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A Real-Time Approach for Humanoid Robot Walking including
Dynamic Obstacles Avoidance

Luca Rossini1, Enrico Mingo Hoffman1,2, Seung Hyeon Bang3, Luis Sentis3,4, and Nikos G. Tsagarakis1

Abstract— This paper proposes a novel approach to online re-
plan the walking trajectory of a biped humanoid robot to avoid
unexpected interactions and impacts with dynamic obstacles
that may compromise the balance of the humanoid robot. The
proposed method adjusts the position of the contacts of a pre-
planned global trajectory according to the position of moving
obstacles and the robot’s dynamic properties. The methodology
includes a graph-based footstep planner to generate a footstep
sequence aware of possible changes in a dynamic environment,
a Model Predictive Controller based on the Single-Rigid Body
Dynamics to track the computed footsteps, and a final Whole-
Body Control layer to compute proper joint torque commands.
Preliminary results using the proposed approach are presented
to demonstrate the effectiveness of the proposed framework
in simulated scenarios with the DRACO3 humanoid bipedal
platform.

I. INTRODUCTION

A primary goal of humanoid robotics research is to
deploy complex machines in real working and domestic
environments. This challenging goal is characterized by
continuously varying conditions, such as moving obstacles,
that can lead to unexpected interactions and impacts that
may compromise the walking stability of humanoids and
result from falling incidents. To address these challenges,
humanoid robots must be able to adapt to dynamic environ-
ments and avoid risks caused by unexpected changes in the
environment, particularly while walking.

From a broader perspective, the contact sequence and
the stable whole-body trajectory can be adjusted by imple-
menting an architecture composed of three layers [1]: the
footstep planner, the simplified model controller, and the
whole-body controller. The footstep planner layer provides
a discrete sequence of footsteps and timings [2], [3] that
will be used as a reference by the downstream layers. The
simplified model controller generates trajectories for the Cen-
ter of Mass (CoM) and contacts, i.e., feet, including forces,
using the footsteps as a reference for a Model Predictive
Control (MPC) problem. This system can react to external
disturbances and guarantee stable and reliable locomotion.
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Fig. 1: The humanoid robot Draco3 simulated in PyBullet (left),
and the SRBD model (right).

Finally, the Whole-Body Controller (WBC) maps the Carte-
sian motions and contact force references into the robot’s
joint torques.

In this work, we extend a Single Rigid Body Dynamics
(SRBD) non-linear MPC, which has been proven to be robust
to external disturbances [4], to consider also the avoidance
of moving obstacles that can interfere with the planned
trajectory. This is done by adding a contact planner on top
of the MPC, which refines the contact positions depending
on the position of moving obstacles and the robot’s dynamic
properties. The contact sequence is then used as a reference
by the MPC, warm-starting the optimization problem and
further improving the computational efficiency. In this way,
it is possible to achieve robust locomotion and be aware
of possible collisions with moving obstacles populating the
environment. This represents a solution to a problem that is
difficult to be resolved online directly inside the MPCs due
to the high non-convexity of this kind of constraint.

II. PREVIOUS WORK

Neglecting the complexity associated with the dynamics of
walking motions, planning only the position of the contacts
allows the implementation of particular constraints, such as
collision avoidance, which are notoriously hard to model [5].
The most straightforward footstep planner provides a se-
quence of footsteps that ignore collisions or kinematic con-
straints of the upper body in the free-collision space. This
space contains all the footstep locations that do not overlap
with a region occupied by an obstacle. Considering only the
footsteps’ position, a collision avoidance constraint is naive
and does not influence the planner’s performance.



A classic approach is to define a set of transition motions
and plan a sequence of footsteps connecting the start and
goal state with search algorithms on discrete graphs, like the
A* algorithm [6]. However, the size of the transition set must
compromise computational cost and planner efficiency since
a smaller set reduces the number of solvable maps [7]. An
extension of the A* search algorithm has been presented
in [8] with the D* Lite that continuously computes the
shortest path in the environment. The current starting state
progresses with the execution of the planned trajectory, with
the robot being able to adapt to changes in the environment
but still not accounting for the whole-body motion.

Another possibility is to find a feasible footstep sequence
incorporating the planning problem in the WBC. This way,
whole-body motions will not be separated from the planning
process, with steps automatically triggered by one of the
tasks. Indeed, the CoM motion is accomplished by contact
forces, and the relation between these quantities should
be considered to guarantee the overall motion’s feasibility.
The main disadvantages of this solution are the compu-
tational complexity and the tendency to suffer from local
minima, especially when considering highly non-linear and
non-convex constraints, such as collision avoidance. For
instance, Trajectory Optimization (TO) with the whole-body
dynamics, obtains beautiful and realistic motions [9], [10],
[11], [12] but with high computation time that prevents their
online application at high rates. Recently, [13] presented
some promising results on an MPC based on the whole-body
dynamics of a biped robot, obtained by reducing the time
horizon through a Hybrid Zero-Dynamics, which provides a
good guess of the robot state at the final time in a reasonable
amount of time. However, the approach has been validated
on a 4 DoFs biped robot, which simplifies a complete
humanoid’s complex dynamics.

On the other hand, there exists a variety of robot dynamic
simplifications that enhance the performance of the trajec-
tory planning algorithm by relying on specific assumptions.
For instance, one can simplify the robot motion with the
CoM dynamics, using equations that link the variation of
the linear and angular momentum with the joint position
and force constraints, in the so-called Centroidal Dynamics
(CD) [14], [15]. Usually, this approach assumes a constant
zero angular momentum variation [4], tracked by a specific
upper-body task that can result in strange and possibly
dangerous motions.

Despite the impressive advancement of online trajectory
planning for biped locomotion, only a few works are capa-
ble of online implementation considering dynamic collision
avoidance [16], [17], [18], [19]. Collision avoidance is a
highly non-linear and non-convex constraint whose inclusion
in the optimization problem drastically under-performs the
solver, which may even fail to find a solution due to local
minima. The idea presented in this work is to reduce the
high computational cost of the problem mentioned above by
planning a sequence of footsteps aware of possible collision
with moving obstacles and then computing a whole-body
trajectory + WBC solving a non-linear MPC using the
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Fig. 2: Block diagram of the proposed approach. A contact sequence
computed offline (blue) is computed as a nominal trajectory once in
a static environment. The contact space local planner (red) adjusts
the initial sequence depending on the obstacles (yellow spheres)
perceived by a perception module. The adjusted solution is provided
to the MPC (green) that computes a CoM and contact trajectory.
A whole-body controller (yellow) maps the solution to the robot’s
joint torques.

output of the footstep planner as a reference. Compared to
[20], which reduced the computational complexity of moving
through narrow environments separating the contact planner
from the whole-body planner, we successfully perform robust
online locomotion planning from external disturbances and
moving obstacles. Furthermore, besides collision avoidance,
the contact planner improves the performance of the MPC
by suggesting a good set of initial footsteps that makes the
solver converge to an optimal solution more quickly. Figure 2
shows a graphical representation of the presented algorithm.

This paper is structured as follows: Sec. III describes
the procedure used to adjust the nominal contact sequence
depending on the measured position of the moving obstacles
(i.e., the contact space local planner). The SRBD, compliant
with the optimized contact sequence, is computed following
the MPC formulation introduced in Sec. IV and Sec. V.
Finally, the proposed approach is validated in a set of
simulations described in Sec. VI. A discussion about the
results obtained and some possible future works are finally
reported in Sec. VII.

III. CONTACT SPACE LOCAL PLANNER

This section introduces the optimization-based planner
used to adjust the contact positions while considering the
position of the moving obstacles populating the environment.
The robotic system moves in a 3-dimensional workspace W
continuously establishing and breaking contacts, driving its
body through contact forces WWW c,i exerted in specific contact
locations pppi ∈ SE(3). Each end-effector allowed to interact
with the environment is associated with a frame Fi oriented
so that the z-axis coincides with the normal to the contact
surface. The contact space local planner takes in input a
contact sequence C = ⟨ccc0,ccc1, . . . ,cccN⟩ computed offline by a
generic method (i.e., a sample or graph-based planner [21]).
A contact occurs at a specific time t ∈ [ti, ti+1] with ti and ti+1
being the starting and finishing times correspondent to the
contact ccci and ccci+1. Two contacts ccci, ccc j are adjacent if they



are referred to the same end-effector Fi = F j and if they
occur in correspondence of two next instant of time, meaning
that they are the start and goal swing pose of the contact Fi
starting at ti. The workspace is populated by relatively slow-
moving obstacles that can be considered stationary at the
current time in a pose pppO, j ∈ SE(3).

The considered contact sequence planner consists of repet-
itively adjusting the offline planned contact sequence gener-
ating a new optimal trajectory C∗ when a moving obstacle
interferes with the nominal feasible trajectory. The optimized
trajectory C∗ has the same dimension as C, meaning that the
planner cannot change the number of contacts. Furthermore,
the gait sequence and timing adaptation are, so far, out of
the scope of this planner, which acts by adjusting the contact
positions only. At each iteration, the planner solves a contact-
space graph-optimization problem in the form of a Non-
Linear Least Squared Problem (NLLSP), similarly to our
previous work [22]:

f (C) =
m

∑
k=0

fk(C) (1)

C∗ = argmin
C

f (C) (2)

with

fk(C) = fk(Ck) = eeek(Ck)
T

ΩΩΩkeeek(Ck) (3)

where f (C) is the cumulative objective function of each k-
th cost fk(C). In a graph-optimization each variable ccci ∈
C defines a vertex, while each edge is associated with an
error function eeek(Ck), which depends on a small subset of
neighbors vertices Ck = {ccck,0, . . . ,ccck,M} ∈C connected by the
edge itself. Each edge is weighted depending on the value
of the diagonal information matrix ΩΩΩk.

The rest of this section describes the objective and
constraint functions used to define and solve the graph-
based contact space local planner. As stated in our previous
work [22], in a graph-based optimization, we can locally ac-
tivate and deactivate states and constraints depending on the
robot’s state and environment, encoding the sparsity of the
problem more intuitively, thus reducing the computational
cost. In this way, we can also store an arbitrarily sizeable
global path without affecting the planner’s performance, thus
avoiding dead-ends of the solution.

A. Relative Distance Constraint
The relative distance constraint is one of the most crit-

ical constraints for the feasibility of the adjusted contact
sequence C∗. Indeed, reducing the optimization state space
to consider only the contact positions and timing results
in a loss of information regarding the robot state, e.g., the
joint and link positions. Thus, binding the contacts’ relative
distance is essential to avoid long, kinematically unfeasible
contact transitions and close contacts that can lead to a self-
collision [23].

The NLLSO problem requires the formulation of con-
straints as piece-wise continuous objective functions whose
violation is penalized by a rapid increase of the cost func-
tion. Thus, the relative distance constraint is formulated as

follows:

eeek,RD(ccci,ccci+1) =
1

exp(dddrel,i −dddmin)S + exp(dddrel,i −dddmax)
S

(4)
where eeek,RD ∈ R3 is the relative distance edge associated to
the i-th vertex, dddrel,i is the relative distance between ccci and
ccci+1 expressed in the local frame Fi:

dddrel,i = RRRi · (ccci+1 − ccci) (5)

with RRRi ∈ SO(3) being the rotation matrix from the inertial
frame to the local frame Fi. The relative distance is bounded
between dddmin and dddmax, and S = 10 is a constant hand-tuned
exponential value.

B. Collision Avoidance

The collision avoidance constraint computes the distance
between the associated i-th vertex and the j-th obstacle,
which is assumed to be stationary at the current planner
iteration, and compares it with a threshold value:

e j
k,coll(ccci, pppO, j) =


(−d(ccci,pppO, j)+dth

T

)n
if 0 < d < dth,

0 if d > dth

(6)

with T = 1e−3 and n= 2 being two hand-tuned variables, and
e j

k,coll(ccci, pppO, j) the j-th element of the j × 1 collision edge
eeek,coll related with the absolute distance d(ccci, pppO, j) between
the i-th vertex and the j-th obstacle. The edge draws a barrier
function that is activated every time the distance goes below a
user-defined threshold dth = 0.2m, avoiding the computation
of useless distances between the contacts and far obstacles.

C. Contact Height Constraint

An important aspect when dealing with the optimization
of the contact poses is guaranteeing that they occur in
correspondence with a contact surface. Indeed, the planner
can move the contacts anyway in the 3D workspace if not
constrained differently. Contacts must be placed close to
surfaces to exert the required contact forces that move the
robot in the environment. Thus, a contact height constraint
is formulated as a simple parabolic function whose mini-
mum corresponds to the contact point. Assuming that the
normal-to-the-surface of each element in the nominal contact
sequence does not change, we can project the end-effector
to the plane perpendicular to the normal, whose origin is the
nominal contact position. This is done by minimizing the
distance between the end-effector and its projection on the
plane mentioned above:

ek,cz(ccci) = ((ccci − pppS,i) ·−→n )2 (7)

with pppS,i being the origin of the normal, and −→n the normal
to the plane. The assumption of unchanged normal-to-the-
surface is valid when the robot moves on large surfaces such
as walls or ground characterized by a constant normal on
each surface point. However, this assumption is unsuited if
the robot establishes contact with smaller objects or convex
shapes. Extending this constraint to more generic surfaces is
part of future works.



IV. SIMPLIFIED MODEL CONTROLLER

The contact space local planner provides a contact trajec-
tory aware of the most recent position of static and moving
obstacles that may interfere with the robot’s motion. Then,
the simplified model controller implements a control law that
generates feasible contact and CoM trajectories compliant
with the planned nominal contact sequence. The control
problem is formulated as a non-linear MPC, considering the
SRBD as a model simplification to match the computational
cost requirements for an online implementation. The SRBD
reduces the robot’s whole-body motion to the Centroidal
Dynamics assuming constant centroidal inertia III ∈ R3×3

computed with the robot in a nominal standing configuration.
The single rigid body orientation is assumed to coincide
with the base frame orientation ooo(t) ∈ SO(3) expressed as
quaternions, with the base frame being rigidly attached to the
torso of the robot. This assumption simplifies the mapping
from the single rigid body orientation to the complete robot
orientation, assuming that most of this rotation is given by the
torso motion. For the sake of brevity, all the time-dependent
quantities will be written without the independent variable t
and are assumed to be continuous functions unless differently
specified. The SRBD equations of motion can be written as
follows:

ṖPP = m(r̈rr+ggg) =
Nc

∑
i=0

Nv

∑
j=0

WWW (i, j)

L̇LL = IIIω̇ωω +ωωω × IIIωωω =
Nc

∑
i=0

Nv

∑
j=0

[
(ccc(i, j)− rrr)×WWW (i, j)

]
(8)

In (8), surface contacts are modeled using Nv contact points
ccc(i, j) ∈ R3 around the contact link, hence the force contact
vector WWW (i, j) ∈ R3 is a vector of pure forces referred to the
i-th contact and j-th vertex expressed in the inertial frame.
PPP ∈ R3 and LLL ∈ R3 are the linear and angular momentum
respectively. Usually, a rectangular-shaped contact is mod-
eled using four points, one on each vertex, and twenty-
four variables define the two surface contacts. However, to
further simplify the SRBD, the feet have been modeled with
two non-parallel line contacts (Fig. 1). This simplification
prevents the generation of the momentum along the axis
passing through the two points, with a consequent loss
of controllability in a single stance. Placing the contact
point onto two non-parallel lines mitigates this effect, which
becomes negligible in the double support phases.

The position, velocity, and acceleration terms can be col-
lected by defining the vectors of the generalized coordinates:

πππ =
[
rrrT oooT cccT ]T (9)

ννν =
[
ṙrrT ωωωT ċccT ]T (10)

ααα =
[
r̈rrT ω̇ωωT c̈ccT ]T (11)

where the vector ccc, ċcc, and c̈cc concatenate all the Nc ·Nv contact
positions, velocities, and accelerations, respectively. The
angular velocity vector ωωω is calculated from the quaternion

ooo using the quaternion propagation described in [24]:

ȯoo =
[1

2
ωωω, 0

]
◦ooo (12)

with the symbol ◦ is used to denote the quaternion product.
The optimal control problem requires the definition of cost
terms and constraints, listed in the following paragraphs, as
well as the choice of the states xxx and controls uuu:

xxx =
[
πππT νννT ]T (13)

uuu =
[
αααT WWW T ]T (14)

with WWW being the vector of all the Nc ·Nv contact forces.

A. Cost Terms

The cost function is made by several components whose
minimization makes the robot behavior converge to the
desired one. Each cost term is weighted to give more
importance to the specific attitudes of the robot, and fine yet
intuitive tuning is required to approach different locomotion
problems.

1) CoM Height: If not otherwise advised, a naive solution
for the CoM and contact forces that respect the equations of
motion in (8) is the free-falling single rigid body. For this
reason, tracking a reference CoM height above the contacts
is essential to guarantee the robot’s standing position. The
CoM height task is formulated as follows:

ψCoM,z =
∥∥rz,ref − rz

∥∥2
ΛCoM,z

(15)

where ΛCoM,z is a scalar weight value to track the reference
value rz,ref.

2) Contact Tracking: The robot locomotion naturally
emerges from the MPC solution by tracking the contact
sequence from the contact planner. Indeed, the optimal
control problem generates a CoM trajectory and contact
forces to track the nominal contact trajectory while keeping
stability, even if a reference CoM trajectory is not injected in
the optimization problem. The contact tracking term is split
into two terms to track the references on the x-y and z-axis
differently:

ψccc =
Nc

∑
i=0

Nv

∑
j=0

[∥∥∥ccc(i, j)x,y,ref − ccc(i, j)x,y

∥∥∥2

Λcccx,y
+
∥∥∥c(i, j)z,ref − c(i, j)z

∥∥∥2

Λcz

]
(16)

With cccx,y,ref and cz,ref being the reference values on the x-y
and z axis, respectively, and Λcccx,y < Λcz being the weights
of the two cost terms. By weighing less the x-y components
of the tracking terms, the MPC can autonomously adjust
the contact location in the neighborhood of the nominal
ones while following the swing trajectory on the z-axis. This
strategy is beneficial to react to an external disturbance and
avoid the fall, but also to re-arrange the contact location
optimally depending on the robot’s dynamic state. Indeed,
the contact sequence coming from the contact space planner
is aware of the surrounding moving obstacles, but it is based
on heuristics, which do not consider the robot’s whole-body
motion. Thus, the nominal contact sequence can be intended
as a high-level initial guess that draws a feasible path



avoiding any unexpected and undesirable interaction with
the environment. The MPC acts on a lower level, optimizing
the step position and analyzing the robot’s state during the
execution of the locomotion task. Although this approach
does not guarantee collision safety, fine-tuning and a proper
selection of the heuristics can mitigate the possibility of a
collision.

Given two adjacent contacts of the same end-effector Fi,
the reference trajectory on the x-y axis is computed by
tracing a line that starts from the initial pose and ends at
the goal pose, while the reference on the z-axis is defined as
a half-period sine function).

3) Regularization Terms: To reduce the rate of change
of the CoM velocity r̈rr, and to minimize the exerted contact
force WWW (i, j) of each contact, as well as the angular velocity
of the base ωωω that can generate undesirable differences in
the robot inertia, three regularization terms are added to the
cost function in the form:

ψreg = ∥r̈rr∥2
Λr̈rr

+
i=Nc

∑
i=0

j=Nv

∑
j=0

∥∥∥WWW (i, j)
∥∥∥2

Λ
WWW (i, j)

+∥ωωω∥2
Λωωω

(17)

B. Constraints

A list of inequality constraints bounds the contact forces
and relative positions during the contact and fly phases.
Equality constraints are used to impose the SRBD in (8).

1) Reaction Force Constraints: Contact forces are
bounded to match the surface friction characteristics using
the non-linear friction cone. The force should lie inside
a linearized friction cone to guarantee safe contact. The
cone’s height depends on the normal component exerted,
and the angle depends on the static friction coefficient µs.
Assuming a uniform static friction coefficient, the constraint
is formalized as follows:

−1 0 −µs
1 0 µs
0 −1 −µs
0 1 µs
0 0 −1


Ŵ (i, j)

x

Ŵ (i, j)
y

Ŵ (i, j)
z

= fff cŴWW
(i, j) ≤ 0005×1 (18)

with ŴWW (i, j) = RRR(i, j)TWWW (i, j), and RRR(i, j)T the rotation matrix
expressing the orientation of the (i, j) contact w.r.t. the
inertial frame.

Further, the force must be bound to zero when the contact
is non-active since the contact cannot exert any force. This
is done by bounding the contact force between zero values
during the flying phases:

WWW (i, j) = 0 if ccc(i, j) is non-active (19)

2) Contact Constraints: Modeling a surface contact with
two or more point contacts requires a constraint that fixes
the relative distance for this point since they belong to the
same rigid body. This is done by setting the relative velocity
between the vertices belonging to the same contact to zero:

ċcc(i, j)− ċcc(i,k) = 000 (20)

(a)

(b)

Fig. 3: MPC solution in the forward walking scenario rejecting
a force of magnitude 2.5 ·mr (green arrows). The red line is the
planned CoM trajectory, the blue line connecting the CoM and the
footholds indicates when contact is active, the blue and red tiles are
the reference footsteps from the contact planner, and the actual ones
are computed by the MPC reacting to the external disturbances. Side
3a and top view 3b

with i = (0, . . . ,Nc), j = (0, . . . ,Nv), and k = ( j, . . . ,Nv),
thus resulting in a set of Nc · (Nv −1)! constraints. Addition-
ally, in a dual way w.r.t. the force constraints, the contact
velocity must be zero during the contact phases:

ċcc(i, j) = 0 if ccc(i, j) is active

V. MPC FORMULATION

By combining the cost terms in Sec. IV-A and the
constraints in Sec. IV-B, this Section introduces the non-
linear optimization problem whose solution gives the CoM
and reaction force trajectories, i.e., the decision variables
for the Optimal Control Problem (OCP), which are then
fed as references into the low-level WBC. The OCP has
been transcripted using a Direct Multiple Shooting (DMS)
method [25] using the Receding Horizon Principle [26] and
assuming a fixed size prediction time window T = 1.5s
discretized on N = 20 time intervals, equally spaced by a
constant sample time dt = T/N = 0.075s. The DMS method
discretizes the continuous OCP into N shooting intervals to
solve the resulting Non-Linear Program (NLP) efficiently.



Fig. 4: Graphical representation of the gait sequence and timing for
the walking simulations carried out on the DRACO 3 humanoid
robot. The blue dots represent the receding horizon nodes, and the
blue areas show the contact timing for the left (LF) and right (RF)
feet. The red and green areas represent double and single stance
zones, respectively

The shooting intervals discretize the original problem into a
grid of N +1 states xxxk, and N controls uuuk:

XXX =
[
xxxT

0 xxxT
1 . . . xxxT

N
]T (21)

and the N control are collected in the control vector UUU :

UUU =
[
uuuT

0 uuuT
1 . . . uuuT

N−1
]T (22)

Thus, the optimization problem becomes:

min
XXX ,UUU

N

∑
k=0

ψk = min
XXX ,UUU

N

∑
k=0

(ψk,CoM +ψk,ccc +ψk,reg) (23a)

s.t.
xxxk+1 = xxxk +φφφ k(xxxk,uuuk)dt (23b)
xxxk+1 − x̃xxk = 0 (23c)

fff cRRR(i, j)T
k WWW (i, j)

k ≤ 0 (23d)

ċcc(i, j)k − ċcc(i,k)k = 0 (23e){
ċcc(i, j)k = 0 if ccc(i, j)k is active

WWW (i, j)
k = 0 if ccc(i, j)k is non-active

(23f)

(23g)

The discrete DMS requires the extra condition in (23c),
called continuity condition. Indeed, the OCP solves contem-
porary for all the N time segments. This constraint guarantees
that the propagation (integration) of the state xxxk from tk to
tk+1 = tk +dt, evaluated at the final time tk+1, coincides with
the initial state value xxxk+1 of the adjacent segment from tk+1
to tk+2, ensuring that the two segments join at the boundaries.
When the control loop is closed, the initial state of the
optimization xxx0 is set to be equal to the robot’s measured
state, allowing the MPC to sense any external disturbance
and react to that.

VI. RESULTS

The OCP is created and managed using the Horizon frame-
work presented in [11], and the MA57 [27] and IPOPT [28]
libraries are used to solve the non-linear problem in (23). The
simulations carried out on the DRACO 3 robot custom-built
by Apptronik and upgraded for extended usage by HCRL
at the University of Texas at Austin [29] are collected in
the attached video.1 DRACO 3 is a biped humanoid robot
hr = 1.35 m tall and mr = 39 kg heavy, with 25 DoF, six for

1https://youtu.be/RqJ6GH32LWI

each limb, and one neck pitch joint to actuate the Multisense
S7 mounted on its head. The robot has been designed with
the legs’ proximal actuation achieved bearing a cable-based
drive system, which reduces the robot leg mass, making
the SRBD a suitable model simplification. Simulations use
the PyBullet dynamic engine on a desktop PC mounting an
Intel® CoreTM i7-9700K Octa-core CPU @ 3.60GHz, an
NVIDIA GeForce GTX 1650, and a memory of 16 GB.

First, the disturbance rejection has been tested by pushing
the robot twice while walking forward with a relatively
strong force of magnitude 2.5 ·mr. Fig. 3 shows the contacts
and CoM trajectories planned by the MPC. Specifically,
when the robot is pushed forward at xCoM ≃ 0.25 m, and
xCoM ≃ 0.85 m the robot takes a longer step with the
right foot to recover from falling caused by the sudden
acceleration along the x-axis. Then, the robot decelerates to
match the contact references with the left foot again and
restore the nominal planned walking trajectory. The same
happens later with the right foot, with the MPC able to reject
both disturbances.

Further, the contact space local planner and the MPC have
been tested to plan a safe and robust walk forward while
avoiding a moving spherical obstacle that suddenly enters the
scene and interferes with the nominal trajectory. The MPC
references are linearly interpolated to match the control layer
frequency, which runs at 800 Hz. The Cartesian and force
references from the MPC solution are converted in robot joint
torques using the WBC presented in [10].

At this stage, a naive forward and equally spaced walking
sequence is used as a nominal global solution, and the
position of the moving obstacle is known to the local planner.
A perception algorithm for a realistic environment can be
easily implemented following our previous work in [22]. The
gait timing is also defined as alternating double and single
stances distributed along the N+1 nodes to guarantee a more
stable walk. Specifically, the robot has to take two steps in
the given time horizon length T by:

• Standing on two feet for the first two nodes.
• Taking a step with the left foot for the next eight nodes.
• Transiting between the left and right step, passing

through a two-nodes double stance.
• Taking a step with the right foot for the last eight nodes.

A graphical representation of the gait sequence and timing
is given in Fig. 4. The presented simulation shows results
carried out in a dynamic environment with one spherical
obstacle with a radius of 30 cm entering the scene and
perturbing the nominal trajectory during its execution. At
t = 2 s (Fig. 5b), during the execution of the second step,
the obstacle starts moving and after two seconds stops
in the middle of the nominal contact sequence (Fig. 5c).
The contact space local planner instantaneously reacts by
correctly adjusting the feet’ position to walk around the
obstacle. The optimized contacts are sent to the MPC, which
generates a feasible trajectory to accomplish the task, even
in the presence of the moving obstacle (Figs. 5d, 5e). A
computational time of approximately 0.46 ms, Fig. 6, for
the contact space local planner permits its implementation

https://youtu.be/RqJ6GH32LWI


(a) t = 0 (b) t = 2 (c) t = 4 (d) t = 7 (e) t = 12

Fig. 5: Screenshots of the simulations carried out in the dynamic obstacle avoidance scenario

(a)

(b)

Fig. 6: Solution time required by the MPC (6a) and the contact
space local planner (6b)

in the inner control loop, which usually runs around 1 kHz.
Furthermore, the MPC average solution time (55 ms) is well
below the threshold of the 75 ms set by the optimal control
problem parameters and does not show evident fluctuation
during the motion of the obstacle, occurring around t = 7 s.

VII. CONCLUSIONS

This paper proposes an online planning strategy to cope
with dynamic moving obstacles during locomotion. This
is done by exploiting a nominal footstep sequence that is
continuously adjusted according to the perceived position
of the moving obstacles. A fast SRBD-based MPC module
generates CoM and contacts motions that avoid obstacles
tracking the footsteps, which also provides a good initial
guess for the OCP, improving the convergence of the solu-
tion. Finally, a WBC maps the Cartesian and force references
to the joint torque references sent to the robot. Preliminary
results were obtained in simulations on the humanoid robot
DRACO 3, fostering a future implementation on the real
hardware. The reported simulation tested the MPC strategy
alone and coupled it with the contact space local planner
to avoid a moving obstacle interfering with the nominal
trajectory during the execution of the task.

Future work will focus on implementing the planning
pipeline on the real hardware in increasing complexity sce-
narios to exploit all the capabilities of the presented planning
and control algorithm on non-flat terrains. With the scope of
validating the proposed methodology, the framework will be
tested and compared with results obtained from approaches
found in the literature. Furthermore, several trials will be
carried out with increasing complexity and randomized initial
and final conditions to prove the robustness of the planning
and control logic considering the simplification of the dy-
namic model.

Currently, the contact space local planner is acting on
the contact poses only, while the gait timing is unchanged
from the nominal offline computed trajectory. However,
augmenting the hyper-graph vertices to include the time of
occurrence of each contact, depending on the dynamic state
of the robot and environment, will enable the planner to
change the gait sequence as well. Additionally, considering
time as a variable will allow the definition of new objective



functions, such as minimizing the trajectory execution time,
which is particularly appealing in modern applications. How-
ever, this involves vertex augmentation, requiring a deeper
investigation of the constraints the footstep planner uses
to guarantee a safe transition even when the local planner
adjusts the gait sequence.
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