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Abstract

Several analytical mean-field homogenization methods, which take into account the par-

ticle volume fraction, shape and orientation are readily available to estimate the effective

properties of particulate composites. Models have also been proposed to account for the spa-

tial distribution of the particles. The classical Ponte-Castañeda and Willis (PCW) model is

based on a parametrization of the statistical distribution law, while the Interaction Direct5

Derivative (IDD) model associates a matrix cell to each inclusion, representative of close

interactions. In the literature, the use of the IDD is commonly reduced to the particular

case of the classical Mori and Tanaka (MT) scheme or to the aforementioned PCW model.

The present study introduces an original approach to calibrate the IDD model, for 2D

linear conductivity, based on representative images of the microstructure. The links be-10

tween the models and the range of validity of the IDD model are discussed. Besides, an

“IDD-based” PCW model and a two-step scheme are proposed for situations where the IDD

estimate is inconsistent (lack of major symmetry). Finally, an image analysis method using

Voronöı diagrams is implemented to define the cells associated to each inclusion and supply

the models. The method is validated by comparisons between the obtained IDD and PCW15

estimates, the Mori-Tanaka (MT) model and benchmark full-field numerical simulations.

Accounting for the inclusion distribution is seen to lead to better estimates, both qualita-

tively (by capturing anisotropic behaviors due to the sole distribution) and quantitatively.

Possible extensions to elastic composites are discussed.
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1. Introduction20

The ongoing development of more efficient and sustainable composite materials is a cur-

rent phenomenon across multiple industries. Nowadays, a variety of composites are created

with the aim of realizing a spectrum of objectives, such as weight reduction, enhanced perme-

ability, augmented sound or thermal insulation, and amplified ductility or strength [1, 2, 3].

During this process, the effective behavior of the materials is often evaluated through homog-25

enization methods. These methods are used to determine the macroscopic response of the

material when it is exposed to external loads such as thermal or mechanical forces at a sig-

nificantly larger scale, which is well separated from the microstructural scale. This approach

enables to investigate the behavior of materials with varying microstructures and gain a

comprehensive understanding of their mechanical and thermal properties at the macroscopic30

level.

In the literature, several micromechanical homogenization methods are available. On the

one hand, numerical full-field approaches [4, 5, 6] provide the “exact” effective properties of

specific microstructures, up to numerical approximation. As a downside, they may be com-

putationally expensive, especially when studying the influence of microstructural variations35

by performing multiple evaluations. On the other hand, mean-field models are based on the

estimation of average fields of interest as stresses, strains, heat flux, intensity, etc., in the

constituents of the composite [7]. In the context of matrix-inclusion composites, approxi-

mating the inclusion shapes by ellipsoids (ellipses in 2D) allows to use the Eshelby method

[8] to produce such estimates. Thus, a quick calculation of the effective properties from a40

representative image or statistical descriptors of the microstructure can be performed.

As stated in [9], an ideal mean-field estimation scheme for the effective properties of

composites should adequately account for the influence of the inclusion distribution and the

interaction between inclusions and their immediately surrounding matrix. In particular, the

spatial distribution emerges as a relevant statistical descriptor of a composite, and may de-45

pend on manufacturing process parameters such as, injection speed, mixing process, etc.,

especially for medium and high volume fractions of fibers [10, 11]. The Mori-Tanaka (MT)

2



model [12, 13] is a well-established approach for analyzing multi-phase composites. It in-

corporates the effects of inclusion interaction and is applicable for a wide range of inclusion

geometries, including both isotropic and anisotropic materials. Nevertheless, the MT model50

does not account for the spatial distribution of inclusions. Conversely, there exist advanced

mean-field models which are capable of addressing this limitation of the MT model, such as

the Ponte-Castañeda and Willis (PCW) model [14], which relies on a statistical description

of the phase distribution, and micromechanical coated-inclusion approaches [15, 16, 17] that

lead to the derivation of the Interaction Direct Derivative (IDD) model [9, 18].55

Based on the above, this study introduces a novel approach for calibrating and uti-

lizing the IDD model and a proposed IDD-based PCW model in the homogenization of

two-dimensional (2D) linear conductive composite materials. The composites consist of a

matrix reinforced by elliptical inclusions, both isotropic materials. Four different modeling

approaches are applied: MT, PCW, IDD, and a FFT-based full field approach (FF). While60

MT and FF are widely used in the literature with established parameter selection methods,

the situation is somewhat distinct for the classical PCW, which is also frequently employed,

and for IDD. The selection of cell parameters from a given microstructure remains an open

question, despite their use in previous studies [19, 11, 20, 21, 22].

The aim of this work is to accurately estimate the effective behavior of 2D conduc-65

tive composite materials by leveraging the IDD method and an IDD-based PCW approach,

utilizing microstructure images. Moreover, the research strives to determine under which

conditions these methods offer better outcomes compared to MT. FF simulations results

will be used as references. It is recalled that the IDD estimate is inconsistent in particular

situations (lack of major symmetry). In these specific cases, an IDD-based PCW model and70

the two-step homogenization approach from [23] are proposed to overcome this issue. The

main novelty of the paper lies in proposing an image processing technique using Voronöı di-

agrams that permits the selection of cells associated to each inclusion in the IDD scheme.

Furthermore, it is proposed to define the identical distributional cells and the corresponding

Hill polarization tensor in the PCW scheme in such a way that this method connects directly75
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to the IDD approach and includes averaged information coming from the Voronoi diagrams.

Finally, we present our findings for a variety of artificial microstructures chosen to exhibit

”distributional“ effects and to underline the relevance of the presented models.

The manuscript is organized as follows. In Section 2, we give an overview of the ho-

mogenization methods in the context of the conductivity problem, where the existing links80

between MT, PCW and IDD models are discussed. In Section 3, we present our main

proposal concerning the properties and practical implementation of the IDD model, and

notably the determination of the cells representative of the spatial distribution. Section 4

describes the methods, modeling methodology and numerical tools used for the purposes

of the manuscript. Then, in Section 5, we explore 3 different microstructural frameworks85

that hold fundamental significance, and perform comparisons between the homogenization

schemes. Finally, in Section 6 we summarize our findings and discuss the limitations and

possible extensions of our work. Well-known useful formula and auxiliary results are gathered

in appendices for completeness.

2. Homogenization of conductive composites90

Let us consider a heterogeneous, linear conductive material occupying a domain B (see

Figure 1 (a)). Analogous to the measurement of the macroscopic properties of a material

from a representative test specimen, here, it is considered a representative volume element

(RVE) V (see Figure 1 (b)) on the microscopic level, which has to be representative of the

entire material.95

Focusing on matrix-inclusions composites, VM = V0 refers to the matrix domain and

VI = ∪Nα=1Vα represent the inclusions domain with N ∈ N. The interfaces between inclusions

and matrix, denoted I , are assumed to be perfect.

In the absence of heat sources, the temperature field u and the heat flux q satisfy the

thermal equilibrium equation and transmission conditions across interfaces:

∇ · q = 0 in V \I , JuK = 0 and Jq · nK = 0 on I , (1)
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Figure 1: (a) Macroscale, (b) Microscale: representative volume element (RVE).

where n denotes the normal vectors to the interface I , and J·K denotes the jumps across

the interface I .100

Additionally, the temperature u(x) is linked to the heat flux q(x) by Fourier’s law,

q(x) = −k(x)g(x), (2)

where g(x) := ∇u(x) represents the local intensity field, and k(x) refers to the second-order

conductivity tensor which is symmetric and positive definite.

The macro-heat flux 〈q〉 and macro-intensity 〈g〉 which characterize the state of the

material at the macroscopic level are defined as the averages of their microscopic counterparts

in the RVE, that is,

〈q〉 :=
1

|V |

∫
V

q(x)dV , 〈g〉 :=
1

|V |

∫
V

g(x)dV . (3)

The aim of the homogenization is to obtain the effective behavior that describes the

composite at the macro scale based on the information at the micro scale, i.e. the constant

effective conductivity tensor keff that relates the macroscopic flux and intensity as follows:

〈q〉 = −keff 〈g〉 . (4)

This effective tensor can be computed numerically by solving elementary problems on the

RVE to determine the local fields (hence the name full-field for this approach) for various
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representative load cases, as specified for completeness in Appendix A. These full-field prob-105

lems can be solved using several numerical methods, e.g. finite elements [24, 4] or FFT-based

methods [5, 6]. However (i) these computations can be costly (not in the 2D conductivity

examples provided in the present paper but for instance for 3D elasticity and large RVE,

or when many microstructures should be evaluated as in the case of parametric sensitiv-

ity studies) and (ii) require a perfect knowledge of the microstructure in the RVE (i.e. the110

conductivity field k(x)), while one often only has access to statistical information about a

composite.

In contrast with these full-field methods, mean-field methods provide only estimates of

the effective properties, by approximating the means of the fields in each constitutive phase

for piecewise-homogeneous composites. These semi-analytical estimates are much faster to115

compute and thus emerge as an alternative to FF computations. They are presented now.

2.1. Mean-field homogenization

Let us consider now a multi-phase composite with piecewise constant properties, so that

the conductivity field can be stated as follows:

k(x) =
N∑
α=0

kαχα(x), (5)

where kα is the conductivity tensor of the α-th phase, and χα refers to the characteristic

function of the domain Vα.

The aim of the mean-field methods is to obtain estimates of the mean values 〈q〉α and

〈g〉α in the different phases, given the overall means 〈q〉 and 〈g〉. Here, the notation 〈·〉α
refers to the mean over the α-th phase, namely

〈·〉α :=
1

|Vα|

∫
Vα

(·)dVα, (6)

so that 〈·〉 =
∑
α=0

cα 〈·〉α and cα is the volume fraction of the phase Vα.120

Since the thermal equilibrium problem is linear, there exist the so-called second order

localization tensor A and the mean tensors Aα = 〈A〉α that link microscopic and macroscopic
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quantities:

g(x) = A(x) 〈g〉 , and 〈g〉α = Aα 〈g〉 . (7)

The following property is readily fulfilled:

〈A〉 =
N∑
α=0

cαAα = I. (8)

At this point, if the mean localization tensors are known, one can compute the average

flux as:

〈q〉 =
N∑
α=0

cα 〈q〉α =
N∑
α=0

cα(−kα 〈g〉α) = −

(
N∑
α=0

cαkαAα

)
〈g〉 , (9)

and by analogy with Eq. (4), the effective conductivity is given by:

keff =
N∑
α=0

cαkαAα = 〈kA〉 . (10)

Additionally, for matrix-inclusions composites, Eq. (10) is commonly rewritten in such

way that it only depends on the inclusion localization tensors using the property (8) to

remove the mean matrix localization tensor A0:

keff = k0 +
N∑
α=1

cα(kα − k0)Aα. (11)

Finding the exact values of mean localization tensors Aα would require to solve local

equilibrium problems such as (A.1a)-(A.1d). Instead, mean-fields methods look for approxi-

mations of these tensors, using hypotheses on the phase geometries and spatial distributions.

2.2. Considered mean-field schemes

Eshelby’s equivalent inclusion method was proposed by Eshelby in [8] to determine the

elastic solutions of a single ellipsoidal inclusion embedded in an infinite matrix with uniform

external loading. This micromechanical estimation has been the backbone of most mean-

field methods. In particular, when the volume fraction of the inclusions in a composite

is very low, the interactions between the inclusions can be considered negligible and the
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dilute approximation arises naturally from Eshelby’s theory, using the formula (11) with the

inclusion localization tensor computed as if it was isolated in the matrix, namely

A(incl)
α =

(
I + P(incl)

α (kα − k0)
)−1

, (12)

where P(incl)
α stands for the Hill tensor of the α-th inclusion that accounts for its geometry:125

see [25] and Appendix B.2 for specific expressions.

The following is a brief summary of the mean-field methods of interest for the present

work. We extensively rely on the formalism chosen by [11, 20] to write the effective stiffness

tensors of elastic composites. Here, we adapt these expressions for the purposes of the

conductivity problem.130

2.2.1. Mori-Tanaka approximation

In the Mori-Tanaka scheme [12] as reformulated by Benveniste [26, 13], the field in the

matrix at a sufficient distance from an inclusion is approximated by the constant value of

its mean. As a result, the existence of further inclusions is encoded in the mean field of the

matrix, and thus the method takes into account the particle interactions. The mean field of135

the inclusion in this model is linked to the mean field of the matrix by Eshelby’s localization

tensor (12) instead of the total mean field.

Based on these considerations, the mean localization tensor of the α-th inclusion takes

the following form:

A(MT)
α = A(incl)

α

(
c0I +

N∑
β=1

cβA(incl)
β

)−1

. (13)

2.2.2. Ponte-Castañeda and Willis estimate

The Ponte Castañeda and Willis scheme was proposed in [14] to address the effective

behavior of particulate composites with ellipsoidal spatial correlation of inclusions positions.140

This variational Hashin-Shtrikman type estimate [27] accounts for inclusion shape and spatial

distribution independently. In the following, we will consider the restriction of the PCW

model to the case of identical shape of spatial correlations between inclusions. Readers are

referred to [28] for the application of the PCW model to conductive composites.
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The localization tensors for this scheme is given as follows,

A(PCW)
α = A(incl)

α

(
I − P(cell)

N∑
β=1

cβ (kβ − k0)A(incl)
β

)−1

, (14)

where P(cell) stands for the Hill tensor of the identical distributional cells that characterizes145

the spatial distribution of the inclusions.

2.2.3. Interaction Direct Derivative model

The Interaction Direct Derivative model was introduced by Zheng and Du in [9, 18] from

a three-phase approach: a matrix cell of ellipsoidal geometry surrounds each inclusion and

in turn is surrounded by an unbounded medium with effective properties. In [29], the IDD150

model applied to conductive composites is presented.

By following these considerations, the localization tensors A(IDD)
α for the IDD model takes

the form

A(IDD)
α =

(
I −

N∑
β=1

cβ (kβ − k0)A(incl)
β P(cell)

β

)−1

A(incl)
α , (15)

where P(cell)
β represents the Hill tensor of the β-th matrix cell.

To summarize, although MT scheme takes into account the inclusion interaction, it fails

to account for the inclusion distribution and the interaction between inclusion and their

immediate surrounding matrix material. On the other hand, PCW and IDD estimates155

do not present the aforementioned shortcomings and capture this information through the

matrix cells.

2.3. Relations between IDD, MT and PCW models

In order to study the connections between the mean-field approaches IDD, MT and

PCW, a unified formulation should be considered, as proposed by [20], based on the links160

established earlier between these models in [18].

In this vein, after transformations on the localization tensor A(MT)
α of Eq. (13), the

following result is obtained:

A(MT)
α = A(incl)

α

(
I −

N∑
β=1

cβP(incl)
β (kβ − k0)A(incl)

β

)−1

. (16)
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Then, combining the three approximations, (14), (15) and (16) of mean localization

tensors with the definition (11) of the effective conductivity, the three estimates are given in

Table 1, with a transpose on the IDD estimate to stress the similarity of expressions. Indeed,

the IDD estimate may not be symmetric, an important issue addressed in detail in Section165

3.1 below.

Approaches Effective conductivity tensors

MT k
(MT)
eff = k0 +

N∑
α=1

cα (kα − k0)A(incl)
α

(
I −

N∑
β=1

cβP(incl)
β (kβ − k0)A(incl)

β

)−1

,

PCW k
(PCW)
eff = k0 +

N∑
α=1

cα (kα − k0)A(incl)
α

(
I − P(cell)

N∑
β=1

cβ (kβ − k0)A(incl)
β

)−1

,

IDD Tk
(IDD)
eff = k0 +

N∑
α=1

cα (kα − k0)A(incl)
α

(
I −

N∑
β=1

cβP(cell)
β (kβ − k0)A(incl)

β

)−1

.

Table 1: Unified formulation of the effective conductivity properties. The IDD estimate is

transposed to stress the similarity of expressions.

As observed, the expressions in Table 1 are very similar, and when the IDD estimate

is symmetric, i.e. k
(IDD)
eff = Tk

(IDD)
eff , a link among IDD, MT, and PCW can be provided,

as discussed by [18, 20] and recalled now for completeness. In Figure 2 (a), the capability

of IDD to account for inclusions and cells with different aspect ratios and orientations is170

illustrated. In contrast, the MT approach (see Figure 2 (b)) considers that inclusions and

cells respectively share the same aspect ratio and orientation, which is achieved by setting

P(cell)
β = P(incl)

β in the IDD scheme. Besides, the PCW scheme is obtained by replacing

P(cell)
β = P(cell) (see Table 1).

Among the studied models, the IDD approach offers morphological criteria by utiliz-175

ing cells that consider the spatial distribution of inclusions and their interactions with the

immediately surrounding matrix. Such cell parameters should be chosen or derived from

microstructural analyses. Some propositions are done by [22, 21], and a systematic approach

is presented below.

Remark 1. The coated-inclusion approach proposed prior to IDD by [16] results in very180
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Figure 2: Diagrams of the unified formulation and the connections between the models.

similar estimates than IDD, and also reduces to the MT and PCW models in special cases

[17]. The question whether IDD and this coated-inclusion model are identical in all cases

has not been answered yet, at the best of our knowledge, but is out of the scope of the present

paper.

3. Practical use of the IDD model185

In this section, we address two key issues that have to be tackled to use effectively the

IDD model, that is (i) how to account for its (possible) lack of symmetry and (ii) how to

choose the matrix cells corresponding to each inclusion.

3.1. Addressing symmetry issues

In relation to the MT scheme, several studies have addressed the problem of loss of sym-190

metry appearing in the effective tensor. For example, [30] dealt with two-phase composites

and showed that if the composite is reinforced with isotropic inclusions of any morphology

or with perfectly aligned fibers of any material symmetry, these are sufficient conditions to

guarantee the symmetry of the MT tensor. Note that the term “phase” stands for inclu-

sions of assigned geometry and constituent material, regardless of orientation. In addition,195

the authors in [31] focused their study on multi-phase composites, and proved that the MT

estimates is symmetric only for those multi-phase composites where all phases have similar
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shape and the same orientation. By contrast, it is stressed out that the PCW estimate

always has the correct symmetry for the effective conductivity tensor [14, 28].

Finally, regarding IDD, we proceed in a similar manner as was discussed in [20] and

rewrite the IDD expression given in Table 1 as follows:

Tk
(IDD)
eff = k0 +

( N∑
α=1

cα (kα − k0)A(incl)
α

)−1

− P(IDD)

−1

with: P(IDD) =
N∑
β=1

cβP(cell)
β (kβ − k0)A(incl)

β

(
N∑
α=1

cα (kα − k0)A(incl)
α

)−1

, (17)

Note that this is almost exactly the PCW expression (see Table 1), only with P(cell) replaced200

by P(IDD). The symmetry of the IDD model is thus guaranteed when this tensor P(IDD) is

symmetric, since (kα − k0)A(incl)
α is always symmetric. This is in particular the case in the

following configurations:

1. the MT model is used (Figure 2(b)) and one of the sufficient conditions given above

for the symmetry of the MT estimate is satisfied;205

2. the PCW model is used (Figure 2(c));

3. all inclusions are identical except for their size, i.e. have same aspect ratios, orientation

and constitutive material, and therefore localization tensors: A(incl)
α = A(incl). In this

case, one obtains

P(IDD) =
1

cI

N∑
β=1

cβP(cell)
β , with cI =

N∑
α=1

cα (18)

which is symmetric as a sum of symmetric Hill’s tensors;

4. all inclusions are circular (in 2D) or spherical (in 3D) and made of isotropic but not

necessarily identical materials, with conductivity tensors kα = kαI. In this case, the

localization tensors are isotropic (proportional to identity) and the expression (17)

of P(IDD) again becomes a weighted sum of symmetric Hill tensors. In 2D, with the

expressions given in Appendix B.2 one obtains:

P(IDD) =
N∑
β=1

cβP(cell)
β

2(kβ − k0)

γβ + 1

(
N∑
α=1

cα
2(kα − k0)

γα + 1

)−1

(2D case) (19)
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where γα = kα/k0 are the conductivity contrasts. This last case is of interest when

studying the behavior of composites reinforced with two (or more) kinds of long, uni-

directional fibers by reducing the analysis in the (2D) transverse plane e.g. [23, Sect.210

5.2.5]; or 3D composites containing both seemingly-spherical reinforcements and voids.

The third and fourth cases above are configurations where IDD can be used “as it is”, without

reducing to one of the two other models. The third one will be used in the ensuing numerical

examples for comparisons. To address the cases where symmetry is not guaranteed, while

still accounting for the relevant information given by the individual cells, we now propose215

two methods.

3.1.1. Proposed IDD-based PCW model

A primary consideration is to make use of the PCW model. The question then is the

choice of the distributional cell and the corresponding tensor P(cell). Based on the third case

and on expression (18) just above, we propose the following choice for this tensor:

P(cell) :=
1

cI

N∑
α=1

cαP(cell)
α . (20)

In this way, IDD and PCW models coincide in cases 2 and 3 discussed above (identical cells

and identical inclusions), and the symmetric estimate whose distributional tensor is given by

(20) can be used in other configurations. This distributional tensor is used for the numerical220

simulations of the PCW model in Section 5 below.

3.1.2. Two-step homogenization process

Another approach for dealing with the symmetry issue of the MT model was proposed

in [23] and followed by many afterwards, e.g. [32]. A two-step homogenization scheme is

applied to compute the effective properties combining MT and the upper and lower bounds

of Voigt and Reuss, respectively, namely

k
(Voigt)
eff :=

N∑
α=0

cαkα, (21a)
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k
(Reuss)
eff :=

(
N∑
α=0

cα(kα)−1

)−1

. (21b)

Here, instead of using MT, we adopt the IDD scheme for the first homogenization step.

Figure 3 describes the two-step homogenization process. The domain is first decomposed

into as many regions as there are families of identical inclusions. These regions behave as a225

two-phase material where the volume fraction of inclusions in each grain is the same as the

total volume fraction of inclusions in the original composite. As a result, the symmetry of

the IDD tensor is guaranteed in all the regions, as discussed in Section 3.1 above. Then, in

the first homogenization step we apply the IDD scheme, obtaining the effective properties

of each grain individually. The last step is to homogenize over all the grains by means230

of Voigt and Reuss bounds. We will refer these approaches as IDD-Voigt and IDD-Reuss,

respectively.

Remark 2. Other approaches could be used for the second step, as long as they preserve the

symmetry of the estimate, e.g. the PCW model, or a self-consistent model. Considering that

the geometric features of the microstructure are accounted for by the IDD step, we chose the235

Voigt and Reuss estimates for the second one for simplicity.

3.2. Cells selection via inertia equivalence and Voronöı diagrams

Until now, a comprehensive discussion of the IDD scheme has been provided. However,

beyond the particular case where IDD is reduced to MT (see Figure 2), the lack of clarity

on how to select the matrix cells (or cell, for the IDD-based PCW model) still persists. In240

this regard, we propose a methodology to derive the required information of the cells from a

microstructural analysis of a representative image. This data will serve not only as input for

IDD, but also for applying the IDD-based PCW scheme as proposed in Section 3.1.1 above.

The approach represents one of the main novelties of the present work.

More precisely, we look at the practical implementation of the inertia equivalence proce-245

dure proposed by [18] (see Figure 4) but applied only for inclusions distributed on periodic
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Figure 3: Two-step homogenization procedure.

lattices [19], to the best of our knowledge. The idea is to consider regular polyhedrons (poly-

gons in 2D) to partition the matrix domain such that each of these subdomains or cells are

made up of an inclusion as a nucleus and an immediate surrounding matrix material region

as the atmosphere. Then, since non-ellipsoidal cells are obtained to assemble the space, the250

procedure follows by assigning a matching ellipsoid to each polyhedral cell. In the procedure,

the polyhedron is further substituted by an equivalent ellipsoid that has the same moment

of inertia as the region. For instance, if the tessellation polygons are rectangles (e.g. in the

case of a bi-periodic distribution of inclusions), then elliptical cells are proportional to the

maximal inscribed ellipses.255

To determine these polyhedral cells, we quote [18] (with our notation): “For any given

inclusion Vα, to define the inclusion-matrix cell V (cell)
α we can introduce a plane between Vα

and its any neighboring inclusion Vβ that is perpendicular to the line linking the centers of

Vα and Vβ and partitions this line in accordance with the ratio of the radii of Vα and Vβ”.

This description naturally relates to Voronöı diagrams [33, 34, 35].260
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Figure 4: Inertial equivalence in 2D. a) Partition in polygonal cells. b) A polygonal cell. c) Equivalent

elliptical cell with the same geometrical moment. This figure is inspired by Figure 4 of [18].

The Voronöı diagram of a given set of discrete points in a Euclidean space, also called

“seeds”, is a partition of the space into regions, which contain the points of the space closer

to a given seed than to any other. Let X be a metric space with distance function d, then,

the Voronöı cell Rk, associated with the seed Pk is defined as follows,

Rk = { x ∈ X | d(x, Pk) ≤ d(x, Pj) for all j 6= k}. (22)

A natural extension to a multiplicatively weighted Voronöı diagram is given by the fol-

lowing definition of a cell:

Rk = { x ∈ X | d(x, Pk) / rk ≤ d(x, Pj) / rj for all j 6= k}, (23)

where rk and rj are the weights associated with the seeds Pk and Pj, respectively.

The definition of the multiplicatively weighted Voronöı diagram has a strong analogy

with the aforementioned approach given in [18], with the Voronöı weights determined by

the inclusions radii. However, as a drawback of using this tessellation, Voronöı cells in a

multiplicative scheme exhibit circular arcs instead of straight lines, may be disconnected and265

have holes. We refer to [36] for a detailed study of the multiplicative case with applications

in two-dimensional cellular tissues.

Based on the above considerations, in this paper we propose to use the classical Voronöı di-

agram as the tessellation method, and thus obtain the polygonal cells that will then be re-

placed by the equivalent ellipses with the same moment of inertia as the region. Although the270

classical Voronöı diagram does not seem to conform completely to the authors’ original idea,
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it might be worth to explore it as a first approximation. Its performances and drawbacks

will be discussed in Section 6.

4. Methods, modeling and numerical tools

The aim of this section is to discuss the main set of tools and methods that have been used275

to produce the numerical comparisons presented in the next section. These tools were im-

plemented in an home-made Python library “PyHom: a Python library for homogenization”

whose main functions are represented in Figure 5.

This computational and homogenization-based approach is conceived for calculating the

effective conductivity properties of composite materials with complex micro-structures in a280

2D framework. The backbone of the library relies on the theory described above, and uses

not only existing image processing modules, but also functionality and packages built by

the authors. The main interest is using PyHom as a toolbox to study the core issues in the

application of IDD and the IDD-based PCW.

Hereafter, we describe in more detail the choices we made for the key step of the process,285

namely (i) RVE generation, (ii) image analysis and Voronöı diagram generation and (iii)

homogenized estimates computation.

4.1. Generating representative elements

To ease the comparisons between models, we generate artificial RVE with controlled

distributions of inclusions. The two sections below present the methods chosen to generate290

these RVE.

4.1.1. RSA algorithm to place elliptic inclusions with prescribed distribution

We start by specifying the Random Sequential Adsorption (RSA) algorithm [33] more

closely and see how it can be applied to build a heterogeneous microstructure in a 2D

framework. Let us first recall that in the RSA algorithm, the position of a test particle295

is generated following a uniform distribution. If the test particle intersects with any of

the previously added particles, it is discarded; otherwise, the test particle is added to the

collection.
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PyHom
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Figure 5: Workflow sketch for the numerical comparison of homogenized estimates for various microstruc-

tures.
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Table 2 and Figure 6 present an example of RVE construction. A number N (incl) of

elliptical inclusions, whose aspect ratio e(incl) and orientation θ(incl) are specified, should300

be placed to reach a volume fraction c(incl) (which determines the size of these inclusions).

To obtain a controlled distribution not only due to the inclusion shape, elliptical exclusion

zones, which we refer to as RSA cells, are placed first. Aspect ratio e(cell-RSA) and orientation

θ(cell-RSA) of these cells are also specified a priori, as well as a security factor to prevent

contact between cells, see Figure 6(a). Their size is determined from a size factor that is the305

ratio between inclusion and cells major axis.

pixels N (incl) c(incl) e(incl) θ(incl) e(cell-RSA) θ(cell-RSA) security factor size factor

256 8 0.05 0.5 -π/4 0.7 π/4 1.3 0.5

Table 2: Parameters for the example RVE represented in Figure 6.

As seen on Figure 6(b), the resulting RVE is periodized to facilitate the full-fields com-

putations, i.e. inclusions that cross the edges are duplicated. This also ensures that the

chosen volume fraction is reached within the RVE, up to discretization. Finally, an image is

generated with a prescribed discretization (256×256 pixels in all the upcoming examples),310

see Figure 6(c). This image will be the input of both full-fields and image-based mean-fields

homogenization methods, as indicated in Figure 5.

4.1.2. Advani-Tucker law for orientation distributions

To generate distribution of non-aligned inclusions, we use the Advani-Tucker law for

orientation distributions. In [37], this distribution function is proposed to describe an aligned

and axisymmetric orientation state in a 3D configuration, see for instance [37, 21, 38]. The

explicit form of the distribution function, adapted for a 2D microstructure, is rewritten as

follows,

f(θ) = K sinmAT(θ), (24)

where K is a normalization constant and, θ ∈ [0, π] is the inclusion orientation with respect

to the chosen privileged direction.315
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Figure 6: Example of RVE construction using an RSA algorithm. (a) Placement of eight RSA cells: dashed

and dotted lines design the cells and their amplification by the security factor, respectively. (b) Placement

of inclusions in the central points of the RSA cells and duplication of the inclusions that cross the edges. (c)

Final image of the microstructure.

This law is characterized by a single parameter mAT. Two extreme cases arise when

mAT = 0 for which the law reduces to the uniform distribution, and when mAT → ∞, for

which aligned inclusions are recovered.

4.2. Derivation and analysis of Voronöı diagram with Python libraries

To build and exploit the Voronöı diagrams needed for distribution analysis, as proposed320

in Section 3.2, we use two Python libraries: scikit.image [39] for image analysis, and scipy

[40] for Voronöı diagram generation.

Figure 7 presents the process applied to the example image presented in Figure 6. First,

scikit.image [39] is used to partition the image between subdomains (matrix and inclusions),

to extract the characteristics of the inclusions (number, size, aspect ratio, orientation) and325

to position their centers, see Figure 7(a). Then, these centers are cloned on a 3× 3 grid, see

Figure 7(b), and the Voronöı diagram is generated by scipy. The regions of interest of this

Voronöı diagram will consist of the colored closed polygons, while the outermost regions of

the diagram (including unbounded cells) are not involved in the analysis. This generated

diagram is then isolated, see Figure 7(c).330

To analyze this diagram, the same image processing tool can be used: again the library

20



Figure 7: Voronöı diagram built from image analysis (image built in Figure 6) (a) Center of inclusions. (b)

Cloned RVE. (c) Derived Voronöı diagram.
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scikit.image [39] is used to partition the image Figure 7(c) into distinct cells, whose properties

are extracted (function regionprops in modulus mesure). These properties notably include

the lengths of the minor and major axis of the ellipse with the same moment of inertia as

the region, as required by the proposal of Section 3.2. Figure 8 finally shows the elliptic cells335

resulting from this analysis, along with the inclusions determined in the first step.

Figure 8: Final result of image analysis: inclusions and elliptic cells determined from the Voronöı diagram.

4.3. FFT-based solver

Reference effective properties are computed using the full-field approach described in

Section Appendix A. To solve the elementary problem, a FFT-based solver was implemented

in Python. In this work addressing only 2D linear conductivity with moderate material340

contrasts, the ”basic scheme“ proposed in the seminal papers of Moulinec and Suquet [41, 42]

was chosen for its simplicity of implementation, although many improved FFT-based solvers

have been developed in the last decade, see e.g. [5, 6].

5. Numerical results and comparisons

In this section, we analyze different microstructures, and proceed to compute and com-345

pare their effective conductivity properties. For the sake of simplicity and focus on spatial
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distribution, the heterogeneous material B is assumed to be constituted by a matrix rein-

forced by elliptical inclusions with different aspect ratios and orientations, both the matrix

and inclusions being isotropic phases.

The results are presented in terms of the principal components of the conductivity tensors350

(i.e. their eigenvalues), denoted keff-I and keff-II, with the convention keff-I ≥ keff-II, correspond-

ing to the conductivities in the main directions (i.e. normalised eigenvectors) n1 and n2. The

angle θeff := (e1, n1), called the orientation of the conductivity tensor afterwards, is used to

specify these main directions. The notations are represented in Figure 9, where notations

for main axes a1 and a2, and orientation θ(incl) of inclusions are also depicted.

Figure 9: Notations for the orientations of inclusions and effective conductivity tensor.

355

Moreover, the normalized properties (by the matrix’ conductivity k0) are given. See

Appendix B.1 for simplified formula of effective estimates in this case, and Appendix B.2

for more details about the expressions of the localization and Hill tensors involved in the

calculations, A(incl)
α and P(cell)

α , respectively.

5.1. Case 1: Anisotropic distribution, identical inclusions360

The first case of interest concerns identical isotropic inclusions distributed in an anisotropic

way in an isotropic matrix. In particular, for circular inclusions, the expected anisotropy

of effective conductivity is due to this distribution only. To do so, we generate the mi-

crostructure using elliptic RSA-cells by following the process described in Section 4.1.1. The
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parameters given in Table 3, in the case of circular inclusions, are utilized and result in RVE365

as the one plotted in Figure 10.

pixels N (incl) c(incl) e(incl) θ(incl) e(cell-RSA) θ(cell-RSA) security factor size factor

256 30 0.15 1 0 0.5 0 1.02 0.375

Table 3: Elliptic RSA cells and identical inclusions (circular here): chosen parameters for RVE generation,

as represented in Figure 10.

Before going further, the statistical representativity of this RVE is verified by computing

the effective properties of 10 different RVE generated this way. The results, plotted in

appendix in Figure C.23, show that the difference between the properties of each of these

RVE and their mean over the entire collection is less than 0.5%, and an individual RVE is370

therefore considered representative of the chosen microstructure.

Figure 10: Elliptic RSA cells and identical inclusions (circular here): (a) RSA process (see Section 4.1.1)

with the parameters of Table 3. (b) RVE of the 2D microstructure.

Now, the study is focused on a single microstructure, specifically the one shown in Figure

10. In this regard, Figure 11 (a) shows the corresponding Voronöı diagram in the background,

along with the circular inclusions and inertially equivalent elliptical cells, highlighted in red
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and blue color, respectively. Notice that the Voronöı diagram has resulted in elliptical cells375

with several shapes and orientations, therefore, in the particular case of IDD model, we must

consider as many Hill tensors as available cells (see Eq. (B.1c)).

In addition, Figure 11 (b) shows the scatter plot between aspect ratios e and orientations

θ corresponding to the inclusions and cells, using dots and the previously assigned color. We

also display the mean value of the properties of the cells by means of a black star, and the380

pair (θ(cell-PCW), e(cell-PCW)) corresponding to the orientation and aspect ratio of the global

cell using in the IDD-based PCW scheme, obtained from the definition proposed in Eq. (20),

and indicated on the graph with a purple square.

Figure 11: Elliptic RSA cells and identical inclusions (circular here): (a) Voronöı diagram, inclusions and

respective cells. (b) Scatter plot between aspect ratio and orientation.

Since we utilize the classical Voronöı diagram as outlined in Subsection 3.2, the only

parameters that influence its construction are the count and spatial arrangement of the385

inclusions. This means we can use the same Voronöı diagram to perform computations on

microstructures that vary in geometrical features such as volume fraction, aspect ratio, or

orientation of the inclusions, and also, in the conductivity contrast.

Following this idea, Figure 12 shows the normalized effective conductivity properties for

the microstructure of Figure 10 (b), but varying the aspect ratio e(incl) and orientation θ(incl)
390
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Figure 12: Elliptic RSA cells and identical inclusions: performance of MT and IDD models in comparison

with the FF reference results. (a) Fixed orientation and conductivity contrast, varying aspect ratio of

inclusions. (b) Fixed elliptic shape and conductivity contrast and varying orientations. (c) Fixed circular

shape, varying conductivity contrast. In all case, the volume fraction of inclusions is 15%.
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of the inclusions, and the conductivity contrast γ. The comparisons are made between MT,

IDD and the FF numerical approach: in this case IDD and PCW models coincide using the

definition of Eq. (20) for the PCW ”distribution“ tensor.

In Figure 12 (a) we highlight two situations relevant to the analysis. The first one, denoted

by (I), corresponds to the value e(incl) = 0.6 and θ(incl) = 0◦, where the MT scheme offers395

better results than IDD in comparison to the FF numerical approach. Nevertheless, in Figure

12 (b) it is observed that by varying the orientation and fixing the remaining parameters, IDD

arises with better agreements. The second one (II) refers to the phenomenon of ”geometrical“

anisotropy that we mentioned at the beginning of the Section for circular inclusions.

For these circular inclusions, the MT scheme could not capture a possible geometrical400

anisotropy coming from the distribution of inclusions. In contrast, IDD does identify such

anisotropy. The results are shown in Figure 12 (c) for different conductivity contrast γ.

While quantitative accuracy is missing as both models underestimate keff-I, this qualitative

improvement is a major advantage of the IDD model. This capability of capturing some of the

anisotropy resulting from the distribution is also illustrated in Figure 13 for elliptic inclusions.405

The orientation of the MT effective tensor is again entirely given by the orientation of

inclusions while the IDD model captures a small amount of the orientation difference observed

on FF results due to the distribution.

5.2. Case 2: Approximately isotropic distribution and aligned elliptic inclusions

In contrast to Section 5.1, here, we aim to arrange identical elliptical isotropic inclusions410

in an approximately isotropic way within an isotropic matrix, so that the anisotropy comes

mainly from the orientation and aspect ratio of the elliptical inclusions. For this purpose, we

consider circular RSA-cells and the set of parameters shown in Table 4. Figure 14 illustrates

a possible RVE that can be constructed under these considerations.

Again, we verified that the chosen RVE is statistically representative by comparing the415

properties of 10 RVE generated with the same parameters, see Figure C.24 in appendix. The

maximum difference of the larger conductivity keff-I with its mean value over the collection of

RVE is this time larger, about 2.5%, but we still consider an individual RVE as representative.
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Figure 13: Elliptic RSA cells and identical elliptic inclusions: directions of anisotropy of the effective tensors,

as a function of orientations of inclusions.

pixels N (incl) c(incl) e(incl) θ(incl) e(cell-RSA) θ(cell-RSA) security factor size factor

256 30 0.2 0.4 0 1 θ(incl) 1.02 1

Table 4: Circular RSA cells and elliptic inclusions : chosen parameters for RVE generation, as represented

in Figure 14.

Figure 14: Circular RSA cells and elliptic inclusions: (a) RSA process. (b) 2D representative element of the

microstructure.
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Figure 15 (a) shows the Voronöı diagram corresponding to the microstructure of Figure

14 (b), along with the elliptical inclusions and the different inertially equivalent elliptical420

cells. Moreover, in Figure 15 (b) we present the scatter plot between aspect ratios e and

orientations θ corresponding to the inclusions, cells, the mean value of the cell properties,

and the pair (θ(cell-PCW), e(cell-PCW)). In contrast to what was observed in Figure 11 (b), while

the cells remain elliptical, their aspect ratios approach unity and the orientations exhibit a

greater dispersion across the range of values. This is an expected result from the choice of425

circular RSA-cells to generate the microstructure.

Figure 15: Circular RSA cells and elliptic inclusions: (a) Voronöı diagram, inclusions and respective cells.

(b) Scatter plot between aspect ratio and orientation.

The normalized effective conductivity properties of the microstructures obtained by vary-

ing the aspect ratio e(incl) and orientation θ(incl) of the inclusions are given in Figure 16. Again,

for identical inclusions the IDD and PCW models coincide. As observed in Figure 16 (a),

the IDD scheme has a better agreement than MT with the FF numerical approach. Further-430

more, in Figure 16 (b) we set the value of the largest discrepancy between MT and IDD,

i.e. , e(incl) = 0.4, and study the behavior of the properties when varying the orientation of

inclusions. The results are still favorable for IDD, proving in this case a clear quantitative

gain compared to MT.
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Figure 16: Circular RSA cells and elliptic inclusions: MT and IDD performance compared to the FF

numerical approach for different aspect ratios and orientations of inclusions.

For completeness, we show in Figure 17 the comparison between the orientations of435

effective tensors for the different schemes, which are clearly given by the orientations of

inclusions, as expected for this nearly-isotropic distribution.
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Figure 17: Comparison between the directions of anisotropy.

5.3. Case 3: Non-aligned inclusions

In this section, we proceed to investigate a scenario in which the inclusions are not aligned,

i.e. cases where the effective conductivity tensor of the IDD model loses its symmetry. To440

this end, we consider microstructures in which all inclusions are identical except for their

orientation. Two examples are considered: (i) manually chosen orientations and (ii) orien-

tations following the Advani-Tucker law. In both cases, the RSA-cells are chosen identical

to each inclusion (slightly magnified by a security factor), and the distribution is therefore

only constrained by the inclusion shapes, contrarily to the previous cases.445

5.3.1. Inclusion orientation chosen in a given set

For this part, the parameters utilized in the RSA algorithm are presented in Table

5, where θsample is a set of 30 orientation values manually selected from the set of values

{−60,−45,−30, 0, 10, 25, 50, 75} degrees. Figure 18 presents the obtained RVE.

Then, Figure 19 (a) presents the Voronöı diagram corresponding to the inclusions and the450

inertia-equivalent cells. Figure 19 (b) displays the aspect ratios and orientations for both the

inclusions and cells, as well as the mean values for the cell properties and the corresponding
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pixels N (incl) c(incl) e(incl) θ(incl) e(cell-RSA) θ(cell-RSA) security factor size factor

256 30 0.2 0.5 θsample e(incl) θ(incl) 1.1 1

Table 5: Elliptic inclusions with different orientations: chosen parameters for RVE generation, as represented

in Figure 18.

Figure 18: Elliptic inclusions with different orientations: (a) RSA process with RSA-cells coinciding with

inclusions. (b) RVE of the microstructure. (c) Number of inclusions per chosen orientation.
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values obtained using the IDD-based PCW sheme. It can be observed that the orientations

of the inclusions are grouped into eight families of values, as previously mentioned in the

microstructure construction details.455

Figure 19: Elliptic inclusions with different orientations: (a) Voronöı diagram, inclusions and respective cells.

(b) Scatter plot between aspect ratio and orientation.

Due to the loss of symmetry in the effective tensor computed with the IDD method, we

apply the approach outlined in Section 3.1.2 and display in Figure 20 the normalized effective

conductivity properties obtained with the two-step approaches (IDD-Voigt and IDD-Reuss)

and the IDD-based PCW model. The three approaches yield similar results, the PCW

estimates being somewhat in-between IDD-Voigt and IDD-Reuss. The results demonstrate460

that IDD and PCW yield a quantitative improvement compared to MT when compared with

the numerical results, except for IDD-Reuss in the evaluation of keff-II. IDD-Voigt provides

the closest results to our benchmark.

5.3.2. Inclusion orientation following the Advani-Tucker law

As a final result to illustrate the relevance of applying IDD and IDD-based PCW in the465

2D effective conductivity context from a microstructure image, we use the Advani-Tucker

(AT) law to generate the orientations of the inclusions as depicted in Section 4.1.2. This law

is used to simulate the fibers orientation in short-fibers composites in [10, 21] among others.
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Figure 20: Elliptic inclusions with different orientations: comparison between the different mean-field ap-

proaches and the full-field numerical results. The IDD scheme is assisted by double homogenization (see

Section 3.1.2).

Natural questions are (i) whether and how this orientation distribution may be related to the

spatial distribution of fibers (both of them being determined by the manufacturing process470

in actual composites, and by the RSA process in our numerical study); and (ii) if this spatial

distribution is worth considering in mean-field estimates.

In this part, as a preliminary investigation, we study the simplified case of composites

reinforced by identical ellipses, of aspect ratio 0.5 (i.e. much more than actual short fibers),

oriented following the AT law. Specifically, in each iteration of the calculation, we fix the475

parameter mAT, generate the orientations of the inclusions, and pass this information to

the RSA algorithm to generate 10 microstructures that are used to calculate the normalized

effective conductivity properties. Figure 21 presents four of these RVE for increasing values

of mAT (and thus increasing alignment of inclusions).

Figure 22 presents the mean values and standard deviations of the results obtained us-480

ing the 10 microstructures for each mAT point. A first observation is that the dispersion

among the RVE remains moderate, enabling to clearly discriminate models. For the larger
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conductivity keff-I, it is observed that IDD and PCW exhibit improved results compared to

MT as the mAT parameter increases, i.e. as the anisotropy becomes larger. For the lower

conductivity keff-II, all models yield similar results and underestimate the reference value. A485

transition is observed between the moderate anisotropic configurations (mAT . 5) where MT

estimates are worse than PCW and two-step IDD, and strongly anisotropic configurations

(mAT & 5) where MT estimates are slightly better. In all cases, the IDD-Voigt method

provides the most accurate results among the enhanced models.

Figure 21: Elliptic inclusions with different orientations following the Advani-Tucker law: examples of RVE

for four values of the parameter mAT.
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Figure 22: Elliptic inclusions with different orientations following the Advani-Tucker law: mean values and

standard deviations of the normalized effective conductivity properties obtained using 10 microstructures for

each value of the parameter mAT.
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6. Conclusions and perspectives490

This study has addressed the utilization of the Interaction Direct Derivative (IDD) and

Ponte-Castañeda and Willis (PCW) mean-field models for estimating the effective conduc-

tivity properties of composite materials and accounting for the spatial distribution. We

determined configurations for which IDD can be applied ”as it is“ and others where it lacks

the major symmetry. In these later cases, two alternative models, namely an IDD-based495

PCW model (shading a new light on the links between the two models) and a two-step

approach, have been proposed. We then described a methodology that employs Voronöı Di-

agrams to determine the distributional cells needed to parametrize the IDD model. We

developed a home-made Python library that integrates homogenization approaches with im-

age processing tools, enabling the semi-analytical process of simulating the fields of interest.500

We applied this framework to determine the effective behavior of 2D conductive composites

and compare the performance of IDD and IDD-based PCW against the standard Mori and

Tanaka (MT) model and the reference FFT-based full-field numerical simulations.

More precisely, artificial RVE were designed to study the influence of spatial distribution

on the effective properties for aligned or non-aligned inclusions. In most of the studied cases,505

the spatial distribution seems to be an important parameter in the sense that IDD model

provides qualitatively or quantitively better results than MT. This in particular striking for

non-aligned inclusions, see Section 5.3, where no distribution was imposed a priori, contrarily

to the previous cases, and still IDD-inspired models seemed to capture an information not

solely contained in the shapes of inclusions (that would be captured by MT).510

These are preliminary results on simplified conductive microstructures. This work needs

to be further pursued to consider realistic microstructures, representative of e.g. short-fibers

composites. At the end, we aim to expand upon the assertion made in [20], as stated in the

abstract, that ”Other models such as the IDD or PCW are of great theoretical importance,

but cannot be generally applied for the given material class“. To do so, the following points515

should be explored:

1. The extension to 2D and then 3D elasticity should be performed to explore the much

37



more complex anisotropy issues arising from the higher-order tensor formalism and

see if the present conclusions are still applicable. Convenient algorithms to generate

Voronöı diagrams are also available in 3D e.g. [35].520

2. Classical Voronöı diagrams using only the centers of inclusions were used here for sim-

plicity of implementation. In particular, it enabled the use of the same diagram for

microstructures made of ”pinned“ inclusions varying in orientation, volume fraction,

and aspect ratio; and therefore to speed up the computation of the effective proper-

ties when generating several artificial test cases. To use additively or multiplicatively525

weighted Voronöı diagrams as discussed in Section 4.2, it would be necessary to deter-

mine the properties of the cells for each microstructure. This step may be in particular

necessary to address larger aspect ratio of particles, for which classical Voronöı diagram

would lead to cells borders intersecting the inclusions.

3. Of course, an important step towards applications to actual composite would be the530

use of real microstructure images, either 2D for aligned long-fibers or 3D.

4. Finally, a long-term goal is to rely on relevant statistical descriptors of the spatial dis-

tribution e.g. correlation functions [33] to parametrize these models, rather than image

analysis. These descriptors are theoretically linked with the models already, e.g. in the

original definition of the PCW model using the two-point correlation functions of the535

inclusion phases [14], but were never extracted from an actual microstructure, to the

best of our knowledge. An intermediate step would be to generate artificial images

given such descriptors, and then apply the presented methodology on these images.
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Appendix A. Full-field homogenization550

Full-field homogenization consists in computing the temperature and flux fields for a basis

of elementary macroscopic loads that cover all possible configurations, and then retrieving the

effective behavior by computing and relating the means in (3). For conductivity problems,

these elementary loads are the unit basis vectors e.g. 〈g〉 = ej if the mean intensity is

prescribed. For shorthand notation we regroup them and look for the solution U = {Uj}j=1,2

of the following problem:

∇ ·Q(x) = 0, x ∈ V , (A.1a)

Q(x) = −k(x)(I + ∇U(x)), x ∈ V , (A.1b)

U is V -periodic, (A.1c)

〈U〉 = 0, (A.1d)

where I is the second-order identity tensor that regroups the elementary loads: in this

problem the mean intensity is 〈G〉 = 〈I + ∇U〉 = I. This problem is equipped with the

local equilibrium equation (A.1a), the local constitutive relation (A.1b), periodic boundary

conditions (A.1c), and the usual normalization condition (A.1d) that ensures the uniqueness

of the solutions.555

The effective conductivity tensor defined by (4) is then found to be:

keff = 〈k(I +∇U )〉 , (A.2)

39



which is proven to be symmetric using reciprocity identities between the uncoupled problems

satisfied by the components Uj, that lead to 〈k∇U〉12 = 〈k∇U〉21.

Appendix B. Specific for isotropic phases

Appendix B.1. Normalized expression of the effective properties

If the phases under study are isotropic, we note kα = kαI the conductivity tensor, and

the conductivity contrast γα = kα/k0 is introduced. The effective properties are normalized

as well with respect to the conductivity of the matrix k0, and noted k̄eff = keff/k0. From

Table 1 we obtain the normalized estimates:

k̄
(MT)
eff = I +

N∑
α=1

cα (γα − 1)A(incl)
α

(
c0I +

N∑
β=1

cβA(incl)
β

)−1

, (B.1a)

k̄
(PCW)
eff = I +

N∑
α=1

cα (γα − 1)A(incl)
α

(
I − P̄(cell)

N∑
β=1

cβ (γβ − 1)A(incl)
β

)−1

. (B.1b)

k̄
(IDD)
eff = I +

(
I −

N∑
β=1

cβ (γβ − 1)A(incl)
β P̄(cell)

β

)−1 N∑
α=1

cα (γα − 1)A(incl)
α . (B.1c)

expressed in terms of non-dimensional contrasts γα and normalized Hill tensors P̄ := k0P.560

Appendix B.2. Hill and dilute localization tensors

Here we provide the expression of Hill and localization tensors, in 2D, for elliptic inclusions

in an isotropic matrix of conductivity k0, as given by e.g. [25]. Noting (a1, a2) the principal

directions of the ellipse, see Figure 13 (a), a1 ≥ a2 the associated semi-axes and e = a2
a1
≤ 1

its aspect ratio, the Hill tensor is given by:

P(ellipse) =

 e
k0(1+e)

0

0 1
k0(1+e)


(a1,a2)

. (B.2)

Then, from the definition (12), when the constitutive material of the inclusion is also

isotropic with conductivity kα, the dilute localization tensor is:

A(incl)
α =

 k0(1+e)
k0+kαe

0

0 k0(1+e)
kα+k0e


(a1,a2)

=

 1+e
1+γαe

0

0 1+e
γα+e


(a1,a2)

, (B.3)
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with γα = kα/k0 the conductivity contrast. The matrices given in eqs. (B.2) and (B.3) above

are the tensors representations in the basis (a1, a2) associated with the ellipse, see Figure

9, and classical rotation operators are applied to obtain their counterpart in the fixed basis

(e1, e2).565

For circular inclusions, these tensors are isotropic:

P(disk) =
1

2k0

I and A(disk)
α =

(
2

γα + 1

)
I. (B.4)

Appendix C. Representativity of studied RVE

In this section, the statistical study we did on 10 RVE to ensure their representativity

is illustrated by Figures C.23 (for circular inclusions and elliptic RSA cells) and C.24 (for

elliptic inclusions and circular RSA cells).

Figure C.23: Elliptic RSA cells and circular inclusions: relative difference between the effective conductivities

of 10 RVE (parameters of Table 3) and their means over these 10 RVE, denoted by µ10. (a) keff-I and (b) keff-II.
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Figure C.24: Circular RSA cells and elliptic identical inclusions: relative difference between the effective

conductivities of 10 RVE (parameters of Table 4) and their means over these 10 RVE, denoted by µ10.

(a) keff-I and (b) keff-II.

References570

[1] M. Z. Khan, S. K. Srivastava, M. Gupta, A state-of-the-art review on particulate wood

polymer composites: Processing, properties and applications, Polymer Testing 89 (2020)

106721. doi:10.1016/j.polymertesting.2020.106721.

[2] G. Rajoriya, C. Vijay, P. Ramakrishna, Thermal conductivity estimation of high solid

loading particulate composites: A numerical approach, International Journal of Thermal575

Sciences 127 (2018) 252–265. doi:10.1016/j.ijthermalsci.2018.01.023.

[3] N. Dib, G.-P. Zhil, Generalized modeling of the effective thermal conductivity of

particulate composites, Materials Today Communications 27 (2021) 102283. doi:

10.1016/j.mtcomm.2021.102283.
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