
HAL Id: hal-04228736
https://hal.science/hal-04228736v1

Submitted on 16 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

European candidaemia is characterised by notable
differential epidemiology and susceptibility pattern:

Results from the ECMM Candida III study
Maiken Cavling Arendrup, Sevtap Arikan-Akdagli, Karin Meinike Jørgensen,

Aleksandra Barac, Jörg Steinmann, Cristina Toscano, Valentina Arsic
Arsenijevic, Assunta Sartor, Cornelia Lass-Flörl, Axel Hamprecht, et al.

To cite this version:
Maiken Cavling Arendrup, Sevtap Arikan-Akdagli, Karin Meinike Jørgensen, Aleksandra Barac, Jörg
Steinmann, et al.. European candidaemia is characterised by notable differential epidemiology and
susceptibility pattern: Results from the ECMM Candida III study. Journal of Infection, 2023, 87 (5),
pp.428-437. �10.1016/j.jinf.2023.08.001�. �hal-04228736�

https://hal.science/hal-04228736v1
https://hal.archives-ouvertes.fr


Contents lists available at ScienceDirect 

Journal of Infection 

journal homepage: www.elsevier.com/locate/jinf 

European candidaemia is characterised by notable differential 
epidemiology and susceptibility pattern: Results from the ECMM Candida 
III study 

Maiken Cavling Arendrup a,b,c,⁎,1, Sevtap Arikan-Akdagli d,2, Karin Meinike Jørgensen a,  
Aleksandra Barac e,3, Jörg Steinmann f,4, Cristina Toscano g, Valentina Arsic Arsenijevic h,5,  
Assunta Sartor i,6, Cornelia Lass-Flörl j,7, Axel Hamprecht k,l,8, Tadeja Matos m,9,  
Benedict R.S. Rogers n,10, Inmaculada Quiles o, Jochem Buil p,q,r,11, Volkan Özenci s,t,12,  
Robert Krause u,v, Matteo Bassetti w,x,13, Laura Loughlin y,14, Blandine Denis z,  
Anna Grancini aa, P. Lewis White ab,15, Katrien Lagrou ac,ad,16, Birgit Willinger ae,  
Riina Rautemaa-Richardson af,ag,17, Petr Hamal ah,18, Beyza Ener ai,19,  
Tugce Unalan-Altintop d,20, Ebru Evren aj,21, Suleyha Hilmioglu-Polat ak,22, Yasemin Oz al,23,  
Ozlem Koyuncu Ozyurt am,24, Faruk Aydin an,25, Filip Růžička ao,26, Eelco F.J. Meijer p,q,r,27,  
Jean Pierre Gangneux ap,28, Deborah E.A. Lockhart aq,ar,29, Nina Khanna as,30,  
Clare Logan at,au,31, Ulrike Scharmann av,32, Guillaume Desoubeaux aw,33,  
Emmanuel Roilides ax,34, Alida Fe Talento ay,35, Karin van Dijk az,36, Philipp Koehler ba,bb,37,  
Jon Salmanton-García ba,bb,38, Oliver A. Cornely ba,bb,39, Martin Hoenigl u,v,⁎⁎,40 

a Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark 
b Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark 
c Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark 
d Department of Medical Microbiology, Hacettepe University Medical School, Ankara, Turkey 
e Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Belgrade, Serbia 
f Institute for Clincal Hygiene, Medical Microbiology and Infectiology, Paracelsus Medical University, Klinikum Nürnberg, Nuremberg, Germany 
g Microbiology Laboratory, Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal 
h Faculty of Medicine University of Belgrade, Institute of Microbiology and Immunology, Medical Mycology Reference Laboratory (MMRL), Belgrade, Serbia 
i SC Microbiology, Department of Laboratory Medicine, Friuli Centrale University Health Authority, Udin, Italy 
j Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria 
k University of Cologne, University Hospital Cologne, Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany 
l University of Oldenburg, Institute for Medical Microbiology and Virology, Oldenburg, Germany 
m Institute of Microbiology and Immunology, Medical Faculty, University of Ljubljana, Slovenia 
n Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom 
o Department of Microbiology, La Paz University Hospital, Madrid, Spain 
p Canisius Wilhelmina Hospital (CWZ), Medical Microbiology and Infectious Diseases, Nijmegen, the Netherlands 
q Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands 
r Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, the Netherlands 
s Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Sweden 
t Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, Stockholm, Sweden 
u Biotech Med, Graz, Austria 
v Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria 
w Infectious Diseases Unit, IRCCS San Martino Polyclinic Hospital, Genoa, Italy 
x Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy 
y Belfast Health and Social Care Trust, Belfast, United Kingdom 
z Department of Infectious Diseases, Hôpital Saint-Louis, Fernand Widal, Lariboisière, AP-HP, Paris, France 

Journal of Infection 87 (2023) 428–437 

https://doi.org/10.1016/j.jinf.2023.08.001 
0163-4453/© 2023 The Author(s). Published by Elsevier Ltd on behalf of The British Infection Association. This is an open access article under the CC BY license (http:// 
creativecommons.org/licenses/by/4.0/).  

]]]] 
]]]]]] 

⁎ Correspondence to: Statens Serum Institut, Artillerivej 5, Unit for Mycology 
(Building 45-112), DK-2300 Copenhagen S, Denmark.  

⁎⁎ Correspondence to: Division of Infectious Diseases, Department of Internal 
Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria. 

E-mail addresses: maca@ssi.dk (M.C. Arendrup), hoeniglmartin@gmail.com,  
martin.hoenigl@medunigraz.at (M. Hoenigl). 

http://www.sciencedirect.com/science/journal/01634453
www.elsevier.com/locate/jinf
https://doi.org/10.1016/j.jinf.2023.08.001
https://doi.org/10.1016/j.jinf.2023.08.001
https://doi.org/10.1016/j.jinf.2023.08.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jinf.2023.08.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jinf.2023.08.001&domain=pdf
mailto:maca@ssi.dk
mailto:hoeniglmartin@gmail.com
mailto:martin.hoenigl@medunigraz.at


aa U.O.S Microbiology – Analysis Laboratory, IRCCS Foundation, Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy 
ab Public Health Wales Microbiology Cardiff and Cardiff University School of Medicine, United Kingdom 
ac Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium 
ad Department of Laboratory Medicine and National Reference Center for Mycosis University Hospitals Leuven, Leuven, Belgium 
ae Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria 
af Mycology Reference Centre Manchester and Department of Infectious Diseases, Wythenshawe Hospital, Manchester University NHS Foundation Trust, 
Manchester, United Kingdom 
ag Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom 
ah Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic 
ai Department of Medical Microbiology, Bursa Uludağ University Medical School, Bursa, Turkey 
aj Department of Medical Microbiology, Ankara University Medical School, Ankara, Turkey 
ak Department of Medical Microbiology, Ege University Medical School, Izmir, Turkey 
al Department of Medical Microbiology, Eskisehir Osmangazi University Medical School, Eskisehir, Turkey 
am Department of Medical Microbiology, Akdeniz University Medical School, Antalya, Turkey 
an KTÜ Tıp Fakültesi Tıbbi Mikrobiyoloji AbD, Trabzon, Turkey 
ao Masaryk University, Faculty of Medicine and St. Anne’s Faculty Hospital, Department of Microbiology, Brno, Czech Republic 
ap Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000 Rennes, France 
aq Department of Medical Microbiology, Aberdeen Royal Infirmary, Foresterhill, Aberdeen AB25 2ZN, United Kingdom 
ar Institute of Medical Sciences, School of Medicine Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom 
as Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Basel, Switzerland 
at Clinical Infection Unit, St Georges University NHS Hospital Foundation Trust, Blackshaw Road, London, United Kingdom 
au Institute of Infection & Immunity, St Georges University London, Cranmer Terrace, London, United Kingdom 
av Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany 
aw Department of Parasitology-Mycology-Tropical medicine, CHRU Tours, Tours, France 
ax Hippokration General Hospital, Infectious Diseases Department, Medical School, Aristotle University of Thessaloniki, Greece 
ay Department of Microbiology, Beaumont Hospital, Dublin, Ireland 
az Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam Infection and 
Immunity Institute, Amsterdam, the Netherlands 
ba University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, and Excellence Center for Medical Mycology 
(ECMM), Cologne, Germany 
bb University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Institute of Translational Research, Excellence Cluster on Cellular Stress 
Responses in Aging-Associated Diseases (CECAD), Cologne, Germany    

1 ORCID ID: 0000-0002-4747-0144 
2 ORCID ID: 0000-0001-9807-6764 
3 ORCID ID: 0000-0002-0132-2277 
4 ORCID ID: 0000-0002-3181-3667 
5 ORCID ID: 0000-0001-8132-3300 
6 ORCID ID: 0000-0003-3766-6765 
7 ORCID ID: 0000-0002-2946-7785 
8 ORCID ID: 0000-0003-1449-5780 
9 ORCID ID: 0000-0002-5696-1412 

10 ORCID ID: 0000-0002-7041-6744 
11 ORCID ID: 0000-0003-4031-0778 
12 ORCID ID: 0000-0002-8069-4027 
13 ORCID ID: 0000-0002-0145-9740 
14 ORCID ID: 0000-0002-7367-3287 
15 ORCID ID: 0000-0003-3056-4205 
16 ORCID ID: 0000-0001-8668-1350 
17 ORCID ID: 0000-0002-1071-6040 
18 ORCID ID: 0000-0002-5361-8125 
19 ORCID ID: 000-0002-4803-8206 
20 ORCID ID: 0000-0001-5318-2942 
21 ORCID ID: 0000-0001-7615-0521 
22 ORCID ID: 0000-0001-8850-2715 
23 ORCID ID: 0000-0003-2243-7644 
24 ORCID ID: 0000-0003-1260-0671 
25 ORCID ID: 0002-0139-908X 
26 ORCID ID: 0000-0001-5679-0513 
27 ORCID ID: 0000-0002-0226-024X 
28 ORCID ID: 0000-0002-4974-5607 
29 ORCID ID: 0000-0002-4262-3842 
30 ORCID ID: 0000-0002-2642-419X 
31 ORCID ID: 0000-0003-3037-8314 
32 ORCID ID: 0000-0001-7689-7799 
33 ORCID ID: 0000-0001-7945-9890 
34 ORCID ID: 0000-0002-0202-364X 
35 ORCID ID: 0000-0003-1271-2550 
36 ORCID ID: 0000-0002-2054-2857 
37 ORCID ID: 0000-0002-7386-7495 
38 ORCID ID: 0000-0002-6766-8297 
39 ORCID ID: 0000-0001-9599-3137 
40 ORCID ID: 0000-0002-1653-2824 

M.C. Arendrup, S. Arikan-Akdagli, K.M. Jørgensen et al. Journal of Infection 87 (2023) 428–437 

429 



a r t i c l e  i n f o   

Article history: 
Accepted 3 August 2023 
Available online 6 August 2023  

Keywords: 
Candida 
C. parapsilosis 
Fluconazole resistance 
Echinocandin resistance 
Fks1 
EUCAST 

s u m m a r y   

The objectives of this study were to assess Candida spp. distribution and antifungal resistance of candi-
daemia across Europe. Isolates were collected as part of the third ECMM Candida European multicentre 
observational study, conducted from 01 to 07-07-2018 to 31-03-2022. Each centre (maximum number/ 
country determined by population size) included ∼10 consecutive cases. Isolates were referred to central 
laboratories and identified by morphology and MALDI-TOF, supplemented by ITS-sequencing when needed. 
EUCAST MICs were determined for five antifungals. fks sequencing was performed for echinocandin re-
sistant isolates. The 399 isolates from 41 centres in 17 countries included C. albicans (47.1%), C. glabrata 
(22.3%), C. parapsilosis (15.0%), C. tropicalis (6.3%), C. dubliniensis and C. krusei (2.3% each) and other species 
(4.8%). Austria had the highest C. albicans proportion (77%), Czech Republic, France and UK the highest C. 
glabrata proportions (25–33%) while Italy and Turkey had the highest C. parapsilosis proportions (24–26%). 
All isolates were amphotericin B susceptible. Fluconazole resistance was found in 4% C. tropicalis, 12% C. 
glabrata (from six countries across Europe), 17% C. parapsilosis (from Greece, Italy, and Turkey) and 20% other 
Candida spp. Four isolates were anidulafungin and micafungin resistant/non-wild-type and five resistant to 
micafungin only. Three/3 and 2/5 of these were sequenced and harboured fks-alterations including a novel 
L657W in C. parapsilosis. The epidemiology varied among centres and countries. Acquired echinocandin 
resistance was rare but included differential susceptibility to anidulafungin and micafungin, and resistant C. 
parapsilosis. Fluconazole and voriconazole cross-resistance was common in C. glabrata and C. parapsilosis but 
with different geographical prevalence. 

© 2023 The Author(s). Published by Elsevier Ltd on behalf of The British Infection Association. This is an 
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).   

Introduction 

The epidemiology of candidaemia has changed over the past 
decades. The proportion of C. albicans has declined from 70% to 80% 
in the 1980–90s1,2 to ∼40–60% in recent population based European 
reports.3–6 In parallel, the proportion of C. glabrata has increased, 
particularly in Northern Europe, the US and Australia,4–7 and the 
proportion of C. parapsilosis, particularly in Southern Europe, China 
and Latin America.8–11 Moreover, C. auris has emerged globally over 
the past 13 years but with a highly uneven burden in different 
European countries and centres due to its unique ability to cause 
nosocomial transfer and difficulty to control outbreaks.12–14 

Acquired antifungal resistance in Candida is diverse with respect 
to agents, underlying mechanisms, magnitude of minimal inhibitory 
concentration (MIC) elevation and frequency.15 Amphotericin B re-
sistance is extremely rare. Echinocandin resistance is mediated by 
hotspot mutations in the fks1 target gene and for C. glabrata also fks2. 
It arises after a median of 30 days of treatment and more readily 
where sub-therapeutic drug levels and biofilm occur, such as in-
fected foci and on the mucosal surfaces, compared to the blood-
stream, which hampers timely detection.16–18 Azole resistance on 
the contrary, is most often multifactorial with target gene mutations, 
target gene upregulation and efflux pumps acting in concert and 
typically evolves after long-term (months) therapy.15,19 Although a 
recent study for the first time demonstrated horizontal transfer of 
chromosomal and plasmid located azole resistance in A. fumigatus 
under laboratory conditions, transfer of antifungal resistance genes 
has not been demonstrated for Candida isolates and is not regarded a 
significant driver of resistance.20 Hence, resistance is most com-
monly due to an intrinsically resistant species (thus predictable from 
the species identification) or acquired in the individual patient 
during the course of antifungal therapy. Consequently, there has 
been a low level of suspicion for acquired resistance in the antifungal 
drug naïve patients. However, in-ward patient to patient transfer of 
fluconazole resistant clonal C. glabrata isolates and outbreaks of 
fluconazole resistant C. parapsilosis isolates in paediatric and adult 
settings have been reported undermining species identification as 
means of predicting the appropriate therapy in the antifungal naïve 
patient.21–26 They illustrate the importance of contemporary and 
localized epidemiological data for the appropriate initial manage-
ment of candidaemia, to monitor the emergence of acquired re-
sistance and predict future challenges and the importance of 
antifungal stewardship. 

Based on this background, the European Confederation of 
Medical Mycology (ECMM) Candida III European multicentre ob-
servational study commenced in 2018.27 The objectives were to as-
sess epidemiology, adherence to guideline recommendations and 
associated outcomes of candidaemia across Europe.28 This work 
analysed isolates that were collected as part of this multicentre 
study and reports species distribution and susceptibility patterns 
across Europe. 

Materials and methods 

Isolates 

To provide a balanced and representative picture of candidaemia 
in Europe, the number of eligible centres per ECMM country in-
cluded in the ECMM Candida III European multicentre observational 
study was determined by population size. As general guidance, the 
maximum number of included hospitals per country were: eight for 
each of the six countries with populations >  50 million (i.e., France, 
Germany, Italy, Russia, Turkey, and United Kingdom; mean popula-
tion 82.5 million), four for countries with population >  25 million 
and <  50 million (i.e., Poland and Spain; mean population 42 mil-
lion), and two for the remaining 16 ECMM countries with population 
<  25 million (mean population 9.4 million). Centres were recruited 
by ECMM council representatives of each participating country, and 
also via the EPICOVIDEHA29 and FungiScope®30 networks and among 
the ECMM Global Guidelines contributor and fellow groups.27 

Each participating centre included the first ∼10 culture proven 
adult candidaemia cases, defined according to European Society of 
Clinical Microbiology and Infectious Diseases (ESCMID) criteria,31 

occurring consecutively after July 1st, 2018. In total, 632 candi-
daemia patients were included from 60 centres in 20 European 
countries. Of these, 399 (63% of cases) bloodstream isolates were 
referred to the reference mycology laboratories at Statens Serum 
Institute (SSI), Copenhagen, Denmark (n = 329) or to the Department 
of Medical Microbiology, Hacettepe University (HU) Medical School, 
Ankara, Turkey (n = 70) (isolates from Turkish centres specifically) 
for confirmatory species identification and EUCAST susceptibility 
testing. The reasons for participating hospitals not referring their 
isolates were diverse and included workload challenges during 
Covid-19, isolates not being stored, lack of permission (Russia), and 
cost (some centres claimed > 1000€ for shipping, which was over the 
budget). The overall characteristics of the cases with referred 
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isolates were comparable to those cases for which isolates were not 
referred (e.g., origin being secondary or tertiary care centre, pro-
portion with malignant disease and catheter related blood stream 
infection, and species distribution) with the exception that fewer 
referred isolates were from ICU patients (34% versus 43%, 
P = 0.0230), were C. auris (0.3% versus 6%, P  <  0.0001) or were not 
identified to species level (0% versus 3%, P = 0.0012) (Supplementary 
Table 1). 

Species identification was performed at the SSI using classical 
techniques (macro morphology on CHROMagar and thermotolerance 
at 45 °C for C. albicans versus C. dubliniensis), matrix assisted laser 
desorption/ionization - time-of-flight mass spectrometry (MALDI- 
TOF MS, Bruker, Bremen, Germany) with the online available spec-
trum database mass spectrometry imaging (MSI) when needed,32,33 

together with DNA sequencing as required.34 For the Turkish iso-
lates, species identification was performed using classical techniques 
and biochemical profiles (macro-morphology on CHROMagar, micro- 
morphology on cornmeal tween 80 agar, biochemical assimilation 
profiles using ID32C® - bioMérieux, Marcy-l′Étoile, France), and 
when required supplemented with MALDI-TOF (Bruker, Bremen, 
Germany) or DNA sequencing as previously described.32,34 

Susceptibility testing and FKS gene sequence analysis 

At the SSI, European Committee on Antimicrobial Susceptibility 
Testing (EUCAST) E.Def 7.3.2 susceptibility testing was performed 
prospectively during 2020–2022 using multiple batches of in house 
prepared trays.35 Cell culture treated 96-well microplates (Nunc™ 
MicroWell™, ThermoFisher Scientific cat. no. 167008). Microtitre 
plates with two-fold dilutions were prepared using serial dilution 
and two pipette tip changes (well 4 and 7) and frozen at −80 °C prior 
to use.36 Antifungal pure substances were stored in aliquots at 
−80 °C and 5000 mg/L stock solutions prepared in DMSO (Sigma- 
Aldrich, Brøndby, Denmark). The following compounds were in-
vestigated (source of compound and final concentration range in 
parentheses). Anidulafungin (Pfizer A/S, Ballerup, Denmark, 
0.004–4 mg/L), micafungin (Astellas Pharma Inc., Tokyo, Japan, 
0.004–4 mg/L), amphotericin B (Sigma- Aldrich, 0.004–4 mg/L), 
fluconazole (Sigma- Aldrich, either 0.03–16, 0.03–32 or 0.06–64 mg/ 
L), and voriconazole (Pfizer A/S, Ballerup, Denmark, 0.004–4 mg/L).37 

The following quality control (QC) strains C. albicans CNM-CL F8555, 
C. krusei ATCC 6258 and C. parapsilosis ATCC 22019 were included for 
quality control of prepared batches of plates and regular quality 
control, and results only accepted if MIC results for QC strains were 
within the target ranges. FKS sequencing was performed as pre-
viously described for Candida isolates with an elevated echinocandin 
MIC.34 At the HU, EUCAST testing was performed similarly but with 
the following minor differences: 96-well microplates (TC-treated 
Corning Costar, catalogue no. 3595, Merck KGaA, Darmstadt, Ger-
many) were used. 

Data management 

The number of centres were expressed as median, range, and the 
interquartile range (IQR=25th percentile–75th percentile) de-
termined. Contingency analyses with Chi-square and Fisher’s exact 
test was used to compare species proportions. Classification as wild- 
type (WT) and non-wild-type (NWT) and Susceptibility classification 
as Susceptible/ Susceptible, Increased exposure/ Resistant (S/I/R) 
were performed according to the available epidemiological cut off 
values (ECOFFs) and revised EUCAST Clinical breakpoints for fungi v. 
10.0 valid from 4 February 2020.38 For species where EUCAST has not 
set breakpoints, the recently proposed pragmatic breakpoints were 
applied.39 

Results 

A total of 399 blood culture isolates from 41 centres in 17 
European countries were referred (Fig. 1). The median number of 
referred isolates per centre was 10 (range 1–18, IQR= 9–10; for cases 
with mixed Candida infections more than one isolate was sent). The 
most common species were C. albicans (47.1%), C. glabrata (22.3%), C. 
parapsilosis (15.0%), C. tropicalis (6.3%), and C. dubliniensis and C. 
krusei (2.3% each). Less common species represented by one to four 
isolates were C. lusitaniae (1%), C. guilliermondii and C. kefyr (0.8% 
each), C. pelliculosa and C. inconspicua (0.5% each), and C. digboiensis, 
C. haemulonii, C. auris, C. rugosa and C. orthopsilosis (0.3% each). The 
overall species distribution mirrored that of the entire patient po-
pulation with the exception that fewer referred isolates were C. auris 
(1 (0.3%) versus 14 (6%), P  <  0.0001). This difference reflected that 
Russian isolates (n = 35), which included 13 C. auris, were not re-
ferred (Supplementary Table 1).28 However, the species distribution 
varied among centres. For 35/41 centres that included at least nine 
isolates, the proportion of C. albicans was ≥ 50% of the isolates in 15/ 
35 (43%) centres but ≤ 30% in 7/35 (20%) centres (Turkey, n = 3; UK, 
n = 2; France, n = 1; and Belgium, n = 1) (105/169 isolates versus 16/ 
69 isolates; P  <  0.0001, Fisher’s exact test) (Fig. 2). C. glabrata was 
the most common species in four centres (one each in UK, France, 
Slovenia and Belgium) and C. parapsilosis in two centres (UK and 
Turkey). When focusing on countries represented by more than one 
centre, a difference in species distribution across countries was also 
noted (Fig. 3). Austria had the highest C. albicans proportion (77%, 
P = 0.003 compared to other countries, Chi-square), France, Czech 
Republic and the UK the highest proportions of C. glabrata (25–33%, 
P = 0.2145) while the highest proportions of C. parapsilosis (24–26%, 
P = 0.0025 compared to other countries, Fisher’s exact test) were 
found in Italy and Turkey. 

All isolates were amphotericin B susceptible (MIC ≤ 1 mg/L) with 
the following species-specific modal MICs and (ranges): 0.125 mg/L 
(0.03–0.25 mg/L) for C. dubliniensis, 0.25 mg/L (0.06–1 mg/L) for C. 
albicans, 0.5 mg/L (0.03–1 mg/L) for C. glabrata, 0.5 (0.06–1 mg/L) for 
C. parapsilosis, 0.5 (0.125–1 mg/L) for C. tropicalis, and 0.5 mg/L 
(0.5–1 mg/L) for C. krusei, respectively. All C. albicans and C. du-
bliniensis isolates were susceptible to fluconazole and voriconazole 
(Table 1). However, fluconazole resistance was found in 4% of C. 
tropicalis, 12% C. glabrata, 17% C. parapsilosis and 20% other Candida 
spp. for which pragmatic breakpoints have been proposed. A cor-
relation between fluconazole and voriconazole MICs was found both 
within each species and across species (Table 2). The 11 fluconazole 
resistant C. glabrata isolates derived from eight centres in six 
countries (Belgium, Czech Republic, Italy, Sweden, Turkey and the 
UK) and six of these were voriconazole non-wild-type (MIC >  1 mg/ 
L) (Tables 2 and 3). In these six countries, the acquired fluconazole 
resistance rate in C. glabrata was 23% (11/48) versus 0/41 in the re-
maining countries (P = 0.0007, Fisher’s exact test). The 10 fluconazole 
resistant C. parapsilosis isolates derived from seven centres in three 
countries (Greece, Italy and Turkey), and all were voriconazole non- 
wild-type and I or R (Tables 2 and 3). In these countries, the fluco-
nazole resistance rate in C. parapsilosis was 37% (10/27) versus 0/33 
(P = 0.0001, Fisher’s exact test). The fluconazole resistant C. tropicalis 
derived from a centre in Germany and was also voriconazole re-
sistant. The fluconazole resistant C. guilliermondii isolate derived 
from Slovenia and was voriconazole non-wild-type (MIC >  4 mg/L). 
Finally, the fluconazole resistant C. auris isolate derived from the UK 
and had a voriconazole MIC of 2 mg/L. 

Four isolates were anidulafungin resistant, three of which were 
cross-resistant to micafungin (Table 1). These included a C. albicans 
(from Austria), which harboured an Fks1 alteration S645P, a C. 
glabrata (from Spain) that harboured an Fks2 alteration F659I and a 
C. parapsilosis (from Turkey), which harboured an Fks1 alteration 
L657W. In addition, one C. inconspicua (from Turkey) displayed a 
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high anidulafungin MIC (0.125 mg/L) compared to the other C. in-
conspicua included (0.008 mg/L) and compared to the proposed 
pragmatic susceptibility breakpoint of 0.06 mg/L for this species.39 

This isolate did not have the fks genes sequenced. Five additional 
isolates were classified as micafungin resistant due to an MIC, which 

was one two-fold dilution above the breakpoint but remained ani-
dulafungin susceptible. These included two C. albicans (from 
Sweden) that harboured an R647G Fks1 alteration and for which the 
anidulafungin MIC was 0.008 mg/L and micafungin MIC 0.06 mg/L, 
one C. glabrata (from UK) and two C. parapsilosis (from UK) with 
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Fig. 2. Species distribution for 35/41 individual centres that included at least nine candidaemia isolates. Two letter country codes are used and a centre number. Centres are sorted 
according to descending proportion of C. albicans. 

Fig. 1. Geographic location for the 41 participating centres from the 17 European countries. Two letter country codes and number of participating centres are indicated for each 
country. Circle diameter increase with increasing number of centres. 
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wild-type Fks genes for which the micafungin MICs were only ele-
vated one dilution above the breakpoint and modal MIC. 

Discussion 

We assessed Candida spp. distribution and antifungal resistance 
of candidaemia across Europe as part of the third ECMM Candida 
European multicentre observational study. Compared with the two 
earlier studies enrolling patients in 1997-‘99 and 2006-‘08, respec-
tively, our study shows a decreasing proportion of C. albicans (56.4%, 
54.0–47.1%, P = 0.0027, Chi-square), increasing C. glabrata (13.6%, 
13.8–22.3%, P =  < 0.0001, Chi-square) and the highest proportions of 
C. parapsilosis in Italy and Turkey.40,41 This confirms the changing 
epidemiology of candidaemia reported in other parts of the world 
over the past decades.1–11 Nevertheless, noticeable differences in 
species distribution were observed at the country level as ex-
emplified by a C. albicans proportion ranging from 77% to 35.7%, and 
at the centre level with either C. glabrata or C. parapsilosis being the 
most common species at six of the 41 centres. While the underlying 
reasons for this difference are unknown, previous studies have 
shown that prior antifungal exposure and age impact the species 
distribution of subsequent candidaemia.42,43 

Acquired fluconazole resistance was common in C. glabrata and C. 
parapsilosis. C. glabrata has long been recognised for the ability to 
acquire azole and echinocandin resistance, with fluconazole re-
sistance rates of 8.1% (range 5.6–10.1%) during 2006–16 in the global 
SENTRY surveillance programme,11 10.7% in Belgium during 
2004–1521 and 13.8%, 9.1% and 10.6% in three nationwide studies 
covering 2011–18 in Denmark.4,32,44 In this context, the overall rate 
of 12% fluconazole resistance in C. glabrata, with resistant C. glabrata 
detected in several countries throughout Europe, is concerning but 
not surprising. In contrast, the epidemiology of acquired fluconazole 
resistance in C. parapsilosis is changing with recent clonal outbreaks 
in southern Europe, India, the US (California, Indiana, New York and 
Texas) and South-Korea.8,23,45–47 In agreement with this, we found 
fluconazole resistant C. parapsilosis in Greece, Italy and particularly 
Turkey, and a rate of 24% across these three countries. C. parapsilosis 
is a low virulent species that harbours an intrinsic mutation in the 
fks echinocandin target gene.48 It is clinically susceptible to echi-
nocandins despite elevated echinocandin MICs compared to C. albi-
cans, although associated with a higher risk of persistence and 
relapse of infections in humans.49–51 Of note, a highly pan-echino-
candin resistant C. parapsilosis isolate harbouring an F652S Fks1 al-
teration was recently reported.52 Consequently, the emerging azole 
resistance in this species suggest a potential of multidrug resistance, 
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Table 1 
Susceptibility profile of the 399 European Candida blood-stream isolates for azoles and echinocandins.                        

Fluconazole Voriconazole Anidulafungin Micafungin 

Species (N) S % S I %I R %R S/WTa % S/WT I %I R/NWT % R/NWT S % S R %R S/WT % S/WT R/NWT %R/NWT  

C. albicans (188) 188 100% 0 0% 0 0% 188 100% 0 0% 0 0% 187 99% 1 1% 185 98% 3 2% 
C. glabrata (89) 0 0% 78 88% 11 12% 83 93% na na 6 7% 82 92% 1 1% 87 98% 2 2% 
C. parapsilosis (60) 50 83% 0 0% 10 17% 50 83% 6 10% 4 7% 59 98% 1 2% 57 95% 3 5% 
C. tropicalis (25) 24 96% 0 0% 1 4% 24 96% 0 0% 1 4% 25 100% 0 0% 25 100% 0 0% 
C. dubliniensis (9) 9 100% 0 0% 0 0% 9 100% 0 0% 0 0% na na na na na na na na 
C. krusei (9) 0 0% 0 0% 9 100% 9 100% na na 0 0% 9 100% 0 0% 9 100% 0 0% 
Other Candida (19)b 10 53% 1 5% 8 42% na na na na na na na na na na na na na na 

na. not applicable, neither breakpoints nor epidemiological cut-off value (ECOFF) have been set.  
a Isolates are classified as Susceptible (S), wild-type (WT), susceptible, Increased exposure (I), Resistant (R) and non-wildtype (NWT) according to EUCAST breakpoints and 

ECOFFs (valid 4. Feb. 2020) [1] and the pragmatic breakpoints for rare yeast proposed by Astvad et al [2].  
b Other species included C. lusitaniae (n=4), C. guilliermondii and C. kefyr (n=3 each), C. pelliculosa and C. inconspicua (n=2 each), and C. digboiensis, C. haemulonii, C. auris, C. 

(Diutina) rugosa and C. orthopsilosis (n=1 each).  
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which in light of its ability to cause outbreaks as emphasised during 
the COVID-19 pandemic is cause for concern.24,26 

Acquired echinocandin resistance was infrequent in this pan- 
European study. Three isolates were anidulafungin and micafungin 
resistant, two of which harboured alterations at two of the most 
common “strong” hot spot codons in hot spot 1 of the target genes 
fks1 (S645 in C. albicans) and fks2 (F659 in C. glabrata) known to 
confer pan echinocandin resistance.15 The third echinocandin re-
sistant isolate was a C. parapsilosis that harboured an L657W al-
teration in Fks1 and was also fluconazole and voriconazole resistant. 
Acquired echinocandin resistance in C. parapsilosis is extremely rare, 
and to our knowledge, this specific alteration has not been described 
before. Moudgal et al. reported a case in 2004 of in vivo selection of 
an echinocandin and azole resistant C. parapsilosis isolate but 
without target gene analyses.53 Subsequently in 2021, 2022 and 
2023, Arastehfar et al., Siopi et al. and Ning et al. each reported 

Table 2 
Correlation between fluconazole and voriconazole MICs for the 399 Candida isolates. The clinical breakpoint for susceptibility (S ≤ X) is indicated by a double line. The ECOFF 
(wild-type MIC ≤ Y) is indicated as a single line (when breakpoints are not established).                   

Species (n) Fluconazole MIC (mg/L) Total 

0.06 ≤ 0.125 0.125 0.25 0.5 1 2 4 8 16 32 64  >  64  

Voriconazole MIC (mg/L) C. albicans (188)               
≤ 0.004 2  57 54          113 
≤ 0.016  2 3 52 14         71 
0.03    1 2         3 
0.06    1          1 
C. glabrata (89)               
0.03      2 5       7 
0.06       18 18      36 
0.125       2 23 1     26 
0.25      1   2 1    4 
0.5        2 1 2 1   6 
1           3  1 4 
2           1 2  3 
4             3 3 
C. parapsilosis (60)               
0.008     6         6 
≤ 0.016    1 12 16 1       30 
0.03      5 8       13 
0.06      1        1 
0.125               
0.25         2 2 2   6 
0.5          1 2   3 
1            1  1 
C. tropicalis (25)               
≤ 0.016  1  5 3 1        10 
0.03    2 6 2        10 
0.06     1 3        4 
0.125               
0.25               
0.5         1     1 
C. dubliniensis (9)               
0.008    4          4 
≤ 0.016   1  4         5 
0.03               
0.06               
C. kruseia (9)               
0.25           5   5 
0.5           2 2  4 
Other Candida (19)               
≤ 0.016  2  2 4 1        9 
0.03              0 
0.06       1 1      2 
0.125         2     2 
0.25         1     1 
0.5          1  1  2 
1              0 
2             1 1  
>  4             2 2  

a For C. krusei, the ECOFFs are outside the illustrated MIC range (fluconazole: 128 mg/L and voriconazole 1 mg/L.  

Table 3 
Number of C. glabrata and C. parapsilosis isolates with acquired fluconazole resistance 
by country of isolation in the seven countries where fluconazole resistant C. glabrata 
or C. parapsilosis was detected. The countries are listed according to geographical 
location (North to South). Resistant isolates are highlighted in grey shading.         

C. glabrata C. parapsilosis Candida  

R total R total total  

Sweden 1 3 0 2 11 
UK 1 14 0 11 56 
Belgium 2 6 0 0 10 
Czech Republic 3 5 0 1 20 
Italy 1 6 1 8 31 
Greece 0 0 1 2 4 
Turkey 3 14 8 17 70 
Combined 11 48 10 41 202    
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echinocandin resistant C. parapsilosis harbouring R658G (four iso-
lates, three of which were isogenic and azole resistant), F652S (one 
isolate, azole susceptible) and S656P (one isolate, and also azole 
resistant), respectively.52,54,55 These findings suggest that the in-
creased use of echinocandins selects emerging echinocandin and 
multidrug resistant C. parapsilosis which pose a significant concern 
for clinical management. Five isolates were anidulafungin suscep-
tible but micafungin resistant. Differential susceptibility to the 
echinocandins may either be due to occasional misclassification of 
wild-type isolates with an outlier MIC, typically one dilution above 
the breakpoint. This occurs when the breakpoint is set at the epi-
demiological cut-off value (ECOFF). ECOFFs are set visually, where 
the MIC distribution ends, and statistically, including 95–99% of a 
modelled distribution. Due to inherent variation associated with 
phenotypic susceptibility testing, a minority of test results for wild- 
type isolates will fall one dilution above the ECOFF. For anidula-
fungin and micafungin the breakpoints are set at the ECOFFs. It is 
therefore plausible that the three isolates in our study without Fks 
alterations and with differential anidulafungin versus micafungin 
susceptibility classification represent misclassification of clinically 
susceptible wild-type isolates. However, true differential suscept-
ibility to the three echinocandins has been documented for C. albi-
cans and C. glabrata. Arendrup et al. demonstrated that an Fks 
alteration Fks2p-S663F in C. glabrata conferred anidulafungin and 
caspofungin resistance but retained susceptibility to micafungin in 
vitro and in vivo in an animal model.56 Lackner et al. reported a case 
of clinical failure during caspofungin treatment but recovery on 
anidulafungin therapy for a patient treated for chronic mucocuta-
neous candidiasis.57 This caspofungin non-responding C. albicans 
isolate harboured a double mutation in fks1 resulting in R647R/G 
and P649P/L alterations and was by EUCAST susceptibility testing 
classified as anidulafungin susceptible but micafungin resistant and 
by Etest also caspofungin resistant. A laboratory-generated mutant 
only carrying a heterozygous R647G alteration retained the differ-
ential susceptibility with resistance to micafungin and susceptibility 
to anidulafungin. The two C. albicans isolates in our study, which 
shared this differential susceptibility phenotype (micafungin re-
sistant but anidulafungin susceptible), harboured the same R647G 
alteration on both alleles. These findings support that some altera-
tions confer clinically relevant differential susceptibility to the 
echinocandins, although the activity of the three agents is generally 
similar. The findings also support the need for testing both anidu-
lafungin and micafungin as markers for echinocandin susceptibility 
and guidance of therapy as advised by EUCAST.58 

This study is associated with strengths and limitations. Strengths 
are that many European countries across the breadth of the con-
tinent were represented and the number of isolates per centre and 
country were comparable according to population, thereby avoiding 
an imbalanced representation of Europe. Consistent susceptibility 
testing was demonstrated, using the EUCAST standard reference 
method at experienced reference laboratories. Limitations included 
not all isolates from the ECMM Candida III study being referred for 
confirmatory identification and susceptibility testing. Yet the species 
distribution was similar in the overall case collection and the re-
ferred isolates. Given that the number of isolates per centre was 
limited to ∼10 consecutive isolates, data should be interpreted with 
caution, particularly in countries with few centres. The case mix (i.e., 
patient cohort) at the participating centres may not reflect the na-
tionwide epidemiology of the countries, as it is likely that the re-
cruited centres will be biased towards tertiary centres with 
mycology-interested colleagues. This is especially true since the 
current isolate collection excluded neonates and paediatric patients 
(<  18 years) where C. parapsilosis is more frequent.28 Nevertheless, 
as the epidemiology aligns with current published trends and neo-
nates/paediatric candidaemia only constituted 3–3.7% of candi-
daemia in nationwide studies,4,8 we believe these limitations do not 

detract from the conclusions of this study. From a technical aspect, 
confirmatory species identification and susceptibility testing were 
conducted at two different sites, with all isolates from Turkey tested 
at the HU as a tertiary care centre Mycology laboratory in Turkey 
with advanced experience in fungal diagnostics and antifungal sus-
ceptibility testing using reference microdilution methods and the 
remaining isolates tested at the EUCAST development laboratory 
hosted at the reference mycology laboratory in Denmark. However, 
both centres used MALDI-TOF with updated databases for identifi-
cation and EUCAST E.Def 7.3 for susceptibility testing. Of note, the 
drug and species-specific modal MICs generated at the two centres 
were either identical or fell at two neighbouring MICs for the six 
most common species represented by at least nine isolates (data not 
shown), confirming consistent MIC testing performance across the 
two laboratories. 

In conclusion, this study demonstrates a continued change in 
species distribution from C. albicans towards C. glabrata and C. 
parapsilosis. It confirms a high but stable fluconazole resistance rate 
in C. glabrata and a concerning emerging fluconazole resistance in C. 
parapsilosis in southern Europe, which in one isolate was combined 
with acquired echinocandin resistance due to a novel L657W fks- 
alteration. However, C. auris and other potential MDR species (e.g. C. 
haemulonii and C. digboiensis) were infrequently detected and ac-
quired echinocandin resistance was overall rare. 
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