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Lower bound for KVol on the minimal stratum

of translation surfaces

Julien Boulanger

Abstract

In this paper we are interested in algebraic intersection of closed curves
of a given length on translation surfaces. We study the quantity KVol, de-
�ned in [6] and studied in [6, 7, 2, 3], and we construct families of translation
surfaces in each connected component of the minimal stratum H(2g − 2)
of the moduli space of translation surfaces of genus g ≥ 2 such that KVol
is arbitrarily close to the genus of the surface, which is conjectured to be
the in�mum of KVol on H(2g − 2).

1 Introduction

Given a closed oriented surface X, the algebraic intersection Int(·, ·) de�nes a
symplectic bilinear form on the �rst homology group H1(X,R). When X is
endowed with a Riemannian metric, we can de�ne the quantity

KVol(X) := Vol(X) sup
α,β

Int(α, β)

lg(α)lg(β)

where the supremum ranges over all piecewise smooth closed curves α and β in
X. Here, Vol(X) denotes the Riemannian volume, and lg(α) (resp. lg(β)) denotes
the length of α (resp. β) with respect to the metric.

The study of KVol originates in the work of Massart [10] and Massart-Muetzel
[12]. In fact, KVol is also well de�ned if the Riemannian metric has isolated
singularities, and it has been studied recently speci�cally in the case of translation
surfaces (see [6], [7], [2], [3]) for which one could hope to get explicit computations
of KVol.

Although it is easy to make KVol go to in�nity by pinching a non-separating
curve, it cannot be made arbitrarily small: Massart and Muetzel [12] showed that
for any closed oriented surface X with a Riemannian metric, we have KVol(X) ≥
1 with equality if and only if X is a torus and the metric is �at. In light of this
result, it is interesting to wonder what are the Riemannian (resp. hyperbolic,
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�at) surfaces of �xed genus g having small KVol. This question turns out to be
di�cult to answer. In [12], KVol is studied as a function over the moduli space
of hyperbolic surfaces of �xed genus: they provide asymptotic bounds when the
systolic length goes to zero. In [7] Cheboui, Kessi and Massart extend the study
of KVol to the moduli space of translation surfaces of genus 2 having a single
singularity. Namely, they investigate the following quantity:

K(H(2)) := inf
X∈H(2)

KVol(X)

In particular, they conjecture that K(H(2)) = 2 and show that K(H(2)) ≤ 2 by
exhibiting a family of (square-tiled) translation surfaces L(n + 1, n + 1) having
KVol converging to 2 as n goes to in�nity.

In this note, we tackle the same question in any genus g ≥ 2. More precisely,
we conjecture that:

K(H(2g − 2)) := inf
X∈H(2g−2)

KVol(X) = g

and we construct surfaces in H(2g − 2) having their KVol arbitrarily close to g,
showing:

Theorem 1. For all g ≥ 2,

K(H(2g − 2)) ≤ g.

It has to be remarked that translation surfaces with a single singularity are
very speci�c surfaces and that the in�mum of KVol over all Riemannian surfaces
of genus g does not grow linearly with the genus as it is expected in the case of
H(2g− 2). In particular, as suggested by Sabourau to the author, a construction
of [5] gives a surface Xg for each genus g ≥ 1 such that

KVol(X) ≤ C
g

log(g + 1)2

for a given constant C > 0. This bound can be obtained using Theorem 1.5 of [12],
which compares KVol and the systolic volume, and the fact that the (homological)

systolic volume of the surfaces constructed in [5] grows as C ′ g

log(g + 1)2
.

However, in the case of translation surfaces having a single singularity, it is
not possible to construct similar surfaces, as Boissy and Geninska [1] (and inde-
pendantly Judge and Parlier [8]) showed that in this setting the systolic volume
has a linear bound in the genus. This is the reason why we expect the in�mum
of KVol over H(2g − 2) to grow linearly with g.
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Remark 1.0.1. Concerning the lower bound on KVol, Theorem 1.1 of [4] gives
directly that for any constant A > 0, there exist cA > 0 such that for any
Riemannian surface X of genus g and such that SysVol(X) < A, we have:

cA
g

log(g + 1)2
≤ KVol(X).

It would be interesting to know whether the same inequality holds with a universal
constant c > 0 which does not depend on A. It should be noted that such a result
has recently been shown for hyperbolic surfaces in the case where the algebraic
intersection is replaced by the geometric intersection, see [13]. The proof in this
later case relies on the existence of a short �gure eigth geodesic.

Connected components of H(2g−2). With Theorem 1 in mind, it is interest-
ing to wonder whether the bound g can be achieved in any connected component
of H(2g − 2). Kontsevich and Zorich [9] classi�ed the connected components
of any stratum of translation surfaces, and showed in particular that for any
g ≥ 4, H(2g − 2) has three connected components: the hyperelliptic component
Hhyp(2g−2), and two other connected componentsHeven(2g−2) andHodd(2g−2)
distinguished by the spin invariant. In genus 2, the only connected component
is hyperelliptic while in genus 3 there are two connected components : odd spin
and hyperelliptic. It turns out that the family of surfaces we construct in Section
2 belongs to odd spin for any g ≥ 2. In Section 3 we give a family of hyperelliptic
surfaces Hn

g and even spin Mn
g surfaces such that both KVol(Hn

g ) and KVol(Mn
g )

converge to g as n goes to in�nity. In particular, we show:

Theorem 2. � K(Hhyp(2g − 2)) ≤ g for any g ≥ 2.

� K(Hodd(2g − 2)) ≤ g for any g ≥ 3.

� K(Heven(2g − 2)) ≤ g for any g ≥ 4.

We assume familiarity with the geometry of translation surfaces, and encour-
age the reader to check out the surveys [15], [14] and [11].

Acknoledgments. I would like to thank E. Lanneau, D. Massart and S. Sabourau
for useful and enlightening discussions related to the work presented here.

2 Proof of Theorem 1

In this section, we prove Theorem 1 by exhitibing a family of surfaces Ln
g for

g, n ≥ 2, (having odd spin parity and) such that Ln
g has genus g for each n ≥ 2

and
lim
n→∞

KVol(Ln
g ) = g.
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2.1 Construction of the surface Ln
g .

Given g ≥ 2 and n ≥ 2, de�ne Ln
g as the (g(n+1)− 1)-square translation surface

of genus g with a single conical point which forms a staircase with steps of lengths
and height n, as in Figure 1.

n

n

n
n = 4
g = 3

n

n
n

n

n = 3
g = 4

Figure 1: The surface L4
3 on the left, and L3

4 on the right. The identi�cations are
such that each horizontal (resp. vertical) rectangle is a cylinder.

A basis of the homology. Let e1, · · · , eg (resp. f1, · · · fg) be the horizontal
(resp. vertical) saddle connections (see Figure 2), seen as homology classes. No-
tice that for odd i, ei can be represented by a closed geodesic which do not pass
through the singularity. We will refer to such homology classes as non singular

homology classes. This is also the case of fj for even j. On the contrary, for even
i (resp. odd j), the class ei (resp. fj) will be called singular as it can only be
represented by closed geodesics passing through the singularity.

The intersection matrix of the ei and fj is given by the following table:

Int(ei, fj) e1 e2 e3 e4 e5 · · · eg

f1 1 -1 0 0 0 · · · 0
f2 0 1 0 0 0 0
f3 0 -1 1 -1 0 0
f4 0 0 0 1 0 0
f5 0 0 0 -1 1 · · · 0
· · · · · · · · ·
fg 0 0 0 0 0 · · · 1

To see this, notice that for odd i, the fact that ei can be represented by
a non-singular closed curve gives Int(ei, fj) = δi,j. The same holds for fj for
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e1

e2

f2

f1
e3

f3

egeg−1

fg

fg−1

fg−2

Figure 2: The horizontal and vertical saddle connections e1, · · · , eg, resp.
f1, · · · , fg.

even j. Next, given i even, the holomogy class ei−1 + ei + ei+1 corresponds to a
non-singular curve in Ln

g which intersects fj if and only if j = i. In particular,

Int(ei−1, fj) + Int(ei, fj) + Int(ei+1, fj) = δi,j

But the fact that both i − 1 and i + 1 are odd gives Int(ei−1, fj) = δi−1,j and
Int(ei+1, fj) = δi+1,j, so that

Int(ei, fj) = δi,j − δi−1,j − δi+1,j

Further, as Int(ei−1+ei+ei+1, ei) = 0 for even i (resp. Int(fj−1+fj+fj+1, fj) =
0 for odd j), the same arguments gives that the ei's (resp. the fj's) do not inter-
sect each other.

As a concluding remark, notice that closed geodesics representing e1 and f1
are intersecting once and have respective length 1 and n, and in particular:

KVol(Ln
g ) ≥ Vol(Ln

g ) ·
Int(e1, f1)

l(e1)l(f1)
= (g(n+ 1)− 1) · 1

n
.

Computation of the spin. As explained in [9, Section 3], it is easy to compute
the spin parity of an abelian di�erential ω given a symplectic basis of the �rst
homology group (ai, bi)1≤i≤g represented by smooth curves, and we have:

φ(ω) =

g∑
i=1

Ω(ai)Ω(bi) mod 2.
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where Ω(ai) = indai + 1 and 2π · indai is the total change of angle between
the tangent vector to the curves and the horizontal foliation. Further, for any
a, b ∈ H1(X,ω), we have:

Ω(a+ b) = Ω(a) + Ω(b) + Int(a, b). (1)

In the case of Ln
g , we use the basis (ai, bi)1≤i≤g de�ned by:

ai =

{
ei if i is even

ei−1 + ei + ei+1 if i is odd
and bi = fi.

The index of each ai is 0 as well as the index of each bi for even i because they
correspond to non-singular homology classes. Further, using (1) we show that
Ω(b1) = 0, as well as Ω(bg) = 0 if g is odd, while Ω(bi) = 1 for odd i, 1 < i < g.
In particular, we deduce that the spin structure of Ln

g has odd parity.

Further, it should be remarked that although Ln
2 is hyperelliptic for any n ≥ 2,

Ln
g is not hyperelliptic if g ≥ 3. This is because an hyperelliptic involution would

have to �x each cylinder, and hence must act as an involution of R1 ∪ C1 (with
the notations of Figure 3) so that it must act as an involution on C1, but it must
also act as an involution of C1 ∪R2 ∪ C2, which is then impossible.

A useful model for the surfaces Ln
g . Let us �nish this section by giving

another model for Ln
g , which, although less intuitive at �rst sight, turns out to

be helpful for the study of the intersections of saddle connections on Ln
g . This

model is obtained from a cut and paste procedure which is described in Figure
3 in the example of L3

4. The main idea is to glue together all the squares at the
corners of Ln

g to form a core staircase to which are attached the long rectangles.
A general picture is given in Figure 4.

2.2 An upper bound on KV ol(Ln
g )

In this section we provide estimates for KVol on the surface Ln
g . Recall from [12,

Section 3] that the supremum in the de�nition of KVol can be taken over pairs of
simple closed geodesics. In the case of translation surfaces, closed geodesics are
homologous to unions of saddle connections. Since saddle connections are closed
curves on Ln

g (which has a single singularity), we have:

KVol(Ln
g ) = sup

α,β saddle connections

Int(α, β)

l(α)l(β)

In this setting, we show:

Theorem 2.2.1. For any pair of saddle connections α, β on Ln
g , we have

Int(α, β)

l(α)l(β)
≤ 1

n
(
n+ 1

n
)2 +

6

n2
(2)
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Figure 3: L3
4 and its alternative model.

From this result, we deduce directly that

KVol(Ln
g ) ≤ (g(n+ 1)− 1)(

(n+ 1)2

n3
+

6

n2
).

Further, as remarked in Section 2,

g(n+ 1)− 1

n
≤ KV ol(Ln

g ),

so that, in particular, KVol(Ln
g ) −→ g as n goes to in�nity, proving Theorem 1.

Proof of Theorem 2.2.1. Let α and β be two saddle connections on Ln
g . We de-

compose the homolgy class of α (resp. β) in the basis (e1, · · · , eg, f1, · · · , fg) of
the homology. The �rst case we deal with is as follows:

Lemma 2.2.2. For any saddle connection α in Lg,n being in homology an integer

combination of the ei, i odd, and the fj, j even, and any saddle connection β, we
have

l(β) ≥ n|Int(α, β)|

In particular
Int(α, β)

l(α)l(β)
≤ 1

n
.

Proof of Lemma 2.2.2. As seen in the table of the intersections, the non-singular
ei or fj do not intersect each other, and in particular do not intersect α. It
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E1E3

Eg−3

Eg−1

Eg−1

Eg−3

Fg

Fg−2

F2

F4

Fg−2

Fg

E2

E4

Eg−2

Eg

F1F3

Fg−3

Fg−1

R1R3

Rg−3

Rg−1

R2

R4

Rg−2

Rg

Figure 4: The alternative model for Ln
g is made of a core staircase to which are

attached the long rectangles Ri. The curve Ei (resp. Fj) represents the homology
class ei (resp. fj).

follows that if we decompose β in the basis of the homology (e1, f1, · · · , eg, fg),
the intersection Int(α, β) will be at most the number of singular ei and fj in the
decomposition. But each singular ei or fj in the decomposition of β corresponds
to a trip through a long rectangle Ri and accounts for a length at least n, so that:

l(β) ≥ n|Int(α, β)|.

Given that l(α) ≥ 1, we get
Int(α, β)

l(α)l(β)
≤ 1

n
.

In particular, we deduce from Lemma 2.2.2 that Equation (2) holds if either α
or β is an integer combination of the non-singular ei and fj only. In the rest of the
proof, we will assume that neither α nor β correspond to such saddle connections.
In the alternative model for Ln

g , this says exactly that α and β have to cross a
long rectangle Ri.
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In particular, we can decompose the saddle connections α and β by cutting
them each time they enters or leaves a rectangle Ri (lengthwise). This gives
a decomposition into smaller (non-closed) segments α = α1 ∪ · · · ∪ αk (resp.
β = β1 ∪ · · · ∪ βl) alternating between:

(i) long segments (of length at least n) inside a long rectangle Ri,

(ii) short segments which stay inside the core staircase of Figure 4.

By convention, we will include the endoints in the short segments, apart from the
singularities (the possible singular intersection will be counted separately). Since
long segments and short segments are alternating, there are at leastmax(⌊k/2⌋, 1)
long segments and there are at most ⌈k/2⌉ short segments for α. Notice that:

� Long segments and short segments do not lie in the same part of the surface,
hence they cannot intersect.

� Any two short segments αi and βj intersect at most once, as no side of the
core staircase is identi�ed to another side of the core staircase.

� Concerning the intersection of long segments, we have:

Lemma 2.2.3. Given two long segments αi and βj in the same rectangle R, we
have

#αi ∩ βj

l(αi)l(βj)
≤ 1

n
(
n+ 1

n
)2 +

1

n2

where #αi ∩ βj denotes the cardinal of the set of intersection points.

Proof. The proof of this Lemma is similar to the proof of Proposition 2.5 in [7].
We �rst identify the sides of each long rectangle R to form a torus T . Then, for
each long segment αi (resp. βj) contained in the long rectangle R, we construct
a closed curve α̃i (resp. β̃j) on the corresponding torus T . This construction can
be done by adding to αi (resp. βj) a small portion of curve of length at most
one, and removes at most one intersection, so that

(a) Int(α̃i, β̃j) ≥ #αi ∩ βj − 1.

(b) l(α̃i) ≤ l(αi) + 1 and l(β̃j) ≤ l(βj) + 1.

Moreover, l(αi) ≥ n and l(βj) ≥ n so that:

(c) l(αi) + 1 ≤ l(αi)(1 + 1/n) (and the same holds for βj),

(d) 1 ≤
l(αi)l(βj)

n2
.
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Now, since KVol(T ) = 1 on the �at torus T , and given that the rectangle R has
area n (and so does the torus T ), we get:

Int(α̃i, β̃j)

l(α̃i)l(β̃j)
≤ 1

n
.

In particular

#αi ∩ βj ≤ Int(α̃i, β̃j) + 1 by (a)

≤ 1

n
(l(α̃i)l(β̃j)) + 1

≤ 1

n
(l(αi) + 1)(l(βj) + 1) + 1 by (b)

≤ 1

n
l(αi)(1 +

1

n
)l(βj)(1 +

1

n
) +

l(αi)l(βj)

n2
by (c) and (d).

This gives Theorem 2.2.1.

End of the proof. Counting all intersections, we have:

Int(α, β) ≤ (
∑
i,j

#αi ∩ βj) + 1

where the added intersection accounts for the possible singular intersection. Using
the preceeding estimates, we have:

Int(α, β) ≤

 ∑
αi,βj long segments

#αi ∩ βj

+

 ∑
αi,βj short segments

#αi ∩ βj

+ 1

≤

 ∑
αi,βj long segments

(
1

n
(
n+ 1

n
)2 +

1

n2
)l(αi)l(βj)

+

 ∑
αi,βj short segments

1

+ 1

≤ (
1

n
(
n+ 1

n
)2 +

1

n2
)

 ∑
αi,βj long segments

l(αi)l(βj)

+ ⌈k
2
⌉⌈ l
2
⌉+ 1

≤ (
1

n
(
n+ 1

n
)2 +

1

n2
)l(α)l(β) + ⌈k

2
⌉⌈ l
2
⌉+ 1

Now, since there are at least max(⌊k/2⌋, 1) long segments of α, each long segment

having length at least n, we get l(α) ≥ max(⌊k/2⌋, 1)n, so that k−1
2

≤ l(α)
n
, and

⌈k
2
⌉ ≤ k + 1

2
≤ l(α)

n
+ 1 ≤ 2l(α)

n

where the last inequality comes from l(α) ≥ n. Similarly, we have

⌈ l
2
⌉ ≤

l + 1

2
≤

2l(β)

n
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so that

Int(α, β) ≤ (
1

n
(
n+ 1

n
)2 +

1

n2
)l(α)l(β) +

4

n2
l(α)l(β) + 1

≤ (
1

n
(
n+ 1

n
)2 +

5

n2
)l(α)l(β) +

l(α)l(β)

n2

again using that l(α) ≥ n and l(β) ≥ n.

3 Even spin and hyperelliptic families

We conclude this paper by giving a hyperelliptic family of surfaces Hn
g for g ≥ 3

and an even spin family of surfacesMn
g (for g ≥ 4) such that for �xed g, KVol(Hn

g )
and KVol(Mn

g ) converge to g as n goes to in�nity.
The proof is in fact similar to the case of Ln

g , as each surface can be de-
composed into core polygons (giving rise to short segments) and long rectangles
(giving rise to long segments). These two families of surfaces have the property
that each edge of a core polygon is glued to an edge of a long rectangle, which al-
lows to generalize Lemma 2.2.3. Further, the curves staying in the core polygons
do not intersect each other and the conclusion of Lemma 2.2.2 can be general-
ized to these families of surfaces. This allows to give bounds for KVol(Hn

g ) and
KVol(Mn

g ) which are easily shown to converge to g as g is �xed and n goes to
in�nity.

3.1 The family Hn
g

A convenient way to construct a family of hyperelliptic surfaces is to copy the
staircase model of the double regular (2g + 1)-gon. However, we need each long

rectangle to have area n. One way to do this is to set the lengths of the horizontal
and vertical curves ei and fj drawn in the left of Figure 5 as

l(ei) = n
g−i−1
g−1 and l(fj) = n

j−1
g−1 .

Next, we distinguish the core polygons Ci and the big rectangles Ri and
proceed with the proof as in the case of Ln

g . Notice that the ei's (resp. the fj's)
are pairwise non-intersecting and that the intersection of the ei and the fj is
given by the following table:

Int(ei, fj) e1 e2 e3 e4 e5 · · ·
f1 1 0 0 0 0 · · ·
f2 -1 1 0 0 0 · · ·
f3 1 -1 1 0 0 · · ·
f4 -1 1 -1 1 0 · · ·
f5 1 -1 1 -1 1 · · ·
· · · · · · · · · · · · · · · · · · · · ·
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e1 e2

e3

eg−1

eg

f1

f2

fg−1

fg

R1 C1

R2 C2

. . .

Rg−2 Cg−2

Rg−1 Cg−1

Rg

R1

R2 C2

R3

C1

n
√
n

11

√
n

n

Figure 5: On the left, a combinatorial model for Hn
g . On the right, the example

of Hn
3 .

This allows to get an adapted version of Lemma 2.2.2:

Lemma 3.1.1. The closed saddle connections γ contained in the core polygons

correspond to the homology classes ei, fi−1 and ei + fi−1 for 2 ≤ i ≤ g.
For any such saddle connection γ and any other saddle connection g, we have:

Int(γ, g)

l(γ)l(g)
≤ 1

n
.

Further, similarly to Lemma 2.2.3, we have:

Lemma 3.1.2. For any two saddle connections α and β which are not contained

in the core polygons Ci, we have

Int(α, β)

l(α)l(β)
≤ 1

n
(1 + n− 1

g )2 +
6

n2
.

Using that the area of Hn
g is gn+ (g − 1)n

g−1
g , we get that

g + (g − 1)n
−1
g ≤ KV ol(Hn

g ) ≤ (g + (g − 1)n
−1
g )((1 + n− 1

g )2 +
6

n
),

where the lover bound comes from the fact that e1 and f1 are intersecting once,
and l(e1)l(f1) = n. Hence, for �xed g, KVol(Hn

g ) goes to g as n goes to in�nity.
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n

n
√
n

√
n

1

n

1

1

R1 C1

R2

C2 R3 C3

R4 C4

R5

Figure 6: The surface Mn
5 .

3.2 The family Mn
g

Similarly to Ln
g and Hn

g , it is possible to construct an even spin family of trans-
lation surfaces Mn

g , such that for any �xed g ≥ 4, KVol(Mn
g ) goes to g as n

goes to in�nity. For example, construct each Mn
g from Hn

3 by adding steps as
in Ln

g , see Figure 6. As we have seen in the case of Ln
g , the operation of adding

steps do not change the parity of the spin structure. In particular, the parity of
the spin structure of Mn

g is the same as Hn
3 , that is even. Further, similarly to

Ln
g , the surface M

n
g is not hyperelliptic as an hyperelliptic involution would have

to �x each cylinder, and hence act as an involution of C2, R3 and C3 but also
C2 ∪R3 ∪C3, which is impossible. In the case of Mn

g , an argument similar to the
previous cases show:

gn+ 2
√
n+ (g − 3)

n
≤ KVol(Mn

g ) ≤
gn+ 2

√
n+ (g − 3)

n
((1 +

1√
n
)2 +

6

n
).
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