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1 Introduction

This work concerns perturbative and covariant renormalization group flows for QFTs in AdS.
Such flows are interesting because the boundary correlation functions remain conformally
invariant along the entire flow which means they can be studied with conformal bootstrap
techniques [1, 13]. Some early works on QFT in AdS are [2, 3]. More recently interesting
results at large N were obtained in [4–7], and the structure of certain correlation functions
involving the stress tensor was analyzed in [8]. Of course, in the flat-space limit there are
many connections to the S-matrix bootstrap [9], both for gapped [10] and gapless [11] theories,
but in this paper we will mostly discuss theories with non-trivial IR fixed points.

The first part of this paper discusses several general aspects of these flows. Compared
to flat space, one novelty of RG flows in AdS is the non-zero background curvature. The
intricacies this introduces in perturbation theory are however well-known and discussed in
many places; see for example [12] for a classic reference. We therefore focus on the second
novelty of RG flows in AdS: the treatment of boundary conditions and infrared divergences.

Let us start with the UV. A foolproof way to set up a QFT in AdS, at the level of
correlation functions at least, is to start with a CFT on a half-space and to apply the usual
Weyl rescaling rules to the local operators to obtain their AdS counterparts. This procedure
appears to work for any BCFT setup, so any conformal boundary condition immediately
leads to a consistent AdS boundary condition.

Next we can consider deformations that break conformal invariance. As we discuss below,
one can expect infrared divergences if the boundary spectrum involves marginal or relevant
operators. Infrared divergences in flat-space scattering amplitudes signal a problem with
the observable itself (more specifically, individual amplitudes are simply zero), but in AdS
the infrared divergences can be mitigated with suitable counterterms which make both bulk
and boundary correlation functions finite.

In this work we will analyze the structure of these divergences at one loop in some
generality. We note in particular that the boundary action is often fully fixed by requiring
boundary conformal invariance. This observation, which we can summarize by saying that “the
boundary follows the bulk”, is in sharp contrast to the BQFT setup where the boundary can
flow independently from the bulk theory. Below we also explicitly discuss the renormalization
of boundary two-point functions. We show that they remain conformally invariant but
that extra logarithmic divergences appear which give rise to anomalous dimensions of the
boundary operators.

In the second part of this paper we analyze the RG flow between the m’th and (m− 1)’th
diagonal Virasoro minimal model in AdS. We will do so perturbatively at large m in order
to maintain control. In an upcoming paper we will analyze the same flow for finite m

numerically [13].
As we discuss in more detail in appendix B, the consistent elementary boundary conditions

for the minimal models on the half-space are well-known to be the Cardy boundary conditions.
They are labeled by two integers:

a ≡ (a1, a2)m, 1 ≤ a1 ≤ m− 1, 1 ≤ a2 ≤ m, (a1, a2) ≃ (m− a1,m+ 1− a2) . (1.1)

Each of these allowed elementary boundary conditions is also a consistent starting point
of the RG flow in AdS.
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The flow itself is triggered by deforming the bulk theory by the ϕ(1,3) operator. In AdS
the integrability of these flows [14] does not appear to survive, but at large m the flow is
under perturbative control [15] (see also [16] for a review). By all accounts the bulk flow ends
in the (m − 1)’th minimal model, but the fate of the boundary conditions is less clear. A
central question in this work is how precisely the flow in the space of boundary conditions
on AdS differs from that on the flat half-space.

On the flat half-space the RG flow was analyzed perturbatively in [17]. For example, for
a1, a2 ≪ m and a2 > 1 the authors of [17] found evidence for a natural flow from (a1, a2)m
to (a2 − 1, a1)m−1. Together with earlier discovered boundary flows within the m’th minimal
model [18, 19], there is an interesting web of flows as shown diagrammatically in figure 2
of [17]. In particular, the diagram shows that reaching (a2, a1)m−1 from (a1, a2)m can only
be done through a sequence of flows that passes through two intermediate fixed points:

(a1, a2)m →
min(a1,a2)⊕

l=1
(a1 +a2 +1−2l, 1)m →

min(a1,a2)⊕
l=1

(1, a1 +a2 +1−2l)m−1 → (a2, a1)m−1 ,

(1.2)
where the first and last arrow correspond to the boundary flow of [18, 19] (with opposite
signs) and the second arrow to a bulk flow.

The “boundary follows the bulk” principle means that, in contrast to [17], we should not
have to contend with independent couplings and beta functions for the boundary operators
in AdS. This considerably simplifies our analysis. We provide a bit of evidence for a much
simpler picture and, based on the anomalous dimensions of boundary operators, speculate that

(a1, a2)m → (a2, a1)m−1 , (1.3)

is the covariant flow in AdS.
Below we will analyze the perturbed one-point functions of bulk operators and two-point

functions of boundary operators. One peculiar feature is the appearance of divergences linear
in m in certain integrals which are cancelled by 1/m behavior in the (OPE) coefficients
that multiply the integrals. The divergences themselves are entirely analogous to the 1/ϵ
poles in dimensional regularization (and one may call them ‘1/(1/m) poles’). Normally one
would add suitable counterterms to renormalize these divergences, but there is no need to
do so if they multiply suppressed coefficients. This phenomenon however invalidates any
estimate of the magnitude of certain contributions (in the 1/m expansion) that is based
purely on OPE coefficients.

Material in the appendices. Our perturbative QFT in AdS results are obtained by Weyl
rescaling and integrating correlation functions of two-dimensional BCFTs. These BCFT
correlators warrant a separate discussion, which we present in appendices A (for general
2d BCFTs) and B (for the minimal models specifically). The material presented there is
a substantial part of the work done for this paper and contains several new results.1 As
such it could have been included in the main text, but its inclusion as an appendix hopefully

1In particular, to the best of our knowledge the equations (B.24), (B.43), (B.58), (B.72) are all new. We
would also like to highlight equations (B.30), (B.51), (B.76), (B.63), (B.64). These can in principle be derived
using F-matrices, but the latter are usually difficult to implement for continuous values of the parameters.
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clarifies that it is stand-alone material which might be useful beyond the QFT in AdS
discussion. We advise the reader to at least briefly consult these appendices before starting
with subsection 3.3 and section 4.

Supplementary material. Attached to this paper we have included a Mathematica
notebook ancillary.nb which contains all the substantial computations done in this work.

2 General principles

In this and the next section we will discuss some general principles of QFT in AdS as well as
one-loop perturbation theory. Many of these principles have appeared (sometimes implicitly)
in the literature to date, but we think that it is useful to present a systematic viewpoint.

2.1 From BCFT to AdS

In Poincaré coordinates the AdS metric reads

ds2 = gµνdx
µdxν = R2

z2 (dz
2 + dx⃗2) , (2.1)

and it is immediately seen that AdSd+1 is Weyl equivalent to the half-space defined as the
subspace of flat Rd+1 with z > 0. Therefore any consistent CFT defined on a half-space, so
any BCFT, can immediately be put in AdS by the usual Weyl rescaling rules. To illustrate
this consider for example the general form of the BCFT one- and two-point functions of
scalar conformal primaries:

⟨O(x⃗, z)⟩BCFT = BO
(2z)∆ ,

⟨O1(x⃗1, z1)O2(x⃗2, z2)⟩BCFT = f(ξ)
(2z1)∆1(2z2)∆2

, ξ = (x⃗1 − x⃗2)2 + (z1 − z2)2

4z1z2
,

(2.2)

with BO a BCFT-dependent coefficient and f(ξ) a BCFT-dependent function. For these
operators the Weyl rescaling rule is simply

⟨O(x⃗, z) . . .⟩AdS = (z/R)∆⟨O(x⃗, z) . . .⟩BCFT , (2.3)

and therefore

(2R)∆⟨O(x⃗, z)⟩AdS = BO ,

(2R)∆1+∆2⟨O1(x⃗1, z1)O2(x⃗2, z2)⟩AdS = f(ξ) .
(2.4)

In words, we see that one-point functions are constant and two-point functions depend only
on the geodesic distance d1,2 since

2ξ + 1 = cosh(d1,2/R) . (2.5)

Let us now draw some more general lessons. The form (2.4) is also the one required
by AdS general covariance, fundamentally because the BCFT conformal algebra so(d+ 1, 1)
is precisely the same as the AdSd+1 isometry algebra. There are in fact no further Ward
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identities (at fixed R) that follow from conformal invariance of the theory: the form (2.4) is
the most general one for an arbitrary non-conformal QFT in AdS.2 Therefore one needs to
work a little harder to see that the bulk theory is conformal. One method is to inspect the
undetermined functions like f(ξ) in order to find out that they are compatible with a bulk
conformal OPE. Another is to compare the theories at different values of R. For example, in
a general QFT with a mass scale µ the one-point function coefficients BO can be complicated
functions of µR, whereas in a CFT the R-dependence must be trivial.

The above analysis immediately extends to higher-point functions. Covariant correlation
functions must depend only on the geodesic distances between points and, for non-conformal
theories, on the dimensionless combination µR. These dependences are not otherwise
constrained by first principles.

In the above we used the dimensionless combinations R∆O(x⃗, z). In a general non-
conformal theory the bulk operator may of course obtain a non-trivial scaling, which can
however similarly be offset with powers of R. It is convenient to always work with such a
dimensionless version of the bulk operators.

2.2 Towards the boundary

Consider now sending the insertion points towards the conformal boundary of AdS by taking
z → 0. For BCFT correlation functions this limit is defined by the boundary operator
expansion. For scalar primaries we can for example write:

⟨O(x⃗, z) . . .⟩BCFT =
∑
Ô

z∆̂Ô−∆OB Ô
O ⟨Ô(x⃗) . . .⟩BCFT , (2.6)

with Ô(x⃗) a boundary operator. The AdS version then reads:

(2R)∆O⟨O(x⃗, z) . . .⟩AdS =
∑
Ô

z∆̂ÔB Ô
O ⟨Ô(x⃗) . . .⟩AdS , (2.7)

so we Weyl rescale the bulk operator but not the boundary operator. The boundary operator
correlation functions are then unchanged, for example:

⟨Ô(x⃗)Ô(y⃗)⟩BCFT = 1
(x⃗− y⃗)2∆̂Ô

= ⟨Ô(x⃗)Ô(y⃗)⟩AdS , (2.8)

and similarly we find the usual conformal structures for any n-point function of boundary
operators.

How does this work for a non-conformal QFT in AdS? The general idea, formulated for
example in [10], is that there is still a convergent state-operator correspondence, or more
precisely a correspondence between bulk states and boundary operators. If the AdS radial
Hamiltonian can be diagonalized and has discrete spectrum then it defines a set of boundary
operators that transform covariantly under conformal transformations. The expansion as
in (2.7) is then fixed by symmetry; one quick way to conclude this is to notice the functional
form of the ⟨O(x⃗, z)Ô(y⃗)⟩ two-point function is completely fixed. For a non-conformal field
theory the coefficients b Ô

O and ∆̂ can depend non-trivially on the dimensionless ratio µR.
2This phenomenon extends to spinning operators. For example, the two-point function of (not necessarily

traceless) spin 2 operators in AdS as computed recently in [8] essentially agrees with the corresponding BCFT
correlator [20].
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2.2.1 Distance versus curvature

Consider a non-conformal field theory in AdS and hold fixed its mass scale µ. Correlation
functions of local bulk operators can have an arbitrary dependence on invariant distances,
say d(·, ·)/R, and on the combination µR. Physically, however, it is not immediately clear
what happens when we consider the near-boundary or large-distance limit of these correlation
functions. Do we always observe the infrared behavior of the theory, as would be the case
for theories in flat space? Or does the curvature intervene and cut off the RG flow at the
scale µR? It appears to us that the latter option must be realized. (This viewpoint was also
taken in [3]. As argued in that paper, see also [4], observables do not need to be smooth
as a function of µR.) To see this we appeal to the boundary operator expansion which
ensures that every correlation function has a convergent boundary block decomposition. The
dimensionless parameters ∆̂O and b Ô

O appearing in this decomposition are insensitive to
any distances, and therefore can only depend on µR. So we conclude that, by varying the
curvature radius, we should be able to see the entire RG flow even if we restrict ourselves to
boundary correlation functions (or, more generally, the longest distances in AdS).

3 Hyperbolic life at one loop

Suppose we switch on a marginal or relevant deformation in AdSD by a local operator
O(x) with scaling dimension ∆O. The correlation functions in the deformed theory can be
computed perturbatively by expanding

⟨. . . exp
(
−gR∆O−D

∫
dDx

√
gO(x) + Sc.t.

)
⟩ , (3.1)

in the dimensionless coupling g. (We do not expect denoting the metric by gµν and the
coupling by g to cause any confusion; in particular, the latter will always appear outside
integrals.) Rather than introducing a new dimensionful parameter, we have introduced the
naturally available AdS curvature radius to make the perturbation dimensionless.

The counterterm action in the above expression is necessary to cancel both bulk and
boundary divergences. The bulk divergences are of the UV type. They are essentially
unchanged compared to those in flat space, although new counterterms involving the AdS
curvature may be needed. Their renormalization is well understood, see for example [12],
so we will only briefly consider them in the next subsection. Afterwards we will focus on
the infrared divergences which arise close to the AdS boundary.

3.1 Ultraviolet behavior

In this subsection we will consider a nearly marginal deformation, so we set

∆O = D − ϵ , (3.2)

and consider the limit of small ϵ.
Let us first investigate the one-loop running in AdS and in BCFT. To this end we consider

1
2g

2µ2ϵ
∫
dDx1

√
gO(x1)

∫
dDx2

√
gO(x2) , (3.3)

– 6 –
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in either setup. We can assume the self-OPE of O(x) to take the form

O(x)O(y) = 1
|x− y|2∆O

+ COOOO(y)
|x− y|∆O

+ . . . , (3.4)

so the term leading to renormalization of the coupling constant reads

1
2g

2µ2ϵCOOO

∫
dDx2

√
gO(x2)×


∫
ddx⃗

∫
0 dz1|x1 − x2|−∆O BCFT∫

ddx⃗
∫

0 dz1R
D−∆Oz∆O−D

1 |x1 − x2|−∆O AdS
(3.5)

with the extra factors in the AdS integral originating from the metric determinant and the
Weyl rescaling, with D = d + 1. Doing the parallel integral yields

1
2g

2µ2ϵCOOO
πd/2Γ((∆− d)/2)

Γ(∆/2)

∫
dDx2

√
gO(x2)×


∫

0 dz1|z1 − z2|ϵ−1 BCFT∫
0 dz1R

ϵz−ϵ1 |z1 − z2|ϵ−1 AdS
(3.6)

The integral over the orthogonal direction diverges, but since we are only interested in
the short-distance singularities we can just cut it off at a distance L from z2. In a more
physical setup such an L would more naturally be provided by another operator insertion,
and so one should think of L as the typical scale of the observable under consideration.
With such a cutoff we find:

1
2ϵg

2µ2ϵCOOO
πd/2Γ((∆− d)/2)

Γ(∆/2)

∫
dDx2

√
gO(x2)×


Lϵ BCFTLϵ L≪ R

Rϵ R≪ L
AdS

(3.7)
where we ignored non-pole terms in ϵ — in AdS these are a non-trivial function of R/L for
which we show the dominant term. From this computation we can first of all conclude that
the coupling self-renormalization is the same in both theories. Secondly, to the extent that
we can trust this one-loop result, we see that in AdS the natural dimensionless combination
is µR for sufficiently large distances. On the other hand, in BCFT the natural dimensionless
ratio is µL (as long as we can ignore boundary effects). This is again in agreement with
the general discussion presented above, where we argued that in AdS the coupling constants
naturally run with the curvature radius R and not with the size L of the observable. This
also provides a concrete illustration of the picture sketched in the introduction of [4].

Another interesting aspect of renormalization in curved space is the existence, for
every local operator O(x) of dimension ∆, of sequences of additional local operators of
the schematic form

(Riemann)nO(x) , (3.8)

where (Riemann)n is a degree n homogeneous polynomial in the Riemann tensor with index
contractions chosen at will. These operators will have dimensions ∆+ 2n and it is essential
to incorporate them in order to understand operator mixing in perturbation theory.

This phenomenon arises for example when we consider the integral of the first term
in equation (3.4). Let us use point-splitting to regulate the corresponding short-distance
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divergence in the integral. In flat space we then find a simple power-law divergence Λ2∆−D,
which can be absorbed by including a (divergent) operator mixing with the identity operator
1. In AdS we will of course find the same divergence to leading order but there can also
be subleading terms of the form Λ2∆−D−2n. If some of these terms are divergent then they
need to be renormalized, and for scalar operators the correct way to do this is by including
operator mixing with the additional operator (Ric)n1. Notice finally that, if ∆ = D − ϵ and
D is even then there might in principle appear 1/ϵ poles as well, but for AdS an explicit
computation shows that this is not the case.

Consider now a theory where there exist two operators O1(x) and O2(x) with scaling
dimensions such that ∆2 = ∆1 + 2 (plus perhaps perturbatively small corrections) and
otherwise the same quantum numbers. In that case there is an ambiguity: for any real
α the operator

O′
2(x) = O2(x) + α(Ric)(x)O1(x) , (3.9)

will be just as good as O2(x). On a general curved manifold there is no scheme-independent
way to fix such ambiguities, although exceptions exist in special cases. For example, in [21] the
coefficients were fixed on the round S4 by demanding that two-point functions are diagonal
and one-point functions are vanishing. The extra symmetries of AdS do not help much in this
regard, although at a fixed point one can fix α by demanding that the one-point functions
match those of the corresponding BCFT.

3.2 Infrared divergences

Infrared divergences in conformal perturbation theory are not uncommon. For example, in flat
space conformal correlation functions fall off like x−2∆, so infrared divergences arise whenever
∆ ≤ d/2. An example of such a strongly relevant deformation is the mass deformation
for the CFT of a free scalar field ϕ. A divergence can already be found at first order in
perturbation theory:

δ⟨ϕ(0)ϕ(y)⟩ = −µ2
∫
dDx ⟨ϕ(0)ϕ(y)ϕ2(x)⟩ ≈ −µ2SD

∫
dr

rD−3 = −µ2SD
R4−D

4−D
, (3.10)

where we had to cut off the integral at |x| < R to make it finite. One might now decide to
stop the computation here, because the infrared divergence indicates that the theory becomes
strongly coupled at large distances. This is however too pessimistic. After all, the flat-space
propagator of a massive free scalar field has a good expansion in µ2x2 which we should be
able to compute perturbatively. And indeed the divergence can easily be cancelled if we
add a boundary counterterm at |x| = R. Since

µ2R

4−D

∫
|x|=R

dD−1x ⟨ϕ2(0)ϕ2(x)⟩ = µ2SD
R4−D

4−D
, (3.11)

a deformation of the form:

⟨. . . exp
(
−µ2

∫
|x|≤R

dDxϕ2(x) + µ2R

4−D

∫
|x|=R

dD−1xϕ2(x)
)
⟩ , (3.12)

is infrared finite to first order in perturbation theory.
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In AdS the situation is richer. For a bulk operator O (not necessarily free), substituting
the boundary operator expansion, we find for small z that∫

dDx
√
gO(x) ≈

∫
ddx⃗

∫
0
dz BOÔz

∆̂Ô−d−1Ô(x⃗) , (3.13)

which is divergent for any marginal or relevant boundary operator with ∆̂Ô ≤ d. We can
remove the leading divergence by cutting the z integral off at a small value a and adding
a counterterm

R

∆̂Ô − d

∫
ddx⃗

√
hO(x⃗, a) , (3.14)

with h the induced metric at the cutoff surface and an extra R inserted for dimensional reasons.
Notice that the counterterm involves the bulk operator O(x⃗, a). Subleading divergences can
be removed by adding other operators or by a counterterm involving normal derivatives,
for example ∫

ddx⃗
√
hnµ∂µO(x⃗, a) , (3.15)

and appropriately tuning the coefficients.
When ∆̂Ô = d the divergence is logarithmic and we need a counterterm of the form

log(a/R)
∫
ddx⃗

√
hO(x⃗, a) , (3.16)

where we inserted a factor R on dimensional grounds. This leads to a breaking of conformal
invariance, which we may capture in terms of a beta function for the boundary coupling.
We will investigate this in more detail in section 3.2.2.

3.2.1 Covariance and comparison to BCFT

The near-boundary divergences in conformal perturbation theory in AdS are similar to those
found in BCFT. Indeed, at any loop order the integrands in an AdS background differ
from those in a flat BCFT background only by the insertion of Weyl factors and the metric
determinant. There is however an important qualitative difference: the AdS divergences are
of an infrared nature and the BCFT divergences are of an ultraviolet nature. This completely
changes the way in which the divergences are cancelled by counterterms.

First, in AdS the counterterms are naturally defined on the cutoff surface in order to retain
covariance. To see this, consider a Killing vector field ξµ in AdS, and consider the invariance
of the first-order correction to any correlation function ⟨. . .⟩ along ξ. Concretely this means
that we should impose that transporting every operator in the perturbed correlation function
along ξ by means of the Lie derivative Lξ gives zero. Since the bare correlation function is
by assumption invariant, we can move the Lie derivative to the perturbing operator O(x),
leading to the following demand:

0 =
∫
a
dDx

√
g ξµ∇µ⟨O(x) . . .⟩+ LξSc.t. , (3.17)
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where we assumed that O(x) is a scalar. After integration by parts we find a boundary
term at the cutoff surface:

0 =
∫
ddx⃗

√
h ξµnµ⟨O(x) . . .⟩

∣∣∣∣
a
+ LξSc.t. . (3.18)

This is a simple differential equation for the counterterm action. It is most naturally solved
by a counterterm on the near-boundary cutoff surface, which is why such counterterms
are the correct covariant ones.

In BCFT no such constraint arises because all the remaining Killing vector fields leave
the boundary invariant and therefore obey nµξ

µ = 0. It is then customary, and indeed
much simpler, to define the counterterm action on the actual boundary rather than at the
cutoff surface. Such a procedure is of course entirely in keeping with the usual way that
UV divergences are renormalized. For example, consider the point-splitting regularization
procedure to renormalize a bare local operator Oi(x). The renormalization is always done
by replacing the bare operator by a renormalized operator Z j

i Oj(x), which in particular
is inserted at exactly the same point as the original operator rather than, say, integrated
along the cutoff surface.

As we have seen, demanding general covariance also means that the boundary countert-
erms are completely determined by the bulk RG flow. In BQFT it is well known that there
can be independent bulk and boundary RG flows; in particular, the boundary can undergo an
RG flow while the bulk theory remains critical. In AdS/CFT a similar phenomenon occurs
for example in the form of the double-trace flow [22], where a double-trace deformation of the
CFT is encoded holographically by a changing of the boundary conditions of the bulk fields.
However such flows are unnatural in the precise sense that they do not retain AdS covariance.
If we insist that the deformed correlation functions remain covariant (and if there is no exactly
marginal boundary coupling) then there is no freedom left to apply independent boundary
deformations. In this way we can say that “the boundary follows the bulk” for QFT in AdS.

3.2.2 Marginal boundary deformations and covariance

It is worth discussing how the above discussion is modified in the presence of an exactly
marginal boundary operator. As is nicely discussed in section 6 [23] and more recently also
in [24], the general idea is that in such cases a boundary RG flow (dis)appears through a so-
called saddle-node bifurcation, just as happens in ordinary field theories (see for example [25]).
Here we will confirm this picture by establishing that boundary covariance is indeed violated
without fine-tuning a boundary coupling, and consequently that unitarity covariant boundary
conditions generically disappear at this point.3

Suppose then that along the bulk RG flow we have arrived at a point with an exactly
marginal boundary operator Ô(x⃗). If it appears in the boundary operator expansion then
we may write:

(2R)∆OO(x⃗, z) = z∆̂B Ô
O Ô(x⃗) + . . . , (3.19)

3This subsection arose from discussions with L. Di Pietro, based on results obtained in [24].
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with ∆̂ ≡ ∆̂Ô = d and a non-zero coefficient B Ô
O . As we mentioned above, the first-order

correction then features a logarithmic divergence:

δ⟨. . .⟩ = −λB Ô
O

∫
a

dz

z

∫
ddx⃗ ⟨Ô(x⃗) . . .⟩ = −λB Ô

O log(a/R)
∫
ddx⃗ ⟨Ô(x⃗) . . .⟩ , (3.20)

and to cancel it we add a counterterm at the cutoff surface:

λ log(a/R)
∫
ddx⃗

√
hO(x⃗, a) + ĝ

∫
ddx⃗

√
hO(x⃗, a) . (3.21)

Here the first logarithmic term cancels the divergence and we also added a finite term with
an arbitrary coefficient ĝ because why not.

We will now show that this counterterm breaks AdS covariance, by repeating the argument
above. Recall that the AdS Killing vector fields ξµ∂µ in Poincaré coordinates (x⃗, z) are all
of the form

ξi(x⃗, z) = βi(x⃗)− z2

2dδ
ij∂j∂kβ

k(x⃗) , ξz = z

d
∂kβk(z) , (3.22)

where βi(x⃗)∂i is a conformal Killing vector field on the boundary, so

∂iβj + ∂jβi ∝ δij . (3.23)

(For example, if βi(x⃗) is an ordinary Killing vector field then the AdS uplift is simply
ξµ∂µ = βi(x⃗)∂i, whereas for the scaling vector field we find ξµ∂µ = z∂z + x⃗ · ∂x⃗.) As in the
previous subsubsection, we compute (with ĝ = 0 for brevity)

−δ⟨Lξ . . .⟩ = λ

∫
a
dDx

√
g ⟨. . .LξO(x)⟩ − λ log(a/R)

∫
ddx⃗

√
h ⟨. . .LξO(x⃗, a)⟩

= λ

∫
ddx⃗

√
hnµξµ⟨. . .O(x⃗, a)⟩ − λ log(a/R)

∫
ddx⃗

√
h ⟨. . .LξO(x⃗, a)⟩

= λB Ô
O
d

∫
ddx⃗ (∂kβk) ⟨. . . Ô(x⃗)⟩ .

(3.24)

Here, on the first line we again used covariance of the full unperturbed correlation function
to move the Lie derivative to the perturbing operator O(x). Then we used integration by
parts, with nµ∂µ = z∂z in Poincaré coordinates. The second term on the second line, which
multiplies the logarithm, actually vanishes as a → 0 because in that limit it becomes just
a conformal transformation of an integrated operator of dimension d. For the same reason
the term multiplying ĝ in (3.21) would also not contribute to the violation. Finally we used
the bulk-boundary expansion and (3.22).

From equation (3.24) we see that the AdS isometries that correspond to conformal (but
not ordinary) Killing vector fields on the boundary are broken by the bulk perturbation.
One can try to fix this issue by adding a finite counterterm as in equation (3.21) with ĝ

proportional to
√
λ. In that case we have another term at O(λ) of the form:

ĝ2

2

∫
ddx⃗

√
hO(x⃗, a)

∫
ddy⃗

√
hO(y⃗, a) . (3.25)
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Using first the bulk-boundary and then the boundary-boundary OPEs, we find another
divergence in this integral as x⃗ approaches y⃗.4 To regulate this divergence we will introduce a
further regulator |x⃗− y⃗| > a. Then a small computation shows that we need the counterterm

− ĝ
2

2 B
Ô

O Sd ĈÔÔÔ ln(a/R)
∫
ddx⃗

√
hO(x⃗, a) , (3.26)

where ĈÔÔÔ is the boundary OPE coefficient and Sd the volume of a unit sphere in d

dimensions. The logarithmic divergence again leads to a violation of AdS covariance, this
time of the form:

δĝ⟨Lξ . . .⟩ = − ĝ
2

2dB
Ô

O BOÔ Sd ĈÔÔÔ

∫
ddx⃗ (∂kβk) ⟨. . . Ô(x⃗)⟩ , (3.27)

so we can actually cancel the non-covariance by setting:

λ− ĝ2BOÔ Sd ĈÔÔÔ = 0 . (3.28)

For non-zero BOÔ and ĈÔÔÔ we see that only one sign of λ gives a real solution for ĝ. On
the other side we must break either unitarity or AdS covariance.

The simplest example of this phenomenon is the Breitenlohner-Freedman bound. For a
free massive bulk scalar with m2R2 = ∆(∆− d) the bound is saturated at ∆ = d/2 where the
Dirichlet and Neumann boundary conditions coincide. If we now perform a mass deformation
then we find a logarithmic infrared divergence at the first order, which can be canceled by
the exactly marginal double twist boundary operator. If we want to retain covariance we
need to tune the coefficient of its coupling, which can only be chosen real for m2R2 > −d2/4.
We refer to [5, 23, 24] for other interesting examples of this phenomenon.

3.2.3 Comparison to holographic renormalization

The importance of the covariance of the counterterms is familiar from previous works on
holographic renormalization in the gauge/gravity dualities; see [27] for an introduction. Most
of that work considers classical gravity with matter on AAdS backgrounds, although recently
loop corrections were also considered more systematically in [28, 29]. In a gravity setup there
are no local bulk operators and it is more natural to consider the partition function as a
functional of the boundary conditions ϕ(0) for the bulk fields. In the modern understanding
the one-point function of the boundary operator is then given by the (renormalized) conjugate
radial momentum of the bulk field. The renormalization of the divergences in the on-shell
action leads to an infamous factor 2∆− d [30] compared to a more naive prescription.

We do not consider theories of gravity. Therefore we do have local bulk operators and we
can simply consider their limit as we send them to the boundary. One immediately verifies [31]
that this leads to the same normalization for two-point functions, including the extra factor
2∆− d, because of the difference between the bulk-bulk and bulk-boundary propagator:

Gbu-bu(x, x′) = z∆
( 1
2∆− d

Gbu-bou(x⃗, x′) +O(z)
)
, (3.29)

4It is not a priori clear that this divergence is accurately captured by this sequence of operator expansions,
since part of the integral is at the boundary of its domain of convergence. Our analysis can probably be made
rigorous using the local blocks in [26]. We however expect the conclusions to be the same.
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holding x′ fixed in the bulk. Although this prescription suffices for our purposes, it does not
give all the same information as the more familiar holographic renormalization prescription.
In particular, since the boundary correlation functions are never integrated (against sources)
we are insensitive to their potentially ill-defined distributional nature. Correspondingly it is
not straightforward to see contact terms in Ward identities of boundary currents (including a
potential stress tensor) or their anomalies [32]. When such questions are important for QFT
in AdS we expect that a more refined analysis will be needed. It is then a matter of taste
whether to take the more abstract viewpoint of conformal perturbation theory, as we do in
this work, or Lagrangian perturbation theory, as was for example done in [29].5

3.2.4 Is AdS a box?

A massive particle cannot reach the conformal boundary of AdS by moving along a geodesic,
even though part of that boundary is certainly in causal contact with it. In this sense AdS
confines, and can be seen as a box. On the other hand, for massless particles AdS is much
less box-like since they can reach the boundary in finite global time.

Even for gapped theories, however, it is not at all immediate that (conformal) perturbation
theory in an AdS background is automatically infrared finite. The earliest claim that it is
appears to date from [2]. In that paper the authors claim that “perturbation theory diagrams
are infrared well-behaved” based on the exponential falloff of bulk-bulk propagators with
distance. However in actuality this exponential falloff can be offset by the exponentially
growing area of spheres in hyperbolic space; a fact that is actually mentioned a little earlier in
the same paper. As we have just seen, whether a perturbative computation is infrared finite
or not depends on the spectrum of boundary operators, and there is certainly the possibility
of infrared divergences. We are led to conclude that AdS is perhaps not that great of a box.

One major advantage nevertheless appears to remain: after renormalization the boundary
correlation functions are likely unambiguously defined for massless and massive theories alike,
even when the corresponding massless S-matrix elements are infrared divergent.

3.3 Anomalous dimensions of boundary operators

It is interesting to consider the general first-order correction to two-point functions of boundary
operators under a bulk deformation. Our goal will be to demonstrate that these correlation
functions remain conformal at first order, and that for equal operators there generically
appears a logarithmic divergence that gives rise to an anomalous dimension.

To first order the two-point function is given by:

⟨ψ̂1(x⃗1)ψ̂2(x⃗2)⟩ =
δ12

x2∆̂1
12

− gR∆−D
∫
dDx

√
g ⟨ϕ(x)ψ̂1(x⃗1)ψ̂2(x⃗2)⟩+ (counterterms) +O(g2) ,

(3.30)
for a generic deformation by a bulk operator denoted ϕ(x) with dimension ∆. Notice that x⃗1
and x⃗2 are boundary points, x12 ≡ |x⃗1 − x⃗2|, and x is a bulk point. We will work in Poincaré
coordinates where z is the transverse coordinate. The dimensionless bulk coupling is denoted g.

5There is one more sense in which the renormalization of the on-shell action, or partition function at loop
level, is richer than that of the correlation functions. According to [33] a specific boundary action is needed in
order to have a well-defined variational principle for the bulk fields. It is unclear to us whether this condition
can be understood from the conformal perturbation theory viewpoint that we take here.
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The boundary counterterms will consist of two parts. First there will be the generic
boundary counterterms discussed in the previous section, which will cancel any divergences
arising as ϕ(x) approaches the boundary away from the insertion points of the boundary
operators. Then there will be wave function renormalization factors that will cancel additional
divergences that appear as ϕ(x) approaches ψ̂(x⃗1) or ψ̂(x⃗2).

The three-point function in equation (3.30) can be decomposed into conformal blocks:

x∆̂1+∆̂2
12 (2R)∆⟨ψ̂1(x⃗1)ψ̂2(x⃗2)ϕ(x⃗, z)⟩ =

(
z2 + (x⃗2 − x⃗)2

z2 + (x⃗1 − x⃗)2

)∆̂12/2∑
k

B k
ϕ Ĉkψ̂ψ̂f(∆̂12, ∆̂k, v) ,

(3.31)

where ∆̂12 ≡ ∆̂1 − ∆̂2 and the Weyl rescaling from BCFT to AdS means that we replace
a factor (2z)−∆ with (2R)−∆. The cross-ratio v is defined as

v = z2x2
12

(z2 + (x⃗1 − x⃗)2)(z2 + (x⃗2 − x⃗)2) . (3.32)

The conformal blocks were computed in [34, 35] and in our conventions read:

f(∆̂12, ∆̂k, v) = (4v)∆̂k/2
2F1

(
∆̂k + ∆̂12

2 ,
∆̂k − ∆̂12

2 ; 1 + ∆̂k −
d

2 ; v
)
. (3.33)

This conformal block decomposition converges everywhere in AdS except on the geodesic
that connects x⃗1 and x⃗2. Our approach will be to swap the conformal block decomposition
with the integral and analyze the resulting expressions.

3.3.1 Identical operators

We will first focus on identical boundary operators with dimension ∆̂1. This requires us
to integrate:

Gk(x12) ≡
∫
ddx⃗

∫ ∞

a

dz

zd+1 f(0, ∆̂k, v) , (3.34)

where we introduced a near-boundary cutoff a. To do this integral we power-expand f(0, ∆̂k, v)
around v = 0 and perform the integration term-wise using equations (C.8) and (C.10) in
appendix C. The divergences that we find as we send a → 0 are now of two types.

First, for boundary operators with ∆̂k < d we find a power-law divergence that has
exactly the form predicted by the near-boundary operator expansion discussed in the previous
section. If such operators are present then we must add the corresponding counterterms to
the ‘counterterm’ expression in (3.30). It is however easy to verify that these counterterms
do not give any finite contributions and therefore we can (and will) ignore these divergences
in what follows.

Secondly we find a universal logarithmic divergence which is present for all values of ∆,
∆̂1 and ∆̂k ̸= 0. More precisely the expression we find is:

Gk(x⃗12) = Xk log(x2
12/a

2) + Yk , (3.35)
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with

Xk = −2∆̂k−∆πd/2
∆̂kΓ

(
1− d

2 + ∆̂k

)
(d− ∆̂k)Γ

(
1 + ∆̂k

2

)2 , (3.36)

Yk = −2∆̂k−∆
∞∑
m=0

πd/2
(

∆̂k
2

)2

m
Γ
(
m+ ∆̂k

2 − d
2

)
m!Γ

(
m+ ∆̂k

2

) (
1− d

2 + ∆̂k

)
m

(
ψ

(
m+ ∆̂k

2

)
− ψ

(
m+ ∆̂k

2 − d

2

))
,

(3.37)

with ψ(n) the digamma function. The logarithmic divergence was not present in our previous
near-boundary analysis and must therefore be due to the presence of the boundary operators.
It can be cancelled with a wave function renormalization factor. If we sum over all the blocks:

δ∆̂ ≡
∑
k ̸=1

B k
ϕ Ĉkψ̂ψ̂Xk ,

δĈ ≡
∑
k ̸=1

B k
ϕ Ĉkψ̂ψ̂Yk ,

(3.38)

then the addition of the wave function renormalization factor

Zψ̂ = 1− 1
2g δ∆̂ log

(
a2/R2

)
+O(g2) , (3.39)

produces the finite one-loop result:

(x12)2∆̂1⟨ψ̂R1 (x⃗1)ψ̂R1 (x⃗2)⟩ = 1− g
(
δ∆̂ log(x2

12/R
2) + δĈ

)
+O(g2) . (3.40)

As expected, this expression is compatible with boundary conformal covariance, and we read
off that δ∆̂ is exactly the one-loop anomalous dimension of the boundary operator.

One remaining question concerns the convergence of the sums in (3.38). There is no a
priori reason that they are convergent, since our integration domain includes a line where
the sum over conformal blocks diverges. In the next section we will show how the sum is
in fact divergent in certain examples. Fortunately the right answer can be recovered easily
with a simple regularization procedure.

Recently the authors of [8] have also derived a non-perturbative expression for the scaling
dimension of ψ̂. Their derivation uses special properties of the bulk stress tensor. It is thereby
different from ours, but their ‘naive’ expression agrees with the one presented here when
expanded to first order in the coupling. (To see this one uses that the trace of the stress tensor
is proportional to the deforming operator.) In contrast with the more simplistic regularizations
that we use below, the paper [8] also provides a first-principles derivation of an absolutely
convergent modification of this sum rule. The essential ingredients of this derivation are the
recently derived local blocks of [26] for the decomposition of the three-point functions.

3.3.2 Example: anomalous dimension of D in AdS2

As an example, we will take a CFT in AdS2 and compute the first-order anomalous dimension
of the displacement operator D under a deformation by an operator ϕ which we can take to

– 15 –



J
H
E
P
0
3
(
2
0
2
4
)
0
0
5

be a generic scalar bulk Virasoro primary. We recall that D is a universal (global) boundary
primary operator with scaling dimension ∆D = 2. Below we will make essential use of
several results presented in appendices A.2 and A.3, which the reader should probably
consult at this stage.

As discussed in appendix A.3.5, the boundary modes exchanged in the connected part
of ⟨DDϕ⟩ have ∆̂k = k = 2N>0 and

B k
ϕ ĈkDD = Bϕ

√
π∆e

iπk
2 (∆(k − 2)(k + 1) + 4)Γ(k)

22k−1Γ
(
k − 1

2

) . (3.41)

According to the previous discussion, the anomalous dimension of D should read (taking
into account the non-unit normalization of D)

δ∆D = 2π∆
c

Bϕ
2∆

∑
k=2,4,...

Sk , (3.42)

where

Sk = 2−ke
iπk

2
k(2k − 1)(∆(k − 2)(k + 1) + 4)Γ(k − 1)

Γ
(
k
2 + 1

)2 . (3.43)

Since Sk ∼ k1/3 as k → ∞, this sum is divergent because of operators with high scaling
dimensions. A simple way of regularizing it is to define

S(L) =
∑

k=2,4,...
Ske

−kL . (3.44)

After performing the sum we can take the L→ 0 limit of the expansion of S(L) to find

δ∆D = 2
√
π∆
c

Bϕ
2∆ lim

L→0
S(L) = 4π

c

Bϕ
2∆ (∆− 2)∆ . (3.45)

This is the correct result: one would obtain the same answer after integrating the correlator
of eq. (A.77) over AdS2.

We can likewise compute the anomalous dimension of D2, i.e. the first (global) boundary
primary after D in the D × D OPE. The relevant correlation function is discussed in
appendix A.3.6, and in particular equation (A.87) informs us that ∆̂k = k = 2N>0 and that

B k
ϕ ĈkD2D2 = Bϕ

(
c

(1)
k ∆+ c

(2)
k ∆2 + c

(3)
k ∆3 + c

(4)
k ∆4

)
, (3.46)

where the ck’s are defined in eq. (A.88). The anomalous dimension of D2 then reads (again
we divided by the normalization of D2)

δ∆D2 = Bϕ
2∆

10
√
π

c(5c+ 22)
∑

k=2,4,...
Sk , (3.47)

where

Sk =
2kkΓ

(
k + 1

2

)
(k − 1)Γ

(
k
2 + 1

)2

(
c

(1)
k ∆+ c

(2)
k ∆2 + c

(3)
k ∆3 + c

(4)
k ∆4

)
. (3.48)
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The sum is again divergent due to boundary operators with high scaling dimensions. As
before, we can regularize it by defining

S(L) =
∑

k=2,4,...
Ske

−kL , (3.49)

and δ∆D2 can be recovered by taking the L → 0 of S(L), to find

δ∆D2 = Bϕ
2∆

2π∆(∆− 2)(20c+ 25(∆− 2)∆ + 64)
c(5c+ 22) . (3.50)

This is once more the correct result, as we have checked by integrating the correlator of
eq. (A.85) over AdS2.

3.3.3 Boundary operators mixing at one-loop

Let us also consider a boundary two-point function of different boundary primary operators.
These must vanish if the bulk RG preserves the AdS isometries:

⟨ψ̂R1 (x⃗1)ψ̂R2 (x⃗2)⟩ = 0 . (3.51)

We will now check that the one-loop correction indeed vanishes. The integral to perform is now:

I1,k =
∫
ddx⃗

∫ ∞

a

dz

zd+1
f(∆̂12, ∆̂k, v)

(z2 + (x⃗1 − x⃗)2)∆̂12/2(z2 + (x⃗2 − x⃗)2)∆̂21/2
. (3.52)

As before, we power-expand each block around v = 0 and, performing the integration term
by term using the contour integral representation for the hypergeometric functions, we
arrive at (u ≡ a/|x⃗12|)

I1,k =
πd/22∆̂k−∆Γ

(
1− d

2 + ∆̂k

)
Γ
(

∆̂k−∆̂12
2

)
Γ
(

∆̂12+∆̂k
2

) |x⃗12|−∆̂1−∆̂2

∫ i∞

−i∞

ds

2πi

∞∑
m=0

u2s−2m−∆̂k

×
Γ(s)Γ

(
2m− s+ ∆̂k − d

2

)
Γ
(
m− s+ ∆̂k

2 − ∆̂12/2
)
Γ
(
m− s+ ∆̂k

2 + ∆̂12/2
)

m! Γ
(
m+ ∆̂k − d

2 + 1
)
Γ(2m− 2s+ ∆̂k + 1)

.

(3.53)

We want to investigate the small u behavior of the expressions above. If we close the contour
to the right there are three series of poles that contribute to the integral:

I. for − ∆̂12
2 + ∆̂k

2 +m− s = −i, i ∈ N, corresponding to u2i−∆̂12 powers;

II. for ∆̂k + 2m− d
2 − s = −i, i ∈ N, corresponding to u2m+2i+∆̂k−d powers;

III. for ∆̂12
2 + ∆̂k

2 +m− s = −i, i ∈ N, corresponding to u2i+∆̂12 powers.

We recognize that the second series gives rise to the familiar infrared divergences that arise
only for ∆̂k < d. Their renormalization was described above and they do not give rise to
finite terms. Depending on the sign of ∆̂12 we however also find that either the type I
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or the type III poles have at least one divergent term.6 Let us consider for concreteness
0 < ∆̂12 < 2. In this case we let(

ψ̂R1
ψ̂R2

)
=
(
Z1 Z12
Z21 Z2

)(
ψ̂1
ψ̂2

)
, (3.54)

with Z1,2 the wave-function renormalizations (eq. (3.39)). In order to remove the leading
a−∆̂12 we need to set:

Z12 = g a−∆̂12
∑
k

Bϕ
kĈ12kδZ12,k +O(g2) , Z21 = 0. (3.55)

The quantity δZ12,k is simply determined by the most divergent power in I1,k, that is the
residue of the first pole in the I series. Once again, the removal of this power-law divergence
does not produce any finite terms and we find that the renormalized two-point function of
unequal operators also vanishes at one loop:

⟨ψ̂R1 (x⃗1)ψ̂R2 (x⃗2)⟩ = O(g2) , (3.56)

as expected from conformal covariance. Notice that the additional divergences that arise
for highly unequal operators can be cancelled by introducing a larger mixing matrix that
also includes descendants.

4 Flows between minimal models

Our starting point is the m’th unitary and diagonal minimal model Mm+1,m, with conformal
boundary condition a = (a1, a2)m, on an AdS2 background. As per our general discussion, its
correlation functions are simply the Weyl rescaled correlation functions of the BCFT setup.
In the following we suppose the reader is familiar with the material in appendix B where we
discuss these minimal models and their conformal boundary conditions.

Consider now deforming this theory by the operator ϕ ≡ ϕ(1,3). Perturbed correlation
functions take the form:

⟨. . .⟩g = ⟨. . . exp
(
−gR∆−2

∫
d2x

√
g ϕ(x) + Sc.t.

)
⟩0 , (4.1)

where the counterterm action is to be defined and the coupling g is seen to be dimensionless
if we recall the UV scaling dimension:

∆ = 2h1,3 = 2m− 1
m+ 1 = 2− 4/m+O(m−2) . (4.2)

The one-loop beta function of g reads:

ġ = (2−∆)g − π Cϕϕϕg
2 +O(g3) . (4.3)

Using that Cϕϕϕ = 4/
√
3, we find a fixed point at

g∗ =
√
3

πm
+O(m−2) . (4.4)

6When ∆̂12 = 0 both type I and type III poles contribute and generate the log(u2) divergence associated
to the anomalous dimension of the external operators.
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This perturbative calculation is reliable at large m, so when c is close to 1. Notice that
the presence of the AdS background does not complicate the above analysis. In particular,
as we already discussed in subsection 3.1, at one loop there is no need to include mixing
with the identity operator times the Ricci scalar (even though it has approximately the
same dimension as ϕ(1,3)).

It is well-known that the fixed point we have found corresponds to the (m−1)’th minimal
model, and this is simply the perturbatively controllable limit of the famous ‘staircase’ RG
flow between consecutive minimal models [15]. It is perhaps less well-known that the phase
portrait for this flow on the upper half-plane is significantly richer, because the boundary
can also undergo flows that are independent of the bulk. The perturbative picture was
comprehensively analyzed in [17] and discussed in the introduction. We will now investigate
how it gets modified in an AdS background.

4.1 Infrared divergences

The near-boundary analysis follows the logic of subsection 3.2. To analyze the infrared
divergences at one loop we are led to consider

−gR∆−2
∫ b

a
dy

∫
dx

√
g ⟨ϕ(x) . . .⟩connected

AdS2 , (4.5)

as the infrared cutoff a goes to zero. Notice that we also introduced b, which we choose such
that z > b for all the other insertions. This allows us to focus on the infrared divergences alone.

The boundary operator expansion of ϕ in the BCFT was given in equation (B.16) and,
after subtracting the disconnected piece, contains one (marginally) relevant boundary operator.
Adding the Weyl rescaling factors for AdS we find:

ϕ(x, y)− ⟨ϕ(x, y)⟩ = B
a (1,3)
(1,3) (2R)−∆(2y)h1,3ψ(1,3)(x) + . . . , (4.6)

and therefore our target expression equals

−g 2−h1,3B
a (1,3)
(1,3)

(
bh1,3−1

h1,3 − 1 − ah1,3−1

h1,3 − 1

)∫
dx ⟨ψ(1,3)(x) . . .⟩AdS2 . (4.7)

Since h1,3 < 1, we find a power-law infrared divergence as a → 0. In accordance with our
general discussion, we introduce a counterterm of the form:

− gR∆−1

h1,3 − 1

∫
dx

√
hϕ(x)

∣∣∣∣
y=a

, (4.8)

which indeed, using
√
h = R/y, cancels the divergence when added to the bulk integral.

4.1.1 Large m limit

So far our analysis of the infrared divergences was merely a repetition of our general discussion.
However as m → ∞ we find that h1,3 → 1 and the nearly marginal boundary operator
seemingly produces an extra divergence, namely a pole multiplying the residual finite piece
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proportional to bh1,3−1. However for the minimal models this divergence is cancelled by the
behavior of the bulk-boundary OPE coefficient: from equation (B.31) we find that

B
a (1,3)
(1,3) ∝ 1

m
, (4.9)

as m→ ∞. So the whole expression actually remains finite7 and there is no new divergence!
We would like to stress that we introduce here the following general principle: an integral

that diverges as m → ∞ does not need to be renormalized if it is multiplied by an OPE
coefficient that cancels that divergence. We believe this is justified, and in any case we obtain
manifestly finite answers in the end which, absent some hidden inconsistency, need to be given
a physical interpretation. It would be interesting to understand this phenomenon better, and
perhaps verify whether similar issues arise in the flat-space BQFT analysis.

4.2 Anomalous dimensions of boundary operators

We now turn to the one-loop computation of the two-point function of boundary operators.

4.2.1 Spectrum of boundary Virasoro primaries

Let us consider a generic conformal boundary condition a = (a1, a2)m that supports a
boundary Virasoro primary ψ(r,s) with scaling dimension

∆̂r,s = hr,s =
(
(m+ 1)r −ms

)2 − 1
4m(m+ 1) . (4.10)

The one-loop correction to the two-point correlation function of ψ(r,s) is then

R−∆G1(x12) ≡
∫ ∞

−∞
dx

∫ ∞

a

dy

y2 ⟨ψ(r,s)(x1)ψ(r,s)(x2)ϕ(x+ iy, x− iy)⟩c

− 1
1−∆/2

∫ ∞

−∞

dx

a
⟨ψ(r,s)(x1)ψ(r,s)(x2)ϕ(x+ ia, x− ia)⟩c . (4.11)

The correlation function in the integrands above is8

⟨ψ(r,s)(x1)ψ(r,s)(x2)ϕ(x+ iy, x− iy)⟩c =
G̃(η̃)− α(1,1)

(x2
12)∆̂r,s(2R)∆

, (4.12)

where G̃(η̃) is a sum of three Virasoro blocks

G̃(η̃) = α(1,1)V(1,1)(η̃) + α(1,3)V(1,3)(η̃) + α(1,5)V(1,5)(η̃) , (4.13)

which, as shown in appendix B.5, read (here and below q ≡ s − r ∈ Z)

V(1,1)(η̃)=3 F2

(1−m
m+1 ,

1+mq−r
m+1 ,

1−mq+r
m+1 ; 2−m

m+1 ,
m+3
2m+2;

η̃

4

)
,

V(1,3)(η̃)= η̃h1,3/2
3F2

( 1−m
2m+2 ,

m+2mq−2r+1
2m+2 ,

m−2mq+2r+1
2m+2 ; 3−m2m+2 ,

3m+1
2m+2;

η̃

4

)
,

V(1,5)(η̃)= η̃h1,5/2
3F2

(
m

m+1 ,
2m+mq−r

m+1 ,
2m−mq+r

m+1 ; 3m
m+1 ,

5m+1
2m+2;

η̃

4

)
, (4.14)

7Notice that we are assuming that the correlator ⟨ψ(x) . . .⟩ remains finite in the large m limit. If this is
not the case our analysis will need to be modified.

8This can be obtained from eq. (B.45), upon taking the connected contribution and going to AdS2 via a
Weyl rescaling.
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with cross-ratio η̃ defined as:

η̃ = 4y2(x12)2

((x1 − x)2 + y2) ((x2 − x)2 + y2) , 0 ≤ η̃ ≤ 4 . (4.15)

The coefficients in (4.12) and (4.13) are

α(1,1) ≡ B
a (1,1)
(1,3) , α(1,3) ≡ Ĉa

(r,s)(r,s)(1,3)B
a (1,3)
(1,3) , α(1,5) ≡ Ĉa

(r,s)(r,s)(1,5)B
a (1,5)
(1,3) , (4.16)

with B
a (1,1)
(1,3) , Ba (1,3)

(1,3) , and B
a (1,5)
(1,3) the bulk-boundary coefficients discussed in detail in ap-

pendix B.

Computation at finite m. In order to compute the integrals in eq. (4.11) it is convenient
to discuss separately the various contributions: from V(1,1), V(1,3) and V(1,5). Let us start
from the V(1,1) contribution, which from eq. (4.11) reads

α(1,1)

∫ ∞

−∞
dx

∫ ∞

a

dy

y2
V(1,1)(η̃)− 1
(x2

12)∆̂r,s2∆
−

α(1,1)
1−∆/2

∫ ∞

−∞

dx

a

V(1,1)(η̃)− 1
(x2

12)∆̂r,s2∆

∣∣∣∣
y=a

. (4.17)

To compute these integrals we write V(1,1) as a power-series expansion around η̃ = 0 and
perform the integration term by term using the integration rules of appendix C. Upon
performing the infinite sums and neglecting terms that vanish as we send a→ 0 we find

I(1,1) ≡ α(1,1)

∫ ∞

−∞
dx

∫ ∞

a

dy

y2
V(1,1)(η̃)− 1
(x2

12)∆̂r,s2∆
= δ∆̂(1,1)

r,s (m) log
(
x2

12/a
2)

(x2
12)∆̂r,s

+ f
(1,1)
r,s (m)
(x2

12)∆̂r,s
,

Ic.t.
(1,1) ≡ −

α(1,1)
1−∆/2

∫ ∞

−∞

dx

a

V(1,1)(η̃)− 1
(x2

12)∆̂r,s2∆

∣∣∣∣
y=a

= −2δ∆̂(1,1)
r,s (m)

1−∆/2
1

(x2
12)∆̂r,s

. (4.18)

The function f (1,1)
r,s (m) does not seem to admit a simple closed-form expression, but it is finite

in the m → ∞ limit.9 The coefficient of the logarithm in the first of eq. (4.18) reads

δ∆̂(1,1)
r,s (m) = −α(1,1)

π(m− 1)(mr −ms+ r − 1)(mr −ms+ r + 1)
21− 4

m+1 (m− 2)(m+ 1)(m+ 3)

×
∞∑
k=0

(
1
2

)
k

(
2

m+1

)
k

(
2+r+rm−sm+m

m+1

)
k

(
2−r−rm+sm+m

m+1

)
k

k!(2)k
(

3
m+1

)
k

(
3
2 + 1

m+1

)
k

. (4.19)

For the V(1,3) contribution we have

α(1,3)

∫ ∞

−∞
dx

∫ ∞

a

dy

y2
V(1,3)(η̃)

(x2
12)∆̂r,s2∆

−
α(1,3)

1−∆/2

∫ ∞

−∞

dx

a

V(1,3)(η̃)
(x2

12)∆̂r,s2∆

∣∣∣∣
y=a

. (4.20)

9One can verify this by computing the integral directly at m = ∞, or by noticing that the O(a0) piece of
the integrand reduces to a finite sum of q = r − s terms at m = ∞.
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It is not difficult to show that, again up to terms that vanish as we send a → 0,

I(1,3) ≡ α(1,3)

∫ ∞

−∞
dx

∫ ∞

a

dy

y2
V(1,3)(η̃)

(x2
12)∆̂r,s2∆

= f
(1,3)
∞ (m)
(x2

12)∆̂r,s

( |x12|
a

) 2
1+m

+ δ∆̂(1,3)
r,s (m) log

(
x2

12/a
2)

(x2
12)∆̂r,s

+ f
(1,3)
r,s (m)
(x2

12)∆̂r,s
,

Ic.t.
(1,3) ≡ −

α(1,3)
1−∆/2

∫ ∞

−∞

dx

a

V(1,3)(η̃)
(x2

12)∆̂r,s2∆

∣∣∣∣
y=a

= −f
(1,3)
∞ (m)
(x2

12)∆̂r,s

( |x12|
a

) 2
1+m

− 2δ∆̂(1,3)
r,s (m)

1−∆/2
1

(x2
12)∆̂r,s

. (4.21)

As is clear from the expression above, the power-law divergent terms cancel out from the
sum I(1,3) + Ic.t.

(1,3).
10 The function f

(1,3)
r,s (m), for which we do not have a simple closed-form

expression, behaves as

f (1,3)
r,s (m) = −1

2α(1,3)m
2 − α(1,3) (1 + log 2)m+O(m0) . (4.22)

The coefficient of the logarithm in the first of eq. (4.21) reads

δ∆̂(1,3)
r,s (m) = α(1,3)

√
π Γ

(
− 1
m+1

)
21− 2

m+1Γ
(

1
2 − 1

m+1

)
×

∞∑
k=0

(
− 1
m+1

)
k

(
1

m+1 − 1
2

)
k

(
1
2 + r − ms

m+1

)
k

(
1
2 − r + ms

m+1

)
k

k!
(

1
2 − 1

m+1

)
k

(
3
2 − 1

m+1

)
k

(
2

m+1 − 1
2

)
k

. (4.23)

The r.h.s. of eq. (4.23) features a ‘potential’ linear divergence at large m since Γ
(
− 1
m+1

)
∼

Γ(0) in this limit. On general grounds, this divergence would be removed by a boundary
counterterm of the type √

g
∫
ψ(1,3) with appropriately tuned coefficient, which might induce

an instability of the boundary condition, see e.g. [23]. In our case this divergence is however
compensated by the large-m falloff of α(1,3) and, as we discussed previously, no counterterm
is needed.

Finally, for the V(1,5) contribution we have

α(1,5)

∫ ∞

−∞
dx

∫ ∞

a

dy

y2
V(1,5)(η̃)

(x2
12)∆̂r,s2∆

−
α(1,5)

1−∆/2

∫ ∞

−∞

dx

a

V(1,5)(η̃)
(x2

12)∆̂r,s2∆

∣∣∣∣
y=a

, (4.24)

for which we find (up to regular terms as we send a → 0 while keeping m finite)

I(1,5) ≡ α(1,5)

∫ ∞

−∞
dx

∫ ∞

a

dy

y2
V(1,5)(η̃)

(x2
12)∆̂r,s2∆

= δ∆̂(1,5)
r,s (m) log

(
x2

12/a
2)

(x2
12)∆̂r,s

+ f
(1,5)
r,s (m)
(x2

12)∆̂r,s
,

Ic.t.
(1,5) ≡ −

α(1,5)
1−∆/2

∫ ∞

−∞

dx

a

V(1,5)(η̃)
(x2

12)∆̂r,s2∆

∣∣∣∣
y=a

= −2δ∆̂(1,5)
r,s (m)

1−∆/2
1

(x2
12)∆̂r,s

. (4.25)

10The coefficient that multiplies the power-law divergence in eq. (4.21) is

f (1,3)
∞ (m) = −

α(1,3)

π
sin
(

π

m+ 1

)
cos3

(
π

m+ 1

)
Γ
(
− 4
m+ 1

)
Γ
( 2
m+ 1

)2
2

3m+5
m+1 .
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The function f
(1,5)
r,s (m) is constant in the m→ ∞ limit, and the coefficient of the logarithm

in the first of eq. (4.25) reads

δ∆̂(1,5)
r,s (m)=α(1,5)

√
πΓ
(

3
2−

3
m+1

)
2−

2m
m+1 Γ

(
2− 3

m+1

) ∞∑
k=0

(
m

m+1

)
k

(
3
2−

3
m+1

)
k

(
2m+r+mr−ms

m+1

)
k

(
2m−r+ms−mr

m+1

)
k

k!
(

3m
m+1

)
k

(
2− 3

m+1

)
k

(
5
2−

2
m+1

)
k

.

(4.26)

Putting everything together, the one-loop, unrenormalized two-point correlation function
of ψ(r,s) at finite m is

G1(x12) = I(1,1) + Ic.t.
(1,1) + I(1,3) + Ic.t.

(1,3) + I(1,5) + Ic.t.
(1,5) . (4.27)

Renormalization and anomalous dimensions at finite m. Having obtained G1(x12),
we can now renormalize it to extract the anomalous dimension of ψ(r,s) at O(g). At finite m,
we can remove the log

(
x2

12/a
2) divergence in eq. (4.27) via a wave-function renormalization;

i.e. we define ψR(r,s) ≡ Zr,sψ(r,s) with

Zr,s = 1− 1
2g δZr,s log

(
a2/R2

)
+O(g2) , (4.28)

and choose

δZr,s = δ∆̂(1,1)
r,s (m) + δ∆̂(1,3)

r,s (m) + δ∆̂(1,5)
r,s (m) . (4.29)

The renormalized two-point correlation function at one-loop reads

(x2
12)∆̂r,s⟨ψR(r,s)(x1)ψR(r,s)(x2)⟩ = 1− g δZr,s log

(
a2/R2

)
− g (x2

12)∆̂r,sG1(x12) +O(g2) ,
(4.30)

and the one-loop anomalous dimension of ψr,s is

δ∆r,s = δZr,s . (4.31)

The large-m limit. The result of eq. (4.30) is valid as long as m is kept finite. For m
large, there are additional divergences that should be removed from the physical correlator
before we can meaningfully take the large m limit. As we discuss in appendix B, at large
m and for a1, a2 ≪ m we have that11

α(1,1) =
√
3 +O(m−1) , α(1,3) = α

(1)
(1,3)m

−1 +O(m−2), α(1,5) = O(m−2) , (4.32)

where

α
(1)
(1,3) =

2π(r − s)(s− sgn(r − s))√
3

. (4.33)

11On general grounds, α(1,3) = O(m−1) follows from requiring unphysical singularities in the correlator to
cancel, see e.g. appendix B.5.1. That α(1,5) = O(m−2) follows from B

a (1,5)
(1,3) = O(m−2) — see e.q. (B.31) —

and upon assuming that the boundary three-point functions Ĉa(1,5)
(r,s)(r,s) remain finite in the large-m limit.
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From the explicit expressions given earlier in this section, it is not difficult to verify that

δ∆̂(1,1)
r,s (∞) = −π

√
3

2 (r − s)2
(1
3 + 2

3 |s− r|−1
)
+O(m−1) ,

δ∆̂(1,3)
r,s (∞) = −

α
(1)
(1,3)
2 +O(m−1) ,

δ∆̂(1,5)
r,s (∞) = O(m−2) . (4.34)

With these results in hand we can easily verify that at large m the correlator of eq. (4.30)
features a divergence linear in m. It originates from the V(1,1) contribution to the counterterm
and reads

(x2
12)δ∆̂r,s(I(1,1) + Ic.t.

(1,1)) = −mδh(1,1)
r,s (∞) +O(m0) . (4.35)

We might expect further large-m divergent contributions coming from I(1,3) + Ic.t.
(1,3); however,

thanks to a special cancellation we find

f (1,3)
r,s (m)− 2δ∆̂(1,3)

r,s (m)
1−∆/2 = O(m0) . (4.36)

We can remove the divergence of eq. (4.35) via an extra (multiplicative) wave-function
renormalization i.e. we define Zr,sZextra

r,s ψ(r,s) with Zr,s given by eq. (4.28) and with

Zextra
r,s = 1 + 1

2gmδZextra
r,s +O(g2) , δZextra

r,s = −δ∆̂(1,1)
r,s (∞) , (4.37)

so that the renormalized one-loop two-point correlation function

(x2
12)∆̂r,s⟨ψR(r,s)(x1)ψR(r,s)(x2)⟩ = 1 + gmδZextra

r,s − g δZr,s log
(
a2/R2

)
− g(x2

12)∆̂r,sG1(x12) +O(g2) , (4.38)

is completely finite. From the result above we can read off the boundary spectrum at the
IR fixed point:

∆̂IR
r,s = ∆̂r,s + gδ∆̂(1,1)

r,s (∞) + gδ∆̂(1,3)
r,s (∞) +O(m−2) = 1

4(r − s)2 − r2 − s2

4m +O(m−2) ,

(4.39)

where we used that

∆̂r,s =
1
4(r − s)2 + r2 − s2

4m +O(m−2) . (4.40)

Interpretation. The result of eq. (4.39) can be interpreted as follows. Assuming that the
endpoint of the RG flow is a conformal boundary condition (or a superposition thereof) for
the Mm,m−1 minimal model, and assuming that ψ(r,s) flows to another Virasoro primary
ψ(r′,s′) in such an IR conformal boundary condition, then there should exist two positive
integers (r′, s′) such that

∆̂r,s − ∆̂IR
r′,s′ = O(m−2) . (4.41)
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By comparing equations (4.39) and (4.40), we find that if r ̸= s one possible solution to the
condition above is that (r′, s′) = (s, r). This would mean that

ψ(r,s) −→ ψ(s,r) , (4.42)

under the RG flow.
This spectral flow is very natural: it would be consistent with the following large-m

flow between conformal b.c.

(a1, a2)m −→ (a2, a1)m−1 , a1, a2 ≪ m, (4.43)

since the selection rules imply that, if (r, s) appears in (a1, a2)m then (s, r) appears in
(a2, a1)m−1. However we should keep in mind that other possibilities (including flows to linear
combinations of conformal b.c.) are still logically possible. In particular, it need not even
be true that the infrared operator is still a Virasoro primary.

Mixing. The reader may wonder why we do not consider operator mixing, since by
equation (4.40) there are often many operators whose dimensions become equal at large m. In
contrast with flat space there is however no need to consider this mixing. This is because our
one-loop result for the anomalous dimension is reliable and physical (i.e. scheme-independent)
for any finite m: after all, the boundary is always conformal so ∆̂ is always a good observable.
At finite m all the scaling dimensions are different, so the matrix of two-point functions
remains diagonal (cf. our discussion in subsection 3.3) and there is no operator mixing. We
have seen there are extra divergences at large m (those cancelled by the δZextra

r,s above) but
obviously these can only appear if the correlation function is non-zero in the first place.
Therefore, in contrast with a flat-space analysis where conformal invariance is completely lost
along the flow, nearby operators on the boundary of AdS do not mix.

4.3 Bulk one-point function of ϕ(1,3)

In this section we compute the one-point correlation function of ϕ = ϕ(1,3) on the AdS disk

ds2 =
( 2R
1− r2

)2
(dr2 + r2dθ2) , 0 ≤ r ≤ 1 ,−π ≤ θ ≤ π , (4.44)

at one loop. We again consider an elementary conformal boundary condition (a1, a2)m,
with a1, a2 ≪ m. At tree-level, putting for simplicity ϕ at the center of the disk, we have
(see eq. (B.28))

(2R)∆⟨ϕ(0, 0)⟩0,a = B
a (1,1)
(1,3) =

(
√
3− 2π2 (2a2

2 − 1
)

√
3m2 + 4π2 (2a2

2 − 1
)

√
3m3 +O(m−4)

)
,

(4.45)

and the one-loop correction is given by

δ⟨ϕ(0, 0)⟩a = −gµ2−∆
∫
d2x

√
g ⟨ϕ(0, 0)ϕ(r, θ)⟩ca

+ IR counterterms + UV counterterms , (4.46)

where the superscript ‘c’ means that we will consider the connected correlator only. Notice
that the coupling g is dimensionless and we inserted a scale µ.
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Computing the integrand. As shown in appendix B.3, the (connected) correlator in
the integrand of eq. (4.46) reads

(2R)2∆⟨ϕ(0, 0)ϕ(r, θ)⟩ca = G̃(η̃)− (Ba (1,1)
(1,3) )2 , (4.47)

with

G̃(η̃) = (Ba (1,1)
(1,3) )2V(1,1)(η̃) + (Ba (1,3)

(1,3) )2V(1,3)(η̃) + (Ba (1,5)
(1,3) )2V(1,5)(η̃) , (4.48)

where

V(1,1)(η̃) =3 F2

(1−m

m+ 1 ,
2m
m+ 1 ,−

2m− 2
m+ 1 ; 3 +m

2m+ 2 ,
2−m

m+ 1;−
η̃

4

)
,

V(1,3)(η̃) = η̃h1,3/2
3F2

(5m− 1
2m+ 2 ,

1−m

2m+ 2 ,−
3m− 3
2m+ 2;

3−m

2m+ 2 ,
3m+ 1
2m+ 2;−

η̃

4

)
,

V(1,5)(η̃) = η̃h1,5/2
3F2

( 1
m+ 1 ,

m

m+ 1 ,
4m− 1
m+ 1 ; 3m

m+ 1 ,
5m+ 1
2m+ 2;−

η̃

4

)
. (4.49)

The cross-ratio η̃ reads

η̃ =
(
1− r2)2
r2 . (4.50)

We discuss separately the contributions from V(1,1), V(1,3), and V(1,5).

The V(1,1) contribution. The relevant integrals in the first line of eq. (4.46) are

I(1,1) ≡
∫
ϵ<r<

√
1−a

√
g (V(1,1)(η̃)− 1) + cc.t.

∫ √
ĝ (V(1,1)(η̃)− 1)

∣∣
r=

√
1−a , (4.51)

for a properly chosen cc.t., as explained below. For convenience we have set an IR cut-off
at r =

√
1− a and a UV cut-off at ϵ > 0. At finite m the counterterm contribution is

completely regular in the limit of a → 0:∫ √
ĝ (V(1,1)(η̃)− 1)

∣∣
r=

√
1−a = − 4πR∆2(∆ + 2)

(∆− 4)(3∆− 2)a+O(a2) . (4.52)

This is expected since there are no relevant boundary operators contributing to I(1,1).
The bulk contribution is more subtle due to UV divergences. Upon invoking the Mellin-

Barnes representation of 3F2:

3F2(a1, a2, a3; b1, b2;x) =
Γ(b1)Γ(b2)

Γ(a1)Γ(a2)Γ(a3)

∫
C

ds

2πi
(−x)−sΓ(s)Γ(a1 − s)Γ(a2 − s)Γ(a3 − s)

Γ(b1 − s)Γ(b2 − s) ,

(4.53)

where the contour C separates the poles Γ(· · ·+ s) from those of Γ(· · · − s), we find∫
ϵ<r<

√
1−a

√
g V(1,1)(η̃) =

∫
C

ds

2πi K(1,1)(∆, s) [B1−a(s+ 1,−2s− 1)−Bϵ2(s+ 1,−2s− 1)] ,

(4.54)
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Figure 1. The choice for the contour in eq. (4.54).

where Bz(a, b) is the incomplete beta function and

R−2K(1,1)(∆, s) ≡
4sπ∆Γ

(
1
2 − 3∆

4

)
Γ
(
−∆

4

)
Γ(s)Γ(−s−∆)Γ

(
−s− ∆

2

)
Γ
(
1− s+ ∆

2

)
Γ
(
1− ∆

2

)
Γ(−∆)Γ

(
∆
2

)
Γ
(

1
2 − s− 3∆

4

)
Γ
(
1− s− ∆

4

) .

(4.55)

The contour C is the black line shown in figure 1 where the dots represent the poles of
the expression in eq. (4.54) (slightly displaced along the imaginary axis for convenience of
representation). As is clear from its definition in terms of 2F1, the Bz(a, b) has poles at
−a = n ∈ N. For the B1−a(s + 1,−2s − 1) bit in (4.54), since

B1−a(s+ 1,−2s− 1) =
1

s+ 1

(
a−2s−1(1− a)s+1Γ(s+ 2)Γ(2s+ 1) 2F1(1,−s;−2s; a)

Γ(s+ 1)Γ(2s+ 2) + Γ(s+ 2)Γ(−2s− 1)
Γ(−s)

)
,

(4.56)

we shall close the contour to the left and pick up the residues for the poles at −s = n ∈ N,
corresponding to the blue dots of figure 1. The result is∫

C

ds

2πi K(1,1)(∆, s)B1−a(s+ 1,−2s− 1) = 4πR2

a
+R2f

(1,1)
fin (m) +O(a) . (4.57)

The finite term f
(1,1)
fin (m) does not have a nice closed form, but in the large-m expansion it reads

f
(1,1)
fin (m) = 8

3πm− 8π − 8π
(
15 + 2π2)
9m +O(m−2) . (4.58)

Note that the IR divergent term in the expression above drops out of the connected cor-
relator, since ∫

ϵ<r<
√

1−a

√
g = 4πR2 (a+ ϵ2 − 1

)
a (ϵ2 − 1) = 4πR2

a
− 4πR2 +O(a, ϵ) . (4.59)

For the Bϵ2(s + 1,−2s − 1) bit in (4.54), since

Bϵ2(s+ 1,−2s− 1) = ϵ2s+2

1 + s

(
1 + 2(s+ 1)2ϵ2

s+ 2 +O(ϵ4)
)
, (4.60)
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we shall close the contour to the right, and picking up residues at the red poles in figure 1 we find∫
C

ds

2πi K(1,1)(∆,s)(−Bϵ2(s+1,−2s−1))= 4πR2ϵ2−2∆

(∆−1)
(
1−2cos

(
π∆
2

))
︸ ︷︷ ︸

≡R2f
(1,1)
ϵ (m)

+O(ϵ#) , (4.61)

where O(ϵ#) are positive powers of ϵ, which will go to zero as we send ϵ→ 0 while keeping
∆ finite. Putting it all together, and taking the a, ϵ → 0 limit we get

I(1,1) = 4πR2 +R2f
(1,1)
fin (m) +R2f (1,1)

ϵ (m) . (4.62)

In particular the final result features a constant piece (in m) that comes from taking the
difference between (4.57) and (4.59).

The V(1,3) and the V(1,5) contributions. We proceed similarly for the other two contri-
butions, but we skip some of the details. For the V(1,3) contribution we have

I(1,3) ≡
∫
ϵ<r<

√
1−a

√
g V(1,3)(η̃) + cc.t.

∫ √
ĝ V(1,3)(η̃)

∣∣
r=

√
1−a . (4.63)

The counterterm contribution this time is divergent as a → 0 and equals∫ √
ĝ V(1,3)(η̃)

∣∣
r=

√
1−a = 4πRa

∆
2 −1(1 +O(a)) . (4.64)

From the bulk term we find∫
ϵ<r<

√
1−a

√
g V(1,3)(η̃)

=
∫
C

ds

2πi K(1,3)(∆,s)
(
B1−a

(
s−∆

4 +1,−2s+∆
2 −1

)
−Bϵ2

(
s−∆

4 +1,−2s+∆
2 −1

))
,

(4.65)
where we defined

R−2K(1,3)(∆, s) ≡ −
4sπ∆Γ

(
1
2 − ∆

2

)
Γ
(

∆
4

)
Γ(s)Γ

(
−s− 3∆

4

)
Γ
(
−s− ∆

4

)
Γ
(
1− s+ 3∆

4

)
Γ
(
1− 3∆

4

)
Γ
(
−∆

4

)
Γ
(

3∆
4

)
Γ
(

1
2 − s− ∆

2

)
Γ
(
1− s+ ∆

4

) .

(4.66)

Besides the poles coming from K(1,3)(∆, s), in eq. (4.65) we have additional poles from the
incomplete beta functions at s = ∆/4 − 1, ∆/4 − 2, etc. The original contour C has not
moved, and we are free to decide where these new poles lie with respect to C. A possible
choice is depicted in figure 2. With this choice, for the B1−a

(
s− ∆

4 + 1,−2s+ ∆
2 − 1

)
bit

we close to the left to pick up residues at the blue and orange poles in figure 2, while for the
Bϵ2

(
s− ∆

4 + 1,−2s+ ∆
2 − 1

)
we close to the right, and all together we find∫

ϵ<r<
√

1−a

√
g V(1,3)(η̃)=R2f

(1,3)
fin (m)− 8πR2a

∆
2 −1

∆−2 (1+O(a))+

2−∆R2ϵ2−2∆ sin
(

3π∆
4

)
Γ
(

3
2−

∆
2

)
Γ
(
−3∆

4

)
Γ
(

∆
4

)2
Γ
(

3∆
2 +1

)
√
π(∆−1)3Γ(∆−1)Γ

(
−∆

4

)
︸ ︷︷ ︸

≡R2f
(1,3)
ϵ (m)

+O(ϵ#) ,

(4.67)

– 28 –



J
H
E
P
0
3
(
2
0
2
4
)
0
0
5

- 4 - 2 2 4

0.1

0.2

0.3

0.4

0.5

Figure 2. The choice for the contour in eq (4.65).

where O(ϵ#) are positive powers of ϵ, which will go to zero as we send ϵ→ 0 while keeping
∆ finite and

f
(1,3)
fin (m) = −πm− 2π +O(m−1) . (4.68)

It is easy to see that the counterterm contribution of eq. (4.64) cancels exactly the IR
divergence if we set

cc.t. = − R

1− ∆
2
. (4.69)

Putting all together we find

I(1,3) = R2f (1,3)
ϵ (m) +R2f

(1,3)
fin (m) . (4.70)

Finally, we have for the V(1,5) contribution

I(1,5) ≡
∫
ϵ<r<

√
1−a

√
g V(1,5)(η̃) + cc.t.

∫ √
ĝ V(1,5)(η̃)

∣∣
r=

√
1−a . (4.71)

As expected, both the bulk term and counterterm are regular as a→ 0. From the bulk term
we find, up to terms that vanish in the a, ϵ → 0 limit∫

ϵ<r<
√

1−a

√
g V(1,5)(η̃)=

8R2(∆+1)ϵ2−2∆ cos
(
π∆
4

)
Γ
(

1
2−

∆
4

)
Γ
(

3∆
4 + 1

2

)
Γ
(

3
4(∆+2)

)
(∆−1)∆Γ

(
5∆
4 + 3

2

)
︸ ︷︷ ︸

≡R2f
(1,5)
ϵ (m)

+R2f
(1,5)
fin (m) , (4.72)

with

f
(1,5)
fin (m) = −4πm+ 8π

3 +O(m−1) . (4.73)

Hence

I(1,5) = R2f (1,5)
ϵ (m) +R2f

(1,5)
fin (m) . (4.74)
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Cancellation of UV divergences. Putting together equations (4.62), (4.70) and (4.74),
one finds

(2R)∆δ⟨ϕ(0, 0)⟩a = −gµ2−∆(2R)−∆[(Ba (1,1)
(1,3) )2I(1,1) + (Ba (1,3)

(1,3) )2 I(1,3) + (Ba (1,5)
(1,3) )2 I(1,5)]

+ UV counterterms .
(4.75)

To cancel the UV divergences we define the renormalized operator

ϕR = Zϕϕ+ (2R)−∆Zϕ11+ . . . , (4.76)

and choose Zϕ1 to cancel the power-law divergences, i.e.

Zϕ1 = 1
4g(2µR)

2−∆[(Ba (1,1)
(1,3) )2f (1,1)

ϵ (m) + (Ba (1,3)
(1,3) )2f (1,3)

ϵ (m) + (Ba (1,5)
(1,3) )2f (1,5)

ϵ (m)]

= g(2µR)2−∆πϵ
2−2∆

∆− 1 .

(4.77)

Here the expression on the first line is what comes out of our computation, which used the
boundary conformal block decomposition. The expression on the second line is what one
would obtain from a short-distance expansion of the bulk two-point function and isolating
the divergent power. The fact that the two expressions are identical is a consistency check
for the bulk-boundary crossing discussed in appendix B.3.1.

The wave-function renormalization factor Zϕ is obtained from a standard bulk com-
putation, and reads:

Zϕ = 1 + δZϕ = 1 + 1
2g Cϕϕϕ

w2
∆

w2∆−2
, w∆ =

22−∆πΓ
(

2−∆
2

)
Γ(∆/2) ,

= 1 + g

(2πm√
3

− 4π√
3
− 10π√

3m
+O(m−2)

)
, (4.78)

where in the last line we used Cϕϕϕ of eq. (B.15). As we discussed in subsection 3.1, in a
general curved space one could have found additional divergences (terms linear in m) due
to mixing with (Ric)1 but their coefficient happens to vanish in AdS.

The final result. Collecting all the terms we ultimately find the following one-loop
correction to the one-point function of ϕ:

(2R)∆⟨ϕ(0,0)⟩a =B
a (1,1)
(1,3) −2πg

(
m((2µR)2−∆−1)+1

2−
8π2(a2

2+. . .)
3m

)
+O(g2) . (4.79)

We recognize the first term as due to the anomalous dimension of ϕ(x). It can in principle be
resummed to obtain an answer as a function of the running coupling, but at the fixed point
we may just set (2µR) = 1 which removes this term. Also at the fixed point we will have
g = O(m−1) so the O(m−1) term we wrote may in principle get corrected at two loops. For
this reason we did not write it out completely, although we did indicate the dependence on
the boundary label a2 that follows from our computation. Ultimately we obtain:

(2R)∆⟨ϕ(0, 0)⟩a = B
a (1,1)
(1,3) −

√
3
m

+ 16π2a2
2√

3m2 +O(m−2) , (4.80)
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at the fixed point g∗ =
√
3/πm. We recall that

B
a (1,1)
(1,3) =

√
3− 2π2(2a2

2 − 1)√
3m2 +O(m−3) . (4.81)

Interpretation. The interpretation of this result is perhaps a little disappointing. In flat
space, the ϕ(1,3) operator flows to ϕ(3,1) at the IR fixed-point [15]. For the latter we have:

(2R)∆⟨ϕ(3,1)(0, 0)⟩(b1,b2)m−1 =
√
3− 2π2(2b2

1 − 1)√
3m2 +O(m−3) . (4.82)

If (a1, a2)m flows to (a2, a1)m−1 then we see that this expression agrees with (4.81) to the
given order, so we would naively expect the one-loop correction to be zero. Equation (4.80)
therefore presents us with two issues: the non-zero correction multiplying m−1 and the
non-trivial dependence on the boundary labels multiplying m−2.

We believe that the first issue might be due to an incorrect identification of the infrared
operator. We have chosen the wave function renormalization factor Zϕ such that the infrared
operator is unit normalized in flat space, so the overall normalization should be fine. However,
as we mentioned above, in curved space we can build new operators that involve the background
curvature. In particular we cannot exclude the possibility that the infrared operator is any
admixture of ϕ(3,1) with the operator Ric1 ∼ R−21. If this is the case then the factor

√
3/m

in equation (4.80) merely amounts to a determination of the relative coefficient between these
two operators. We also note that such an admixture should be visible at higher orders in
perturbation theory, because the latter operator has ∆ = 2 exactly, whereas ∆3,1 = 2 + 4/m.

The final term in (4.80) is subleading in 1/m and we could in principle have dismissed
it as unreliable. It was however argued in [17] that the dependence on the boundary labels
is reliable at this order at least in flat space. If this is so then it poses a puzzle. This term
cannot be explained by operator mixing, since the composition of the infrared operator should
not depend on the boundary labels. We also verified that the one-loop correction to ⟨1⟩
does not feature any dependence on the boundary labels at this order. However the analysis
of [17] does not necessarily apply in AdS, since it was based purely on the large-m behavior
of the various OPE coefficients appearing in the computation. In our case we have seen that
this can be offset by the integrals themselves, which can diverge polynomially in m. We
therefore cannot conclude that this term is reliable without a more detailed analysis of the
integrals involved in the higher-loop contributions.

4.4 Irrelevant deformation

In this section we study the ϕ(3,1) deformation of unitary and diagonal minimal models
Mm+1,m with conformal boundary conditions a = (a1, a2)m, in AdS2 and with m > 3. We
will compute some anomalous dimensions of boundary Virasoro primaries at finite m, at the
first order in this deformation. In the large-m limit, with a1, a2 ≪ m, the ϕ(3,1) operator
is the leading irrelevant deformation, with scaling dimension

∆ = 2h3,1 = 2 + 4
m
. (4.83)
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4.4.1 The perturbation

We consider the following bulk perturbation by ϕ ≡ ϕ(3,1)

δS = gR∆−2
∫
d2x

√
g ϕ(x+ iy, x− iy) + counterterms +O(g2) . (4.84)

Again, for large but finite m we can remove the near-boundary divergences without inducing a
boundary RG flow, so that the only non-trivial β function is for the bulk coupling and reads [36]

ġ = (2−∆)g − π Cϕϕϕg
2 +O(g3) . (4.85)

At m = ∞ we have that Cϕϕϕ = 4/
√
3 (see eq. (B.54)), and so using eq. (4.83) we find

a UV fixed point at

g∗ = −
√
3

πm
+O(m−2) . (4.86)

In the bulk, this is the inverted RG flow between consecutive minimal models, i.e. Mm+1,m →
Mm+2,m+1.

4.4.2 Anomalous dimensions

We present here some anomalous dimensions along the ϕ(3,1) deformation of unitary and
diagonal minimal models, in AdS2. The computations for this case are entirely similar to
those of section 4.2, so we omit the details of the derivation.

The scaling dimension of ψ(r,s) after the perturbation of eq. (4.84) (which goes towards
the UV) reads

∆̂r,s(g) = ∆̂r,s + gδ∆̂(1,1)
r,s (m) + gδ∆̂(3,1)

r,s (m) + gδ∆̂(5,1)
r,s (m) +O(g2) , (4.87)

where ∆̂r,s = hr,s and

δ∆̂(1,1)
r,s (m) = B

a (1,1)
(3,1)

π(m+ 2)(mr −ms+ r − 1)(mr −ms+ r + 1)
2

m+4
m (2−m)m(m+ 3)

×
∞∑
k=0

(
1
2

)
k

(
− 2
m

)
k

(
r+m(r−s+1)−1

m

)
k

(
−r+m(−r+s+1)−1

m

)
k

k!(2)k
(

3
2 − 1

m

)
k

(
− 3
m

)
k

,

δ∆̂(3,1)
r,s (m) = α(3,1)

√
πΓ
(

1
m

)
2

m+2
m Γ

(
1
2 + 1

m

)
×

∞∑
k=0

(
1
m

)
k

(
−m+2

2m

)
k

(
1
2 + r

m + r − s
)
k

(
1
2 − (m+1)r

m + s
)
k

k!
(

1
2 + 1

m

)
k

(
3
2 + 1

m

)
k

(
−m+4

2m

)
k

,

δ∆̂(5,1)
r,s (m) = α(5,1)

√
π2

2
m

+2Γ
(

3
2 + 3

m

)
Γ
(
2 + 3

m

)
×

∞∑
k=0

(
1 + 1

m

)
k

(
3
2 + 3

m

)
k

(
2+r+m(r−s+2)

m

)
k

(
2−r+m(−r+s+2)

m

)
k

k!
(

5
2 + 2

m

)
k

(
2 + 3

m

)
k

(
3 + 3

m

)
k

. (4.88)
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4.4.3 Large m

Finally we consider the large-m limit with a1, a2 ≪ m. In this limit there are some extra
O(m) divergences, but they can be removed without affecting the anomalous dimensions
as we explained below eq. (4.35). The large-m expansion for the coefficients is given in
equations (B.62) and (B.76), recalling that α(5,1) = O(m−2). Plugging in the value of the
UV fixed point in eq. (4.86) we find

∆̂UV
r,s = ∆̂r,s + gδ∆̂(1,1)

r,s (∞) + gδ∆̂(1,3)
r,s (∞) +O(m−2) = 1

4(r − s)2 − r2 − s2

4m +O(m−2) .

(4.89)

By comparing this result with the boundary spectrum of the Mm+2,m+1 minimal model we
see that along the ϕ(3,1) bulk RG flow (for r ̸= s)

ψ(r,s) −→ ψ(s,r) . (4.90)

The spectral flow is again consistent with the following large-m flow between conformal b.c.:

(a1, a2)m −→ (a2, a1)m+1 , a1, a2 ≪ m. (4.91)

As expected, the ϕ(3,1) deformation ‘inverts’ the RG flow of eq. (4.43).

5 Outlook

We have analyzed RG flows in AdS both in general terms and in the explicit example of the
perturbed minimal models. To deal with the ultraviolet divergences one employs familiar
quantum field theory in curved space techniques, and to deal with the infrared divergences
one adds counterterms familiar from holographic renormalization. In the end one obtains
finite renormalized correlation functions of both bulk and boundary operators.

In the future it would be interesting to resolve the somewhat puzzling status of the one-
point functions in the perturbed minimal models. This will be essential for the identification
of the correct infrared boundary conditions. This would require computing ⟨ϕ(1,3)⟩ to two-loop
order. One might also compute ⟨ϕ(r,s)⟩ at one loop, for which the level of difficulty should be
similar to what was presented in this work. To check our prescriptions at a structural level
one might of course also try other controllable RG flows like the Wilson-Fisher fixed points
in AdS. (See [4, 5] for some other examples. More generally there is a vast literature on loop
computations in AdS, but these mostly focus on Witten diagrams for boundary correlation
functions and not on bulk one- or higher-point functions.)

This paper is not only an étude but also a prélude to the numerical study of RG flows in
AdS by applying conformal bootstrap methods to the boundary correlation functions. The
viability of this method was demonstrated in [1] where initial results for scalar field theories
in AdS2 were presented. In upcoming work [13] we will analyze the minimal model flows in
AdS numerically and make essential use of the results presented above. In the future it will
be interesting to include the sum rules presented in [8] in the numerical analysis.
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A Two-dimensional BCFTs

We will consider two-dimensional CFTs on the upper half-plane

H+ = {z ∈ C | Im z ≥ 0} .

In Cartesian coordinates we write z = x+ iy so x is also a boundary coordinate.
We will consider various correlation functions between both bulk and boundary global

primaries in a generic BCFT on the upper half-plane.12 In the present subsection, ϕi(z, z̄)
is a scalar bulk global primary with dimension ∆i, and ψi(x) is a scalar global boundary
primary with dimension ∆̂i.

For a more detailed discussion on two-dimensional BCFTs and more references to the
original literature we refer the reader to the books [37–40].

A.1 Global conformal invariance

We begin with the general structure that follows from SL(2,C) bulk invariance as well as the
residual SL(2,R) in the presence of a boundary. The OPEs in the various channels are

ϕi(z1, z̄1)ϕj(z2, z̄2) =
∑
k

Cij
kϕk(z2, z̄2)|z1 − z2|∆k−∆i−∆j + · · · ,

ϕi(x+ iy, x− iy) =
∑
k

Bi
kψk(x)(2y)∆̂k−∆i + · · · ,

ψi(x1)ψj(x2) =
∑
k

Ĉij
kψk(x2)(x1 − x2)∆̂k−∆̂i−∆̂j + · · · , (x1 > x2) . (A.1)

The ellipses in the first (second and third) lines above denote SL(2,C) (SL(2,R)) descendants.
For both bulk and boundary operators, indices are raised and lowered using the two-point
correlation function of the corresponding operator. Unless otherwise specified, we will always
consider unit-normalized primary bulk (boundary) operators, and a unit-normalized identity
operator: ⟨1⟩ = ⟨1̂⟩ = 1. The values of the OPE coefficients B and Ĉ depend on the specific
conformal boundary condition.

12A Virasoro primary or descendant operator is called a ‘global primary’ when it is a primary with respect
to the global conformal group SL(2,C).

– 34 –



J
H
E
P
0
3
(
2
0
2
4
)
0
0
5

We now provide the general form of some BCFT correlation functions as well as the
structure of their conformal block decomposition.

Simple correlation functions. On the upper half-plane the simplest non-trivial correlation
functions are (xij ≡ xi − xj and ∆̂ijk ≡ ∆̂i + ∆̂j − ∆̂k)

⟨ψ(x1)ψ(x2)⟩H+ = 1
(x2

12)∆̂
, (x1 > x2)

⟨ϕ(x+ iy, x− iy)⟩H+ = Bϕ
(2y)∆ , (y > 0)

⟨ϕ(x1 + iy1, x1 − iy1)ψ(x2)⟩H+ = Bϕψ

(2y1)∆−∆̂(x2
12 + y2

1)∆̂
, (y1 > 0)

⟨ψi(x1)ψj(x2)ψk(x3)⟩H+ = Ĉijk

(x12)∆̂ijk(x23)∆̂jki(x13)∆̂ikj

, (xi > xi+1) . (A.2)

Boundary four-point function. Consider the four-point correlation function between four
global boundary conformal primaries ψi with scaling dimensions ∆̂i. By SL(2,R) symmetry
this correlation function takes the form (here and in the following ∆̂ij ≡ ∆̂i − ∆̂j)

⟨ψ1(x1)ψ2(x2)ψ3(x3)ψ4(x4)⟩H+ =
(
x14
x24

)∆̂21 (x14
x13

)∆̂34 G1234(η)
(x12)∆̂1+∆̂2(x34)∆̂3+∆̂4

, xi > xi+1 ,

(A.3)

with cross-ratio

η = x12x34
x13x24

, 0 < η < 1 . (A.4)

In the s-channel we have

G1234(η) =
∑
k

Ĉ12
kĈ34kG(∆̂21, ∆̂34, ∆̂k, η) , (A.5)

with global blocks given by [41]

G(a, b,∆, η) = η∆
2F1(a+∆, b+∆; 2∆; η) . (A.6)

Bulk two-point function. Consider the two-point correlation function between two bulk
scalar global primaries ϕi with scaling dimensions ∆i. By SL(2,R) symmetry this two-point
correlation function takes the following form [20, 42, 43]:

⟨ϕ1(x1 + iy1, x1 − iy1)ϕ2(x2 + iy2, x2 − iy2)⟩H+ = f(ξ)
(2y1)∆1(2y2)∆2

. (A.7)

The cross-ratio is

ξ ≡ (x1 − x2)2 + (y1 − y2)2

4y1y2
. (A.8)

The bulk and boundary channel expansions of f(ξ) read

f(ξ) = ξ−
1
2 (∆1+∆2)∑

k

C12
kBkfbulk(∆k; ξ) =

∑
k

B1
kB2k fbdy(∆̂k; ξ) , (A.9)
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where [20, 42, 43]

fbulk(∆k; ξ) = ξ∆k/2F1

(∆k

2 ,
∆k

2 ,∆k;−ξ
)
,

fbdy(∆̂k; ξ) = ξ−∆̂kF1
(
∆̂k, ∆̂k, 2∆̂k;−1/ξ

)
. (A.10)

Bulk-boundary-boundary function. Consider the correlation function between two
boundary global primaries of scaling dimension ∆̂1,2 and one (scalar) bulk global primary of
scaling dimension ∆. Via the bulk-boundary OPE of ϕ, this correlator can be written as

⟨ψ1(x1)ψ2(x2)ϕ(x+ iy, x− iy)⟩H+ =∑
k Bϕ

kĈ12kf(∆̂12, ∆̂k, v)
(y2 + (x1 − x)2)∆̂12/2(y2 + (x2 − x)2)∆̂21/2|x12|∆̂1+∆̂2(2y)∆

. (A.11)

In our conventions the blocks computed in refs. [34, 35] read

f(∆̂12, ∆̂k, v) = (4v)∆̂k/2
2F1

(
∆̂k + ∆̂12

2 ,
∆̂k − ∆̂12

2 ; ∆̂k +
1
2; v

)
, (A.12)

with

v = y2(x12)2

(y2 + (x1 − x)2)(y2 + (x2 − x)2) ≡ η̃/4 , 0 ≤ v ≤ 1 . (A.13)

A.2 Local conformal invariance

Let Tµν be the bulk stress tensor. Conservation and tracelessness imply

∂̄T = 0 , ∂T̄ = 0 , (A.14)

where ∂ ≡ ∂z, ∂̄ ≡ ∂z̄ and we have defined

T ≡ T (z) ≡ Tzz(z) , T̄ ≡ T̄ (z̄) ≡ Tz̄z̄(z̄) . (A.15)

Translation invariance along the boundary is equivalent to Cardy’s condition [44–46]

T (z) = T̄ (z̄) , Im z = 0 . (A.16)

It follows from equations (A.14) and (A.16) that the boundary limit of T is a global boundary
primary operator of scaling dimension ∆̂ = 2, i.e.

D(x) = T (x+ iy)|y=0 . (A.17)

We call this boundary operator the ‘displacement’. The restriction of the anti-holomorphic
component T̄ of the stress tensor to the boundary defines the same displacement, thanks
to Cardy’s condition.
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A.2.1 Conformal Ward identities on the upper half-plane

Let us consider an infinitesimal real-analytic transformation on the upper half-plane H+

z → z + ϵ(z), ϵ(z) =
∑
n

anz
n+1 , an ∈ R . (A.18)

The conserved charge on H+ is

Qϵ =
1
2πi

∮
C+

ϵ(z)T (z)dz − 1
2πi

∮
C+

ϵ(z̄)T̄ (z̄)dz̄ , (A.19)

where C+ is a contour in H+, we regarded ϵ(z̄) as ϵ∗(z) and T̄ (z̄) is the analytic continuation
of T (z) to the lower half-plane (H−). Because of Cardy’s condition (A.16), the operator Qϵ
is well defined even when correlation functions are evaluated on the real axis. We can then
define the Virasoro generators in analogy with those in the full complex plane as

Ln = 1
2πi

∮
C+

zn+1T (z)dz − 1
2πi

∮
C+

z̄n+1T̄ (z̄)dz̄

= 1
2πi

∮
C∈C

zn+1T (z)dz , (A.20)

where in the last line we used Cardy’s condition (A.16) to combine the two addends into a
single contour integral on the full complex plane. The generators so defined then obey the
commutation relations of a holomorphic Virasoro algebra, with central charge c

[Ln , Lm] = (n−m)Ln+m + c

12n(n
2 − 1)δn+m,0 . (A.21)

The elements {L±1, L0} of the Virasoro algebra generate the conformal group SL(2,R). On
the real axis, we can define Virasoro primary operators ψi with respect to this holomorphic
Virasoro algebra as

[L0, ψi(0)] = ∆̂i ψi(0) , [Ln, ψi(0)] = 0 , n ≥ 1 . (A.22)

Using the definition above it follows that, under the (finite) real-analytic conformal trans-
formations

z → f(z) , ψ′
i(f(z)) =

(
∂f

∂z

)−∆̂i

ψi(z) . (A.23)

Namely ψi transforms as a ‘holomorphic Virasoro primary’, by which we mean a Virasoro
primary with weights hi = ∆̂i, h̄i = 0. Equivalently eq. (A.20) implies that

T (z)ψi(w) =
∆̂i

(z − w)2ψi(w) +
1

z − w
∂ψi(w) +O((z − w)0) . (A.24)

Boundary Virasoro descendants are obtained by repeatedly applying the L−k’s with k > 0
to the primary ψi. Using eq. (A.20) we have that

[L−k, ψi(w)] ≡ ψi
(−k)(w) = 1

2πi

∮
Cw

dz (z − w)1−kT (z)ψi(w) , (A.25)
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where the contour Cw lies on the full complex plane and encircles w. We can use eq. (A.25)
to compute the correlation function of ψi(−k)(w) with any number of either bulk or boundary
Virasoro primaries from the correlation function of ψi(w) with the same number of either
bulk or boundary Virasoro primaries. In terms of the string of Virasoro primaries (in defining
X we disregard its anti-holomorphic dependence as it plays no role in the following)

X (n,m)({zi}) ≡ ψ1(z1) . . . ψn(zn)ϕn+1(zn+1, z̄n+1) . . . ϕn+m(zn+m, z̄n+m) , (A.26)

we have that

⟨ψ(−k)(w)X (n,m)({zi})⟩

= 1
2πi

∮
Cw

dz

(z − w)k−1 ⟨T (z)ψ(w)X
(n,m)({zi})⟩ ,

= − 1
2πi

∮
C{zi}

dz

(z − w)k−1 ⟨T (z)ψ(w)X
(n,m)({zi})⟩ ,

= − 1
2πi

∮
C{zi}

dz

(z − w)k−1

n+m∑
i=1

( 1
z − zi

∂i +
hi

(z − zi)2

)
⟨ψ(w)X (n,m)({zi})⟩ ,

= L(w)
−k ⟨ψ(w)X (n,m)({zi})⟩ , (A.27)

and we denoted the weight of each boundary Virasoro primary ψi as ∆̂i = hi. In the third
line we modified the integration contour in order to pick up the singularities at z = zi. These
singularities are simple and double poles, as dictated by the OPE of T with either ϕi or ψi

T (z)X (n,m)({zi}) ∼
z→zk

hi
(z−zk)2X

(n,m)({zi})+
1

z−zk
∂kX (n,m)({zi})+regular . (A.28)

In the last step, after computing the integral using the residue theorem, we introduced the
important differential operator

L(w)
−k ≡

n+m∑
i=1

( (k − 1)hi
(zi − w)k − 1

(zi − w)k−1∂i

)
. (A.29)

The result in eq. (A.27) implies that if ψ(−k) is a null descendant of ψ at level k, correlation
functions with ψ insertions satisfy a linear differential equation of order k. By construction,
this will be the same differential equation satisfied by a holomorphic Virasoro primary with
weight (h = ∆̂, h̄ = 0).

A.2.2 The method of images

Bulk correlation functions on the upper half-plane H+ can be computed using the method
of images [44] (see also chapter 11.2 of [38]) and bulk-boundary crossing symmetry. To see
how it works, let us consider the effect of the transformation (A.18) on a correlator between
a string of bulk Virasoro primaries

X (z1, z̄1; . . . ; zn, z̄n) ≡ ϕ1(z1, z̄1) . . . ϕn(zn, z̄n) , (A.30)
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with ∆i = hi+h̄i. Note that here hi ̸= h̄i, generically. This transformation is (recall eq. (A.19))

1
2πi

∮
C+

ϵ(z)dz⟨T (z)X (z1, z̄1; . . . ; zn, z̄n)⟩H+ − 1
2πi

∮
C+

ϵ(z̄)dz̄⟨T̄ (z̄)X (z1, z̄1; . . . ; zn, z̄n)⟩H+ .

(A.31)

We can regard the dependence of the correlators on antiholomorphic coordinates z̄i on the
upper half-plane H+ as a dependence on the holomorphic coordinates z∗i = z̄i on the lower
half-plane H−. This ‘mirroring’ is nothing but a parity transformation with respect to the real
axis, and as such holomorphic indices change into antiholomorphic ones e.g. T (z∗) = T̄ (z).13

Since T = T̄ on the real axis by Cardy’s condition, when we combine the two addends above
to write a contour integral over the full complex plane, the total contribution from the real
axis vanishes, and we are left with a contour integral of a correlator with 2n holomorphic
Virasoro primaries on the full complex plane:

1
2πi

∮
C
ϵ(z)dz⟨T (z)X (z1, z

′
1; . . . ; zn, z′n)⟩ , z′i ≡ z∗i . (A.32)

Hence, the correlation function ⟨ϕ1(z1, z̄1) . . . ϕn(zn, z̄n)⟩H+ regarded as a function of
(z1, z̄1; . . . ; zn, z̄n) satisfies the same differential equation as the correlation function on
homogeneous space, ⟨ϕ1(z1, z̄1) . . . ϕn(z2n, z̄2n)⟩, as a function of (z1, . . . , z2n).

As an application, let us compute the one-point correlation function on H+ of a Virasoro
primary ϕ of weight ∆ = h+ h̄ and spin ℓ = h− h̄, denoted as ϕh,h̄(z, z̄).14 By the method
of images, we are instructed to consider

⟨ϕh,h̄(z, z̄)⟩H+ ∝ ⟨ϕh(z)ϕh̄(z
∗)⟩ , (A.33)

where we have regarded z∗ as a holomorphic coordinate, and ϕh̄ as a holomorphic field with
holomorphic dimension h̄. Note that the ∝ symbol is appropriate, since the method of images
cannot fix overall constants in correlation functions. Now, the two-point correlation function
on the right-hand side above is fixed by conformal symmetry as in eq. (A.42). In particular
we immediately learn that if ℓ ̸= 0, then ϕ has a vanishing one-point correlation function
on H+. Alternatively, if ℓ = 0, writing z = x + iy with y > 0, we get

⟨ϕh,h(x+ iy, x− iy)⟩H+ = Bϕ
(2y)∆ , ∆ = 2h . (A.34)

The constant Bϕ ≡ Bϕ1, which is not fixed by the method of images, is a physical datum
of the BCFT. Finally let us consider the bulk-boundary two-point correlation function
between the scalar bulk Virasoro primary ϕ and a boundary Virasoro primary ψ with scaling
dimension ∆̂. Applying again the method of images, we compute

⟨ϕh,h(z, z̄)ψ(0)⟩H+ ∝ ⟨ϕh(z)ϕh(z∗)ψ(0)⟩ , (A.35)
13If a given bulk operator is purely holomorphic, so h̄ = 0, then its antiholomorphic part is the identity

operator. As a consequence there is no need to double holomorphic operators, such as T (z).
14The attentive reader will have noticed a small change of notation: here and in the next section the Virasoro

primaries are labelled by their dimensions (h, h̄), and not by a pair of integers (r, s) as everywhere else in this
work. This choice is convenient in order to explain the application of the method of images.
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where we have regarded ψ as a holomorphic operator with holomorphic dimension ∆̂. Choosing
again z = x + iy with y > 0, we then find

⟨ϕh,h(x+ iy, x− iy)ψ(0)⟩H+ = Bϕψ

(2y)∆−∆̂(y2 + x2)∆̂
. (A.36)

The constant Bϕψ is another physical datum of the BCFT.

A.3 Some universal correlation functions

Correlation functions involving the stress tensor T (z), T̄ (z̄) and the displacement operator
D(x) are to a large extent fixed by the conformal Ward identities. In the instances below
we will find several such correlation functions. They are universal in the sense that they do
not depend on the specific BCFT and instead only depend on c and the scaling dimension
of the operators involved. By taking coincident points we also obtain correlation functions
of D2(x) and T T̄ (z, z̄).

A.3.1 Interlude: the stress tensor on the plane

In a generic 2d CFT, correlation functions with stress tensor insertions are determined by
the conformal Ward identities [47]. Consider first the simple case with just one T insertion
in between a string of n Virasoro primaries ϕi(zi, z̄i), with weights (hi, h̄i). In the notation
introduced in eq. (A.26), this correlator will be denoted as

⟨T (w)X (0,n)({zi})⟩ . (A.37)

Because the T is a level-two descendant of the identity operator 1, from eq. (A.27) we
immediately find

⟨T (w)X (0,n)({zi})⟩ = L(w)
−2 ⟨X

(0,n)({zi})⟩ . (A.38)

Let us now consider two insertions of the stress tensor.

⟨T (w)T (w′)X (0,n)({zi})⟩ . (A.39)

We can apply the same procedure that led to the formula in eq. (A.27) to reduce the number
of T insertions, but this time we get additional contributions from the additional poles in
the T × T OPE when deforming the integration contour. We recall that

T (z)T (0) = c/2
z4 1+ 2

z2T (0) +
1
z
T ′(0) + 3

10T
′′(0) + T 2(0) +O(z2) , (A.40)

where primed operators are derivatives with respect to z, O(z2) denotes higher order con-
tributions and T 2 is the unique global primary at level four in the T × T OPE.15 Using
the T × T OPE we then get

⟨T (w)T (w′)X (0,n)({zi})⟩ = L(w)
−2 ⟨T (w′)X (0,n)({zi})⟩+

c/2
(w − w′)4 ⟨X

(0,n)({zi})⟩ , (A.41)

15This operator is obtained (up to normalization) by acting with L−4− 5
3L

2
−2 on the Virasoro identity module.
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and L(w)
−2 acts on T (w′), as well as on the string X . As a particular case of the equations

above, let us take X to be a string of two identical holomorphic Virasoro primaries with
two-point function

⟨ϕi(z1)ϕi(z2)⟩ =
1

(z12)2hi
, zij ≡ zi − zj . (A.42)

From eq. (A.38) we obtain

⟨T (z1)ϕi(z2)ϕi(z3)⟩ =
CTϕϕ

(z12)2(z23)2hi−2(z31)2 , CTϕϕ = hi . (A.43)

From eq. (A.41) we obtain

⟨T (z0)T (z1)ϕi(z2)ϕi(z3)⟩ =
GTTϕϕ(η)

(z01)4(z23)2hi
, GTTϕϕ(η) =

(
c

2 + hiη
2(η(hiη − 2) + 2)

(η − 1)2

)
.

(A.44)

The cross-ratio η is

η ≡ z01z23
z02z13

. (A.45)

We can recursively apply the algorithm used above to add more insertions of T . For example:

⟨T (z0)T (z1)T (z2)X (0,n)({zi})⟩ =

L(z0)
−2 ⟨T (z1)T (z2)X (0,n)({zi})⟩+

c/2
(z01)4 ⟨T (z2)X (0,n)({zi})⟩+

c/2
(z02)4 ⟨T (z1)X (0,n)(zi)⟩ .

(A.46)

As a particular case of eq. (A.46), when X (0,n) is the identity operator and using

⟨T (z2)T (z3)⟩ =
c/2

(z23)4 , ⟨T (z1)T (z2)T (z3)⟩ =
c

(z12)2(z23)2(z31)2 , (A.47)

we find the four-point function of T (z)

⟨T (z0)T (z1)T (z2)T (z3)⟩ =
GTTTT (η)
(z01)4(z23)4 ,

GTTTT (η) = 2c η2((η − 1)η + 1)
(η − 1)2 + c2

4

(
1 + η4 +

(
η

η − 1

)4
)
. (A.48)

The four-point correlation function of T (z) is a physical correlator, and as such it admits
a decomposition into the SL(2,R) conformal blocks of eq. (A.6) (with positive coefficients
in unitary theories). In the s-channel we find

GTTTT (η) = c2

4 G(0, 0, 0, η) +
∑

n=2,4,...
CTT

nCTTnG(0, 0, n, η) , (A.49)

with squared OPE coefficients

CTT
nCTTn =

√
πc(c(n− 3)(n− 2)(n− 1)Γ(n+ 3) + 288((n− 1)n− 1)Γ(n))

9× 22n+1Γ
(
n− 1

2

) . (A.50)
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In particular, the squared OPE coefficients with T and T 2 in the T × T OPE read

CTT
TCTTT = 2c , CTT

T 2
CTTT 2 = c

10(22 + 5c) . (A.51)

Note that eq. (A.40) implies that CTT T
2 = 1, and so from the rightmost equation above we get

⟨T 2(0)T 2(∞)⟩ ≡ CT 2 = CTTT 2 = c

10(22 + 5c) . (A.52)

A.3.2 Correlation functions of the stress tensor

Let us now return to the BCFT setup. We recall that n-point functions of the stress tensor
T (z) on the upper half-plane are the same as in flat space. The reason for this is holomorphy,
which states that

∂̄i⟨T (z1)T (z2) . . . T (zn)⟩H+ = 0 , (A.53)

and so the correlation functions are invariant under a translation with respect to the transverse
coordinate orthogonal to the boundary. Therefore, they must take the same form as in the
full complex plane [48–50]. For two- and three-point correlation functions of T , the bulk
self-OPE of T together with SL(2,R) symmetry dictate that

⟨T (z1)T (z2)⟩H+ = c/2
(z12)4 , ⟨T (z1)T (z2)T (z3)⟩H+ = c

(z12)2(z23)2(z31)2 . (A.54)

Analogous results hold for higher-point correlation functions of T or of T̄ . Note that eq. (A.16)
implies that correlation functions of T̄ are those of T on the upper half-plane, analytically
continued to the lower half-plane, so for example

⟨T (z)T̄ (w̄)⟩H+ = ⟨T (z)T (w∗)⟩H+ . (A.55)

A.3.3 Correlation functions of the displacement operator

The n-point functions of the displacement operator are directly obtained from eq. (A.54),
by simply restricting all T -insertions to the real line. We choose an operator ordering along
the line so that xi > xi+1, and so we find

⟨D(x1)D(x2)⟩H+ = ĈD
x4

12
, ⟨D(x1)D(x2)D(x3)⟩H+ = ĈDDD

(x12)2(x23)2(x31)2 ,

ĈD = c/2 , ĈDDD = c . (A.56)

Similarly, the four-point correlation function can be obtained from eq. (A.48), e.g.

⟨D(x1)D(x2)D(x3)D(x4)⟩H+ = GDDDD(η)
(x12)4(x34)4 , xi > xi+1 ,

GDDDD(η) = 2c η2((η − 1)η + 1)
(η − 1)2 + c2

4

(
1 + η4 +

(
η

η − 1

)4
)
. (A.57)

The cross-ratio η, which can be found in eq. (A.4), is the restriction of the familiar holomorphic
cross-ratio in eq. (A.45) to the real line. We can decompose this correlator into the s-channel
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SL(2,R) blocks defined in eq. (A.57). The resulting squared OPE coefficients equal the ones
of eq. (A.49), so in particular from eq. (A.51) we find

ĈDD
DĈDDD = 2c , ĈDD

D2
ĈDDD2 = c

10(22 + 5c) . (A.58)

In the equation above we identified the global primary operator D2 as the boundary limit of
the operator T 2 in the bulk, which is defined in eq. (A.40). From eq. (A.52) we find

⟨D2(0)D2(∞)⟩H+ ≡ ĈD2 = c

10(22 + 5c) , (A.59)

and, combining with eq. (A.58)

ĈDD
D2

= 1 , ĈDDD2 = ĈD2 . (A.60)

A.3.4 Correlation functions of the displacement with boundary operators

Let us now consider a conformal boundary condition that allows for a boundary Virasoro
primary ψ with two-point correlation function

⟨ψ(x1)ψ(x2)⟩H+ = 1
x2∆̂

12
, x1 > x2 . (A.61)

As we discussed in the previous subsection, as far as Ward identities are concerned, boundary
Virasoro primaries behave as holomorphic Virasoro primaries. Correlation functions between
D and ψ can be obtained from correlation functions on the upper half-plane between T

and a holomorphic Virasoro primary ϕ with weight h = ∆̂. From eq. (A.43), upon using
the bulk-boundary OPE of T in eq. (A.17) and choosing the operator ordering xi > xi+1
on the line we immediately get

⟨D(x1)ψ(x2)ψ(x3)⟩H+ = ĈψψD

(x12)2(x23)2∆̂−2(x31)2
, ĈψψD = ĈDψψ = ∆̂ . (A.62)

This result, when combined with eq. (A.56), tells us that the displacement operator will enter
the SL(2,R) block decomposition of the four-point correlation function of ψ as

Ĉψψ
DĈψψD = ∆̂2

ĈD
= 2∆̂2

c
. (A.63)

The four-point correlation function ⟨DDψψ⟩ in this ordering can be obtained from the result
of eq. (A.44) and reads (η is defined in eq. (A.4))

⟨D(x1)D(x2)ψ(x3)ψ(x4)⟩H+ = GDDψψ(η)
(x12)4(x34)2∆̂

, GDDψψ(η) =
(
c

2 + ∆̂η2(η(∆̂η − 2) + 2)
(η − 1)2

)
.

(A.64)

The SL(2,R) s-channel block decomposition reads

GDDψψ(η) = c

2G(0, 0, 0, η) +
∑

n=2,4,...
ĈDD

nĈψψnG(0, 0, n, η) , (A.65)
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with blocks given in eq. (A.57) and coefficients

ĈDD
nĈψψn =

√
π∆̂

22n−3Γ
(
n− 1

2

)(∆̂(n− 2)(n+ 1) + 2)Γ(n) . (A.66)

In particular for the first few coefficients we have

ĈDD
DĈψψD = 2∆̂ , ĈDD

D2
ĈψψD2 = ∆̂

5 (5∆̂ + 1) , (A.67)

and so, once we combine with eq. (A.59) and eq. (A.60), we find

ĈψψD2 = ∆̂
5 (5∆̂ + 1) . (A.68)

We can also consider a different ordering, e.g.

⟨D(x1)ψ(x2)D(x3)ψ(x4)⟩H+ =
(
x14
x24

)∆̂−2 (x14
x13

)2−∆̂ GDψDψ(η)
(x12)2+∆̂(x34)2+∆̂

, xi > xi+1 ,

GDψDψ(η) = η∆̂+2
(
c

2 + ∆̂(2(η − 1)η + ∆̂)
η2(η − 1)2

)
, (A.69)

with η defined as in eq. (A.4). The s-channel SL(2,R) block decomposition reads

GDψDψ(η) = ∆̂2G(∆̂− 2, 2− ∆̂, ∆̂, η) +
∑

n=2,3,4,...
ĈDψ

nĈDψnG(∆̂− 2, 2− ∆̂, ∆̂ + n, η) ,

(A.70)

and the first non-zero coefficients are

ĈDψ
2ĈDψ2 = c

2 + ∆̂
(
4− 9

2∆̂ + 1

)
,

ĈDψ
3ĈDψ3 = − 2∆̂

(∆̂ + 1)(∆̂ + 2)

(
(c− 7)∆̂ + c+ 3∆̂2 + 2

)
,

ĈDψ
4ĈDψ4 = ∆̂(5c(4∆̂(∆̂ + 2) + 3) + 4∆̂(∆̂(8∆̂− 19) + 26)− 15)

(∆̂ + 3)(2∆̂ + 3)(2∆̂ + 5)
. (A.71)

Note that the negative term on the second line is due to a parity-odd operator at level 3,
see for example appendix K of [51].

A.3.5 Correlation functions of the displacement with a bulk operator

Consider a scalar bulk Virasoro primary ϕh,h(z, z̄) with scaling dimension ∆ = 2h. We want
to compute its two-point correlation function with the displacement

⟨D(0)ϕh,h(x+ iy, x− iy)⟩H+ . (A.72)

As we have discussed, D can be traded for an insertion of T on H+. Since T is holomorphic,
it does not need to be doubled, and by the method of images

⟨D(0)ϕh,h(z, z̄)⟩H+ ∝ ⟨T (0)ϕh(z)ϕh(z∗)⟩ . (A.73)
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Upon using eq. (A.43) we learn that

⟨D(0)ϕh,h(x+ iy, x− iy)⟩H+ = BϕD
(2y)∆−2(x2 + y2)2 . (A.74)

The bulk-to-boundary coefficient BϕD is further related to the one-point function in eq. (A.34)
by means of a special Ward identity [42, 43]

BϕD = −Bϕ∆/2 . (A.75)

The same logic applies to higher-point correlators, e.g.

⟨D(x1)D(x2)ϕh,h(z, z̄)⟩H+ ∝ ⟨T (x1)T (x2)ϕh(z)ϕh(z∗)⟩ , (A.76)

and from eq. (A.44) we find

⟨D(x1)D(x2)ϕh,h(x+ iy, x− iy)⟩H+ = Bϕ
(2y)∆(x12)4

(
c

2 −∆η̃
(
1− ∆η̃

4

))
. (A.77)

The cross-ratio η̃ is defined in eq. (B.23). The normalization of eq. (A.77) is chosen such
that the y → 0 expansion of the correlator above gives the identity contribution in the D×D
OPE, with the correct normalization. As a check of this result, we can decompose eq. (A.77)
into the bulk-boundary-boundary conformal blocks of eq. (A.12). The second addend in
eq. (A.77) can be decomposed as follows

Bϕ
∑

n=2,4,6...

√
π∆e

iπn
2 (∆(n− 2)(n+ 1) + 4)Γ(n)

22n−1Γ
(
n− 1

2

) f(0, n, η̃/4) . (A.78)

In particular, we learn that

ĈDD
DBϕD = −Bϕ ∆, ĈDD

D2
BϕD2 = 1

20Bϕ∆(5∆ + 2) . (A.79)

As a check of this result, we note that the leftmost piece of the equation above repro-
duces eq. (A.75) after using eq. (A.56). From the rightmost piece, upon combining with
eq. (A.60) we find

BϕD2 = 1
20Bϕ∆(5∆ + 2) . (A.80)

A.3.6 Correlation functions with D2

The operator D2 is the unique global primary at level four in the boundary identity module.
It is defined upon restricting the T × T OPE in eq. (A.40) to the real line

D(x)D(0) = c/2
x4 1̂+ 2

x2 D(0) + 1
x

D′(0) + 3
10D′′(0) + D2(0) +O(x2) , (A.81)

where primed operators are derivatives with respect to x, O(x2) denotes higher order con-
tributions and D2 is the restriction of T 2 to the boundary.
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To compute correlation functions with D2 on the upper half-plane we apply the following
strategy. Starting from correlation functions with two insertions of T on H+, each T 2

insertion is obtained as

⟨T 2(z) . . . ⟩ ≡ lim
z→0

⟨
(
T (z)T (0)− c/2

z4 1− 2
z2T (0)−

1
z
T ′(0)− 3

10T
′′(0)

)
. . . ⟩ . (A.82)

Finally, each T 2(z) insertion defines a D2(x) insertion upon taking the boundary limit on
z, the latter being regular, as dictated by holomorphy.

Our first target is

⟨D2(x1)D2(x2)ϕ(x+ iy, x− iy)⟩H+ , (A.83)

with ϕ a bulk Virasoro primary of dimension ∆. For this we should consider

⟨T (z0)T (z1)T (z2)T (z3)ϕ(x+ iy, x− iy)⟩H+ , (A.84)

which is determined by the conformal Ward identity in terms of the correlator of ϕ with
zero, one, two, and three T insertions, as explained above. Note that in order to take the
limit (A.82), we need to combine this five-point correlator with the correlator of ϕ with
one, two, and three T insertions. Taking the limit (A.82) of coincident points (say, between
the first two and the second two T insertions), and finally the boundary limit of each T 2

insertion, we find

⟨D2(x1)D2(x2)ϕ(x+ iy, x− iy)⟩H+ = GD2D2ϕ(η̃)
(2y)∆(x12)8 , (A.85)

where the cross-ratio is that of eq. (A.13) and

GD2D2ϕ(η̃) = Bϕ

(
c

10(5c+ 22)− 2∆
5 (5c+ 22)η̃ + ∆

50(5(5c+ 64)∆ + 84)η̃2

−∆
25(5∆ + 2)2η̃3 + ∆2

400(5∆ + 2)2η̃4
)
. (A.86)

The Bϕ is that of eq. (A.34). This result can also be expanded into the bulk-boundary-
boundary blocks of eq. (A.12) to find

Bϕ
10 c(5c+ 22) +Bϕ

∑
n=2,4,6...

(
c(1)
n ∆+ c(2)

n ∆2 + c(3)
n ∆3 + c(4)

n ∆4
)
f(0, n, η̃/4) , (A.87)

where

c(1)
n = e

iπn
2

√
π23−2n(50c+ ((n− 1)n+ 8)((n− 1)n+ 20))Γ(n)

25Γ
(
n− 1

2

) ,

c(2)
n = e

iπn
2

√
π2−2(n+1)(n− 2)(2n− 1)(1800c+ (n− 1)n((n− 1)n+ 678) + 14760)Γ(n+ 2)

225nΓ
(
n+ 1

2

) ,

c(3)
n = e

iπn
2

√
π2−2n−1(n− 4)(n− 2)(n+ 3)((n− 1)n+ 150)Γ(n+ 2)

45nΓ
(
n− 1

2

) ,

c(4)
n = e

iπn
2

√
π2−2n−3(n− 6)(n− 4)(n− 2)(n+ 3)(n+ 5)Γ(n+ 2)

9nΓ
(
n− 1

2

) . (A.88)
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A.4 Correlation functions with T T̄

Let us now discuss how we compute correlation functions with insertions of T T̄ on H+.
The first observation is that the T × T̄ bulk OPE is regular, as dictated by holomorphy,
and the limit of coincident points defines a unique scalar bulk global primary of scaling
dimension equal to four. Therefore

⟨. . . T T̄ (z)⟩H+ ≡ lim
z′→z

⟨. . . T (z′)T̄ (z)⟩H+

= lim
z′→z

⟨. . . T (z′)T (z∗)⟩H+ = ⟨. . . T (z)T (z∗)⟩H+ . (A.89)

As an immediate application of the prescription above, we learn that

⟨T T̄ (x+ iy, x− iy)⟩H+ ≡ BT T̄
(2y)4 = ⟨T (x+ iy)T (x− iy)⟩H+ = c/2

(2y)4 , (A.90)

and so BT T̄ = c/2.
Let us now compute the three-point correlation function between T T̄ and a boundary

Virasoro primary ψ of scaling dimension ∆̂. Starting from eq. (A.44) (with ϕ → ψ), we
apply the prescription in eq. (A.89) to obtain

⟨ψ(x1)ψ(x2)T T̄ (x+ iy, x− iy)⟩H+ = GψψT T̄ (η̃)
(2y)4(x12)2∆̂

, x1 > x2 , (A.91)

where

GψψT T̄ (η̃) = c

2 − 2∆̂η̃ + ∆̂2η̃2 . (A.92)

The cross-ratio η̃ is that of eq. (A.13). The normalization is fixed by the ψ self-OPE limit,
and by eq. (A.90).

Expanding this result into the bulk-boundary-boundary blocks of eq. (A.12) we find

c

2 +
∑

n=2,4,6...
(α(1)

n ∆̂ + α(2)
n ∆̂2) f(0, n, η̃/4) , (A.93)

where

α(0)
n =

√
πe

iπn
2 Γ(n)

4n−2Γ
(
n− 1

2

) , α(1)
n =

√
πe

iπn
2 (n− 2)(n+ 1)Γ(n)
22n−3Γ

(
n− 1

2

) . (A.94)

Another interesting correlator is the three-point correlation function between two inser-
tions of the displacement and T T̄ on H+. This can be obtained from the four-point function
of T in eq. (A.48), upon applying the prescription in eq. (A.89) (e.g. for the last two insertions
of T ) and taking the boundary limit on the first two T insertions. The normalization is
again fixed by the bulk-boundary limit, so we find

⟨D(x1)D(x2)T T̄ (x+ iy, x− iy)⟩H+ = GDDT T̄ (η̃)
(2y)4(x12)4 , (A.95)
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where again η̃ is that of eq. (A.13) and

GDDT T̄ (η̃) = c2

4

(
1− 8η̃

c
+
(8
c
+ 2

)
η̃2 − 4η̃3 + η̃4

)
. (A.96)

Expanding this result into the bulk-boundary-boundary blocks of eq. (A.12) we find

c2

4 + 2c
∑

n=2,4,6...
(α(0)

n + α(1)
n c) f(0, n, η̃/4) , (A.97)

where

α(0)
n =

√
πe

iπn
2 ((n− 1)n− 1)Γ(n)
22n−3Γ

(
n− 1

2

) , α(1)
n =

√
πe

iπn
2 (n− 3)(n− 2)(n− 1)Γ(n+ 3)

9× 41+nΓ
(
n− 1

2

) . (A.98)

A.5 A correlation function with D2 and T T̄

We conclude with the three-point correlation function between two insertions of D2 and
T T̄ . The starting point is the six-point correlation function of T on H+, which however is
completely fixed by the conformal Ward identities. Taking the various limits, so eq. (A.82)
in the first and second T × T insertions, and eq. (A.89) in the last T × T insertion we
find (η̃ in eq. (A.13).)

⟨D2(x1)D2(x2)T T̄ (x+ iy, x− iy)⟩H+ = GD2D2T T̄ (η̃)
(2y)4(x12)8 , (A.99)

GD2D2T T̄ (η̃) = c2

20(5c+ 22)
(
1− 16η̃

c
+
(248

5c + 4
)
η̃2 −

(176
5c + 8

)
η̃3 +

(44
5c + 2

)
η̃4
)
.

(A.100)

We can expand this result into the bulk-boundary-boundary blocks of eq. (A.12) to find

c2

20(22 + 5c)− 4
5c(5c+ 22)

∑
n=2,4,6...

(α(0)
n + α(1)

n c) f(0, n, η̃/4) , (A.101)

where

α(0)
n = −

√
π2−2n−1e

iπn
2 ((n− 1)n(11(n− 1)n((n− 1)n− 8) + 1572)− 2160)Γ(n)

45Γ
(
n− 1

2

) ,

α(1)
n = −

√
π4−n−1e

iπn
2 (n− 3)(n− 2)(n− 1)Γ(n+ 3)

9Γ
(
n− 1

2

) . (A.102)

B Review of minimal model BCFTs

We will consider unitary and diagonal minimal models Mm+1,m with central charge

c = 1− 6
m(m+ 1) , m = 3, 4, 5, . . . (B.1)
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The holomorphic Virasoro primaries are labelled by a pair of positive integers (r, s) as

ϕ(r,s)(z) , 1 ≤ r ≤ m− 1 , 1 ≤ s ≤ m, (r, s) ∼= (m− r,m+ 1− s) , (B.2)

and have the following scaling dimensions

hr,s =
(
(m+ 1)r −ms

)2 − 1
4m(m+ 1) . (B.3)

The (holomorphic) fusion rules read

ϕ(r,s) × ϕ(r′,s′) =
rmax∑

r′′=|r−r′|+1
r+r′+r′′odd

smax∑
s′′=|s−s′|+1
s+s′+s′′odd

ϕ(r′′,s′′) , (B.4)

where rmax = min(r + r′ − 1, 2m− r − r′ − 1) and smax = min(s+ s′ − 1, 2m− s− s′ + 1).
The diagonal minimal models are obtained by gluing a copy of the holomorphic sector with

its anti-holomorphic counterpart, so that the physical spectrum of the theory contains only
scalar Virasoro primaries. The so-obtained diagonal minimal models enjoy a Z2 symmetry.
The charge of a Virasoro primary with labels (r, s) in Mm+1,m under such symmetry can be
chosen to be [52, 53] (see also [54] for a generic analysis on unitary minimal models)

ϵ
(m)
(r,s) = (−1)(m+1)r+ms+1 . (B.5)

B.1 Conformal boundary conditions

Let us consider placing a unitary and diagonal minimal model Mm+1,m on the upper half-
plane. The ‘elementary’ conformal boundary conditions for Mm+1,m are parameterised by
the highest weight representations of the Virasoro algebra [44–46]

a = (a1, a2)m , 1 ≤ a1 ≤ m− 1 , 1 ≤ a2 ≤ m, (a1, a2) ∼= (m− a1,m+ 1− a2) . (B.6)

In radial quantization, the elementary conformal boundary condition (B.6) defines a Cardy
state [45]

|a⟩ =
∑
(r,s)

S
(r,s)
(a1,a2)√
S

(r,s)
(1,1)

|r, s⟩⟩ . (B.7)

In the equation above, |r, s⟩⟩ is the Ishibashi state in the (r, s) sector [55] and

S
(r,s)
(a1,a2) =

√
8

m(m+ 1)(−1)1+a1s+a2r sin
(
m+1
m πa1r

)
sin
(

m
m+1πa2s

)
, (B.8)

are the entries of the modular S-matrix. The Ishibashi state |r, s⟩⟩ carries the same parity as
(r, s) under the bulk Z2 symmetry, see eq. (B.5), so an elementary conformal boundary condi-
tion preserves this Z2 if the corresponding Cardy state contains only Z2-even Ishibashi states.

Along with the Virasoro primaries that characterize the spectrum of bulk local operators,
in the presence of a boundary we can have local excitations located at the boundary. These
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m (a1, a2)m Z2 - preserving Boundary spectrum
3 (1, 2)3 ✓ 1̂, ψ(1,3)
4 (1, 2)4 1̂, ψ(1,3)

(1, 3)4 1̂, ψ(1,3)
(2, 1)4 ✓ 1̂, ψ(3,1)
(2, 2)4 ✓ 1̂, ψ(1,3), ψ(3,1), ψ(3,3)

5 (1, 2)5 1̂, ψ(1,3)
(1, 3)5 ✓ 1̂, ψ(1,3), ψ(1,5)
(1, 4)5 1̂, ψ(1,3)
(2, 1)5 1̂, ψ(3,1)
(2, 2)5 1̂, ψ(1,3), ψ(3,1), ψ(3,3)
(2, 3)5 ✓ 1̂, ψ(1,3), ψ(1,5), ψ(3,1), ψ(3,3), ψ(3,5)
(2, 4)5 1̂, ψ(1,3), ψ(3,1), ψ(3,3)
(2, 5)5 1̂, ψ(3,1)

6 (1, 2)6 1̂, ψ(1,3)
(1, 3)6 1̂, ψ(1,3), ψ(1,5)
(1, 4)6 1̂, ψ(1,3), ψ(1,5)
(1, 5)6 1̂, ψ(1,3)
(2, 1)6 1̂, ψ(3,1)
(2, 2)6 1̂, ψ(1,3), ψ(3,1), ψ(3,3)
(2, 3)6 1̂, ψ(1,3), ψ(1,5), ψ(3,1), ψ(3,3), ψ(3,5)
(2, 4)6 1̂, ψ(1,3), ψ(1,5), ψ(3,1), ψ(3,3), ψ(3,5)
(2, 5)6 1̂, ψ(1,3), ψ(3,1), ψ(3,3)
(2, 6)6 1̂, ψ(3,1)
(3, 1)6 ✓ 1̂, ψ(3,1), ψ(5,1)
(3, 2)6 ✓ 1̂, ψ(1,3), ψ(3,1), ψ(3,3), ψ(5,1), ψ(5,3)
(3, 3)6 ✓ 1̂, ψ(1,3), ψ(1,5), ψ(3,1), ψ(3,3), ψ(3,5), ψ(5,1), ψ(5,3), ψ(5,5)

Table 1. Elementary conformal boundary conditions for diagonal and unitary minimal models with
m ≤ 6. Z2-preserving boundary conditions are those corresponding to Z2-even Cardy states. We have
not included the conformal b.c. labeled by the identity, nor its Z2-conjugate (1,m)m: they are always
possible and allow only for 1̂ at the boundary.

excitations are captured by the boundary Virasoro primaries, which are highest-weight
representations of a single copy of the Virasoro algebra preserved by the boundary. Boundary
Virasoro primaries ψ(r,s) are labelled by a pair of integers

ψ(r,s)(x) , 1 ≤ r ≤ m− 1 , 1 ≤ s ≤ m, (r, s) ∼= (m− r,m+ 1− s) , (B.9)

and they have scaling dimensions

ψ(r,s)(x) : ∆̂r,s = hr,s . (B.10)

Their fusion rules are the same as the holomorphic fusion rules of eq. (B.4).
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The spectrum of allowed boundary Virasoro primaries in a given conformal b.c. is
constrained by modular invariance. With the elementary conformal boundary condition
a = (a1, a2), the allowed boundary Virasoro primaries are those that can appear in the
self-OPE of a bulk Virasoro primary labelled by a. This is expressed in terms of the annulus
partition function with boundary condition a as follows:

Zaa(δ) =
∑

ϕ(r,s)∈ϕa×ϕa

N
(r,s)
aa χ(r,s)(q) , q ≡ e−πδ , (B.11)

where N (r,s)
aa is the fusion coefficient of ϕa×ϕa into ϕ(r,s), χ(r,s)(q) is the (holomorphic) Virasoro

character of the (r, s) module and δ is the width of the annulus. A table with a survey of
elementary conformal b.c. for diagonal minimal models with m ≤ 6 can be found in table 1.

Let us now briefly discuss some aspects of the OPE data. The coefficients B, Ĉ and C are
determined via the ‘sewing’ constraints of Lewellen [56]. For unitary and diagonal minimal
models with elementary conformal b.c., these were solved by Runkel in ref. [57] (see [58] for
the extension to the D-series of minimal models), who has found explicit expressions for
such B, Ĉ and C in terms of the so-called ‘fusion matrices’, or F-matrices. Of course the
C coefficients are the same as those of the homogeneous minimal model, and these can be
efficiently computed via the Coulomb gas formalism of refs. [59–61].16

Note that the bulk-boundary coefficient of ϕ(r,s) with the boundary identity in the second
line of eq. (A.2) is determined by the Cardy state to be [56, 63]

B
a (1,1)
(r,s) =

S
(r,s)
(a1,a2)

√
S

(1,1)
(1,1)

S
(1,1)
(a1,a2)

√
S

(r,s)
(1,1)

. (B.12)

B.2 The ϕ(1,3) and ψ(1,3) operators

In the main text we study the deformation of the minimal models by the ϕ(1,3) operator. In the
remainder of this review we will therefore study its properties and explicitly compute several
correlation functions involving this operator. We are also interested in the near-boundary
operator ψ(1,3). We note first of all that

∆1,3 = 2h1,3 = 2m− 1
m+ 1 . (B.13)

Bulk OPE. The bulk self-OPE of ϕ(1,3) reads (see eq. (B.4))

ϕ(1,3)(z, z̄)ϕ(1,3)(0,0)=
1̂

|z|2∆1,3
+desc. m=3

ϕ(1,3)(z, z̄)ϕ(1,3)(0,0)=
1

|z|2∆1,3
+
C(1,3)(1,3)

(1,3)

|z|∆1,3
ϕ(1,3)(0,0)+desc. m=4

ϕ(1,3)(z, z̄)ϕ(1,3)(0,0)=
1

|z|2∆1,3
+
C(1,3)(1,3)

(1,3)

|z|∆1,3
ϕ(1,3)(0,0)+

C(1,3)(1,3)
(1,5)

|z|2∆1,3−∆1,5
ϕ(1,5)(0,0)+desc. m≥ 5 ,

(B.14)
16In their supplementary material, the authors of ref. [62] provided a very useful Mathematica notebook

that implements these formulae.
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up to Virasoro descendants. The OPE coefficients are found to be

C(1,3)(1,3)(1,3) = −
Γ
(

2
m+1

)
Γ
(

1−m
m+1

)
Γ
(

3m−1
m+1

)
Γ
(

2−2m
m+1

)
Γ
(

2m
m+1

)2

√√√√√√−
Γ
(

2−m
m+1

)
Γ
(

m
m+1

)3

Γ
(

1
m+1

)3
Γ
(

2m−1
m+1

) , for m > 3

= 4√
3
− 4

√
3

m
− 8√

3m2 + 32
√
3ζ(3)
m3 +O(m−4) ,

C(1,3)(1,3)(1,5) =
m− 1
3m− 1

√√√√√Γ
(

1−2m
m+1

)
Γ
(

2−m
m+1

)
Γ
(

m
m+1

)
Γ
(

4m−1
m+1

)
Γ
(

1
m+1

)
Γ
(

2−3m
m+1

)
Γ
(

3m
m+1

)
Γ
(

2m−1
m+1

) , for m > 4

=
√
5
3 − 7

√
5

9m − 53
√
5

54m2 +
√
5(2592ζ(3)− 691)

324m3 +O(m−4) . (B.15)

Bulk-boundary OPE. The bulk-boundary OPE of ϕ(1,3) reads

ϕ(1,3)(x+iy,x−iy)=
B

a (1,1)
(1,3)

(2y)∆1,3
1̂+desc. m=3

ϕ(1,3)(x+iy,x−iy)=
B

a (1,1)
(1,3)

(2y)∆1,3
1̂+

B
a (1,3)
(1,3)

(2y)∆1,3−h1,3
ψ(1,3)(x)+desc. m=4

ϕ(1,3)(x+iy,x−iy)=
B

a (1,1)
(1,3)

(2y)∆1,3
1̂+

B
a (1,3)
(1,3)

(2y)∆1,3−h1,3
ψ(1,3)(x)+

B
a (1,5)
(1,3)

(2y)∆1,3−h1,5
ψ(1,5)(x)+desc. m≥ 5

(B.16)

up to boundary Virasoro descendants. The bulk-boundary OPE coefficient Ba (1,1)
(1,3) is given

in eq. (B.28). The squared coefficients (Ba (1,3)
(1,3) )2 and (Ba (1,5)

(1,3) )2 are determined by the
bulk-boundary crossing symmetry and are reported in section B.3.1.

B.3 The bulk two-point function of ϕ(1,3)

We start from the bulk two-point function of ϕ(1,3) on the upper half-plane:

⟨ϕ(1,3)(x1 + iy1, x1 − iy1)ϕ(1,3)(x2 + iy2, x2 − iy2)⟩H+ . (B.17)

To compute such a correlator, we employ the method of images and solve(
L(z4)
−3 − 2

h1,3+2L−1L(z4)
−2 + 1

(h1,3+1)(h1,3+2)L
3
−1

)
⟨ϕ(1,3)(z1)ϕ(1,3)(z2)ϕ(1,3)(z3)ϕ(1,3)(z4)⟩=0 ,

(B.18)

where L(·)
−n is the differential operator defined in eq. (A.29) and L−1 = ∂z4 . This holomorphic

correlator takes the following form

⟨ϕ(1,3)(z1)ϕ(1,3)(z2)ϕ(1,3)(z3)ϕ(1,3)(z4)⟩ =
G(η)

(z12z34)2h1,3
. (B.19)
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The cross-ratio η is defined as (zij ≡ zi − zj)

η = z12z34
z13z24

= − 4y1y2
(y1 − y2)2 + (x1 − x2)2 . (B.20)

The differential equation for G(η) reads

0= η2(η−1)3(m+1)3G′′′(η)+2η(η−1)2(m+1)2(η(m+3)+m−3)G′′(η)

+2(η−1)(m+1)
(
η
(
m2+m−6

)
+η2(m(3−2m)+3)−3m+3

)
G′(η)

+4(η−2)η(m−1)2mG(η) .

(B.21)

In order to solve this equation, it is convenient to define another function

G(η) = G̃
(
η̃ ≡ η2

1− η

)
. (B.22)

The cross-ratio η̃ is real and positive in the physical region. In fact, in terms of the cross-ratio
ξ defined in eq. (A.8) we have that

η̃ = ξ−1(1 + ξ)−1 = 16y2
1y

2
2

((y1 − y2)2 + (x1 − x2)2) ((y1 + y2)2 + (x1 − x2)2) . (B.23)

There are three independent solutions to this equation, corresponding to the boundary
operators 1̂, ψ(1,3) and ψ(1,5), see e.g. eq. (B.16). The three Virasoro blocks at finite m read

V(1,1)(η̃) =3 F2

(1−m

m+ 1 ,
2m
m+ 1 ,−

2m− 2
m+ 1 ; 3 +m

2m+ 2 ,
2−m

m+ 1;−
η̃

4

)
,

V(1,3)(η̃) = η̃h1,3/2
3F2

(5m− 1
2m+ 2 ,

1−m

2m+ 2 ,−
3m− 3
2m+ 2;

3−m

2m+ 2 ,
3m+ 1
2m+ 2;−

η̃

4

)
,

V(1,5)(η̃) = η̃h1,5/2
3F2

( 1
m+ 1 ,

m

m+ 1 ,
4m− 1
m+ 1 ; 3m

m+ 1 ,
5m+ 1
2m+ 2;−

η̃

4

)
. (B.24)

The final solution is

⟨ϕ(1,3)(x1 + iy1, x1 − iy1)ϕ(1,3)(x2 + iy2, x2 − iy2)⟩H+ = G̃(η̃)
(4y1y2)2h1,3

,

G̃(η̃) = (Ba (1,1)
(1,3) )2V(1,1)(η̃) + (Ba (1,3)

(1,3) )2V(1,3)(η̃) + (Ba (1,5)
(1,3) )2V(1,5)(η̃) . (B.25)

We will fix the coefficients using bulk-boundary crossing symmetry.

B.3.1 Bulk-boundary crossing

The correlator in eq. (B.25) is manifestly written in terms of the boundary data. By expanding
it around η̃ = ∞ we can read off the bulk-channel data. For a systematic expansion around
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η̃ = ∞ it is convenient to define the following basis of bulk-channel blocks17

V bulk
(1,1) (η̃) = η̃2h1,3 3F2

( 1
m+ 1 ,

2− 2m
m+ 1 ,

3− 3m
2m+ 2;

2
m+ 1 ,

3− 3m
m+ 1 ;−4

η̃

)
,

V bulk
(1,3) (η̃) = η̃h1,3 3F2

(
m

m+ 1 ,
1−m

m+ 1 ,
1−m

2m+ 2;
2m
m+ 1 ,

2− 2m
m+ 1 ;−4

η̃

)
,

V bulk
(1,5) (η̃) = η̃2h1,3−h1,5 3F2

( 2m
m+ 1 ,

4m− 1
m+ 1 ,

5m− 1
2m+ 2;

4m
m+ 1 ,

5m− 1
m+ 1 ;−4

η̃

)
. (B.26)

The bulk-boundary crossing is then simply the statement that

(Ba (1,1)
(1,3) )2V(1,1)(η̃) + (Ba (1,3)

(1,3) )2V(1,3)(η̃) + (Ba (1,5)
(1,3) )2V(1,5)(η̃) =

V bulk
(1,1) (η̃) + C(1,3)(1,3)(1,3)B

a (1,1)
(1,3) V bulk

(1,3) (η̃) + C(1,3)(1,3)(1,5)B
a (1,1)
(1,5) V bulk

(1,5) (η̃) . (B.27)

The bulk coefficients are given in eq. (B.15), while from eq. (B.12) we have that

B
a (1,1)
(1,3) =

(
1 + 2 cos

(2πa2m

m+ 1

))√√√√√sin
(
π
m

)
sin
(
πm
m+1

)
sin
(
π
m

)
sin
(

3πm
m+1

)
=

√
3− 2π2 (2a2

2 − 1
)

√
3m2 + 4π2 (2a2

2 − 1
)

√
3m3 +O(m−4) ,

B
a (1,1)
(1,5) = sin

(5πa2m

m+ 1

)
csc

(
πa2m

m+ 1

)√√√√√sin
(
π
m

)
sin
(
πm
m+1

)
sin
(
π
m

)
sin
(

5πm
m+1

)
=

√
5 + 2π2√5

(
1− 2a2

2
)

m2 + 4π2√5
(
2a2

2 − 1
)

m3 +O(m−4) , (B.28)

and the large-m limit is taken assuming a generic conformal b.c. a, with a1, a2 ≪ m. The
coefficients (Ba (1,3)

(1,3) )2 and (Ba (1,5)
(1,3) )2 are determined by the bulk-boundary crossing symmetry

for any finite m.

Solution to bulk-boundary crossing for m = 3 and m = 4. Let us start from
the simplest case, m = 3, where only the identity is present in both the bulk and the
boundary channels. Crossing imposes that (Ba (1,1)

(1,3) )2 = 1 which, upon comparing to the
first of eq. (B.28), is true if a2 = 1, 2, 3, as it should.

For the case with m = 4 we have only two operators in both channels: 1̂ and ψ(1,3) in
the boundary channel, 1 and ϕ(1,3) in the bulk channel. The only remaining coefficient is
(Ba (1,3)

(1,3) )2, which can be non-zero only if a2 = 2, 3 and is fixed by crossing as follows

(Ba (1,3)
(1,3) )2 = −

24
√
2− 2√

5

(
25 22/5

√
π
(
9− 4

√
5
)
Γ
(

3
5

)
Γ
(

7
10

)
− 12πΓ

(
−6

5

))
3125Γ

(
3
5

)
Γ
(

8
5

)
Γ
(

13
5

) ≃ 0.663053 .

(B.29)
17These can be obtained upon ‘inverting’ the blocks of eq. (B.24) using standard hypergeometric trans-

formations and picking up the correct linear combination of ‘inverted blocks’ consistently with the bulk
OPE limit.
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Solution to bulk-boundary crossing for general m > 4. We find

(Ba (1,3)
(1,3) )2 =

√
π sec

(
2π
m+1

)
Γ
(

m
m+1

)
Γ
(

1−m
2m+2

)
Γ
(

3m−1
m+1

)
2Γ
(
m−1
m+1

)
Γ
(

2m−1
m+1

)
Γ
(

3−m
2m+2

)
Γ
(

3m+1
2m+2

)
− 1
π
sin
( 2π
m+ 1

)
Γ
( 2m
m+ 1

)
Γ
( 2
m+ 1 − 1

)
C(1,3)(1,3)(1,3)B

a (1,1)
(1,3)

+
2

6
m+1−4Γ

(
2−m
m+1

)
Γ
(

3−3m
2m+2

)
Γ
(

1−m
2m+2

)
Γ
(
m+3
2m+2

)
Γ
(

5m−1
2(m+1)

)
π3/2

(
sec

(
π

m+1

)
+ sec

(
3π
m+1

))
Γ
(

2−2m
m+1

)2
Γ
(

2m
m+1

)
Γ
(

3m+1
2m+2

)
×
(
Γ
(1−m

m+ 1

)
Γ
( 2m
m+ 1

)
− π csc

( 4π
m+ 1

))
(Ba (1,1)

(1,3) )2 ,

(Ba (1,5)
(1,3) )2 =

(m− 1)
(
sec

(
2π
m+1

)
− 2

)
Γ
(
− 1
m+1

)
Γ
(
4− 5

m+1

)
2(m− 2)(3m− 1)Γ

(
m−2
m+1

)
Γ
(

3m
m+1

)
+

√
π sec

(
2π
m+1

)
Γ
(

2m
m+1

)
Γ
(
4− 5

m+1

)
Γ
(

3
2 − 1

m+1

)
2Γ
(

3m
m+1

)
Γ
(
3− 4

m+1

)
Γ
(

5
2 − 2

m+1

)
Γ
(

1
m+1 − 1

2

)C(1,3)(1,3)(1,3)B
a (1,1)
(1,3)

−
2

6
m+1−4Γ

(
2−m
m+1

)
Γ
(
m+3
2m+2

)
Γ
(

4m−1
m+1

)
Γ
(

2−2m
m+1

)
Γ
(

1−m
m+1

)
Γ
(

2m
m+1

)
Γ
(

3m
m+1

)
Γ
(

5m+1
2m+2

)
×

(
π csc

(
4π
m+1

)
sec

(
π

m+1

)
+ sec

(
3π
m+1

)
Γ
(

1−m
m+1

)
Γ
(

2m
m+1

))
(
sec

(
π

m+1

)
+ sec

(
3π
m+1

)) (Ba (1,1)
(1,3) )2 , (B.30)

with C(1,3)(1,3)(1,3) and B
a (1,1)
(1,3) given in equations (B.15) and (B.28) (respectively). These

results are consistent with those obtained using F-matrices in ref. [57].

Large-m expansion. In the large-m expansion (we have in mind a sufficiently generic
conformal b.c. a, with a1, a2 ≪ m), the solutions of eq. (B.30) read

(Ba (1,3)
(1,3) )2 = 32π2 (a2

2 − 1
)

3m2 − 160π2 (a2
2 − 1

)
3m3 − 32π2 (a2

2 − 1
) (
π2 (4a2

2 − 7
)
− 21

)
9m4 +O(m−5) ,

(Ba (1,5)
(1,3) )2 = 8π4 (a2

2 − 1
) (
a2

2 − 4
)

9m4 +O(m−5) . (B.31)

B.4 Correlator between four ψ(1,3)

Consider the four-point correlation function of ψ(1,3). The associated differential equation
and its solutions where given in section B.3. The fusion rules read

ψ(1,3) × ψ(1,3) = 1̂ m = 3
ψ(1,3) × ψ(1,3) = 1̂+ ψ(1,3) m = 4
ψ(1,3) × ψ(1,3) = 1̂+ ψ(1,3) + ψ(1,5) m ≥ 5 . (B.32)
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The solution is

⟨ψ(1,3)(x1)ψ(1,3)(x2)ψ(1,3)(x3)ψ(1,3)(x4)⟩H+ = G̃(η̃)
(x12x34)2h1,3

,

G̃(η̃) = V(1,1)(η̃) + (Ĉa(1,3)
(1,3)(1,3))

2V(1,3)(η̃) + (Ĉa(1,5)
(1,3)(1,3))

2V(1,5)(η̃) . (B.33)

The form of the V(r,s)(η̃) is given in eq. (B.24), while η̃ is defined in terms of the standard
cross ratio η of eq. (A.4) as

η̃ = η2

1− η
= x2

12x
2
34

x12x14x23x24
, (B.34)

which is positive if xi > xi+1.

B.4.1 Boundary crossing

The squared boundary OPE coefficients in eq. (B.33) are fixed by crossing symmetry, which
is the statement that (recall the definition in eq. (B.22))

G(η) =
(1− η

η

)−2h1,3

G(1− η) . (B.35)

For m = 3 we have that Ĉa
(1,3)(1,3)(1,3) = Ĉa

(1,3)(1,3)(1,5) = 0 and boundary crossing symmetry
is ensured by the identity block alone. For m = 4, or for those conformal b.c. that do not
allow ψ(1,5) we have that Ĉa

(1,3)(1,3)(1,5) = 0 and crossing is satisfied if

(Ĉa
(1,3)(1,3)(1,3))

2 = −
√
π Γ

(
3− 4

m+1

)
Γ
(

1
m+1 − 1

2

) (
π csc

(
3π
m+1

)
− Γ

(
1

m+1

)
Γ
(

m
m+1

))
Γ
(

1
m+1

)
Γ
(
m−1
m+1

)
Γ
(
2− 3

m+1

)
Γ
(

3
2 − 1

m+1

)
Γ
(

2
m+1 − 1

2

) ,

(B.36)

which vanishes identically for m = 3, but is positive otherwise. This result is consistent
with the known results from the literature, see e.g. ref. [57]. For m > 4 we find generically
a one-parameter family of solutions to the crossing equation, so that additional correlators
(and crossing constraints) are needed in order to compute Ĉa

(1,3)(1,3)(1,3) and Ĉa
(1,3)(1,3)(1,5).

B.5 Correlator between two ψ(r,s) and one ϕ(1,3)

Next, we compute the boundary-boundary-bulk correlation function between a boundary
Virasoro primary ψ(r,s) (assuming it exists) and ϕ(1,3),

⟨ψ(r,s)(x1)ψ(r,s)(x2)ϕ(1,3)(x+ iy, x− iy)⟩H+ , x1 > x2 . (B.37)

We recall that the scaling dimension of ψ(r,s) is ∆r,s = hr,s. The correlator of eq. (B.37)
satisfies a third order differential equation. To compute such a correlator, we employ the
method of images and solve(

L(z4)
−3 − 2

h1,3+2L−1L(z4)
−2 + 1

(h1,3+1)(h1,3+2)L
3
−1

)
⟨ψ(r,s)(z1)ψ(r,s)(z2)ϕ(1,3)(z3)ϕ(1,3)(z4)⟩=0 ,

(B.38)
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where L(·)
−n is the differential operator defined in eq. (A.29) and L−1 = ∂z4 . This holomorphic

correlator takes the following form:

⟨ψ(r,s)(z1)ψ(r,s)(z2)ϕ(1,3)(z3)ϕ(1,3)(z4)⟩ =
G(η)

(z12)2hr,s(z34)2h1,3
. (B.39)

The cross-ratio η is defined as

η = z12z34
z13z24

= 2iyx12
(x1 − z)(x2 − z∗) . (B.40)

The differential equation for G(η) reads

0 = (η − 1)3η2(m+ 1)3G′′′(η) + 2(η − 1)2η(m+ 1)2(η(m+ 3) +m− 3)G′′(η)
− (η − 1)(m+ 1) (12η − 2ηm(m+ 1) + 6m− 6)G′(η)

− (η − 1)η2(m+ 1)
(
m((r − s)((m+ 2)r −ms)− 2) + r2 − 7

)
G′(η)

+ (η − 2)η(m− 1)(mr −ms+ r − 1)(mr −ms+ r + 1)G(η) .

(B.41)

In order to solve this equation, it is convenient to define another function

G(η) = G̃
(
η̃ ≡ η2

η − 1

)
. (B.42)

The cross-ratio η̃ so defined is real and η̃ ∈ [0, 4] (its explicit expression in terms of the
coordinates is given in eq. (A.13)). There are three independent solutions to this equation
corresponding to the boundary operators 1̂, ψ(1,3) and ψ(1,5) (see the fusion rules in eq. (B.32)).
These Virasoro blocks at finite m are found to be

V(1,1)(η̃)=3 F2

(1−m
m+1 ,

1+mq−r
m+1 ,

1−mq+r
m+1 ; 2−m

m+1 ,
m+3
2m+2;

η̃

4

)
,

V(1,3)(η̃)= η̃h1,3/2
3F2

( 1−m
2m+2 ,

m+2mq−2r+1
2m+2 ,

m−2mq+2r+1
2m+2 ; 3−m2m+2 ,

3m+1
2m+2;

η̃

4

)
,

V(1,5)(η̃)= η̃h1,5/2
3F2

(
m

m+1 ,
2m+mq−r

m+1 ,
2m−mq+r

m+1 ; 3m
m+1 ,

5m+1
2m+2;

η̃

4

)
, (B.43)

in terms of the parameter q defined as

q ≡ s− r ∈ Z . (B.44)

The final solution is then

⟨ψ(r,s)(x1)ψ(r,s)(x2)ϕ(1,3)(x+ iy, x− iy)⟩H+ = G̃(η̃)
(x12)2hr,s(2y)2h1,3

,

G̃(η̃) = B
a (1,1)
(1,3) V(1,1)(η̃) + α(1,3)V(1,3)(η̃) + α(1,5)V(1,5)(η̃) , (B.45)

where B
a (1,1)
(1,3) is the one-point function coefficient of ϕ(1,3) computed in eq. (B.28) and

we denoted

α(1,3) ≡ Ĉa
(r,s)(r,s)(1,3)B

a (1,3)
(1,3) , α(1,5) ≡ Ĉa

(r,s)(r,s)(1,5)B
a (1,5)
(1,3) . (B.46)

Of course some of the three-point function coefficients Ĉa
(r,s)(r,s)(1,3), Ĉ

a
(r,s)(r,s)(1,5) can be zero

in a given conformal b.c. Instead, Ba (1,3)
(1,3) , B

a (1,5)
(1,3) are generically non-zero (see e.g. eq. (B.31)).
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B.5.1 Removing unphysical singularities

The r.h.s. of eq. (B.45) features unphysical singularities when the configuration is such that
η̃ ∈ [4,∞] ends up on the branch cut of the Virasoro blocks of eq. (B.43). In order to remove
these singularities we must require that Disc G̃ = 0 across that cut. This is one of the ‘sewing
constraints’ of Lewellen [56] for the open-open-closed string amplitude on the upper half-plane.
The condition that unphysical singularities in defect-defect-bulk blocks must disappear from
the physical correlation functions must hold in higher dimensions as well, and it has been
exploited in refs. [34, 64] to prove ‘triviality’ of certain free theory conformal defects and
in refs. [65, 66] to constrain the space of conformal boundary conditions for a theory of a
free massless scalar field. See also refs. [35, 67] for applications of this idea for O(N) models
with boundaries of defects and [26] for applications in QFTs in AdS.

Case with m = 3. The only non-identity boundary primary allowed to appear in any
conformal b.c is ψ(1,3) with self-OPE

ψ(1,3) × ψ(1,3) = 1̂. (B.47)

For this special case, eq. (B.45) contains only the identity block V(1,1), which becomes a
polynomial in η̃. Hence Disc G̃ = 0 and all is well.

Case with m = 4. This is the first non-trivial case. The non-identity boundary primaries
allowed to appear in any conformal b.c are ψ(1,3), ψ(3,1), ψ(3,3) (see table 1) with self-OPEs

ψ(1,3) × ψ(1,3) = 1̂+ ψ(1,3) ,

ψ(3,1) × ψ(3,1) = 1̂ ,

ψ(3,3) × ψ(3,3) = 1̂+ ψ(1,3) . (B.48)

We have to inspect the singularity structure of the correlator (B.45) for each of the possible
allowed boundary operators. When ψ(r,s) = ψ(3,1) there is only V(1,1), and it is easy to check
that Disc G̃ = 0 automatically. For ψ(1,3) and ψ(3,3) this condition implies that

α(1,3) = B
a (1,1)
(1,3)

Γ
(
− 3

10

)
Γ
(

7
10

)
sec

(
π
(
r − 4s

5

))
4 5√2Γ

(
r − 4s

5 + 1
5

)
Γ
(
−r + 4s

5 + 1
5

) . (B.49)

As a check, the case of r = 1, s = 3 in the equation above is consistent with the (squared)
OPE coefficient obtained from bulk-boundary crossing in eq. (B.30) times the (squared) OPE
coefficient obtained from boundary crossing in eq. (B.36), as it should. One can also check
that eq. (B.49) is consistent with the known results obtained from F-matrices in ref. [57].

General m, only V(1,1) and V(1,3). Consider a conformal b.c. a = (a1, a2)m for which
the following two properties are satisfied:

1. The boundary primary ψ(r,s) is allowed to exist;

2. α(1,3) ≡ Ĉa
(r,s)(r,s)(1,3)B

a (1,3)
(1,3) ̸= 0, but α(1,5) ≡ Ĉa

(r,s)(r,s)(1,5)B
a (1,5)
(1,3) = 0 (either because

ψ(1,5) does not exist, or Ĉa
(r,s)(r,s)(1,5) = 0) or it is subleading with respect to α(1,3) in

the large-m limit,
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then the condition Disc G̃ = 0 requires that

α(1,3) = −Ba (1,1)
(1,3)

Γ
(

2−m
m+1

)
Γ
(

1−m
2m+2

)
Γ
(
m+3
2m+2

)
Γ
(

2rm−2sm+m+2r+1
2m+2

)
Γ
(
−2rm+2sm+m−2r+1

2m+2

)
2

m−1
m+1Γ

(
1−m
m+1

)
Γ
(

3−m
2m+2

)
Γ
(

3m+1
2m+2

)
Γ
(
mr+r−ms+1

m+1

)
Γ
(
ms+1−mr−r

m+1

) .

(B.50)

This is consistent with earlier results in the literature computed from F-matrices, see [57].
For finite (r, s), the large-m expansion of the former result gives (in taking this limit we
take a1, a2 ≪ m)

α(1,3) =
2π(r − s)(s− sgn(r − s))√

3m
+ 2π(s+ 1) (s+ 2(s− r)Hs−r − 1)√

3m2 +O(m−3) , (B.51)

with Hn the nth harmonic number.

General m, all blocks. For a generic choice of conformal b.c. and of the external field
ψ(r,s) we find a one-parameter family of solutions to the condition that Disc G̃ = 0, so that
only a linear combination of α(1,3) and α(1,5) gets fixed. In order to determine α(1,3) and
α(1,5) completely, one has to then consider the full set of ‘sewing’ constraints.

B.6 The ϕ(3,1) and ψ(3,1) operators

We are also interested in the irrelevant deformation of the minimal models generated by
the ϕ(3,1) operator with dimension

∆3,1 = 2h3,1 = 2 + 4/m . (B.52)

Bulk OPE. The bulk self-OPE of ϕ(3,1) reads (see eq. (B.4))

ϕ(3,1)(z, z̄)ϕ(3,1)(0,0)=
1

|z|2∆3,1
+desc. m=4

ϕ(3,1)(z, z̄)ϕ(3,1)(0,0)=
1

|z|2∆3,1
+
C(3,1)(3,1)

(3,1)

|z|∆3,1
ϕ(3,1)(0,0)+desc. m=5

ϕ(3,1)(z, z̄)ϕ(3,1)(0,0)=
1

|z|2∆3,1
+
C(3,1)(3,1)

(3,1)

|z|∆3,1
ϕ(3,1)(0,0)+

C(3,1)(3,1)
(5,1)

|z|2∆3,1−∆5,1
ϕ(5,1)(0,0)+desc. m≥ 6.

(B.53)

The bulk OPE coefficients are found to be [59–61]

C(3,1)(3,1)(3,1) =
2

4
m

+2(m+ 2)Γ
(

3
2 + 2

m

)
Γ
(
−m+2

2m

)
m2Γ

(
3
2 + 1

m

)
Γ
(
−m+4

2m

)
√√√√√ Γ

(
1
m

)
Γ
(
−m+3

m

)
Γ
(
2 + 3

m

)
Γ
(
m−1
m

) , for m > 4

= 4√
3
+ 4

√
3

m
− 20√

3m2 + 28− 96ζ(3)
m3 +O(m−4) ,

C(3,1)(3,1)(5,1) = −
m(m+ 2)Γ

(
1
m

)
Γ
(
−m+3

m

)
(2m+ 3)(3m+ 4)Γ

(
2 + 3

m

)
Γ
(
− 1
m

)
√√√√√Γ

(
4 + 5

m

)
Γ
(
m−1
m

)
Γ
(
−3− 5

m

)
Γ
(

1
m

) , for m > 5

=
√
5
3 + 7

√
5

9m − 95
√
5

54m2 +
√
5(1579− 2592ζ(3))

324m3 +O(m−4) . (B.54)
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Bulk-boundary OPE. The bulk-boundary OPE of ϕ(3,1) reads

ϕ(3,1)(x+iy,x−iy)=
B

a (1,1)
(3,1)

(2y)∆3,1
1̂+desc. m=4

ϕ(3,1)(x+iy,x−iy)=
B

a (1,1)
(3,1)

(2y)∆3,1
1̂+

B
a (3,1)
(3,1)

(2y)∆3,1−h3,1
ψ(3,1)(x)+desc. m=5

ϕ(3,1)(x+iy,x−iy)=
B

a (1,1)
(3,1)

(2y)∆3,1
1̂+

B
a (3,1)
(3,1)

(2y)∆3,1−h3,1
ψ(3,1)(x)+

B
a (5,1)
(3,1)

(2y)∆3,1−h5,1
ψ(5,1)(x)+desc. m≥ 6.

(B.55)

The bulk-boundary OPE coefficient Ba (1,1)
(3,1) is given in eq. (B.62). The squared coefficients

(Ba (3,1)
(3,1) )2 and (Ba (5,1)

(3,1) )2 are determined by the bulk-boundary crossing symmetry, as we
show in the next section.

B.7 The bulk two-point function of ϕ(3,1)

We start from the bulk two-point function of ϕ(3,1) on the upper half-plane. To compute
such a correlator, we employ the method of images and solve(

L(z4)
−3 − 2

h3,1+2L−1L(z4)
−2 + 1

(h3,1+1)(h3,1+2)L
3
−1

)
⟨ϕ(3,1)(z1)ϕ(3,1)(z2)ϕ(3,1)(z3)ϕ(3,1)(z4)⟩=0 ,

(B.56)

where L(·)
−n is the differential operator defined in eq. (A.29) and L−1 = ∂z4 . This holomorphic

correlator takes the following form

⟨ϕ(3,1)(z1)ϕ(3,1)(z2)ϕ(3,1)(z3)ϕ(3,1)(z4)⟩ =
G(η)

(z12z34)2h3,1
. (B.57)

The cross-ratio η is defined as in eq. (B.20). We have three independent solutions to this
equation, corresponding to the boundary operators 1̂, ψ(3,1) and ψ(5,1). In terms of the function
G̃ defined as in eq. (B.22) with cross-ratio (B.23), the three Virasoro blocks at finite m read

V(1,1)(η̃) =3 F2

(
− 4
m

− 2,− 2
m

− 1, 2
m

+ 2;− 3
m

− 1, 12 − 1
m
;− η̃4

)
,

V(3,1)(η̃) = η̃h3,1/2
3F2

(
− 3
m

− 3
2 ,−

1
m

− 1
2 ,

3
m

+ 5
2;−

2
m

− 1
2 ,

1
m

+ 3
2;−

η̃

4

)
,

V(5,1)(η̃) = η̃h5,1/2
3F2

( 1
m

+ 1, 5
m

+ 4,− 1
m
; 2
m

+ 5
2 ,

3
m

+ 3;− η̃4

)
. (B.58)

The final solution is

⟨ϕ(3,1)(x1 + iy1, x1 − iy1)ϕ(3,1)(x2 + iy2, x2 − iy2)⟩H+ = G̃(η̃)
(4y1y2)2h3,1

,

G̃(η̃) = (Ba (1,1)
(3,1) )2V(1,1)(η̃) + (Ba (3,1)

(3,1) )2V(3,1)(η̃) + (Ba (5,1)
(3,1) )2V(5,1)(η̃) . (B.59)
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In the bulk channel we find

V bulk
(1,1) (η̃) = η̃2h3,1 3F2

(
− 4
m

− 2,− 3
m

− 3
2 ,−

1
m
;− 6

m
− 3,− 2

m
;−4

η̃

)
,

V bulk
(3,1) (η̃) = η̃h3,1 3F2

( 2
m

− 1,− 1
m

− 1
2 ,

1
m

+ 1;− 4
m

− 2, 2
m

+ 2;−4
η̃

)
,

V bulk
(5,1) (η̃) = η̃2h3,1−h5,1 3F2

( 2
m

+ 2, 3
m

+ 5
2 ,

5
m

+ 4; 4
m

+ 4, 6
m

+ 5;−4
η̃

)
. (B.60)

Bulk-boundary crossing symmetry requires that

(Ba (1,1)
(3,1) )2V(1,1)(η̃) + (Ba (3,1)

(3,1) )2V(3,1)(η̃) + (Ba (5,1)
(3,1) )2V(5,1)(η̃) =

V bulk
(1,1) (η̃) + C(3,1)(3,1)(3,1)B

a (1,1)
(3,1) V bulk

(3,1) (η̃) + C(3,1)(3,1)(5,1)B
a (1,1)
(5,1) V bulk

(5,1) (η̃) . (B.61)

From eq. (B.12) we have that

B
a (1,1)
(3,1) =

(
1 + 2 cos

(2πa1(m+ 1)
m

))√√√√√ sin
(
π
m

)
sin
(
πm
m+1

)
sin
(

3π
m

)
sin
(
πm
m+1

)
=

√
3 + 2π2 (1− 2a2

1
)

√
3m2 +O(m−4) ,

B
a (1,1)
(5,1) = sin

(5πa1(m+ 1)
m

)
csc

(
πa1(m+ 1)

m

)√√√√√ sin
(
π
m

)
sin
(
πm
m+1

)
sin
(

5π
m

)
sin
(
πm
m+1

)
=

√
5 + 2

√
5π2 (1− 2a2

1
)

m2 +O(m−4). (B.62)

The coefficients (Ba (3,1)
(3,1) )2 and (Ba (5,1)

(3,1) )2 are determined by the bulk-boundary crossing
symmetry for any finite m.

B.7.1 Solution to bulk-boundary crossing

In the simplest cases of m = 4, only the identity is present in both the bulk and the boundary
channels. Crossing imposes that (Ba (1,1)

(3,1) )2 = 1, which upon comparing to eq. (B.62), happens
if a1 = 1, 2, as it should. For the case with m = 5 we have only two operators in both
channels: 1̂ and ψ(3,1) in the boundary channel, 1 and ϕ(3,1) in the bulk channel. The only
remaining coefficient is (Ba (3,1)

(3,1) )2, which can be non-zero only if a1 = 2, and it is fixed by
crossing symmetry as follows:

(Ba (3,1)
(3,1) )2 =

3Γ
(
−14

5
)
Γ
(19

10
)

3125 27/10π3/2Γ
(
−8

5
)

×
(
10584

√
5−

√
5Γ
(
−14

5

)
Γ
(
−7
5

)
−15625 10

√
2
(
3
√
5−7

)√
πΓ
(13
10

))
≃ 2.28878 .

(B.63)
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For m > 5 we have

(Ba (3,1)
(3,1) )2 = C(3,1)(3,1)(3,1)B

a (1,1)
(3,1)

+ (Ba (1,1)
(3,1) )2

(
csc

(
2π
m

)
+ csc

(
4π
m

))
Γ
(

5
2 + 3

m

)
Γ
(
−m+2

2m

)2
Γ
(
−2(m+3)

m

)
6
(
sec

(
π
m

)
+ sec

(
3π
m

))
Γ
(

3
2 + 1

m

)
Γ
(
2 + 2

m

)
Γ
(
−2(m+2)

m

)2 ,

(Ba (5,1)
(3,1) )2 = C(3,1)(3,1)(3,1)B

a (1,1)
(3,1)

π2−
4
m
−3 sec

(
2π
m

)
Γ
(

3
2 + 1

m

)
Γ
(
4 + 5

m

)
Γ
(

3
2 + 2

m

)
Γ
(

5
2 + 2

m

)
Γ
(
3 + 3

m

)
Γ
(
−m+2

2m

)
+ (Ba (1,1)

(3,1) )2
2−

2(m+1)
m m sec

(
2π
m

)
Γ
(

1
2 − 1

m

)
Γ
(
4 + 5

m

)
Γ
(
−m+3

m

)
√
π(3m+ 4)Γ

(
3 + 3

m

)
Γ
(
−m+2

m

) , (B.64)

with C(3,1)(3,1)(3,1) and B
a (1,1)
(3,1) given (respectively) in equations (B.54) and (B.62). In the

large-m expansion (with a1, a2 ≪ m)

(Ba (3,1)
(3,1) )2 = 32π2 (a2

1 − 1
)

3m2 + 32π2 (a2
1 − 1

)
m3 − 32π2 (π2 (4a2

1 − 7
)
+ 15

) (
a2

1 − 1
)

9m4 +O(m−5) ,

(Ba (5,1)
(3,1) )2 = 8π4(a2

1 − 4)(a2
1 − 1)

9m4 +O(m−5) . (B.65)

B.8 Correlator between four ψ(3,1)

Consider the four-point correlation function of ψ(3,1). The associated differential equation
and its solutions where given in section B.7. The fusion rules read

ψ(3,1) × ψ(3,1) = 1̂ m = 4
ψ(3,1) × ψ(3,1) = 1̂+ ψ(3,1) m = 5
ψ(3,1) × ψ(3,1) = 1̂+ ψ(3,1) + ψ(5,1) m ≥ 6 . (B.66)

The solution is

⟨ψ(3,1)(x1)ψ(3,1)(x2)ψ(3,1)(x3)ψ(3,1)(x4)⟩H+ = G̃(η̃)
(x12x34)2h3,1

,

G̃(η̃) = V(1,1)(η̃) + (Ĉa(3,1)
(3,1)(3,1))

2V(3,1)(η̃) + (Ĉa(5,1)
(3,1)(3,1))

2V(5,1)(η̃) . (B.67)

The form of the V(r,s)(η̃) is given in eq. (B.58), while η̃ is defined in terms of the standard
cross ratio η as

η̃ = η2

1− η
= x2

12x
2
34

x12x14x23x24
, (B.68)

which is positive if xi > xi+1.
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B.8.1 Boundary crossing

The squared boundary OPE coefficients in eq. (B.67) are fixed by crossing symmetry, which
in terms of the G previously defined, requires that:

G(η) =
(1− η

η

)−2h3,1

G(1− η) . (B.69)

For m = 4 we have that Ĉa
(3,1)(3,1)(3,1) = Ĉa

(3,1)(3,1)(5,1) = 0 and boundary crossing symmetry
is ensured by the identity block alone. For m = 5, or for those conformal b.c. that do not
allow ψ(5,1) we have that Ĉa

(3,1)(3,1)(5,1) = 0 and crossing is satisfied if

(Ĉa
(3,1)(3,1)(3,1))

2 =
2

m−2
m π cos

(
2π
m

)
Γ
(
3 + 4

m

)
Γ
(
−m+2

2m

)
(
2 cos

(
2π
m

)
+ 1

)
Γ
(

1
2 + 1

m

)
Γ
(

3
2 + 1

m

)
Γ
(
2 + 3

m

)
Γ
(
−m+4

2m

) , (B.70)

which vanishes identically for m = 4, but is positive otherwise. For m > 5 we find generically
a one-parameter family of solutions to the crossing equation, so that additional correlators
(and crossing constraints) are needed in order to compute Ĉa

(3,1)(3,1)(3,1) and Ĉa
(3,1)(3,1)(5,1),

see e.g. ref. [57].

B.9 Correlator between two ψ(r,s) and one ϕ(3,1)

Next, we consider the boundary-boundary-bulk correlation function

⟨ψ(r,s)(x1)ψ(r,s)(x2)ϕ(3,1)(x+ iy, x− iy)⟩H+ , x1 > x2 . (B.71)

This correlator satisfies the third order differential equation of (B.38), now with h1,3 → h3,1.
There are three independent solutions (corresponding to the boundary operators 1̂, ψ(3,1)
and ψ(5,1)):

V(1,1)(η̃)=3 F2

(
− 2
m

−1, r
m

− 1
m

+r−s,− r

m
− 1
m

−r+s;− 3
m

−1, 12−
1
m
; η̃4

)
,

V(3,1)(η̃)= η̃h3,1/2
3F2

(
− 1
m

− 1
2 ,

r

m
+r−s+1

2 ,−
r

m
−r+s+1

2;−
2
m

− 1
2 ,

1
m

+3
2;
η̃

4

)
,

V(5,1)(η̃)= η̃h5,1/2
3F2

( 1
m

+1, r
m

+ 2
m

+r−s+2,− r

m
+ 2
m

−r+s+2; 2
m

+5
2 ,

3
m

+3; η̃4

)
.

(B.72)

The cross-ratio η̃ is defined as in eq. (A.13). The final solution is then

⟨ψ(r,s)(x1)ψ(r,s)(x2)ϕ(3,1)(x+ iy, x− iy)⟩H+ = G̃(η̃)
(x12)2hr,s(2y)2h3,1

,

G̃(η̃) = B
a (1,1)
(3,1) V(1,1)(η̃) + α(3,1)V(3,1)(η̃) + α(5,1)V(5,1)(η̃) , (B.73)

where B
a (1,1)
(3,1) is the one-point function coefficient of ϕ(3,1) computed in eq. (B.62) and

we denoted

α(3,1) ≡ Ĉa
(r,s)(r,s)(3,1)B

a (3,1)
(3,1) , α(5,1) ≡ Ĉa

(r,s)(r,s)(5,1)B
a (5,1)
(3,1) . (B.74)
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B.9.1 Removing unphysical singularities

Let us now look for possible unphysical singularities in the r.h.s. of eq. (B.73). There is
a branch cut at η̃ ∈ [4,∞], so we must require that Disc G̃ = 0 across that cut. For the
b.c. where ψ(3,1) and ψ(5,1) are not allowed in the boundary spectrum (see table 1), V(1,1)
alone ensures that Disc G̃ = 0.

For generic m > 5, and any conformal b.c. a = (a1, a2)m such that

1. The boundary primary ψ(r,s) is allowed to exist;

2. α(3,1) ̸= 0, but α(5,1) ≡ Ĉa
(r,s)(r,s)(5,1)B

a (5,1)
(3,1) = 0 (either because ψ(5,1) does not exist, or

Ĉa
(r,s)(r,s)(5,1) = 0) or it is subleading with respect to α(3,1) in the large-m limit,

then the condition Disc G̃ = 0 requires that

α(3,1) =−Ba (1,1)
(3,1)

2−
6
m
−4√πΓ

(
1
2−

1
m

)
Γ
(
−m+2

2m

)
Γ
(
−m+3

m

)
sec
(
π
(
r
m+r−s

))
Γ
(

3
2+

1
m

)
Γ
(
−2(m+2)

m

)
Γ
(
s−mr+r+1

m

)
Γ
(
mr+r−ms−1

m

) . (B.75)

For finite (r, s), the leading large-m expansion (with a1, a2 ≪ m) of the former result gives

α(3,1) =
2π(r − s)(sgn(r − s) + r)√

3m
+O(m−2) . (B.76)

C Some integrals on AdSp+1

We would like to compute the following integrals:

Ip(α) ≡
∫
dpx⃗

∫ ∞

a

dz

zp+1 vα , Îp(α) ≡
∫
dpx⃗

ap
vα
∣∣∣∣
z=a

, (C.1)

with a, α > 0 and

v ≡ z2(x1 − x2)2

(z2 + (x1 − x)2)(z2 + (x2 − x)2) , (C.2)

being x⃗1, x⃗2, x⃗ parallel coordinates along the AdSp+1 boundary (in Poincaré coordinates)
whereas z is transverse, and x12 ≡ |x⃗1 − x⃗2|. Let us start with the first integral. After going
to polar coordinates, for the angular integral we find

Ip(α) = Sp−1

∫ ∞

a

dz

zp+1

∫ ∞

0
rr−1dr

∫ 2π

0
(sin θ)p−3 vα

= Sp

∫ ∞

0
dr

∫ ∞

a
dz

rp−1x2α
12 z

2α−p−1

[(r2 + z2)
(
r2 + x2

12 + z2)]α 2F1

(
α

2 ,
α+ 1
2 ; p2;

4r2x2
12(

r2 + x2
12 + z2)2

)
.

(C.3)

Next we Taylor expand 2F1, so that the above equation becomes an infinite sum of elementary
functions. Each term in this expansion can be further mellinized, so that we find

Ip(α) =
∞∑
n=0

22n+1πp/2 (α
2
)
n

(
α+1

2

)
n

n!
(p

2
)
n
Γ
(p

2
) ∫ i∞

−i∞

dt

2πi cn(α, t)u
4t−2α−4n−p , (C.4)
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where u ≡ a/x12 and

cn(α, t) ≡
Γ
(
n+ p

2
)
Γ
(
2t− n− p

2
)
Γ(2n− 2t+ 2α)Γ

(
3n+ p

2 − 2t+ α
)

(2α+ 4n+ p− 4t)Γ(2n+ α)Γ
(
3n+ p

2 − 2t+ 2α
) . (C.5)

We can close the contour to the left, and pick up poles at −n−p/2+2t = −k, k = 0, 1, 2, 3, . . . .
After summing over all these residues we find

Rn(α) ≡
∫ i∞

−i∞

dt

2πi cn(α, t)u
4t−2α−4n−p

=
∞∑
k=0

(−1)kΓ
(
n+ p

2
)
Γ(k + 2n+ α)Γ

(
k + n+ 2α− p

2
)

4k!(α+ k + n)Γ(2n+ α)Γ(k + 2n+ 2α)

( 1
u2

)α+k+n
. (C.6)

Plugging this result into the expression for Ip(α) we get

Ip(α) =
∞∑
n=0

22n+1πp/2 (α
2
)
n

(
α+1

2

)
n

n!Γ
(p

2
) (p

2
)
n

Rn(α)

= 2−2απ
p+1

2 Γ (2α− p/2)
Γ(1 + α)Γ (α+ 1/2)

( 1
u2

)α
3F2

(
α, α, 2α− p

2;α+ 1
2 , α+ 1;− 1

4u2

)
. (C.7)

For small a and finite x12 (namely small u) we find

Ip(α) =
πp/2Γ

(
α− p

2
)

Γ(α)

(
log(1/u2)− ψ(α) + ψ

(
α− p

2

))

+ u2α−p

 π
p
2 +2 csc2

(
1
2π(p− 2α)

)
Γ
(
2α− p

2
)

Γ(α)2Γ(p− 2α+ 1)Γ
(
−p

2 + α+ 1
)2 +O(u2)

 , (C.8)

where ψ(x) is the digamma function. Similar tricks can be used in order to compute the
second integral in (C.1), for which we find

Îp(α) =
∞∑

n,k=0

(−1)kπp/2Γ(k + 2n+ α)Γ
(
k + n+ 2α− p

2
)

Γ(α)Γ(k + 1)Γ(n+ 1)Γ(k + 2(n+ α))

( 1
u2

)α+k+n
. (C.9)

Therefore after performing the infinite sum we obtain

Îp(α) =
21−2απ

p+1
2 Γ (2α− p/2)

Γ(α)Γ (α+ 1/2)

( 1
u2

)α
2F1

(
α, 2α− p

2;α+ 1
2;−

1
4u2

)
. (C.10)

For small u we have that

Îp(α)=
2πp/2Γ

(
α− p

2
)

Γ(α) +u2α−p

π p+1
2 22α−p+1Γ

(p
2−α

)
Γ
(
2α− p

2
)

Γ(α)2Γ
(
p
2−α+

1
2

) +O(u2)

 . (C.11)
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