation on Cs c G can be defined by choosing a positive generator for each convex ℓ-subgroup and setting a b def = (a -b) + , where x + def = x ∨ 0. Of course, this operation depends on the choice of the generators a, b. It is always Cevian (cf. [15, Proposition 5.5]). It will be monotone if we could choose the generators in an isotone way, that is a ≤ b implies a ≤ b. This argument yields the following observation. Theorem 5.1. Let D be a distributive 0-lattice and suppose that there exists a surjective lattice homomorphism f : Cs c G ։ D for some ℓ-group G. If D is finitely separable, then it is monotone-Cevian.

Lemma 6 . 5 .

 65 Let M be a subset of ω 1 . Then for every u ∈ Ω M there exists v ∈ Ω such that u↾ M = v↾ M . Proof. Set M ↑ξ def = {α ∈ M | α ≥ ξ} whenever ξ < ω 1 , and define

Claim 3 .

 3 Whenever 0 < α < ω 1 there are positive integers m, n such that(p α -mp 0 ) + ≤ t α ≤ (np α -p 0 ) + .For all positive integers m, n we now denoteY m,n def = α ∈ ω 1 \ {0} | (p α -mp 0 ) + ≤ t α ≤ (np α -p 0 ) + .By Claim 3, at least one of those sets must be cofinal in ω 1 ; we choose such (m, n) and set Y def = Y m,n . Again, we pick a positive integer k such that 2 k-1 > mn.

Funding:

The first author was supported by Slovak VEGA grant 1/0152/22.

Faculty of Natural Sciences, Šafárik's University, Jesenná 5, 04154 Košice, Slovakia Email address: miroslav.ploscica@upjs.sk URL: https://ploscica.science.upjs.sk Normandie Université, UNICAEN, CNRS UMR 6139, LMNO, 14000 Caen, France Email address: friedrich.wehrung01@unicaen.fr URL: https://wehrungf.users.lmno.cnrs.fr