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Abstract 

Amyloid PET imaging has been crucial for detecting the accumulation of amyloid beta (Aβ) deposits in the brain 
and to study Alzheimer’s disease (AD). We performed a genome‑wide association study on the largest collection 
of amyloid imaging data (N = 13,409) to date, across multiple ethnicities from multicenter cohorts to identify vari‑
ants associated with brain amyloidosis and AD risk. We found a strong APOE signal on chr19q.13.32 (top SNP: APOE 
ɛ4; rs429358; β = 0.35, SE = 0.01, P = 6.2 ×  10–311, MAF = 0.19), driven by APOE ɛ4, and five additional novel associa‑
tions (APOE ε2/rs7412; rs73052335/rs5117, rs1081105, rs438811, and rs4420638) independent of APOE ɛ4. APOE ɛ4 
and ε2 showed race specific effect with stronger association in Non‑Hispanic Whites, with the lowest association in 
Asians. Besides the APOE, we also identified three other genome‑wide loci: ABCA7 (rs12151021/chr19p.13.3; β = 0.07, 
SE = 0.01, P = 9.2 ×  10–09, MAF = 0.32), CR1 (rs6656401/chr1q.32.2; β = 0.1, SE = 0.02, P = 2.4 ×  10–10, MAF = 0.18) and 
FERMT2 locus (rs117834516/chr14q.22.1; β = 0.16, SE = 0.03, P = 1.1 ×  10–09, MAF = 0.06) that all colocalized with 
AD risk. Sex‑stratified analyses identified two novel female‑specific signals on chr5p.14.1 (rs529007143, β = 0.79, 
SE = 0.14, P = 1.4 ×  10–08, MAF = 0.006, sex‑interaction P = 9.8 ×  10–07) and chr11p.15.2 (rs192346166, β = 0.94, SE = 0.17, 
P = 3.7 ×  10–08, MAF = 0.004, sex‑interaction P = 1.3 ×  10–03). We also demonstrated that the overall genetic architecture 
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of brain amyloidosis overlaps with that of AD, Frontotemporal Dementia, stroke, and brain structure‑related complex 
human traits. Overall, our results have important implications when estimating the individual risk to a population 
level, as race and sex will needed to be taken into account. This may affect participant selection for future clinical trials 
and therapies.

Keywords Brain amyloidosis, Amyloid PET, Alzheimer’s disease, Multi‑ethnic, Meta‑analysis, GWAS

Introduction
Alzheimer’s disease (AD) is a complex polygenic disease 
with a genetic heritability estimated to be 58–79% [1]. 
This high genetic heritability in AD provides the oppor-
tunity to perform large-scale genetic studies in order to 
characterize new biological features, identify relevant 
pathophysiological processes, and establish novel diag-
nostic biomarkers for early detection. Recent genome-
wide association studies (GWAS) have identified more 
than 74 AD risk loci, including the APOE ɛ4 locus, impli-
cating various biological process e.g., amyloid processing 
and innate immunity in the development of AD [2–5]. 
However, known common AD variants account only for 
an approximately 30% of the AD genetic variance [6] 
and a large proportion of the underlying heritability still 
remains unexplained.

Although most of the genetic studies on AD are 
focused on clinical diagnosis as the primary outcome, 
using quantitative endophenotypes can also be helpful in 
identifying additional AD-related genes. Two such AD-
related endophenotypes are accumulation of amyloid-
beta (Aβ) in the brain and the formation of tau deposits 
in the form of neurofibrillary tangles and dystrophic 
neurites (tau pathology) [7]. Different cross-sectional 
and longitudinal studies on cognitively normal subjects 
have also implicated amyloidosis as an early process in 
AD pathology [8–10]. The in-vivo detection of Aβ accu-
mulation in the brain, as measured by positron emission 
tomographic (PET) imaging tracers such as 11C-labeled 
Pittsburgh Compound-B (PiB) [11] and 18F-AV-45 (Flor-
betapir) [12] has provided a biomarker for AD diagnosis 
and risk assessment. Development of this advanced brain 
imaging approach has enabled the detection of fibril-
lar Aβ before the onset of symptoms, providing avenues 
for characterizing new genetic risk factors, and to design 
novel therapeutic approaches to halt the early progres-
sion of disease.

Previous genetic investigations leveraging amyloid PET 
imaging data as AD endophenotype have established its 
association with APOE locus [11–14]. In a recent multi-
center case–control based study (N = 4314) using amy-
loid PET as a quantitative trait [15], a novel locus was 
reported to be associated with brain amyloidosis within 
RBFOX1 gene. However, clinical heterogeneity across 
these studies and their limited sample size demands 

further investigations to replicate and expand on these 
findings. Here, we systematically analyzed the largest col-
lection of amyloid imaging data (N = 13,409), across mul-
tiple ethnicities from multicenter cohorts (Knight ADRC, 
A4, DIAN, ADNI, ADNIDOD, UPitt, HABS, AIBL, 
Memento, MCSA, WRAP, Berkeley, Korean study, and 
MISSION-AD) as a quantitative trait to identify the func-
tional variants and genes driving the association of AD. 
Furthermore, we have conducted gender-, and APOE-
stratified analyses to investigate the effect of these vari-
ables on brain amyloidosis.

Methods
Study samples and amyloid‑PET harmonization
For this study, we collected data from 14 different cohorts 
with a total sample size of 13,409 participants (Table 1). 
We analyzed the association of common and low fre-
quency (MAF > 0.0005) genetic variants with amyloid-
PET imaging, which is a well-known and validated AD 
endophenotype, serving as biomarker for brain amyloi-
dosis. These subjects were recruited from the Memory 
and Aging Project (MAP) at the Knight Alzheimer Dis-
ease Research Center (Knight-ADRC) [16, 17], Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI) [18], 
the Dominantly Inherited Alzheimer Network (DIAN) 
[19], Anti-Amyloid Treatment in Asymptomatic Alzhei-
mer’s Disease (A4) [20], ADNI Department of Defense 
(ADNIDOD) studies, Australian Imaging, Biomark-
ers and Lifestyle (AIBL) [21], The Harvard Aging Brain 
Study (HABS) [22], and University of Pittsburgh (UPitt) 
[23]. Furthermore, summary statistics data was obtained 
from six additional cohorts that processed the raw geno-
type and phenotype data according to the same pipe-
line. These cohorts included Memento [24], Mayo Clinic 
Study of Aging (MCSA) [25], Wisconsin Registry for 
Alzheimer’s Prevention (WRAP) [26], Berkeley Aging 
Cohort study (BACS) [27], Korean study [28], and MIS-
SION-AD. Part of the data used in the preparation of 
this article was obtained from the ADNI database (adni.
loni.usc.edu). Collection of genotype data and PET image 
processing for each cohort are described in detail in the 
respective studies [16–23, 25, 27–29].

Briefly, individuals were diagnosed as cognitively 
healthy (controls) or clinical AD (cases), based on their 
Clinical Dementia Rating® (CDR®) that was available for 
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86% of the complete dataset. The CDR is a scaling sys-
tem that categorizes the overall dementia severity for 
each participant into five classes (no dementia = 0, very 
mild = 0.5, mild = 1, moderate = 2, and severe = 3). For 
this study, individuals with CDR = 0 were considered as 
controls and the remaining were classified as cases. Par-
ticipants were included if they had measurements of raw 
amyloid-PET levels and corresponding genotype data. 
Any participant that was missing information about the 
sex, age, and genetic principal components (PCs), was 
excluded from the study.

For standardization, amyloid PET data from each 
cohort was normalized to their reference cerebellar 
regions in order to obtain standardized uptake value 
ratios (SUVR) in a composite of cortical brain areas. As 
different cohorts obtained quantitative amyloid PET 
data using different tracers (e.g., PIB, FBP, and AV45), 
the available raw phenotypic data cannot combine unless 
it is normalized in advance. To normalize amyloid PET 
endophenotype across different cohorts, we converted 
different amyloid imaging measures into log-normalized 
z-score using “scale” function in base R. Briefly, z-scores 
were calculated by using the mean and standard deviation 
(SD) units across each cohort and applied to the entire 
endophenotype in order to account for within cohort 
variation. Samples having normalized z-score 3-SD away 
from the mean of the population were considered as out-
liers and removed from the subsequent analyses.

For seven additional cohorts (Memento, MCSA, 
WRAP, BACS, Korean study, and MISSION-AD), the raw 
phenotype and genetic data was not accessible due to the 
strict patient data sharing policies (Table 1). In those par-
ticular cases, the summary statistics data was obtained 
where association analyses were performed using the 
same analytical pipeline.

Genotyping, imputation, quality control, and population 
structure
The genotyping platforms used by each cohort are 
listed in the respective studies [16–23, 25, 27–29]. All 
the GWAS datasets were aligned to GRCh38. For phas-
ing and imputation of non-genotyped single-nucleotide 
polymorphisms (SNPs), we used the TOPMed Imputa-
tion Server (https:// imput ation. bioda tacat alyst. nhlbi. 
nih. gov/# !). Phasing was performed using eagle v2.4 
[30] and only those  variants having imputation qual-
ity (Rsq or estimated  R2) of 0.3 or greater were retained 
[31]. Genotyped and imputed variants with minor allele 
frequency (MAF) < 0.0002 were removed. We applied 
stringent quality control (QC) filters to process the geno-
typing array and sequencing data. We used the threshold 
of 98% for removing single nucleotide polymorphisms 
(SNPs) and individuals with low call rate. Autosomal 

SNPs that were not in the Hardy–Weinberg equilibrium 
(P = 1 ×  10−6) were also removed. Subject duplication 
and relatedness were estimated from identity-by-descent 
(IBD) analysis carried out in Plink version 2.0 [32]. In 
case of related subjects (Pihat ≥ 0.25), the sample from 
the Knight ADRC or with a higher number of variants 
that passed the QC was prioritized. We performed Prin-
cipal component analysis (PCA) on the genotype data to 
obtain genetic PCs that capture population substructure. 
In order to evaluate the association of genetic variants 
with brain amyloidosis in different populations, we con-
sidered a homogenous pool of three ethnicities (Non-
Hispanic whites, American African, and Asian) for the 
subsequent statistical analyses (Additional file 1: Fig. S1).

After QC of genotype and phenotype data, a total of 
7557 participants remained available from eight differ-
ent cohorts for the subsequent analyses. According to the 
genetic PCA, participants were determined to be Non-
Hispanic Whites (NHW; n = 7036), American Africans 
(AFR; n = 359), and Asians (ASN; n = 162). Additionally, 
summary statistics data was leveraged from six external 
amyloid PET cohorts to further increase the study sample 
size for NHW (n = 11,556) and ASN (n = 1494) ancestries 
(Additional file 1: Table S1a and S1b). The demographic 
characteristics of all the study participants (n = 13,409) 
from each of the 14 datasets included in the multi-ethnic 
standard error (StdErr)-based meta-analysis are shown 
in Table 1. The distribution of standardized amyloid-PET 
levels (Z-score) across eight cohorts is shown in Addi-
tional file 1: Fig. S2. Overall, the participants ranged from 
age 37 to 78 with a mean age of 69 across all cohorts. The 
age of participants from the DIAN cohort was almost 
half the mean age of all cohorts and nearly all the sam-
ples in the ADNI-DOD cohort were males. Around one-
third (34%) of the individuals were APOE ε4 carriers. The 
number of cases and controls samples were 23% and 63%, 
respectively, and 14% of the individuals were missing the 
clinical diagnosis. There was an even distribution of gen-
der across all cohorts with a total of 48% female and 52% 
male participants.

Statistical analyses
Statistical analyses and data visualization were per-
formed in Plink version 2.0 [32], Metal [33], and R ver-
sion 3.5.2 [34]. We performed association analyses of 
common and low frequency variants with quantitative 
AD endophenotype from PET scan (Aβ) using an addi-
tive model and included sex, age and the 10 principal 
components as covariates, within each ethnicity. Within 
each ethnicity we first performed joint analyses using the 
Z-scores for those cohorts for which we had access to the 
genetic and amyloid PET data (Additional file 1: Fig. S3). 
Then we performed meta-analyses using METAL [33], of 

https://imputation.biodatacatalyst.nhlbi.nih.gov/#!
https://imputation.biodatacatalyst.nhlbi.nih.gov/#!
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joint-cohorts with those that only had summary statis-
tics (Memento, MCSA, WRAP, BACS, Korean study, and 
MISSION-AD) to obtain the race-specific meta-analyses. 
To conduct the multi-ethnic meta-analysis, a standard-
error (StdErr)-based approach was used from Metal [33]. 
The variant-level visualization was accomplished using 
LocusZoom [30] tool.

As the amyloid PET imaging was calculated using dif-
ferent traces and pipelines, the joint analyses could lead 
to false positive or negative findings. Similarly, because 
of the different distribution of the amyloid PET data, the 
Z-scores could lead to spurious results. Existing studies 
suggest joint analysis can be more powerful than meta-
analysis for low frequency variants where dataset is com-
prised of divergent samples [35, 36]. On the other hand, 
meta-analysis approaches do not require the complete 
original data as they can be used with summary statistics 
information while accounting for difference in popula-
tion size, and they are less demanding computationally 
[37]. In order to confirm that the Z-score normalization 
and the joint analyses lead to robust results, we per-
formed a GWAS analyses using raw centiloid values and 
the Z-scores for the Knight-ADRC and ADNI (Additional 
file 1: Fig. S4). A very strong correlation in p-values and 
effect size (R > 0.89) was found in these comparisons 
indicating that Z-scores will lead to the same signals as 
the raw amyloid data. In addition to the above valida-
tion, we performed a more systematic analyses compar-
ing the p-values and effect sizes of the joint (z-scores) 
and the meta-analysis for all cohorts for those having 
raw phenotypic data available (A4 = 3,180, ADNI = 1134, 
ADNIDOD = 169, AIBL = 1214, DIAN = 209, HABS = 258, 
Knight-ADRC = 1,048, UPitt = 345). Briefly, (1) the raw 
phenotype values were converted to log10 scale for each 
cohort and each cohort was analyzed independently. 
Then the cohort-specific results were combined by meta-
analyses. For meta-analysis, we used METAL software 
and standard-error (SE)-based meta-analysis approach. 
(2) In parallel, the raw phenotypes were also converted 
to z-score, separately for each cohort, combined by per-
forming a single joint analyses. (3) Finally, the p-values 
and effect sizes of associations were compared between 
these two analyses (joint vs. meta-analysis). We assessed 
the correlation of effect sizes and p-values at different 
p-values thresholds of associations (P = 0.05, 5 ×  10–05, 
and 5 ×  10–08) and found very strong correlation (R > 0.94) 
in all comparisons (Additional file  1: Fig. S5). This high 
correlation indicates that the joint and the meta-analyses 
lead to the same results.

We also performed APOE ε4-, sex- and case–control 
status-stratified analyses. Most of these analyses were 
performed only on those datasets for which amyloid PET 
and genetic data were available. Therefore, the samples 

sizes for those analyses were lower than for the overall 
analyses. We also compared the p-values of all these anal-
yses using the z-scores joint vs the meta-analysis (Addi-
tional file 1: Fig. S6, S7 and Table S2), finding very high 
correlation.

In order to compare the effect size (BETA) across dif-
ferent ethnicities, we used two-sample t-test that takes 
into account the BETA and standard error (SE) for per-
forming a pair-wise comparison and provide the p-value 
of significance whether difference between BETA is sta-
tistically significant or not. We developed a custom R 
function that uses BETA and square root of  SE2 of two 
groups to obtain a Z-score. As this Z-score follows a nor-
mal distribution with a sample size > 100 in each ances-
try, we obtained a p-value for significance by using the 
pnorm function in R.

Post‑GWAS analyses
Multiple post-GWAS analyses were conducted for the 
functional annotation of the identified hits. A schematic 
overview of study design and conducted analyses is pro-
vided in Fig. 1.

Genetic covariance analysis
We used Genetic Covariance Analyzer (GNOVA) pro-
gram [38] for assessing the genetic covariance and corre-
lation of amyloid PET AD endophenotype with different 
complex human traits. Publicly accessible GWAS sum-
mary statistics data was downloaded for 63 different 
complex human traits. Specific details about the sample 
size and source of summary statistics for each trait are 
presented in Additional file  1: Table  S3. The obtained 
summary statistics data was used to assess the genetic 
covariance of each trait with amyloid PET GWAS from 
non-Hispanic Whites (NHW) ancestry (N = 11,556). The 
tool (GNOVA) that has been used for calculating genetic 
correlation has the inherent ability to take the sample 
overlap between different GWAS into account. The algo-
rithm allows random error terms ϵ and δ to be correlated 
in order to account for the non-genetic correlation intro-
duced by sample overlapping between two GWAS.

Bayesian co‑localization analysis
We performed co-localization analysis using COLOC 
[39] tool (version 5.2.1). For each genomic locus of 
interest, identified by multi-ethnic or sex-stratified 
amyloid PET GWAS analyses, co-localization was 
assessed against AD risk GWAS from Bellenguez 
et  al. [5]. Furthermore, to assess the genotype-specific 
expression of identified SNPs in human brain tissues, 
we performed cis-expression quantitative trait loci 
(QTL) analysis using gene expression data from the 
Genotype-Tissue Expression (GTEx) portal [40]. For 
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both these analyses, posterior probability was calcu-
lated for five different hypotheses, (i) H0: there is no 
causal variant for either trait in the specified region, (ii) 
H1: there is a causal variant for trait 1, (iii) H2: there is 
a causal variant for trait 2, (iv) H3: both traits have dis-
tinct causal variants, and (v) H4: there is a single causal 
variant common to both traits. Here, our hypothesis 
of interest was H4. In case of co-localization with AD 
risk, a candidate locus was defined as 500 KB upstream 
and downstream of the variant of interest, however, in 
the case of eQTL analysis this region was extended to 
1 MB on either side. For eQTL analysis, 10 types of tis-
sues were considered from the GTEx portal, including 
“Brain Hypothalamus”, “Brain Cerebellar Hemisphere”, 
“Brain Cerebellum”, “Brain Cortex”, “Brain Amygdala”, 
“Brain Caudate basal ganglia”, “Brain Nucleus accum-
bens basal ganglia”, “Brain Anterior cingulate cortex 
BA24”, “Brain Putamen basal ganglia”, and “Whole 
Blood”.

Polygenic risk score analysis
PRSice-2 software [41] was used for calculating the Poly-
genic risk score (PRS). We used the summary statistics 
data from the largest available clinically assessed AD 
case–control GWAS study [5] (N = 788,989) as the base 
GWAS. We generated genetic risk scores as the weighted 
sum of the risk alleles for all participants in the amyloid 
PET GWAS of NHW ancestry (N = 7036). The standard 
clumping and thresholding (C + T) approach was used 
where only those markers are retained that are most 
strongly associated with the disease. PRS calculation 
was generated at multiple different thresholds, rang-
ing from 5 ×  10–08 to 0.5 with an interval of 5 ×  10–05, on 
linkage disequilibrium (LD)-clumped SNPs by retain-
ing the SNP with the smallest p-value and excluding the 
variants with r2 > 0.1 in a 250-kb window. We also cal-
culated PRS by excluding the APOE region (GRCh38—
chr19:43,907,927–45,908,821) because of the high LD in 
this region.

Fig. 1 Schematic overview of datasets and performed analyses. Amyloid PET endophenotype and corresponding genotype data was available 
for 8 different cohorts with a total sample size of 7,557 (NHW = 7036, African = 359, Asian = 162). We also got GWAS summary statistics data from 6 
external cohorts having a total sample size of 5852 (NHW = 4520, Asian = 1332). We performed Race‑specific linear regression using amyloid PET 
as a quantitative endophenotype and age, sex, cohort name, and first ten genetic PCs as model covariates. The same analytic pipeline was used by 
the external cohorts for generating the summary statistics data. We meta‑analyzed the results from internal and external summary statistics using 
a standard error (StdErr)‑based meta‑analysis approach using METAL software (N = 13,409). Furthermore, different post‑GWAS analyses were carried 
out to identify novel SNPs associated with brain amyloidosis
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Results
Study design
In this study, we harmonized and integrated brain amy-
loid imaging and genetic data from 14 different cohorts 
with a total sample size of 13,409 (Table 1, Fig. 1), from 
three different populations (Non-Hispanic Whites 
(NHW), African (AFR) and Asian (ASN)), in order to 
identify genetic variants associated with amyloidosis and 
AD risk. The datasets with individual level genetic and 
brain amyloid imaging data and from the same ethnicity 
were analyzed using a joint approach after harmonizing 
the amyloid imaging. Results from these analyses were 
then meta-analyzed together with the datasets from the 
same ethnicity for which only summary statistics were 
available leading to race-specific brain amyloid imaging 
GWAS. Multi-ethnic GWAS was then performed using a 
random effect model. Moreover, APOE-, sex-, and diag-
nosis-stratified analyses were performed including those 
datasets with individual-level data to identify additional 
loci and genes to further explore the genetic architecture 
of brain amyloidosis. Functional annotation and expres-
sion and protein Quantitative Trait Loci (pQTL) map-
ping was performed to identify the most likely functional 
genes driving the associations for the GWAS signals. 
Finally, the overlap between the genetic architecture of 
brain amyloid imaging with AD risk and other traits were 
analyzed using Polygenic Risk Scores (PRS) and genetic 
covariance analysis.

GWAS analyses
The race-specific meta-analysis for NWH participants 
(n = 11,556) from 13 different cohorts yielded a very 
strong signal in the APOE locus. In this locus, rs429358, 
which codifies for APOE ε4, was the most significant SNP 
(P = 1.8 ×  10–416, β = 0.62, SE = 0.01, MAF = 0.19,  I2 = 99.7; 
Additional file 1: Fig. S8A). Besides the APOE locus, we 
identified two additional novel genome-wide signifi-
cant signals in chr14q.22.1 (rs117834516, P = 8.7 ×  10–09, 
β = 0.15, SE = 0.03, MAF = 0.06,  I2 = 0) on the FERMT2 
locus and chr1q.32.2 (rs6656401, P = 9.1 ×  10–10, β = 0.10, 
SE = 0.02, MAF = 0.18,  I2 = 43.1) on the CR1 locus (Addi-
tional file  1: Fig. S9C, D). All these signals colocalized 
with that of AD risk GWAS [4] having posterior probabil-
ity of 99% for sharing a single causal variant (Additional 
file  1: Table  S4). Colocalization with eQTL (in multiple 
brain regions based on GTEx [42]) was also observed 
for the chr1q.32.2 locus, rs6656401, with CR1 mRNA 
levels (PP.H4 = 0.99), the chr14q.22.1, rs117834516, with 
STYX mRNA levels (PP.H4 = 0.93), but not FERMT2 (PP.
H4 = 0.08) (Additional file 1: Table S5, S6). Recent GWAS 
have provided strong evidence for CR1 and FERMT2 
being the risk factors for the development of AD [43, 44]. 

Specifically, CR1 has been reported to be consistently 
involved in immune system related pathways, particularly 
complement and inflammatory cytokines [45]. Changes 
in the gene expression level of FERMT2 in the neurons 
have been shown to effect both extracellular Aβ40 and 
Aβ42 as well as phospho-Tau [46].

In case of AFR-specific analyses (n = 359), rs429358 
was found to be the most significant SNP in the APOE 
locus (P = 1.0 ×  10–11, β = 0.49, SE = 0.07, MAF = 0.21; 
Additional file 1: Fig. S8B). In addition, we found a novel 
locus on chr8q.22.1 (rs2271774, P = 2.5 ×  10–09, β = 1.10, 
SE = 0.17, MAF = 0.028) that passed the genome-wide 
significance. This same SNP has a MAF of 1.3% in ASN 
(N = 336, P = 0.84, β = − 0.04, SE = 0.19, MAF = 0.013) and 
0.21% in NHW (N = 6329, P = 0.84, β = 0.13, SE = 0.56, 
MAF = 0.0021) but it was not even nominally associated 
in these two ancestries, suggesting it to be an AFR-spe-
cific signal, or a false positive. Additional studies having 
larger dataset, focused on individuals with AFR back-
ground, will be needed to further replicate this asso-
ciation. This SNP is located in the PTDSS1 gene-region 
that also includes GDF6, UQCRB, MTERF3, and SDC2 
genes (Additional file  1: Fig. S10A). Although we did 
not find any association of chr8q.22.1 with gene or pro-
tein levels QTLs (Additional file  1: Table  S7), we found 
that PTDSS1, but not any other gene in this region, to 
be significantly differentially expressed in different brain 
tissues (IFG, PHG, STG, and TCX) with a consistent neg-
ative log2 fold change [47], nominating PTDSS1 as the 
functional gene in this locus.

In case of ASN ancestry-specific analyses (n = 1,494), 
no additional genome-wide signals were found besides 
APOE locus (P = 6.7 ×  10–28, β = 0.14, SE = 0.01, 
MAF = 0.14; Additional file  1: Fig. S8C). Overall, the 
rs429358 SNP that codifies for APOE ε4 was the most 
significant SNP across every race-specific GWAS with a 
consistent positive effect size.

The multi-ethnic meta-analysis of NHW, AFR, and 
ASN ethnicities across 14 different cohorts (n = 13,409) 
further validated the results from individual ancestry 
GWAS and revealed one additional locus passing the 
genome-wide significance threshold on chr19p.13.3 
(rs12151021, P = 9.2 ×  10–09, β = 0.07, SE = 0.01, 
MAF = 0.32,  I2 = 0; Fig. 2) located near the ABCA7 gene 
(Additional file 1: Fig. S9B). This same SNP is strongly 
associated with AD risk (P = 4.1 ×  10–30, β = 0.1), and 
colocalizes (PP.H4 = 0.99) with AD risk [4]. This gene 
has already been shown to affect cognitive and behav-
ioral aspects of AD [48–50]. We did not observe colo-
calization of this signal with eQTL for ABCA7 mRNA 
levels (PP.H4 < 0.05) based on GTEx [42], however, 
nearby genes such as RNU6-2 and GRIN3B were 
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colocalized with rs12151021 in brain frontal cortex (PP.
H4 = 0.93) and brain cortex (PP.H4 = 0.94), respectively 
(Additional file 1: Table S8).

APOE conditional analyses
The APOE locus that encodes apolipoprotein E (APOE) 
is a strong genetic risk factor for AD. Previous stud-
ies have shown that APOE ε4 individuals have higher 
amyloid burden [51, 52]. Contrarily, APOE ε2 carriers, 
showing reduced Aβ deposition [53], have been asso-
ciated with milder clinical and pathological AD when 
compared to ε4 carriers [54].

In order to determine if the signals observed in the cur-
rent analysis are driven by APOE ε2/ε3/ε4, we performed 

APOE conditional analyses using the summary statistics 
data from the multi-ethnic meta-analysis (N = 13,409), 
using COJO [55]. In the multi-ethnic meta-analysis, 
rs429358, which codifies APOE ε4, was found to be 
the most significant SNP from chr19 (P = 6.2 ×  10–311, 
β = 0.35, SE = 0.01, MAF = 0.19). Therefore, a condi-
tional analysis was performed by adjusting for rs429358 
(APOE ε4) and rs7412 (APOE ε2). A total of 50 SNPs 
on the APOE locus remained genome-wide significant 
at P < 5 ×  10–08 (Additional file 1: Fig. S11 and Table S9), 
and the most significant was rs73052335 (Additional 
file  1: Fig. S12A). After conditioning for APOE ε4, 
APOE ε2, and rs73052335, we identified three addi-
tional independent signals in this region: (rs1081105/
chr19:44,909,698:A:C; rs438811/chr19:44,913,484:C:T; 

Fig. 2 Multi‑ethnic meta‑analysis (N = 13,409) identified novel signals in chr 1, 14, and 19 associated with brain amyloidosis. A Manhattan 
plot showing the p‑values in the multi‑ethnic meta‑analysis. The blue and red lines represent the suggestive (P = 1 ×  10−5) and genome‑wide 
significance thresholds (P = 5 ×  10−8). Variants with a p value below 1 ×  10−15 are not shown. Local Manhattan plot for the chr1 (B), chr14 (C), and 
chr19 (D, E) loci. The relative location of genes and the direction of transcription are shown in the lower portion of the locus zoom plots
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rs4420638/chr19:44,919,689:A:G) that remained 
genome-wide significant in the conditional analyses, 
indicating that there are up to six independent signals in 
the APOE locus (Additional file 1: Table S9 and Fig. S12). 
We performed functional annotation and expression- 
and splicing-QTL mapping for these independent signals 
and several of these SNPs are either eQTL or sQTL for 
TOMM40 and NECTIN2, suggesting that these genes 
may also be  contributing to amyloid deposition inde-
pendently of APOE. Colocalization analysis with AD risk 
for all the hits from APOE conditional analyses (N = 50) 
with AD risk GWAS [4] suggests more than half of these 
signals to be colocalizing with H4 > 0.8 (Additional file 1: 
Table S10).

We also performed similar analyses including only 
the datasets from which we have individual level data 
(N = 7,557), but instead of conditioning on the SNPs that 
codified for APOE ε4, APOE ε2, we conditioned on the 
full APOE genotypes: ε22, ε32, ε33, ε24, ε34 and ε44, cod-
ified as 0, 1, 2, 3, 4 and 5 respectively (Additional file 1: 
Fig. S13). One independent and additional signal (senti-
nel SNP: rs5117/chr19:44,915,533:T:C) passed genome-
wide significance (P = 1.6 ×  10–08, β = 0.11, SE = 0.02, 
MAF = 0.29), after condition for full APOE genotype. 
This SNP is in high LD with rs73052335 (D’ = 1,  R2 = 0.23, 
Additional file 1: Table S11) and likely to correspond to 
the same signal.

Race‑specific APOE analyses
In order to assess whether APOE exhibits a race-specific 
effect, we analyzed the association between quantitative 
amyloid PET levels and APOE-associated variants on 
chr19q.13.32 (APOE ε4/rs429358, APOE ε2/rs7412, and 
rs5117). APOE ε4 SNP showed a consistent and positive 
association with amyloid PET levels (positive effect size 
in each of the analyzed races; NHW = 0.62, AFR = 0.49, 
and ASN = 0.14; Additional file 1: Table S12). The effect 
size on APOE ε4 in ASN was significantly lower than the 
NHW (two sample t-test, P = 3.8 ×  10–242) and AFR (two 
sample t-test, P = 7.4 ×  10–07) ethnicities.

We observed a protective role of APOE ε2 variant 
across all ethnicities with a consistent negative effect size 
(NHW = − 0.33, AFR = − 0.16, ASN = − 0.02; Additional 
file  1: Table  S12). Although the difference in the effect 
size was only significant in NHW and ASN ethnicities 
(two sample t-test, P = 8.1 ×  10–18), AFR had almost half 
the effect size of NHW, indicating a race-specific effect of 
APOE ε2.

The third independent signal in the APOE locus, 
rs5117, consistently positively associated with brain 
amyloidosis (NHW = 0.41, AFR = 0.04, and ASN = 0.11; 
Additional file  1: Table  S12), also exhibited a race-spe-
cific effect. The observed effect size was significantly 

higher in NHW as compared to AFR (two sample 
t-test, P = 3.3 ×  10–09) and ASN (two sample t-test, 
P = 1.9 ×  10–93) ethnicities. The fourth independent sig-
nal in the APOE locus, rs73052335, also showed consist-
ently positive association across all races (NHW = 0.56, 
AFR = 0.45, and ASN = 0.43), but the observed effect size 
was not race-specific. Overall, this data indicates that 
APOE is a complex locus in which multiple race-specific 
signals influence brain amyloidosis.

APOE ɛ4 stratified analyses
Considering the well-established risk effect of APOE ε4 
and protective effect of APOE ε2 alleles in AD, we asked 
if amyloid positivity also shows any APOE ε4-dependent 
difference. Therefore, we performed an APOE 
ε4-stratified analysis and observed genome-wide signifi-
cant SNPs in both APOE ɛ4+ (N = 3,844) and APOE ɛ4- 
(N = 5,931) strata (Additional file 1: Fig. S14).

In the APOE ɛ4+ strata, the top hit on the APOE 
locus was driven by the APOE ɛ4 allele (rs429358, 
P = 1.5 ×  10–26, β = 0.37, SE = 0.03, MAF = 0.19), which 
is capturing the association of one vs two APOE ɛ4 
alleles. The signal in the CR1 locus, chr1q.32.2 (rs679515, 
P = 2.7 ×  10–08, β = 0.15, SE = 0.03, MAF = 0.18) was in 
high LD  (R2 = 0.97) with previously observed signal in the 
NHW and multi-ethnic meta-analysis (chr1q.32.2), also 
remained significant in the APOE ɛ4+ strata, but only 
nominally significant in the APOE ɛ4- (P = 0.02, β = 0.05, 
SE = 0.02). We found that this SNP also has a significant 
interaction with APOE ɛ4+ (P = 0.008) and the effect 
size in the APOE ɛ4+ vs ɛ4- is also significantly differ-
ent (p = 0.001; Additional file 1: Table S13), indicating an 
interaction with APOE.

In case of the APOE ɛ4- strata, the ABCA7 locus 
(chr19p.13.3) passed the genome-wide significance 
threshold (rs12151021, P = 3.3 ×  10–09, β = 0.10, SE = 0.02, 
MAF = 0.18; Additional file  1: Fig. S14A), but was only 
nominal significant in the APOE ɛ4+ strata (P = 0.02, 
β = 0.05, SE = 0.02). We did not find any significant inter-
action between this SNP and APOE ɛ4, nor was the 
effect size in ɛ4+ vs APOE ɛ4- strata significantly differ-
ent (Additional file  1: Table  S13). Similar findings were 
identified for FERMT2, with a more significant p-value in 
APOE ɛ4- (P = 7.3 ×  10–06, β = 0.16, SE = 0.03) compared 
to APOE ɛ4+ (P = 0.02, β = 0.11, SE = 0.05) but without 
interaction with APOE ɛ4.

Notably, in the APOE ɛ4- strata we identified 
rs1065853 as the most significant SNP on the APOE 
locus (P = 1.5 ×  10–13, β =  − 0.21, SE = 0.03, MAF = 0.07). 
This SNP is in high LD with APOE ɛ2 (D’ = 0.99, 
 R2 = 0.96). In addition, we identified a novel signal 
on chr2q.12.2 (rs567226423; P = 2.8 ×  10–08, β = 0.81, 
SE = 0.15, MAF = 0.003). Functional annotation by VEP 
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[56] suggest this SNP to be a regulatory region variant for 
UXS1 protein coding gene, however, another nominally 
significant SNP, chr2q.12.2 (rs191708024, P = 1.9 ×  10–04, 
β = 0.28, SE = 0.08, MAF = 0.01) within high LD (D’ = 1, 
 R2 = 0.50), is an eQTL for NCK2, which is a known AD 
risk gene [5]. Additional studies even in larger dataset are 
needed to replicate this finding.

Sex‑stratified GWAS
About two thirds of people diagnosed with AD are 
women, however, the life expectancy for women is longer 
than for men [57]. Furthermore, age is the greatest risk 
factor for AD dementia as chances for developing AD by 
the age of 45 is 20% and 10% for women and men, respec-
tively [57]. In light of these facts, we wanted to assess if 
amyloid burden also exhibits sex-dependent differences 

by performing the association analysis separately for the 
female (N = 5195) and male (N = 4625) strata.

No genome-wide signals were found in males, but 
the female-specific analyses revealed two independ-
ent genome-wide significant SNPs on chr5p.14.1 
(rs529007143, β = 0.79, SE = 0.14, P = 1.4 ×  10–08, sex-
interaction P = 9.8 ×  10–07, MAF = 0.006,  I2 = 0; Fig.  3) 
and chr11p.15.2 (rs192346166, β = 0.94, SE = 0.17, 
P = 3.7 ×  10–08, sex-interaction P = 1.3 ×  10–03, 
MAF = 0.004,  I2 = 0). We looked for SNPs in high LD 
with these signals and found several SNPs in high LD 
that were also highly significant, indicating them to be 
potential new signals and not an imputation error or 
artifact (Additional file  1: Table  S14). In addition, in 
the sex-AD interaction analysis, both of the identified 
variants passed the suggestive significance (Additional 
file  1: Fig. S15) and showed a positive association with 

Fig. 3 Sex stratified analyses identified several female specific signals. A Manhattan plot showing the p‑values in the 5195 female and 4625 male 
participants across 9 cohorts. The blue and red lines represent the suggestive (P = 1 ×  10−5) and genome‑wide significance thresholds (P = 5 ×  10−8). 
Variants with a p value below 1 ×  10−15 are not shown. The observed genomic control value (λ) was 1 for both strata. Local Manhattan plot showing 
the genome‑wide significant locus from the chr5 (B) and chr11 (C) for female‑specific signals. The relative location of genes and the direction of 
transcription are shown in the lower portion of the locus zoom plots
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amyloid deposition for rs529007143 (β = 0.54, SE = 0.11, 
P = 9.8 ×  10–07) and chr11p.15.2 (rs192346166, β = 0.41, 
SE = 0.13, P = 1.3 ×  10–03) variants. Functional annota-
tion of these rare genetic variants indicates that the inter-
genic upstream genes are MSNP1 and INSC/EHF for 
rs529007143 and rs192346166, respectively (Additional 
file 1: Fig. S16). Expression and pQTL analyses were not 
informative to identify the most likely functional genes in 
those regions (Additional file 1: Table S15). We also did 
not find any overall gene-expression change between AD 
cases and controls for MSNP1. However, gene expres-
sion of EHF is higher in AD brains compared to controls, 
and more interestingly this difference is also driven by 
women [47]. The identified loci did not colocalized with 
AD risk GWAS (Additional file  1: Table  S4), probably 
because the considered AD risk GWAS has both males 
and females individuals. To conclude, we have identified 
two novel female-specific signals that are positively asso-
ciated with amyloid deposition, however, additional stud-
ies with even a larger sample size are needed to replicate 
these finding and proper colocalization analyses are also 
needed in female-only GWAS for AD risk to further vali-
date these signals.

Case–control stratified analyses
Population-based case–control studies have become 
increasingly popular for finding common polymorphisms 
that underlie complex human traits. In order to identify 
such genetic variants underlying our AD endophenotype 
of interest (Amyloid PET), we conducted a case–control 
stratified association analysis (CO = 5846, AD = 1138) 
and identified multiple variants from the APOE locus 
that passed the genome-wide significance in both strata 
(Additional file 1: Fig. S17).

Briefly, in these analyses only the APOE locus 
passed the genome-wide significance, with APOE ɛ4 
(rs429358) being the most significant SNP. Even, the 
effect size in cases and controls (AD: β = 0.59, SE = 0.02, 
P = 1.2 ×  10–165, MAF = 0.19; CO: β = 0.47, SE = 0.04, 
P = 1.9 ×  10–29, MAF = 0.23) were in the same direction, 
the statistical analyses indicate that they are significantly 
different (p = 0.007, Additional file  1: Table  S16). Simi-
lar findings were observed for the protective effect of 
APOE ɛ2 (AD: β = − 0.54, SE = 0.1, P = 3.7 ×  10–08; CO; 
β = − 0.26, SE = 0.03, P = 2.1 ×  10–16), with cases showing 
significantly higher effect size than controls (p = 0.007; 
Additional file  1: Table  S16). We observed similar and 
non-significantly different effect sizes for CR1, FERMT2, 
and ABCA7 in AD and CO (p > 0.29), indicating that both 
strata contribute to the association.

We also checked the overlap between known AD 
risk loci [5] and the case–control stratified GWAS. 
In the case-only analysis (N = 1138), we found seven 

SNPs to be nominally significant with consistent effect 
size direction except for one variant (Additional file  1: 
Table  S17). The most significant was on chr14q.32.12/ 
rs7401792 (SLC24A4, P = 0.0010, β =  − 0.14, SE = 0.04, 
MAF = 0.37; Additional file 1: Table S17). In case of con-
trols (N = 5846), we identified 11 SNPs to be nominally 
significant, with chr7p.21.3 (rs6943429) being the most 
significant (UMAD1, p = 0.0010, β = 0.05, SE = 0.02, 
MAF = 0.42; Additional file  1: Table  S17). Overall, we 
found more loci to be associated with AD risk in the 
amyloid PET control GWAS.

Association of known AD risk loci with amyloid burden
Next, we assessed if there is an overlap between the 
genetic architecture of amyloid imaging and AD risk 
beyond the identified SNPs in the APOE, ABCA7, 
FERMT2, and CR1 loci that all colocalized with AD risk 
(PP.H4 > 0.88; Additional file  1: Table  S4). Among the 
82 genome-wide significant sentinel SNPs associated 
with AD risk reported by Bellenguez et  al. [5], 18 addi-
tional AD risk variants were also nominally associated 
(P < 0.05) with brain amyloidosis in the current amyloid 
PET GWAS (Additional file  1: Table  S18). This overlap 
of overall 21 SNPs between AD risk and amyloid PET 
GWAS was found to be statistically significant (hyperge-
ometric test P = 4.1 ×  10–12). The identified SNPs included 
key AD associated genes, such as ANK3, APP, BIN1, CLU, 
FERMT2, and TREM2. Importantly, for most of the iden-
tified SNPs, the direction of effect size (β) was consistent 
between Bellenguez et  al. [5] and the current amyloid 
PET GWAS. These results suggest that amyloid imaging 
endophenotype can serve as a proxy for AD risk.

Polygenic risk score analysis
In order to further determine the association of brain 
amyloidosis and AD risk, we determined if AD Poly-
genic risk score (PRS) were associated with amyloid PET. 
PRS were calculated with and without APOE region 
(GRCh38, chr19:43,907,927–45,908,821) from the most 
recent AD case–control GWAS [5]. We observed sig-
nificant association between PRS for AD risk and brain 
amyloidosis (PRS.R2 = 0.05, P = 2.6 ×  10–85) at P-value 
threshold  (PT) equal to genome-wide significance 
 (PT = 5 ×  10–08; Additional file  1: Fig. S18) when APOE 
was included. We also observed a significant associa-
tion (PRS.R2 = 0.01, P = 1.4 ×  10–19) even when the APOE 
region was removed from the reference GWAS. Overall, 
age, sex, cohort, first ten genetic principal components, 
and the polygenic score explained 8.7% (Full.R2 = 0.087) 
and 4.7% (Full.R2 = 0.047) of the variance in amyloid lev-
els with and without APOE, respectively. These results 
further strengthen our hypothesis that there are loci 
besides APOE that are associated with amyloid burden in 
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the brain and they also contribute to the observed asso-
ciation with AD risk PRS.

Genetic covariance between amyloid PET GWAS 
and complex human traits
To assess whether amyloid PET endophenotype shares its 
genetic basis with other complex human traits, we per-
formed genetic covariance analyses using summary sta-
tistics from amyloid PET GWAS from NHW ancestry 
(N = 11,556) and 63 human health-related phenotypes 
[58] (Additional file 1: Table S3). Pair‐wise genetic covari-
ances between amyloid PET AD endophenotype and 63 
human health-related phenotypes are shown in Fig.  4 
and Additional file  1: Table  S19. In total, 7 phenotypes 
showed significant correlation after multiple testing and 
sample overlap correction.

We observed a strongly positive correlation with 
high-density lipoprotein (HDL; cor = 0.29, SE = 0.09, 
FDR = 9.2 ×  10–05), Total cholesterol (cor = 0.19, 
SE = 0.09, FDR = 2.5 ×  10–02), and Asthma (cor = 0.15, 
SE = 0.06, FDR = 2.5 ×  10–02), among others. Moreo-
ver, we observed significantly negative correlations with 
Epilepsy (cor = − 0.38, SE = 0.13, FDR = 2.5 ×  10–03) and 
Celiac disease (cor = − 0.16, SE = 0.06, FDR = 2.2 ×  10–02). 
Removing the APOE region had minimal effect on the 
pair-wise genetic correlations and their significance, 
with the exception of identifying a new significant cor-
relation for Multiple Sclerosis (cor =  − 0.23, SE = 0.06, 
FDR = 7.3 ×  10–03). Taken together, these results provide 
evidence of consistency in the observed polygenic trends 
across comparable measures from independent datasets.

Discussion
In this study we explored the genetic basis of brain amy-
loidosis by analyzing the largest collection of amyloid 
PET imaging data to date. We used harmonized amyloid 
PET levels as a quantitative trait to conduct the race-
specific GWAS across eight different cohorts (N = 7557). 
Further, the summary statistics data from 6 additional 
cohorts were included to perform multi-ethnic meta-
analysis for identifying novel genetic associations with 
brain amyloidosis (N = 13,409).

The meta-analysis revealed a very strong significant 
genome-wide locus on the APOE gene region, validating 
previous findings [11, 14, 15]. We leveraged these large 
and multi-ethnic cohorts to further disentangle the role 
of APOE in brain amyloidosis and AD risk. It is known, 
and well accepted that there are at least two independent 
signals in the APOE gene: ɛ4 and ɛ2 [11, 15]. We found 
a strong and positive association of ɛ4 across popula-
tions (Effect size NHW = 0.62 [SE = 0.01], AFR = 0.49 
[SE = 0.07], ASN = 0.14 [SE = 0.01]; Additional file  1: 
Table  S12), even though the MAF and the effect size 

were significantly different across populations. We also 
observed significant heterogeneity in the effect of APOE 
ɛ2, with strong protective effect of this variant in NHW 
(Effect size = -0.33, SE = 0.02), but almost nothing at all 
in ASN (Effect size = − 0.02, SE = 0.03), and AFR show-
ing an intermediate but not significant association of 
this variant with brain amyloidosis (Effect size = − 0.16, 
SE = 0.10). As our population principal component factor 
analyses indicate that our AFR population includes sam-
ples with some NHW contribution (Additional file 1: Fig. 
S1B), it will be important to perform future analyses eval-
uating local admixture mapping to determine the effect 
size of the APOE ɛ2 in individuals from a NHW or AFR 
background.

In addition to the known ɛ4 and ɛ2 independent 
variants, our APOE conditional analyses demonstrate 
that there are at least four additional risk signal in this 
locus on chr19q.13.32, tagged by rs73052335 (β = 0.28, 
SE = 0.02, P = 2.1 ×  10–71, MAF = 0.17)/rs5117 (β = 0.07, 
SE = 0.01, P = 1.2 ×  10–13, MAF = 0.29), rs1081105 
(β = 0.29, SE = 0.03, P = 6.4 ×  10–24, MAF = 0.04), 
rs438811 (β = − 0.15, SE = 0.01, P = 1.6 ×  10–57, 
MAF = 0.41), and rs4420638 (β =  − 0.06, SE = 0.001, 
P = 1.0 ×  10–09, MAF = 0.23), that have also been 
reported to be associated with AD risk with positive 
colocalization (Additional file  1: Table  S10). Similar 
to APOE ɛ2, rs5117 signal shows very specific race-
specific effects. This variant has a strong effect in 
NWH, a significant but weaker effect on ASN and no 
effect on AFR. Based on our analyses, it is not clear if 
this variant is modifying amyloid imaging through an 
APOE-dependent mechanism or by some other gene. 
Our eQTL analyses indicate that the additional APOE 
variants also regulate TOMM40 or NECTIN2 mRNA 
levels. TOMM40 (translocase of outer mitochondrial 
membrane 40 homolog) has also been reported to be 
associated with LOAD and multiple LOAD-related neu-
roimaging phenotypes in the 19q13 region [59–61]. A 
poly-T polymorphism in TOMM40 has been proposed 
to modify AD risk independently of APOE in multiple 
studies, but with contradictory results [59–62]. Nec-
tin cell adhesion molecule 2 (NECTIN2), an important 
mediator of immune system, has already been shown to 
be downregulated in the neurons of AD cases [63] and 
different genetic variants in this gene have been asso-
ciated with alterations in the CSF Aβ and tau levels as 
well as AD [2, 64, 65]. In addition, common variants in 
NECTIN2, have shown a strong association with CSF 
sTREM2 [66]. Besides APOE ɛ4 and ɛ2, various other 
variants have also been shown to exhibit protective or 
risk effect on AD. For example, a recent report sug-
gest that the individuals having two copies of APOE ɛ3 
Christchurch (p.R136S) mutation may slow down the 
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Fig. 4 Genome‑wide genetic covariance results. Genetic covariance between multi‑ethnic amyloid PET GWAS (NHW = 11, 816) and 63 complex 
human traits. Error bars represent 95% confidence intervals
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progression of AD by preventing the accumulation of 
tau tangles and associated cell death [67]. Furthermore, 
multiple signals have been found in the APOE locus for 
CSF Aβ1-42 after controlling for APOE genotype and 
adjusting for multiple comparisons based on Bonfer-
roni threshold [68].

The effect of APOE ɛ4 and ɛ2 with AD risk and AD 
endophenotypes is so strong that identifying, validat-
ing, and characterizing additional independent signals 
in this region remains challenging and additional stud-
ies are needed. In any case, these results strength the 
notion that multiple independent risk and protective 
variants are found in the APOE locus, and more impor-
tantly that these signals show a very clear race-specific 
effect. Other studies have also reported a race-specific 
effect of APOE on AD risk [69], mainly for APOE ɛ4. 
Here we demonstrate that this observation can be 
extended to amyloid imaging but more importantly, we 
demonstrate that this differential effect is more pro-
nounced to APOE ɛ2 and for the new additional signal 
we identified. This has important implications when 
estimating the individual risk at a population level that 
may affect future clinical trial strategies and therapies. 
The new results from the Lecanemab study [70] indi-
cates that this treatment has different effects depending 
on the ethnicity and APOE genotype. The results from 
this study could help to further understand the result 
from this trial.

Besides identifying multiple independent signals in 
the APOE locus, we also found two additional NHW 
signals in the CR1 (chr1q.32.2, P = 9.1 ×  10–10, β = 0.1, 
SE = 0.02, MAF = 0.18) and FERMT2 (chr14q.22.1, 
P = 8.7 ×  10–09, β = 0.15, SE = 0.03, MAF = 0.06) loci, 
and a multi-ethnic signal in ABCA7 (chr19p.13.3, 
P = 9.2 ×  10–09, β = 0.07, SE = 0.01, MAF = 0.32) locus. All 
these signals have already been shown to be significantly 
associated (CR1 = 5.2 ×  10–33, FERMT2 = 5.8 ×  10–10, 
ABCA7 = 4.1 ×  10–30) with AD risk [5] and our colocaliza-
tion analyses indicate they all share a single causal variant 
(PP.H4 > 0.88; Additional file  1: Table  S4). We observed 
a significant interaction between APOE and CR1 signal 
(P = 0.008, β = 0.05, SE = 0.02; Tale S16). This signal was 
mainly driven by APOE ɛ4+ stratum (P = 3.3 ×  10–08, 
β = 0.15, SE = 0.03) but also nominally significant in the 
APOE ɛ4− stratum (P = 0.05, β = 0.04, SE = 0.02), and 
exhibited significant difference in the effect size between 
both these strata (two-sample t-test p = 0.001). We did 
not observe an interaction of APOE with FERMT2 and 
ABCA7 signal (p > 0.20), also their effect sizes were 
not significantly different (p > 0.10) between ɛ4+ and 
ɛ4- strata.

We found a strong overlap in the genetic architecture 
of AD risk and brain amyloid imaging. Alzheimer disease 

PRS with (P = 2.6 ×  10–85) and without (P = 1.4 ×  10–19) 
APOE showed a strong association with amyloid imaging. 
Additionally, 21 of the sentinel SNPs for the latest GWAS 
for AD risk [5] showed at least a nominal significance 
(p < 0.05) for brain amyloidosis. For most of the over-
lapping SNPs, the effect size directions were consistent 
across both analyses. Some of the most important genes 
that have been associated with these SNPs included, CR1 
(Complement Receptor Type 1), ABCA7 (ATP-Binding 
Cassette Sub-Family A Member 7), BIN1 (Bridging Inte-
grator 1), ANK3 (Ankyrin 3), TREM2 (Triggering Recep-
tor Expressed On Myeloid Cells 2), and CLU (Clusterin). 
All these genes have been shown to be implicated in neu-
ropathology and AD [40, 71–77]. For example, ABCA7 
has been shown to mediate the generation of high-den-
sity lipoprotein (HDL) with apolipoproteins [78]. Like 
APOE, CLU is also known as a component of lipoprotein 
and implicated in a wide range of biological functions 
including cholesterol and lipid transport [79], however, 
the specific roles of these genes in brain cholesterol 
homeostasis and its involvement in AD is still unknown. 
Taken together, these results indicate that genetic archi-
tecture of amyloid PET endophenotype is very similar to 
that of AD risk, therefore, it may be used as a proxy for 
explaining the yet to be discovered genetic variance in 
AD.

Besides the robust association of brain amyloido-
sis with APOE locus, SNPs within RBFOX1 gene on 
chr16p.13.3 have also been shown to reach genome-wide 
significance in previous studies (top SNP rs56081887, 
P = 3 ×  10–09, β = 0.61, MAF = 0.09) [15]. We did not find a 
significant association for this variant in our race-specific 
GWAS for NHW ancestry (p = 0.75, β = − 0.01, SE = 0.03; 
Additional file 1: Fig. S19) or multi-ethnic meta-analysis 
(p = 0.67, β = − 0.01, SE = 0.03). As the initial associa-
tion of this SNP was identified on controls only, we ana-
lyzed if this SNP showed an association in controls-only 
(N = 5,846). We found rs56081887 (p = 0.04, β = 0.060, 
SE = 0.03) and rs34860942 (p = 0.03, β = 0.064, SE = 0.03) 
to be nominally associated with brain amyloidosis.

Additional interactions were found on our sex-specific 
analyses. Two new female-specific loci were detected 
in the sex-stratified multi-ethnic GWAS: MSNP1 gene 
on chr5.p14.1 (rs529007143, β = 0.79, P = 1.5 ×  10–08, 
MAF = 0.006) and EHF gene on chr11.p15.2 
(rs192346166, β = 0.94, P = 3.9 ×  10–08, MAF = 0.004). 
Our analyses indicate that expression level of this gene 
is altered in AD brains, specifically in women, support-
ing the race-specific association. EHF (ETS Homologous 
Factor) is a DNA-binding transcription factor activity 
and RNA polymerase II cis-regulatory region sequence-
specific DNA binding protein that play a crucial role in 
regulating epithelial cell differentiation and proliferation 
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[80], however the role of this protein on AD risk is still 
unclear. Future studies, focused on sex-stratified analy-
ses in AD, will be needed to replicate these findings and 
identifying the functional signals on chr11 and 5 to better 
understand the role of EHF on AD risk in females.

Another novel signal identified in this study is the 
AFR-specific signal on chr8q.22.1 (rs2271774, β = 0.98, 
P = 7.8 ×  10–09, MAF = 0.028) that, based on our func-
tional mapping, is driven by PTDSS1. This gene encodes 
the enzyme phosphatidylserine synthase 1 (PSS1), which 
is involved in the transport of phospholipids between 
endoplasmic reticulum and mitochondria [81], and 
which is highly expressed in brain tissue, especially 
in neurons. This same SNP has a MAF of 1.3% in ASN 
(N = 336, p = 0.84, β = − 0.04, SE = 0.19, MAF = 0.013) and 
0.21% in NHW (N = 6329, p = 0.84, β = 0.13, SE = 0.56, 
MAF = 0.0021) but it was not even nominally associated 
in these two ancestries, suggesting it to be an AFR-spe-
cific signal or be a false-positive signal. Additional stud-
ies with an even larger AFR-specific sample size will be 
needed to further confirm this finding.

Besides the positive genetic overlap of amyloid PET 
AD endophenotype with different neurological disor-
ders such as AD, Amyotrophic Lateral Sclerosis (ALS), 
and Frontotemporal dementia (FTD), we also found a 
significant genetic correlation with a number of differ-
ent human traits. We observed strong genetic correla-
tions with HDL and total cholesterol levels (Fig.  4 and 
Additional file 1: Table S19). It is also interesting that we 
observed significant negative correlations between Aβ 
deposition and brain structure hippocampus and intrac-
ranial volumes, validating existing findings that suggest 
brain volume loss during the mild cognitive impair-
ment (MCI) to AD transition [82]. Notably, we observed 
strong positive genetic correlation between our trait of 
interest and different inflammatory disorders such as 
Crohn’s disease (cor = 0.07, SE = 0.04, FDR < 0.19), ALS 
(cor = 0.03, SE = 0.06, FDR < 0.8), and Primary Biliary 
Cirrhosis (cor = 0.08, SE = 0.05, FDR < 0.21). Moreover, 
some genetic traits that were significantly negatively cor-
related were also related to the dysregulation of immune 
response e.g. Celiac disease (cor = − 0.16, SE = 0.06, 
FDR < 2.2 ×  10–02) and Multiple Sclerosis (cor = − 0.19, 
SE = 0.07, FDR < 0.06). These results highlight the shared 
genetic architecture underlying central mechanism in 
AD and other neuroinflammatory disorders [83, 84]. 
Recent GWAS and pathway analyses have emphasized 
the crucial role of the innate immune system and neuro-
inflammation in the pathogenesis of AD [85, 86]. To that 
end, targeting neuroinflammation by modulating differ-
ent phagocytic receptors e.g. CD33 inhibition [87] and/or 
TREM2 activation [88, 89] have been suggested as valu-
able therapeutic strategies to enhance neuroprotective 

microglia and reduce neuroinflammation, which is cru-
cial for preventing and treating AD [85].

Similar to other GWAS, the present study also bears 
some important limitations. Although we have com-
piled and leveraged the largest collection of amyloid PET 
datasets reported-to-date, the sample size for all popula-
tions were not comparable. Significantly reduced sam-
ple size from the AFR and ASN ancestries might be the 
most profound hurdle in achieving genome-wide signifi-
cance for loci with small effect sizes across multi-ethnic 
meta-analysis. Nevertheless, we showed that some of our 
suggestive and nominally significant loci have the same 
direction of allelic effects for established AD risk asso-
ciated variants, suggesting that we might have achieved 
genome-wide significance with a relatively larger sample 
size. One potential reason for relatively lower sample 
size is the difficulty in obtaining the amyloid PET data 
through scanning due to limited availability of scanning 
platform in the under-developed countries and their 
lesser representation in developed countries where such 
facilities are readily available. Another significant con-
straint was the cis-eQTL dataset that was obtained from 
GTEx database which only represents cognitively normal 
individuals and not those diagnosed with AD. As more 
amyloid PET imaging data are obtained by different cent-
ers with larger population sizes, future studies leverag-
ing these larger samples sizes will have better potential 
for validating existing findings and identifying additional 
genes associated with brain amyloidosis.

Conclusion
We have performed the largest reported to-date amyloid 
PET GWAS (N = 13,409) that has confirmed the previ-
ously known association of the APOE locus with brain 
amyloidosis. In addition to recapitulating the estab-
lished associations, we have identified novel variants in 
the ABCA7, CR1, and FERMT2 regions as well as sex-
specific variants that affect amyloid deposition. We have 
employed a combination of genetic and functional ana-
lytic approaches for identifying putative candidate genes 
that warrant follow-up genetic and functional studies to 
confirm their role in brain amyloidosis. This study high-
lights the importance and need of large-scale genetic 
studies focusing on brain amyloidosis in diverse popula-
tions for finding universal candidate therapeutic targets 
for AD.
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