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Abstract

Several mean-fields homogenization methods are readily available to estimate the effective

properties of particulate composites, which take into consideration the particles volume

fraction, shapes and orientations. Some of them also account for the spatial distribution

of the particles. For instance, the Ponte-Castañeda and Willis (PCW) model embeds a

parametrization of the global distribution law, while the Interaction Direct Derivative (IDD)5

model associates a matrix cell to each inclusion, that should be representative of close inter-

actions. In the literature, IDD is commonly reduced to the particular case of the classical

Mori and Tanaka (MT) scheme or to the aforementioned PCW model, and therefore, the ap-

plication of its most general form is somehow lacking. In addition, spatial distribution laws

used within the PCW model, are, in many cases, specified separately from the microstruc-10

tural configurations. On this basis, the present study proposes a novel approach to calibrate

and exploit IDD and PCW models in 2D linear conductive composite materials, provided

that a representative image of the microstructure is available. We discuss the links between

the models and the range of validity of the IDD model by addressing its possible lack of

symmetry. In particular, when IDD is not applicable, both an IDD-based PCW model and15

a two-step scheme are proposed. Finally, an image analysis method using Voronöı diagrams,

inspired by an original proposition by Du and Zheng (Acta Mechanica, 2002, 157, 61-80),

is implemented to define the cells associated to each inclusion and supply the models. The

method is validated by comparisons between the obtained IDD and PCW estimates, the MT

model and benchmark full-field (FF) numerical simulations. Possible extensions to realistic20

elastic composites are discussed.
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1. Introduction

The ongoing development of more efficient and sustainable composite materials is a cur-

rent phenomenon across multiple industries. Nowadays, a variety of composites are created

with the aim of realizing a spectrum of objectives, such as weight reduction, enhanced perme-25

ability, augmented sound or thermal insulation, and amplified ductility or strength [1, 2, 3].

During this process, the effective behavior of the materials is often evaluated through homog-

enization methods. These methods are used to determine the macroscopic response of the

material when it is exposed to external loads such as thermal or mechanical forces at a sig-

nificantly larger scale, which is well separated from the microstructural scale. This approach30

enables to investigate the behavior of materials with varying microstructures and gain a

comprehensive understanding of their mechanical and thermal properties at the macroscopic

level.

In the literature, several micromechanical homogenization methods are available. On the

one hand, numerical full-field approaches [4, 5, 6] provide the “exact” effective properties of35

specific microstructures, up to numerical approximation. As a downside, they may be com-

putationally expensive, especially when studying the influence of microstructural variations

by performing multiple evaluations. On the other hand, mean-field models are based on the

estimation of average fields of interest as stresses, strains, heat flux, intensity, etc., in the

constituents of the composite [7]. In the context of matrix-inclusion composites, approxi-40

mating the inclusion shapes by ellipsoids (ellipses in 2D) allows to use the Eshelby method

[8] to produce such estimates. Thus, a quick calculation of the effective properties from a

representative image or statistical descriptors of the microstructure can be performed.

As stated in [9], an ideal mean-field estimation scheme for the effective properties of

composites should adequately account for the influence of the inclusion distribution and the45

interaction between inclusions and their immediately surrounding matrix. In particular, the
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spatial distribution emerges as a relevant statistical descriptor of a composite, and may de-

pend on manufacturing process parameters such as, injection speed, mixing process, etc.,

especially for medium and high volume fractions of fibers [10, 11]. The Mori-Tanaka (MT)

model [12, 13] is a well-established approach for analyzing multi-phase composites. It in-50

corporates the effects of inclusion interaction and is applicable for a wide range of inclusion

geometries, including both isotropic and anisotropic materials. Nevertheless, the MT model

does not account for the spatial distribution of inclusions. Conversely, there exist advanced

mean-field models which are capable of addressing this limitation of the MT model, such as

the Ponte-Casteñeda and Willis (PCW) model [14], which relies on a statistical description55

of the phase distribution, and micromechanical double-inclusion approaches [15] that lead

to the derivation of the Interaction Direct Derivative (IDD) model [9, 16].

Based on the above, this study proposes a novel approach for calibrating and utilizing

IDD and PCW models in the homogenization of two-dimensional (2D) linear conductive

composite materials. The composites consist of a matrix reinforced by elliptical inclusions,60

both isotropic materials. Four different modeling approaches are applied: MT, PCW, IDD,

and a FFT-based full field approach (FF). While MT and FF are widely used in the literature

and their parameter selection is well established, to the best of the authors’ knowledge, in the

case of IDD and PCW, the selection of cell parameters from a given microstructure remains

unclear, despite their usage in prior studies [17, 11, 18, 19].65

The aim of this work is to provide an accurate estimate of the effective behavior of

conductive composite materials using the PCW and IDD approaches from a microstructure

image. Moreover, the research strives to determine under which conditions these methods

offer better outcomes compared to MT. FF simulations results will be used as references. It

is first pointed out that the IDD estimate may lack the major symmetry. In these specific70

cases, an IDD-based PCW model and the two-step homogenization approach from [20] are

proposed to overcome this issue. The main novelty of the paper then lies in proposing

an image processing technique using Voronöı diagrams that permits the selection of cells

associated to each inclusion in the IDD scheme. Additionally, the distributional cell and the
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corresponding Hill polarization tensor in the PCW scheme are defined in such a way that75

this method directly connects to the IDD scheme, as a particular case, and also benefits

from all the information coming from the Voronöı diagrams. Finally, we present our findings

for a variety of artificial microstructures chosen to exhibit ”distributional“ effects and to

underline the relevance of the presented models.

The manuscript is organized as follows. In Section 2, we give an overview of the ho-80

mogenization methods in the context of the conductivity problem, where the existing links

between MT, PCW and IDD models are discussed. In Section 3, we present our main

proposal concerning the properties and practical implementation of the IDD model, and

notably the determination of the cells representative of the spatial distribution. Section 4

describes the methods, modeling methodology and numerical tools used for the purposes85

of the manuscript. Then, in Section 5, we explore 3 different microstructural frameworks

that hold fundamental significance, and perform comparisons between the homogenization

schemes. Finally, in Section 6 we summarize our findings and discuss the limitations and

possible extensions of our work. Well-known useful formula and auxiliary results are gathered

in appendices for completeness.90

2. Homogenization of conductive composites

Let us consider a heterogeneous, linear conductive material occupying a domain B (see

Figure 1 (a)). Analogous to the measurement of the macroscopic properties of a material

from a representative test specimen, here, it is considered a representative volume element

(RVE) V (see Figure 1 (b)) on the microscopic level, which has to be representative of the95

entire material.

Focusing on matrix-inclusions composites, VM = V0 refers to the matrix domain and

VI = ∪Nα=1Vα represent the inclusions domain with N ∈ N. The interfaces between inclusions

and matrix, denoted I , are assumed to be perfect.

In the absence of heat sources, the temperature field u and the heat flux q satisfy the
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Figure 1: (a) Macroscale, (b) Microscale: representative volume element (RVE).

thermal equilibrium equation and transmission conditions across interfaces:

∇ · q = 0 in V \I , JuK = 0 and Jq · nK = 0 on I , (1)

where n denotes the normal vectors to the interface I , and J·K denotes the jumps across100

the interface I .

Additionally, the temperature u(x) is linked to the heat flux q(x) by Fourier’s law,

q(x) = −k(x)g(x), (2)

where g(x) := ∇u(x) represents the local intensity field, and k(x) refers to the second-order

conductivity tensor which is symmetric and positive definite.

The macro-heat flux 〈q〉 and macro-intensity 〈g〉 which characterize the state of the

material at the macroscopic level are defined as the averages of their microscopic counterparts

in the RVE, that is,

〈q〉 :=
1

|V |

∫
V

q(x)dV , 〈g〉 :=
1

|V |

∫
V

g(x)dV . (3)

The aim of the homogenization is to obtain the effective behavior that describes the

composite at the macro scale based on the information at the micro scale, i.e. the constant

effective conductivity tensor keff that relates the macroscopic flux and intensity as follows:

〈q〉 = −keff 〈g〉 . (4)
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This effective tensor can be computed numerically by solving elementary problems on the

RVE to determine the local fields (hence the name full-field for this approach) for various105

representative load cases, as precised for completeness in Appendix A. These full-field prob-

lems can be solved using several numerical methods, e.g. finite elements [21, 4] or FFT-based

methods [5, 6]. However (i) these computations can be costly (not in the 2D conductivity

examples provided in the present paper but for instance for 3D elasticity and large RVE,

or when many microstructures should be evaluated as inthe case of parametric sensitivity110

studies) and (ii) require a perfect knowledge of the microstructure in the RVE (i.e. the

conductivity field k(x)), while one often only has access to statistical information about a

composite.

In contrast with these full-field methods, mean-field methods provide only estimates of

the effective properties, by approximating the means of the fields in each constitutive phase115

for piecewise-homogeneous composites. These semi-analytical estimates are much faster to

compute and thus emerge as an alternative to FF computations. They are presented now.

2.1. Mean-field homogenization

Let us consider now a multi-phase composite with piecewise constant properties, so that

the conductivity field can be stated as follows:

k(x) =
N∑
α=0

kαχα(x), (5)

where kα is the conductivity tensor of the α-th phase, and χα(x) refers to characteristic

function of the domain Vα.120

The aim of the mean-field methods is to obtain estimates of the mean values 〈q〉α and

〈g〉α in the different phases, given the overall means 〈q〉 and 〈g〉. Here, the notation 〈·〉α
refers to the mean over the α-th phase, namely

〈·〉α :=
1

|Vα|

∫
Vα

(·)dVα, (6)

so that 〈·〉 =
∑
α=0

cα 〈·〉α and cα is the volume fraction of the phase Vα.

6



Since the thermal equilibrium problem is linear, there exist the so-called second order

localization tensor A and the mean tensors Aα = 〈A〉α that link microscopic and macroscopic

quantities:

g(x) = A(x) 〈g〉 , and 〈g〉α = Aα 〈g〉 . (7)

The following property is readily fulfilled:

〈A〉 =
N∑
α=0

cαAα = I. (8)

At this point, if the mean localization tensors are known, one can compute the average

flux as:

〈q〉 =
N∑
α=0

cα 〈q〉α =
N∑
α=0

cα(−kα 〈g〉α) = −

(
N∑
α=0

cαkαAα

)
〈g〉 , (9)

and by analogy with Eq. (4), the effective conductivity is given by:

keff =
N∑
α=0

cαkαAα = 〈kA〉 . (10)

Additionally, for matrix-inclusions composites, Eq. (10) is commonly rewritten in such

way that it only depends on the inclusion localization tensors using the property (8) to

remove the mean matrix localization tensor A0:

keff = k0 +
N∑
α=1

cα(kα − k0)Aα. (11)

Finding the exact values of mean localization tensors Aα would require to solve local

equilibrium problems such as (A.1a)-(A.1d). Instead, mean-fields methods look for approxi-

mations of these tensors, using hypotheses on the phase geometries and spatial distributions.

2.2. Considered mean-field schemes125

Eshelby’s equivalent inclusion method was proposed by Eshelby in [8] to determine the

elastic solutions of a single ellipsoidal inclusion embedded in an infinite matrix with uniform

external loading. This micromechanical estimation has been the backbone of most mean-

field methods. In particular, when the volume fraction of the inclusions in a composite
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is very low, the interactions between the inclusions can be considered negligible and the

dilute approximation arises naturally from Eshelby’s theory, using the formula (11) with the

inclusion localization tensor computed as if it was isolated in the matrix, namely

A(incl)
α =

(
I + P(incl)

α (kα − k0)
)−1

, (12)

where P(incl)
α stands for the Hill tensor of the α-th inclusion that accounts for its geometry:

see [22] and Appendix B.2 for specific expressions.

The following is a brief summary of the mean-field methods of interest for the present

work. We extensively rely on the formalism chosen by [11, 18] to write the effective stiffness

tensors of elastic composites. Here, we adapt these expressions for the purposes of the130

conductivity problem.

2.2.1. Mori-Tanaka approximation

In the Mori-Tanaka scheme [12] as reformulated by Benveniste [23, 13], the field in the

matrix at a sufficient distance from an inclusion is approximated by the constant value of

its mean. As a result, the existence of further inclusions is encoded in the mean field of the135

matrix, and thus the method takes into account the particle interactions. The mean field of

the inclusion in this model is linked to the mean field of the matrix by Eshelby’s localization

tensor (12) instead of the total mean field.

Based on these considerations, the mean localization tensor of the α-th inclusion takes

the following form:

A(MT)
α = A(incl)

α

(
c0I +

N∑
β=1

cβA(incl)
β

)−1

. (13)

2.2.2. Ponte-Castañeda and Willis estimate

The Ponte Castañeda and Willis scheme was proposed in [14] to address the effective be-140

havior of heterogeneous materials containing ellipsoidal arrangements of matrix-embedded

inhomogeneities, and accounts for inclusion shape and spatial distribution independently. It

is a generally applicable method that is based on the generalized Hashin-Shtrikman vari-

ational structure [24]. A distinctive feature of the scheme is the existence of a common
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ellipsoidal cell that characterizes the spatial distribution of the inclusions. Readers are re-145

ferred to [25] for the PCW model applied to conductive composites.

The localization tensors for this scheme is given as follows,

A(PCW)
α = A(incl)

α

(
I − P(cell)

N∑
β=1

cβ (kβ − k0)A(incl)
β

)−1

, (14)

where P(cell) stands for the Hill tensor of the ”distributional“ ellipsoid characterizing the

spatial distribution, see Figure 2(b).

2.2.3. Interaction Direct Derivative model

The Interaction Direct Derivative model was introduced by Zheng and Du in [9, 16] from150

a three-phase approach: a matrix cell of ellipsoidal geometry surrounds each inclusion and

in turn is surrounded by an unbounded medium with effective properties. In [26], the IDD

model applied to conductive composites is presented.

By following this considerations, the localization tensors A(IDD)
α for the IDD model takes

the form

A(IDD)
α =

(
I −

N∑
β=1

cβ (kβ − k0)A(incl)
β P(cell)

β

)−1

A(incl)
α , (15)

where P(cell)
β represents the Hill tensor of the β-th matrix cell.

To summarize, although MT scheme takes into account the inclusion interaction, it fails155

to account for the inclusion distribution and the interaction between inclusion and their

immediate surrounding matrix material. On the other hand, PCW and IDD estimates

do not present the aforementioned shortcomings and capture this information through the

matrix cells. Figure 2 provides a graphic description of these schemes.

2.3. Relations between IDD, MT and PCW models160

In order to study the connections between the mean-field approaches IDD, MT and

PCW, a unified formulation should be considered, as proposed by [18], based on the links

established earlier between these models in [16].
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Figure 2: Diagrams of the mean-field models under study. (a) MT (no cell), (b) PCW (one general cell), (c)

IDD (one cell per inclusion).

In this vein, after transformations on the localization tensor A(MT)
α of Eq. (13), the

following result is obtained:

A(MT)
α = A(incl)

α

(
I −

N∑
β=1

cβP(incl)
β (kβ − k0)A(incl)

β

)−1

. (16)

Then, combining the three approximations, (14), (15) and (16) of mean localization

tensors with the definition (11) of the effective conductivity, the three estimates are given in165

Table 1, with a transpose on the IDD estimate to stress the similarity of expressions. Indeed,

the IDD estimate may not be symmetric, an important issue addressed in detail in Section

3.1 below.

Approaches Effective conductivity tensors

MT k
(MT)
eff = k0 +

N∑
α=1

cα (kα − k0)A(incl)
α

(
I −

N∑
β=1

cβP(incl)
β (kβ − k0)A(incl)

β

)−1

,

PCW k
(PCW)
eff = k0 +

N∑
α=1

cα (kα − k0)A(incl)
α

(
I − P(cell)

N∑
β=1

cβ (kβ − k0)A(incl)
β

)−1

,

IDD Tk
(IDD)
eff = k0 +

N∑
α=1

cα (kα − k0)A(incl)
α

(
I −

N∑
β=1

cβP(cell)
β (kβ − k0)A(incl)

β

)−1

.

Table 1: Unified formulation of the effective conductivity properties. The IDD estimate is

transposed to stress the similarity of expressions.

As observed, the expressions in Table 1 are very similar, and when the IDD estimate
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is symmetric, i.e. k
(IDD)
eff = Tk

(IDD)
eff , an interpretation of MT and PCW based on the IDD170

scheme can be provided, as discussed by [16, 18] and recalled now for completeness. In Figure

3 (a), the capability of IDD to account for inclusions and cells with different aspect ratios

and orientations is illustrated. In contrast, the MT approach (see Figure 3 (b)) considers

that inclusions and cells respectively share the same aspect ratio and orientation, which is

achieved by setting P(cell)
β = P(incl)

β in the IDD scheme (see Table 1). On the other hand,175

the PCW model behaves as if a common cell is chosen for all inclusions (see Figure 3 (c)),

that is if all matrix cells have identical shape and orientation, which is obtained by similarly

replacing P(cell)
β = P(cell) in the IDD scheme (see Table 1).

Figure 3: Diagrams of the unified formulation and the connections between the models.

Remark 1. The double-inclusion approach proposed prior to IDD by [15] results in very

similar estimates than IDD, and also embeds the MT and PCW models as special cases [27].180

The question whether IDD and double-inclusion models are identical in all cases has not been

answered yet, at the best of our knowledge, but is out of the scope of the present paper.

In conclusion, IDD emerges as the most general approach among the studied models. It

provides additional morphological criteria through the cells that take into account the spatial
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distributions of inclusions and the interaction between inclusions and their immediately185

surrounding matrix. Such cell parameters should be chosen or derived from microstructural

analyses. Some propositions are done by [28, 19], and a systematic approach is presented

below.

3. Practical use of the IDD model

In this section, we address two key issues that have to be tackled to use effectively the190

IDD model, that is (i) how to account for its (possible) lack of symmetry and (ii) how to

choose the matrix cells corresponding to each inclusion.

3.1. Addressing symmetry issues

In relation to the MT scheme, several studies have addressed the problem of loss of sym-

metry appearing in the effective tensor. For example, [29] dealt with two-phase composites195

and showed that if the composite is reinforced with isotropic inclusions of any morphology

or with perfectly aligned fibers of any material symmetry, these are sufficient conditions to

guarantee the symmetry of the MT tensor. Notice that the term “phase” stands for inclu-

sions of assigned geometry and constituent material, regardless of orientation. In addition,

the authors in [30] focused their study on multi-phase composites, and proved that the MT200

estimates is symmetric only for those multi-phase composites where all phases have similar

shape and the same orientation.

On the other hand, the PCW estimation always satisfies the symmetry requirements for

the effective tensor, see [14, 31].

Finally, regarding IDD, we proceed in a similar manner as was discussed in [18] and

rewrite the IDD expression given in Table 1 as follows:

Tk
(IDD)
eff = k0 +

( N∑
α=1

cα (kα − k0)A(incl)
α

)−1

− P(IDD)

−1

with: P(IDD) =
N∑
β=1

cβP(cell)
β (kβ − k0)A(incl)

β

(
N∑
α=1

cα (kα − k0)A(incl)
α

)−1

, (17)

12



Note that this is almost exactly the PCW expression (see Table 1), only with P(cell) replaced205

by P(IDD). The symmetry of the IDD model is thus guaranteed when this tensor P(IDD) is

symmetric, since (kα − k0)A(incl)
α is always symmetric. This is in particular the case in the

following configurations:

1. the MT model is used (Figure 3(b)) and one of the sufficient conditions given above

for the symmetry of the MT estimate is satisfied;210

2. the PCW model is used (Figure 3(c));

3. all inclusions are identical except for their size, i.e. have same aspect ratios, orientation

and constitutive material, and therefore localization tensors: A(incl)
α = A(incl). In this

case, one obtains

P(IDD) =
1

cI

N∑
β=1

cβP(cell)
β , with cI =

N∑
α=1

cα (18)

which is symmetric as a sum of symmetric Hill’s tensors;

4. all inclusions are circular (in 2D) or spherical (in 3D) and made of isotropic but not

necessarily identical materials, with conductivity tensors kα = kαI. In this case, the

localization tensors are isotropic (proportional to identity) and the expression (17)

of P(IDD) again becomes a weighted sum of symmetric Hill tensors. In 2D, with the

expressions given in Appendix B.2 one obtains:

P(IDD) =
N∑
β=1

cβP(cell)
β

2(kβ − k0)

γβ + 1

(
N∑
α=1

cα
2(kα − k0)

γα + 1

)−1

(2D case) (19)

where γα = kα/k0 are the conductivity contrasts. This last case is of interest when

studying the behavior of composites reinforced with two (or more) kinds of long, uni-

directional fibers by reducing the analysis in the (2D) transverse plane e.g. [20, Sect.215

5.2.5]; or 3D composites containing both seemingly-spherical reinforcements and voids.

The third and fourth cases above are configurations where IDD can be used “as it is”, without

reducing to one of the two other models. The third one will be used in the ensuing numerical

examples for comparisons. To address the cases where symmetry is not guaranteed, while

still accounting for the relevant information given by the individual cells, we now propose220

two methods.
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3.1.1. Calibrating the PCW model using individual cells

The first natural idea that comes to mind is to use the PCW model, which is always

symmetric. The question then is the choice of the distributional cell and the corresponding

tensor P(cell). Based on the third case and on expression (18) just above, we propose the

following choice for this tensor:

P(cell) :=
1

cI

N∑
α=1

cαP(cell)
α . (20)

In this way, IDD and PCW models coincide in cases 2 and 3 discussed above (identical cells

and identical inclusions), and the IDD-inspired PCW symmetric estimate whose distribu-

tional tensor is given by (20) can be used in other configurations. This distributional tensor225

is used for the numerical simulations of the PCW model in Section 5 below.

3.1.2. Two-step homogenization process

Another approach for dealing with the symmetry issue of the MT model was proposed

in [20] and followed by many afterwards, e.g. [32]. A two-step homogenization scheme is

applied to compute the effective properties combining MT and the upper and lower bounds

of Voigt and Reuss, respectively, namely

k
(Voigt)
eff :=

N∑
α=0

cαkα, (21a)

k
(Reuss)
eff :=

(
N∑
α=0

cα(kα)−1

)−1

. (21b)

Here, instead of using MT, we adopt the IDD scheme for the first homogenization step.

Figure 4 describes the two-step homogenization process. The domain is first decomposed

into as many regions as there are families of identical inclusions. These regions behave as a230

two-phase material where the volume fraction of inclusions in each grain is the same as the

total volume fraction of inclusions in the original composite. As a result, the symmetry of

the IDD tensor is guaranteed in all the regions, as discussed in Section 3.1 above. Then, in

the first homogenization step we apply the IDD scheme, obtaining the effective properties of
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each grain individually. The last step is to homogenize over all the grains by means of Voigt235

and Reuss bounds. We will refer this approach as IDD-Voigt and IDD-Reuss, respectively.

Remark 2. Other approaches could be used for the second step, as long as they preserve the

symmetry of the estimate, e.g. another PCW model (but with another distributional cell to

be determined), or a self-consistent model. Considering that the geometric features of the

microstructure are accounted for by the IDD step, we chose the Voigt and Reuss estimates240

for the second one for simplicity.

Figure 4: Two-step homogenization procedure.

3.2. Cells selection via inertia equivalence and Voronöı diagrams

Until now, a comprehensive discussion of the IDD scheme has been provided. However,

beyond the particular case where IDD is reduced to MT (see Figure 3), the lack of clarity on

how to select the matrix cells (or cell, for the PCW model) still persists. In this regard, we245

propose a methodology to derive the required information of the cells from a microstructural
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analysis of a representative image. This data will serve not only as input for IDD, but also

for applying the PCW scheme as proposed in Section 3.1.1 above. The approach represents

one of the main novelties of the present work.

More precisely, we look at the practical implementation of the inertia equivalence proce-250

dure proposed by [16] (see Figure 5) but applied only for inclusions distributed on periodic

lattices [17], to the best of our knowledge. The idea is to consider regular polyhedrons (poly-

gons in 2D) to partition the matrix domain such that each of these subdomains or cells are

made up of an inclusion as a nucleus and an immediate surrounding matrix material region

as the atmosphere. Then, since non-ellipsoidal cells are obtained to assemble the space, the255

procedure follows by assigning a matching ellipsoid to each polyhedral cell. In the procedure,

the polyhedron is further substituted by an equivalent ellipsoid that has the same moment

of inertia as the region. For instance, if the tessellation polygons are rectangles (e.g. in the

case of a bi-periodic distribution of inclusions), then elliptical cells are proportional to the

maximal inscribed ellipses.260

Figure 5: Inertial equivalence in 2D. a) Partition in polygonal cells. b) A polygonal cell. c) Equivalent

elliptical cell with the same geometrical moment. This figure is inspired by Figure 4 of [16].

To determine these polyhedral cells, we quote [16] (with our notation): “For any given

inclusion Vα, to define the inclusion-matrix cell V (cell)
α we can introduce a plane between Vα

and its any neighboring inclusion Vβ that is perpendicular to the line linking the centers of

Vα and Vβ and partitions this line in accordance with the ratio of the radii of Vα and Vβ”.

This description naturally relates to Voronöı diagrams [33, 34, 35].265

The Voronöı diagram of a given set of discrete points in a Euclidean space, also called

“seeds”, is a partition of the space into regions, which contain the points of the space closer
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to a given seed than to any other. Let X be a metric space with distance function d, then,

the Voronöı cell Rk, associated with the seed Pk is defined as follows,

Rk = { x ∈ X | d(x, Pk) ≤ d(x, Pj) for all j 6= k}. (22)

A natural extension to a multiplicatively weighted Voronöı diagram is given by the fol-

lowing definition of a cell:

Rk = { x ∈ X | d(x, Pk) / rk ≤ d(x, Pj) / rj for all j 6= k}, (23)

where rk and rj are the weights associated with the seeds Pk and Pj, respectively.

The definition of the multiplicatively weighted Voronöı diagram has a strong analogy

with the aforementioned approach given in [16], with the Voronöı weights determined by

the inclusions radii. However, as a drawback of using this tessellation, Voronöı cells in a

multiplicative scheme exhibit circular arcs instead of straight lines, may be disconnected and270

have holes. We refer to [36] for a detailed study of the multiplicative case with applications

in two-dimensional cellular tissues.

Based on the above considerations, in this paper we propose to use the classical Voronöı di-

agram as the tessellation method, and thus obtain the polygonal cells that will then be re-

placed by the equivalent ellipses with the same moment of inertia as the region. Although the275

classical Voronöı diagram does not seem to conform completely to the authors’ original idea,

it might be worth to explore it as a first approximation. Its performances and drawbacks

will be discussed in Section 6.

4. Methods, modeling and numerical tools

The aim of this section is to discuss the main set of tools and methods that have been used280

to produce the numerical comparisons presented in the next section. These tools were im-

plemented in an home-made Python library “PyHom: a Python library for homogenization”

whose main functions are represented in Figure 6.

This computational and homogenization-based approach is conceived for calculating the

effective conductivity properties of composite materials with complex micro-structures in a285
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2D framework. The backbone of the library relies on the theory described above, and uses

not only existing image processing modules, but also functionality and packages built by

the authors. The main interest is using PyHom as a toolbox to study the core issues in the

application of IDD and PCW, and to understand in essence how these mean-field methods

work.290

Hereafter, we describe in more detail the choices we made for the key step of the process,

namely (i) RVE generation, (ii) image analysis and Voronöı diagram generation and (iii)

homogenized estimates computation.

4.1. Generating representative elements

To ease the comparisons between models, we generate artificial RVE with controlled295

distributions of inclusions. The two sections below present the methods chosen to generate

these RVE.

4.1.1. RSA algorithm to place elliptic inclusions with prescribed distribution

We start by specifying the Random Sequential Adsorption (RSA) algorithm [33] more

closely and see how it can be applied to build a heterogeneous microstructure in a 2D300

framework. Let us first recall that in the RSA algorithm, the position of a test particle

is generated following a uniform distribution. If the test particle intersects with any of

the previously added particles, it is discarded; otherwise, the test particle is added to the

collection.

Table 2 and Figure 7 present an example of RVE construction. A number N (incl) of305

elliptical inclusions, whose aspect ratio e(incl) and orientation θ(incl) are specified, should

be placed to reach a volume fraction c(incl) (which determines the size of these inclusions).

To obtain a controlled distribution not only due to the inclusion shape, elliptical exclusion

zones, which we refer to as RSA cells, are placed first. Aspect ratio e(cell-RSA) and orientation

θ(cell-RSA) of these cells are also specified a priori, as well as a security factor to prevent310

contact between cells, see Figure 7(a). Their size is determined from a size factor that is the

ratio between inclusion and cells major axis.
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PyHom
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END

Figure 6: Workflow sketch for the numerical comparison of homogenized estimates for various microstruc-

tures.
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pixels N (incl) c(incl) e(incl) θ(incl) e(cell-RSA) θ(cell-RSA) security factor size factor

256 8 0.05 0.5 -π/4 0.7 π/4 1.3 0.5

Table 2: Parameters for the example RVE represented in Figure 7.

As seen on Figure 7(b), the resulting RVE is periodized to facilitate the full-fields com-

putations, i.e. inclusions that cross the edges are duplicated. This also ensures that the

chosen volume fraction is reached within the RVE, up to discretization. Finally, an image is315

generated with a prescribed discretization (256×256 pixels in all the upcoming examples),

see Figure 7(c). This image will be the input of both full-fields and image-based mean-fields

homogenization methods, as indicated in Figure 6.

Figure 7: Example of RVE construction using an RSA algorithm. (a) Placement of eight RSA cells: dashed

and dotted lines design the cells and their amplification by the security factor, respectively. (b) Placement

of inclusions in the central points of the RSA cells and duplication of the inclusions that cross the edges. (c)

Final image of the microstructure.

4.1.2. Advani-Tucker law for orientation distributions

To generate distribution of non-aligned inclusions, we use the Advani-Tucker law for

orientation distributions. In [37], this distribution function is proposed to describe an aligned

and axisymmetric orientation state in a 3D configuration, see for instance [37, 19, 38]. The

explicit form of the distribution function, adapted for a 2D microstructure, is rewritten as
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follows,

f(θ) = K sinmAT(θ), (24)

where K is a normalization constant and, θ ∈ [0, π] is the inclusion orientation with respect320

to the chosen privileged direction.

This law is characterized by a single parameter mAT. Two extreme cases arise when

mAT = 0 for which the law reduces to the uniform distribution, and when mAT → ∞, for

which aligned inclusions are recovered.

4.2. Derivation and analysis of Voronöı diagram with Python libraries325

To build and exploit the Voronöı diagrams needed for distribution analysis, as proposed

in Section 3.2, we use two Python libraries: scikit.image [39] for image analysis, and scipy

[40] for Voronöı diagram generation.

Figure 8 presents the process applied to the example image presented in Figure 7. First,

scikit.image [39] is used to partition the image between subdomains (matrix and inclusions),330

to extract the characteristics of the inclusions (number, size, aspect ratio, orientation) and

to position their centers, see Figure 8(a). Then, these centers are cloned on a 3× 3 grid, see

Figure 8(b), and the Voronöı diagram is generated by scipy. The regions of interest of this

Voronöı diagram will consist of the colored closed polygons, while the outermost regions of

the diagram (including unbounded cells) are not involved in the analysis. This generated335

diagram is then isolated, see Figure 8(c).

To analyze this diagram, the same image processing tool can be used: again the library

scikit.image [39] is used to partition the image Figure 8(c) into distinct cells, whose properties

are extracted (function regionprops in modulus mesure). These properties notably include

the lengths of the minor and major axis of the ellipse with the same moment of inertia as340

the region, as required by the proposal of Section 3.2. Figure 9 finally shows the elliptic cells

resulting from this analysis, along with the inclusions determined in the first step.
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Figure 8: Voronöı diagram built from image analysis (image built in Figure 7) (a) Center of inclusions. (b)

Cloned RVE. (c) Derived Voronöı diagram.
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Figure 9: Final result of image analysis: inclusions and elliptic cells determined from the Voronöı diagram.

4.3. FFT-based solver

Reference effective properties are computed using the full-field approach described in

Section Appendix A. To solve the elementary problem, a FFT-based solver was implemented345

in Python. In this work addressing only 2D linear conductivity with moderate material

contrasts, the ”basic scheme“ proposed in the seminal papers of Moulinec and Suquet [41, 42]

was chosen for its simplicity of implementation, although many improved FFT-based solvers

have been developed in the last decade, see e.g. [5, 6].

5. Numerical results and comparisons350

In this section, we analyze different microstructures, and proceed to compute and com-

pare their effective conductivity properties. For the sake of simplicity and focus on spatial

distribution, the heterogeneous material B is assumed to be constituted by a matrix rein-

forced by elliptical inclusions with different aspect ratios and orientations, both the matrix

and inclusions being isotropic phases.355

The results are presented in terms of the principal components of the conductivity tensors

(i.e. their eigenvalues), denoted keff-I and keff-II, with the convention keff-I ≥ keff-II, correspond-
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ing to the conductivities in the main directions (i.e. normalised eigenvectors) n1 and n2. The

angle θeff := (e1, n1), called the orientation of the conductivity tensor afterwards, is used to

specify these main directions. The notations are represented in Figure 10, where notations360

for main axes a1 and a2, and orientation θ(incl) of inclusions are also depicted.

Figure 10: Notations for the orientations of inclusions and effective conductivity tensor.

Moreover, the normalized properties (by the matrix’ conductivity k0) are given. See

Appendix B.1 for simplified formula of effective estimates in this case, and Appendix B.2

for more details about the expressions of the localization and Hill tensors involved in the

calculations, A(incl)
α and P(cell)

α , respectively.365

5.1. Case 1: Anisotropic distribution, identical inclusions

The first case of interest concerns identical isotropic inclusions distributed in an anisotropic

way in an isotropic matrix. In particular, for circular inclusions, the expected anisotropy

of effective conductivity is due to this distribution only. To do so, we generate the mi-

crostructure using elliptic RSA-cells by following the process described in Section 4.1.1. The370

parameters given in Table 3, in the case of circular inclusions, are utilized and result in RVE

as the one plotted in Figure 11.

Before going further, the statistical representativity of this RVE is verified by computing

the effective properties of 10 different RVE generated this way. The results, plotted in

appendix in Figure C.24, show that the difference between the properties of each of these375
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pixels N (incl) c(incl) e(incl) θ(incl) e(cell-RSA) θ(cell-RSA) security factor size factor

256 30 0.15 1 0 0.5 0 1.02 0.375

Table 3: Elliptic RSA cells and identical inclusions (circular here): chosen parameters for RVE generation,

as represented in Figure 11.

RVE and their mean over the entire collection is less than 0.5%, and an individual RVE is

therefore considered representative of the chosen microstructure.

Figure 11: Elliptic RSA cells and identical inclusions (circular here): (a) RSA process (see Section 4.1.1)

with the parameters of Table 3. (b) RVE of the 2D microstructure.

Now, the study is focused on a single microstructure, specifically the one shown in Figure

11. In this regard, Figure 12 (a) shows the corresponding Voronöı diagram in the background,

along with the circular inclusions and inertially equivalent elliptical cells, highlighted in red380

and blue color, respectively. Notice that the Voronöı diagram has resulted in elliptical cells

with several shapes and orientations, therefore, in the particular case of IDD model, we must

consider as many Hill tensors as available cells (see Eq. (B.1c)).

In addition, Figure 12 (b) shows the scatter plot between aspect ratios e and orientations

θ corresponding to the inclusions and cells, using dots and the previously assigned color. We385
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also display the mean value of the properties of the cells by means of a black star, and the

pair (θ(cell-PCW), e(cell-PCW)) corresponding to the orientation and aspect ratio of the global cell

using in the PCW scheme, obtained from the definition proposed in Eq. (20), and indicated

on the graph with a purple square.

Figure 12: Elliptic RSA cells and identical inclusions (circular here): (a) Voronöı diagram, inclusions and

respective cells. (b) Scatter plot between aspect ratio and orientation.

Since we utilize the classical Voronöı diagram as outlined in Subsection 3.2, the only390

parameters that influence its construction are the count and spatial arrangement of the

inclusions. This means we can use the same Voronöı diagram to perform computations on

microstructures that vary in geometrical features such as volume fraction, aspect ratio, or

orientation of the inclusions, and also, in the conductivity contrast.

Following this idea, Figure 13 shows the normalized effective conductivity properties for395

the microstructure of Figure 11 (b), but varying the aspect ratio e(incl) and orientation θ(incl)

of the inclusions, and the conductivity contrast γ. The comparisons are made between MT,

IDD and the FF numerical approach: in this case IDD and PCW models coincide using the

definition of Eq. (20) for the PCW ”distribution“ tensor.

In Figure 13 (a) we highlight two situations relevant to the analysis. The first one, denoted400

by (I), corresponds to the value e(incl) = 0.6 and θ(incl) = 0◦, where the MT scheme offers

26



Figure 13: Elliptic RSA cells and identical inclusions: performance of MT and IDD models in comparison

with the FF reference results. (a) Fixed orientation and conductivity contrast, varying aspect ratio of

inclusions. (b) Fixed elliptic shape and conductivity contrast and varying orientations. (c) Fixed circular

shape, varying conductivity contrast. In all case, the volume fraction of inclusions is 15%.
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better results than IDD in comparison to the FF numerical approach. Nevertheless, in Figure

13 (b) it is observed that by varying the orientation and fixing the remaining parameters, IDD

arises with better agreements. The second one (II) refers to the phenomenon of ”geometrical“

anisotropy that we mentioned at the beginning of the Section for circular inclusions.405

For these circular inclusions, the MT scheme could not capture a possible geometrical

anisotropy coming from the distribution of inclusions. In contrast, IDD does identify such

anisotropy. The results are shown in Figure 13 (c) for different conductivity contrast γ.

While quantitative accuracy is missing as both models underestimate keff-I, this qualitative

improvement is a major advantage of the IDD model. This capability of capturing some of the410

anisotropy resulting from the distribution is also illustrated in Figure 14 for elliptic inclusions.

The orientation of the MT effective tensor is again entirely given by the orientation of

inclusions while the IDD model captures a small amount of the orientation difference observed

on FF results due to the distribution.

Figure 14: Elliptic RSA cells and identical elliptic inclusions: directions of anisotropy of the effective tensors,

as a function of orientations of inclusions.

5.2. Case 2: Approximately isotropic distribution and aligned elliptic inclusions415

In contrast to Section 5.1, here, we aim to arrange identical elliptical isotropic inclusions

in an approximately isotropic way within an isotropic matrix, so that the anisotropy comes
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mainly from the orientation and aspect ratio of the elliptical inclusions. For this purpose, we

consider circular RSA-cells and the set of parameters shown in Table 4. Figure 15 illustrates

a possible RVE that can be constructed under these considerations.420

pixels N (incl) c(incl) e(incl) θ(incl) e(cell-RSA) θ(cell-RSA) security factor size factor

256 30 0.2 0.4 0 1 θ(incl) 1.02 1

Table 4: Circular RSA cells and elliptic inclusions : chosen parameters for RVE generation, as represented

in Figure 15.

Again, we verified that the chosen RVE is statistically representative by comparing the

properties of 10 RVE generated with the same parameters, see Figure C.25 in appendix. The

maximum difference of the larger conductivity keff-I with its mean value over the collection of

RVE is this time larger, about 2.5%, but we still consider an individual RVE as representative.

Figure 15: Circular RSA cells and elliptic inclusions: (a) RSA process. (b) 2D representative element of the

microstructure.

Figure 16 (a) shows the Voronöı diagram corresponding to the microstructure of Figure425

15 (b), along with the elliptical inclusions and the different inertially equivalent elliptical

cells. Moreover, in Figure 16 (b) we present the scatter plot between aspect ratios e and
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orientations θ corresponding to the inclusions, cells, the mean value of the cell properties,

and the pair (θ(cell-PCW), e(cell-PCW)). In contrast to what was observed in Figure 12 (b), while

the cells remain elliptical, their aspect ratios approach unity and the orientations exhibit a430

greater dispersion across the range of values. This is an expected result from the choice of

circular RSA-cells to generate the microstructure.

Figure 16: Circular RSA cells and elliptic inclusions: (a) Voronöı diagram, inclusions and respective cells.

(b) Scatter plot between aspect ratio and orientation.

The normalized effective conductivity properties of the microstructures obtained by vary-

ing the aspect ratio e(incl) and orientation θ(incl) of the inclusions are given in Figure 17. Again,

for identical inclusions the IDD and PCW models coincide. As observed in Figure 17 (a),435

the IDD scheme has a better agreement than MT with the FF numerical approach. Further-

more, in Figure 17 (b) we set the value of the largest discrepancy between MT and IDD,

i.e. , e(incl) = 0.4, and study the behavior of the properties when varying the orientation of

inclusions. The results are still favorable for IDD, proving in this case a clear quantitative

gain compared to MT.440

For completeness, we show in Figure 18 the comparison between the orientations of

effective tensors for the different schemes, which are clearly given by the orientations of

inclusions, as expected for this nearly-isotropic distribution.
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Figure 17: Circular RSA cells and elliptic inclusions: MT and IDD performance compared to the FF

numerical approach for different aspect ratios and orientations of inclusions.

Figure 18: Comparison between the directions of anisotropy.
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5.3. Case 3: Non-aligned inclusions

In this section, we proceed to investigate a scenario in which the inclusions are not aligned,445

i.e. cases where the effective conductivity tensor of the IDD model loses its symmetry. To

this end, we consider microstructures in which all inclusions are identical except for their

orientation. Two examples are considered: (i) manually chosen orientations and (ii) orien-

tations following the Advani-Tucker law. In both cases, the RSA-cells are chosen identical

to each inclusion (slightly magnified by a security factor), and the distribution is therefore450

only constrained by the inclusion shapes, contrarily to the previous cases.

5.3.1. Inclusion orientation chosen in a given set

For this part, the parameters utilized in the RSA algorithm are presented in Table

5, where θsample is a set of 30 orientation values manually selected from the set of values

{−60,−45,−30, 0, 10, 25, 50, 75} degrees. Figure 19 presents the obtained RVE.455

pixels N (incl) c(incl) e(incl) θ(incl) e(cell-RSA) θ(cell-RSA) security factor size factor

256 30 0.2 0.5 θsample e(incl) θ(incl) 1.1 1

Table 5: Elliptic inclusions with different orientations: chosen parameters for RVE generation, as represented

in Figure 19.

Then, Figure 20 (a) presents the Voronöı diagram corresponding to the inclusions and

the inertia-equivalent cells. Figure 20 (b) displays the aspect ratios and orientations for

both the inclusions and cells, as well as the mean values for the cell properties and the corre-

sponding values obtained using the PCW method. It can be observed that the orientations

of the inclusions are grouped into eight families of values, as previously mentioned in the460

microstructure construction details.

Due to the loss of symmetry in the effective tensor computed with the IDD method, we

apply the approach outlined in Section 3.1.2 and display in Figure 21 the normalized effective

conductivity properties obtained with the two-step approaches (IDD-Voigt and IDD-Reuss)

and the IDD-inspired-PCW model. The three approaches yield similar results, the PCW465

estimates being somewhat in-between IDD-Voigt and IDD-Reuss. The results demonstrate
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Figure 19: Elliptic inclusions with different orientations: (a) RSA process with RSA-cells coinciding with

inclusions. (b) RVE of the microstructure. (c) Number of inclusions per chosen orientation.
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Figure 20: Elliptic inclusions with different orientations: (a) Voronöı diagram, inclusions and respective cells.

(b) Scatter plot between aspect ratio and orientation.

that IDD and PCW yield a quantitative improvement compared to MT when compared with

the numerical results, except for IDD-Reuss in the evaluation of keff-II. IDD-Voigt provides

the closest results to our benchmark.

5.3.2. Inclusion orientation following the Advani-Tucker law470

As a final result to illustrate the relevance of applying IDD and PCW in the 2D effective

conductivity context from a microstructure image, we use the Advani-Tucker (AT) law to

generate the orientations of the inclusions as depicted in Section 4.1.2. This law is used to

simulate the fibers orientation in short-fibers composites in [10, 19] among others. Natural

questions are (i) whether and how this orientation distribution may be related to the spa-475

tial distribution of fibers (both of them being determined by the manufacturing process in

actual composites, and by the RSA process in our numerical study); and (ii) if this spatial

distribution is worth considering in mean-field estimates.

In this part, as a preliminary investigation, we study the simplified case of composites

reinforced by identical ellipses, of aspect ratio 0.5 (i.e. much more than actual short fibers),480

oriented following the AT law. Specifically, in each iteration of the calculation, we fix the

parameter mAT, generate the orientations of the inclusions, and pass this information to
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Figure 21: Elliptic inclusions with different orientations: comparison between the different mean-field ap-

proaches and the full-field numerical results. The IDD scheme is assisted by double homogenization (see

Section 3.1.2).

the RSA algorithm to generate 10 microstructures that are used to calculate the normalized

effective conductivity properties. Figure 22 presents four of these RVE for increasing values

of mAT (and thus increasing alignment of inclusions).485

Figure 23 presents the mean values and standard deviations of the results obtained us-

ing the 10 microstructures for each mAT point. A first observation is that the dispersion

among the RVE remains moderate, enabling to clearly discriminate models. For the larger

conductivity keff-I, it is observed that IDD and PCW exhibit improved results compared to

MT as the mAT parameter increases, i.e. as the anisotropy becomes larger. For the lower490

conductivity keff-II, all models yield similar results and underestimate the reference value.

A transition is observed between the moderate anisotropic configurations (mAT . 5) where

MT estimates are worse to PCW and two-step IDD, and strongly anisotropic configurations

(mAT & 5) where MT estimates are slightly better. In all cases, the IDD-Voigt method

provides the most accurate results among the enhanced models.495
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Figure 22: Elliptic inclusions with different orientations following the Advani-Tucker law: examples of RVE

for four values of the parameter mAT.
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Figure 23: Elliptic inclusions with different orientations following the Advani-Tucker law: mean values and

standard deviations of the normalized effective conductivity properties obtained using 10 microstructures for

each value of the parameter mAT.
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6. Conclusions and perspectives

This study has addressed the utilization of the Interaction Direct Derivative (IDD) and

Ponte-Castañeda and Willis (PCW) mean-field models for estimating the effective conduc-

tivity properties of composite materials and accounting for the spatial distribution. We

determined configurations for which IDD can be applied ”as it is“ and other where it lacks500

the major symmetry. In these later cases, two alternative models, namely an IDD-inspired-

PCW model (shading a new light on the links between the two models) and a two-step

approach, have been proposed. We then described a methodology that employs Voronöı Di-

agrams to determine the distributional cells needed to parametrize the IDD model. We

developed a home-made Python library that integrates homogenization approaches with im-505

age processing tools, enabling the semi-analytical process of simulating the fields of interest.

We applied this framework to determine the effective behavior of 2D conductive composites

and compare the performance of IDD and PCW against the standard Mori and Tanaka (MT)

model and the reference FFT-based full-field numerical simulations.

More precisely, artificial RVE were designed to study the influence of spatial distribution510

on the effective properties for aligned or non-aligned inclusions. In most of the studied cases,

the spatial distribution seems to be an important parameter in the sense that IDD model

provides qualitatively or quantitively better results than MT. This in particular striking for

non-aligned inclusions, see Section 5.3, where no distribution was imposed a priori, contrarily

to the previous cases, and still IDD-inspired models seemed to capture an information not515

solely contained in the shapes of inclusions (that would be captured by MT).

These are preliminary results on simplified conductive microstructures. This work needs

to be further pursued to consider realistic microstructures, representative of e.g. short-fibers

composites. At the end, we hope to go beyond the conclusion of [18] that states in the

abstract that ”Other models such as the IDD or PCW are of great theoretical importance,520

but cannot be generally applied for the given material class.“. To do so, the following points

should be explored:

1. The extension to 2D and then 3D elasticity should be performed to explore the much
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more complex anisotropy issues arising from the higher-order tensor formalism and

see if the present conclusions are still applicable. Convenient algorithms to generate525

Voronöı diagrams are also available in 3D e.g. [35].

2. Classical Voronöı diagrams using only the centers of inclusions were used here for sim-

plicity of implementation. In particular, it enabled the use of the same diagram for

microstructures made of ”pinned“ inclusions varying in orientation, volume fraction,

and aspect ratio; and therefore to speed up the computation of the effective proper-530

ties when generating several artificial test cases. To use additively or multiplicatively

weighted Voronöı diagrams as discussed in Section 4.2, it would be necessary to deter-

mine the properties of the cells for each microstructure. This step may be in particular

necessary to address larger aspect ratio of particles, for which classical Voronöı diagram

would lead to cells borders intersecting the inclusions.535

3. Of course, an important step towards applications to actual composite would be the

use of real microstructure images, either 2D for aligned long-fibers or 3D.

4. Finally, a long-term goal is to rely on relevant statistical descriptors of the spatial

distribution e.g. correlation functions [33] to parametrize these models, rather than

image analysis. These descriptors are theoretically linked with the models already,540

e.g. in the original definition of the PCW model using the two-point correlation function

of the inclusion phase [14], but were never extracted from an actual microstructure, to

the best of our knowledge. An intermediate step would be to generate artificial images

given such descriptors, and then apply the presented methodology on these images.

CRediT authorship contribution statement545

OLCG: Methodology, Software, Visualization, Formal analysis, Writing – original draft.

RC: Funding acquisition, Conceptualization, Methodology, Formal analysis, Writing – orig-

inal draft. SD: Methodology, Formal analysis, Writing – review & editing. RB: Funding

acquisition, Methodology, Formal analysis, Writing – review & editing.

39



Declaration of competing interest550

The authors declare that they have no known competing financial interests or personal

relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

Financial support for this project was provided by the Institute of Materials Science
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Appendix A. Full-field homogenization

Full-field homogenization consists in computing the temperature and flux fields for a basis

of elementary macroscopic loads that cover all possible configurations, and then retrieving the

effective behavior by computing and relating the means in (3). For conductivity problems,

these elementary loads are the unit basis vectors e.g. 〈g〉 = ej if the mean intensity is

prescribed. For shorthand notation we regroup them and look for the solution U = {Uj}j=1,2

of the following problem:

∇ ·Q(x) = 0, x ∈ V , (A.1a)

Q(x) = −k(x)(I + ∇U(x)), x ∈ V , (A.1b)

U is V -periodic, (A.1c)

〈U〉 = 0, (A.1d)

where I is the second-order identity tensor that regroups the elementary loads: in this

problem the total intensity is 〈G〉 = 〈I + ∇U〉 = I. This problem is equipped with the

local equilibrium equation (A.1a), the local constitutive relation (A.1b), periodic boundary

conditions (A.1c), and the usual normalization condition (A.1d) that ensures the uniqueness560

of the solutions.

The effective conductivity tensor defined by (4) is then found to be:

keff = 〈k(I +∇U)〉 , (A.2)
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which is proven to be symmetric using reciprocity identities between the uncoupled problems

satisfied by the components Uj, that lead to 〈k∇U〉12 = 〈k∇U〉21.

Appendix B. Specific for isotropic phases

Appendix B.1. Normalized expression of the effective properties565

If the phases under study are isotropic, we note kα = kαI the conductivity tensor, and

the conductivity contrast γα = kα/k0 is used to distinguish ”more“ and ”less“ conductive

inclusions. The effective properties are normalized as well with respect to the conductivity

of the matrix k0, and noted k̄eff = keff/k0. From Table 1 we obtain the normalized estimates:

k̄
(MT)
eff = I +

N∑
α=1

cα (γα − 1)A(incl)
α

(
c0I +

N∑
β=1

cβA(incl)
β

)−1

, (B.1a)

k̄
(PCW)
eff = I +

N∑
α=1

cα (γα − 1)A(incl)
α

(
I − P̄(cell)

N∑
β=1

cβ (γβ − 1)A(incl)
β

)−1

. (B.1b)

k̄
(IDD)
eff = I +

(
I −

N∑
β=1

cβ (γβ − 1)A(incl)
β P̄(cell)

β

)−1 N∑
α=1

cα (γα − 1)A(incl)
α . (B.1c)

expressed in terms of non-dimensional contrasts γα and normalized Hill tensors P̄ := k0P.

Appendix B.2. Hill and dilute localization tensors

Here we provide the expression of Hill and localization tensors for elliptic inclusions in 2D

in an isotropic matrix of conductivity k0, as given by e.g. [22]. Noting (a1, a2) the principal

directions of the ellipse, see Figure 14 (a), a1 ≥ a2 the associated semi-axes and e = a2
a1
≤ 1

its aspect ratio, the Hill tensor is given by:

P =

 e
k0(1+e)

0

0 1
k0(1+e)


(a1,a2)

. (B.2)

Then, from the definition (12), when the constitutive material of the inclusion is also

isotropic with conductivity kα, the dilute localization tensor is:

A(incl)
α =

 k0(1+e)
k0+kαe

0

0 k0(1+e)
kα+k0e


(a1,a2)

=

 1+e
1+γαe

0

0 1+e
γα+e


(a1,a2)

, (B.3)
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with γα = kα/k0 the conductivity contrast. The matrices given in eqs. (B.2) and (B.3) above

are the tensors representations in the basis (a1, a2) associated with the ellipse, see Figure

10, and classical rotation operators are applied to obtain their counterpart in the fixed basis570

(e1, e2).

For circular inclusions, these tensors are isotropic:

P(disk) =
1

2k0

I and A(disk)
α =

(
2

γα + 1

)
I. (B.4)

Appendix C. Representativity of studied RVE

In this section, the statistical study we did on 10 RVE to ensure their representativity

is illustrated by Figures C.24 (for circular inclusions and elliptic RSA cells) and C.25 (for

elliptic inclusions and circular RSA cells).575

Figure C.24: Elliptic RSA cells and circular inclusions: relative difference between the effective conductivities

of 10 RVE (parameters of Table 3) and their means over these 10 RVE, denoted by µ10. (a) keff-I and (b) keff-II.
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Figure C.25: Circular RSA cells and elliptic identical inclusions: relative difference between the effective

conductivities of 10 RVE (parameters of Table 4) and their means over these 10 RVE, denoted by µ10.

(a) keff-I and (b) keff-II.
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