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ABSTRACT

Textless speech-to-speech translation systems are rapidly ad-
vancing, thanks to the integration of self-supervised learning
techniques. However, existing state-of-the-art systems fall
short when it comes to capturing and transferring expres-
sivity accurately across different languages. Expressivity
plays a vital role in conveying emotions, nuances, and cul-
tural subtleties, thereby enhancing communication across
diverse languages. To address this issue this study presents
a novel method that operates at the discrete speech unit level
and leverages multilingual emotion embeddings to capture
language-agnostic information. Specifically, we demonstrate
how these embeddings can be used to effectively predict the
pitch and duration of speech units in the target language.
Through objective and subjective experiments conducted on
a French-to-English translation task, our findings highlight
the superior expressivity transfer achieved by our approach
compared to current state-of-the-art systems.

Index Terms— speech translation, prosody prediction,
speech generation

1. INTRODUCTION

In today’s interconnected world, speech-to-speech translation
(S2ST) technology can help bridge the communication gap
between people speaking different languages by enabling ef-
fective communication across diverse languages and cultures.
Nevertheless, existing speech-to-speech translation systems
frequently fall short of retaining the subtleties of expressive-
ness embedded within the speaker’s original message. Devel-
oping speech-to-speech translation systems capable of captur-
ing the emotional and expressive dimensions of spoken lan-
guage is crucial to improve the naturalness of speech genera-
tion. Conventional speech-to-speech translation systems rely
on cascaded approaches [1, 2] that follow a two-step approach
first converting the source speech into a textual representation
in the target language domain. This can be accomplished by
using automatic speech recognition (ASR) followed by ma-
chine translation (MT), or by using an end-to-end speech-to-
text translation (S2T) system [3, 4]. The resulting text output
is then transformed into a speech using text-to-speech (TTS).
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More recently, a textless direct speech-to-speech transla-
tion (S2ST) approach has been proposed which relies on dis-
crete speech units [5]. This approach is particularly valuable
when translating from an unwritten language and/or to an un-
written language. Furthermore, it has been observed that this
method is also highly effective for languages that possess a
written form [5, 6]. This technique is designed to effectively
capture the linguistic content of the target speech while min-
imizing the impact of the speaker’s prosodic features. Previ-
ous study [7] has shown that the utilization of discrete speech
units successfully disentangles linguistic content from the in-
fluence of prosodic characteristics and speaker identity.

Another challenge in preserving expressivity in speech-
to-speech translation is the lack of parallel annotated speech
data. The recent approach introduced in [6] is designed to
address this lack of paired speech data by focusing on the lin-
guistic context. However, this approach does not address the
issues of preserving emotions and other non-linguistic infor-
mation contained in the source language speech.

Inspired by a recent work on prosody reconstruction
from multilingual speech representation [8], we propose an
approach that aims to build a speech-to-speech translation
system that preserves the expressivity without the need for
parallel speech data. This approach consists of training a
multilingual emotion embedding extractor used to compute
an emotion embedding from an utterance and exploit it for
speech resynthesis. In our work, we extend this approach
to address emotion preservation in textless speech-to-speech
translation. We compute an emotion embedding from the
source utterance and use it to condition the duration and pitch
predictor models used for generating the target utterance from
a discrete speech unit representation.

2. RELATED WORK

Spoken Language Modeling from audio. Generative spo-
ken language modeling from audio is a task that involves
acquiring the acoustic and linguistic characteristics of a lan-
guage solely from raw audio data, without any accompanying
text or labeled information. In [9], the authors proposed to
leverage advancements in self-supervised speech represen-
tation learning to discover discrete speech units and subse-



quently use them in downstream tasks. They demonstrate that
speech generation can be achieved by sampling sequences of
these discovered units from a unit-discovery model and syn-
thesizing them into a coherent speech waveform using a unit-
to-speech model. Building upon this work, in [7], the authors
demonstrated the effectiveness of utilizing self-supervised
learned discrete speech units for generating high-quality
speech. Furthermore, a comparable approach and speech rep-
resentation scheme were employed for the purpose of textless
speech emotion conversion through translation [10] and for
prosody reconstruction using a multilingual speech repre-
sentation [8]. In this study, we leverage a similar approach
and speech representation scheme to encode target speech in
order to train a speech-to-unit translation model.

Speech-to-speech translation. Most speech-to-speech trans-
lation systems rely on cascaded approaches that require in-
termediate text representation. This makes them unusable for
languages without written forms or datasets containing only
speech alignments. Recent research on S2ST is new, explor-
ing scenarios involving speech-to-speech translation (S2ST)
that does not rely on intermediate text representation. In [4],
an attention-based sequence-to-sequence neural network was
proposed to enable direct speech translation without the need
for intermediate text representation. The model was trained
end-to-end, mapping speech spectrograms from a source lan-
guage to target spectrograms in another language. Addition-
ally, the authors introduced a variation that aimed to transfer
the voice characteristics of the source speaker to the translated
speech. However, as the model was trained on synthetic data,
the voice transfer capabilities did not achieve comparable re-
sults to those observed in a similar text-to-speech context. In
subsequent work, [5] introduces a direct S2ST system based
on self-supervised discrete representations. The proposed ap-
proach exhibits enhanced performance compared to its prede-
cessor, unfortunately, it remains constrained by the utilization
of synthetic data. Furthermore, it is important to note that
this study did not emphasize the exploration of paralinguis-
tic information. More recently, [6] tackles direct S2ST by
following [5] and focuses on training the system with real-
world data on multiple language pairs. Previous studies in
the field of direct speech-to-speech translation have predom-
inantly concentrated on improving the quality of the trans-
lation, disregarding the paralinguistic dimension and expres-
sivity transfer. In contrast, the current study aims to build a
speech-to-speech translation framework that can transfer the
expressivity from one language into another.

3. ARCHITECTURE

Our speech-to-speech translation framework does not require
parallel speech data for speaker and expressivity modeling,
enables the translation of speech while maintaining the inher-
ent expressive content, and can generate speech in the target
language with multiple voices. The proposed framework can

be decomposed into two parts. First, a speech-to-unit transla-
tion model (Section 3.1), composed of a speech encoder and
an acoustic decoder. Secondly, a unit-to-speech synthesizer
(Section 3.2), composed of an emotion encoder, a speaker
encoder, a duration predictor, a pitch predictor and a speech
vocoder. The following subsections describe each component
of the proposed S2ST framework while the overall architec-
ture is illustrated in Figure 1.

3.1. Speech-to-unit translation model

The following describes the speech-to-unit translation (S2UT)
model (1) depicted in Figure 1. In order to capture the linguis-
tic content, particularly pseudo-phonetic information present
in speech, we employ a pre-trained self-supervised learning
(SSL) model to extract raw speech features from the audio
signal, namely multilingual HuBERT (mHuBERT) [6] for
English and Wav2Vec 2.0 [11] for French. Wav2Vec 2.0
and mHuBERT models are pre-trained in a self-supervised
manner and produce continuous representations for every
20-ms frame. To extract the sequence of speech units, a k-
means clustering is applied to the raw speech features and the
learned K cluster centroids are used to transform audio into
a sequence of cluster indices at every 20ms of the input audio
signal. For English speech, we extracted representations from
the 11" layer of mHuBERT model and set k¥ = 1000 as used
in [6] for speech-to-speech translation. For French speech, we
extracted representations from the 11*" layer of Wav2Vec2-
XLSR model and set K = 1000. Following [6][10], as a way
of speeding up training and inference time, we experimented
with reducing a sequence of units to a sequence of unique
units by removing consecutive duplicated units (e.g., 0, 0, 1,
1,1,2 — 0, 1, 2). We denote such sequences as “reduced”.

We build the S2UT model by adapting the transformer
encoder-decoder framework presented in [12]. As an en-
coder, we chose a large Wav2Vec 2.0 pre-trained on 7.6K
hours of French speech (1.8K Males / 1.0K Females / 4.8K
unknown) !. In contrast to the encoder, the decoder con-
sists of 6 transformer layers with a random initialization for
each transformer decoder weight. To alleviate the mismatch
between the length of the source speech and the reduced
target units, we introduced an adaptor layer of a single 1-D
convolutional layer with stride 2 between the encoder and
the decoder. We combined the Wav2Vec 2.0 encoder, the
adaptor along with the transformer decoder and we finetune
the whole model end-to-end. Following[6], we explored an
auto-encoding style auxiliary task by adding a separate trans-
former decoder as auxiliary task to help the model converge
during training. This separate transformer consists of 3 trans-
former layers, which are trained to predict the discrete units
sequence of the source speech as the target.

Ihttps://huggingface.co/LeBenchmark/wav2vec2-FR-7K-large
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Fig. 1. Illustration of our proposed speech-to-speech translation model. First, the input speech is translated into a sequence of
discrete units by the speech-to-unit translation model (1). Next, we predict duration and FO before feeding them to a unit-to-
speech model (2). Duration Predictor, Pitch Predictor, and the unit-to-speech model are conditioned by the emotion embedding
extracted from the source speech by the emotion encoder. The speaker is encoded using a 1-hot vector directly in the unit-to-

speech model.

3.2. Unit-to-speech model

The following section describes all components of the unit-
to-speech (U2S) model (2) depicted in Figure 1.

Emotion Encoder To capture emotion representations, we
use a dedicated encoder specifically trained for emotion
recognition tasks within a multilingual context. Our proposed
architecture is inspired by [8] and involves a pre-trained
Wav2Vec2-XLSR encoder, a bottleneck layer, and a dense
layer. We fine-tuned both the CNN and Transformer mod-
ules of the Wav2Vec2-XLSR model following the approach
described in [13]. The information across the entire source
speech sequence is encoded into a single fixed-length vector
representation of size 96 by passing the audio through the
bottleneck layer and applying temporal pooling.

Speaker Encoder In order to synthesize speech using the
voices of several speakers, we introduce a speaker repre-
sentation that serves as an additional conditioning factor.
Inspired by [8], we optimize the parameters of a fixed-size
look-up table. Although using speaker representations from
a pre-trained speaker encoder enables generalization to new
and unseen speakers, it is worth noting that such embedding
captures a broader range of speaker-related information and
it may be slightly less efficient in capturing solely the speaker
identity, resulting in a degradation of synthesized speech.

Duration Predictor As the speech-to-unit translation model
reduced sequences, we were required to predict the duration
of each discrete unit before feeding them to the pitch predictor
and unit-to-speech model. For this purpose, we take inspira-

tion from work on TTS [14], where a CNN is used to predict
the duration of each phoneme from a phoneme sequence.
Following [10, 8], we replaced the phoneme sequence with
the reduced discrete unit sequence and predict the number of
repetitions for each unit, in order to reconstruct the original
sequence. During training, we conditioned the model using
an emotion embedding extracted from ground-truth speech
and the ground-truth discrete unit duration is used as supervi-
sion. At inference time, the emotion embedding is extracted
from the speech in the source language.

Pitch Predictor Pitch is an important characteristic of speech
prosody, however, due to the non-monotonic alignment char-
acteristic of speech-to-speech translation, a direct extraction
of pitch from the source signal is not viable. Thus, an alterna-
tive method was required to accurately estimate pitch in this
context. To overcome this limitation, we introduce a FO esti-
mation model to predict the pitch directly from a sequence of
speech units. During the training phase, we use the ground-
truth speech in order to extract the speech units sequence, and,
during inference, we use the output of the S2UT model. Our
pitch predictor model is a CNN followed by a linear layer
projecting the output to R?. We apply a sigmoid on the model
prediction to output a vector in [0, 1]%. During the training
phase, the target FO is extracted using the YAAPT [15] al-
gorithm. Following [10, 8], we discretize ranges of FO val-
ues into d bins, represented by one-hot encodings. Then, we
compute the weighted-average of the activated bins in order
to expand the output range during the conversion of bins back
to FO values. We apply a normalization on the FO values using
the mean and standard deviation for each speaker.



Like the FO estimation model, the duration predictor
model is conditioned using an emotion embedding extracted
from ground-truth speech. The same embedding is used to
condition both models.

Speech synthesis Following [7], we use the HiFi-GAN neural
vocoder [16] to synthesize speech. HiFIGAN is a generative
adversarial network (GAN) that consists of one generator and
a set of discriminators. The generator is a fully convolutional
neural network. Inspired by [10], we adapted the generator
architecture to take as input a sequence of discrete-unit in-
flated using the predicted durations, predicted FO, emotion-
embedding, and a speaker-embedding. Before feeding the
above features into the model, we concatenate them along the
temporal axis. The sample rates of unit sequence and FO are
matched by means of linear interpolation, while the speaker-
embedding and emotion-label are replicated along the tempo-
ral axis.

Regarding the set of discriminators, the model is com-
posed of two modules: a Multi-Scale Discriminators (MSD)
and a Multi-Period Discriminators (MPD). The first type op-
erates on different sizes of sliding windows over the input sig-
nal, while the latter samples the signal at different periods.

4. EXPERIMENTAL SETUP

We use the SpeechMatrix [17] corpora for training and evalu-
ating our speech-to-unit translation (S2UT) model. Speech-
Matrix consists of 126 language pairs with a total of 418
thousand hours of speech from European Parliament record-
ings. In this study, only French-to-English language pairs
were considered, yielding a 1, 507 hours train set.

In addition to the mined speech-to-speech data for train-
ing purposes, we extend our evaluation by leveraging labeled
public speech datasets obtained from two distinct corpora
that cover various domains. First, Europarl-ST (EPST) [18],
a multilingual corpus containing paired audio-text samples
built from recordings of debates from the European Parlia-
ment, containing 72 translation directions in 9 languages,
including French to English direction. The second dataset is
FLEURS [19]. Derived from from FLoRes [20], FLEURS
is an extension that introduces speech recordings for these
translated texts, resulting in a collection of speech-to-speech
data comprising French to English direction. FLEURS texts
are from English Wikipedia. During training, we extract
a validation set from SpeechMatrix of about 1000 sample
which are not in the test set. FLEURS validation set is de-
rived from its validation samples. To compute evaluation
scores, we consider only the source speech and target texts,
the complete evaluation pipeline is described in section 4.3.

The unit-to-speech (U2S) model is separately trained
from S2UT model. To train the U2S system for English
language, we combine the LJSpeech dataset [21] and the
ESD[22] dataset. The LJSpeech dataset contains 13,100
short audio clips of a single speaker reading passages from 7

non-fiction books, with a total duration of approximately 24
hours. ESD is a multilingual emotional database, consisting
of 350 parallel utterances spoken by 10 native English and 10
native Chinese speakers (10F, 10M). In this study, we only
consider the English part.

4.1. Baseline

To assess the effectiveness of our proposed approach, we
build a Baseline model which is composed of a speech-to-
unit translation (S2UT) module and a unit-to-speech (U2S)
module. We conduct an analysis by systematically excluding
the emotion encoder and pitch predictor from the U2S mod-
ule. This enables us to quantify the impact and measure the
benefits of their inclusion in the overall system.

4.2. TTS

In addition to the Baseline and our S2ST model, we also in-
corporated an English text-to-speech (TTS) model [23] into
our subjective evaluation. The TTS model was trained on the
identical dataset utilized for training the U2S module. Its in-
clusion serves to assess the overall quality of the synthesized
speech generated by the TTS model in comparison to our pro-
posed system and to evaluate the effectiveness of expressivity
transfer achieved by our proposed system in contrast to the
TTS model.

4.3. Evaluation

T BLEU I “tanscriptions |

Text
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Fig. 2. An illustration of the evaluation pipeline used for
speech-to-speech translation.

Recent work in speech-to-speech translation suggests to
evaluate translation quality using the BLEU score. We start
by using an ASR model to compute the transcriptions of the
generated speech. In order to obtain comparable results, we
use the same open source ASR model as in [17]. Then, we
compute BLEU score of the ASR decoded text with respect
to the reference translations. We acknowledge that the ASR
BLEU score may not be a perfect metric for assessing data
quality, as it will be unavoidably influenced by the perfor-
mance of ASR models. The complete evaluation pipeline of
speech-to-speech translation is illustrated in Figure 2.



Table 1. BLEU scores on EPST and FLEURS test sets by
S2ST models with different settings

BLEU

Model EPST FLEURS
Synthetic target 82.6 82.7
Baseline 17.0 15.7
S2ST 17.3 15.9
Baseline multitask 16.7 14.0
S2ST multitask 17.0 14.2
From the literature:

SpeechMatrix 20.7 9.8

In addition to measuring the translation quality via an
objective metric, we conduct human listening tests to assess
perceptual responses of expressivity transfer from recordings
generated by our S2ST model. We asked 33 people to eval-
uate two sets of tasks online. A detailed description of the
tasks was provided to all evaluators, who had unlimited time
to evaluate audio stimuli. Each task was organized similarly,
consisting of one pre-trial (excluded from this analysis) and
four trials. Each trial contained three synthesized speech
recordings produced by Baseline, TTS, and our S2ST frame-
work. After listening to each recording, evaluators provided
an opinion score on a scale of 1 to 5, where 1 is ‘Poor’
and 5 is ‘Excellent’. The first task was a Mean Opinion Score
(MOS) where evaluators judged the quality of the synthesized
speech. The second task was a Multiple Stimuli with Hidden
Reference and Anchor MUSHRA), where evaluators listened
to a reference (natural, spoken French) and then judged the
expressiveness of the English-translated synthesized speech.

5. RESULTS

We first evaluate translation quality of the Baseline and the
S2ST model using BLEU score (Section 5.1). Next, we con-
duct a subjective evaluation in terms of audio-quality (MOS)
along with expressivity transfer MUSHRA) and compare the
proposed method against the Baseline and TTS (Section 5.2).

5.1. Speech-to-speech translation

We investigate the training of a speech-to-speech translation
system using both single and multitask learning approaches.
Table 1 summarizes performance of S2ST models on both
EPST and FLEURS test sets. We include the results from
SpeechMatrix [17] as references as the exact same ASR mod-
els is used for evaluation. Additionally, we present the BLEU
scores calculated for the synthetic target speech to show the
impact of ASR errors on the evaluation metric.

First, we compare the proposed S2ST model to the Base-
line. We can see that our S2ST model outperforms the Base-
line by 0.3 BLEU on EPST and by 0.2 BLEU on FLEURS,
indicating that our approach performs similar or slightly bet-
ter in terms of translation performance. We also note that

SpeechMatrix achieves an improvement of 3.4 BLEU over
the proposed S2ST model on EPST, however, on FLEURS
our approach outperforms SpeechMatrix by 6.1 BLEU lead-
ing to an average improvement of 1.3 BLEU. The gap of per-
formance on the FLEURS test set can be attributed in part to
the fact that we use an encoder pre-trained on 7000 hours of
speech coverings multiples domains compared to SpeechMa-
trix encoder trained only on European Parliament recording.

Secondly, we explore multitask learning by incorporate an
auxiliary task to the Baseline and S2ST model. In our exper-
imental setup, we observe a decline in performance for both
the Baseline and the S2ST model when employing multitask
learning. Specifically, the S2ST model yields a performance
of (17 vs. 17.3) on EPST and (14.2 vs. 15.9) on FLEURS.
This suggests that our encoder does not provide significant
benefits to the auxiliary task. Nonetheless, our approach still
outperforms the Baseline system for both setups, indicating
the effectiveness of our proposed approach.

5.2. Subjective Evaluation

Separate linear mixed effects models were used to evaluate
MOS and MUSHRA task responses. Using the R-package
Ime4, opinion responses were entered as response variables.
Synthesized speech system (3-levels) and speaker sex (2-
levels) were entered as fixed factors and participant was en-
tered as a random factor. Chi-squared (XZ N tests were used
to report p-values (Anova from the car k—Package) with d
degrees of freedom and N samples, i.e., there were N = 486
responses, d = 2 speech systems, and d = 1 speaker sexes.
Main effects were reported for task, response, and their inter-
actions with speaker. Estimated marginal means (emmeans)
were used to conduct pairwise comparisons, where X £ Y
represent mean and standard error, respectively.

The results of the MOS task revealed significant main ef-
fects on system x3 455 = 284.17 and speaker sex x7 456 =
11.25, as well as their interaction x3 455 = 18.66, p < 0.001.
Pairwise comparisons showed that the quality of recordings
generated by the Baseline system (2.07 4 0.1) had signifi-
cantly lower opinion scores in comparison to those generated
by TTS (3.45 £ 0.1) and our S2ST model systems (3.56 &
0.1), p < 0.001. In comparison to female speech recordings
(2.89 = 0.09), male speech recordings (3.17 4 0.09) had sig-
nificantly increased scores, p < 0.001, however, these effects
were localized to the Baseline system (Figure 3 Left-Middle).

MUSHRA task results showed a significant main effect on
system X§,453 =14.27, p < 0.001, but not on speaker sex, p >
0.05. Pairwise comparisons showed that the expressiveness of
recordings generated by our S2ST model (3.08 £ 0.11) had
significantly increased higher opinion scores in comparison to
those generated by Baseline (2.66 + 0.11) and TTS systems
(2.69 £0.11), p < 0.01 (Fig. 3-Right).

To better understand the MUSHRA task results, OpenS-
mile was used to extract 88-acoustic features (eGeMAPS
[24]) that were entered in a forward SLDA with Wilks’
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Fig. 3. MOS (Left-Middle) and MUSHRA (Right) task results. Diamonds and vertical lines represent mean and critical

intervals. {**, ***} represent p < {0.01, 0.001}.

Lambda criterion (R function greedy.wl in the klaR R-
package). In order to identify which acoustic features dis-
tinguished our S2ST model from Baseline and TTS systems,
a forward SLDA method was preferred, as it starts from the
null hypothesis and incrementally adds new variables with the
highest discriminant power based on Wilks’ Lambda value
until p > 0.01. Based on the six acoustic features selected?
from the SLDA, standardized euclidean distances were com-
puted between the reference (French) and synthesized (En-
glish) speech recordings produced by Baseline, TTS, and
the proposed S2ST model. One-sided ANOVA results re-
vealed a significant effect of system on euclidean distances
between reference and synthesized speech I g7 = 4.11, p <
0.05. Pairwise comparisons showed our S2ST model (2.75
4 0.25) had significantly smaller distances in comparison
to the TTS system (3.75 £ 0.25), however, no differences
from the Baseline (3.16 4= 0.25). Finally, Pearson correlation
procedures showed a significant relationship between mean
opinion and euclidean distance between the reference and our
S2ST model (p = -0.39, p < 0.05).

There are several takeaways from our subjective evalua-
tions. First our S2ST framework produced speech recording
that were perceived to have higher quality in comparison to
those produced by the Baseline system. Next it outperformed
both Baseline and TTS systems in terms of producing record-
ings that conveyed speaker expressivity. The euclidean dis-
tances of a select set of acoustic features (6) extracted from
reference and our S2ST model speech recordings were found

2The following acoustic features were selected (with Wilks’
lambda and  F'-stat  values): slopeUV500-1500_sma3nz_amean
(A 0.22; F: 80.26), slopeV0_500_sma3nz_amean (A: 0.06;
F: 56.2), FOsemitoneFrom27_5Hz_sma3nz_stddevRisingSlope
(\: 0.03; F: 17.16), Flbandwidth_sma3nz_amean (\: 0.02; F":
14.98), logRelFO_HI_H2 sma3nz_amean (A: 0.01; F: 17.47), and

mfccd4V _sma3nz_stddevNorm (A: 0.01; F: 8.88).

to be significantly smaller in comparison to TTS system and
negatively correlated to opinion scores.

6. CONCLUSIONS

In this paper, we have addressed the crucial challenge of pre-
serving expressivity in speech-to-speech translation systems.
Our proposed approach leverages multilingual emotion em-
beddings, resulting in significant advancements in retaining
the nuances of expressiveness during textless translation. The
experimental results have demonstrated the superior expres-
sivity transfer achieved by our method compared to state-of-
the-art systems, highlighting its effectiveness.

Moreover, our speech-to-speech translation framework
has produced speech recordings that were perceived by hu-
mans to have higher quality in terms of conveying speaker
expressivity, surpassing both our speech-to-speech Baseline
and text-to-speech systems. Importantly, we have maintained
the translation quality at a level similar to that of state-of-the-
art textless speech-to-speech translation systems.

Looking ahead, future research directions involve explor-
ing the incorporation of additional paralinguistic information,
optimizing the generation of speech discrete units for this
task, and expanding the approach to other language pairs, par-
ticularly unwritten ones.

7. ACKNOWLEDGMENTS

This work received funding from the European SELMA
project (grant N°957017).



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

8. REFERENCES

A. Lavie, A. Waibel, L. Levin, M. Finke, D. Gates,
M. Gavalda, T. Zeppenfeld, and Z. Puming, “Janus-
iii: speech-to-speech translation in multiple languages,”
in 1997 IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 1997, vol. 1,
pp- 99-102.

S. Nakamura, K. Markov, H. Nakaiwa, G. Kikui,
H. Kawai, T. Jitsuhiro, J.-S. Zhang, H. Yamamoto,
E. Sumita, and S. Yamamoto, “The atr multilingual
speech-to-speech translation system,” I[EEE Transac-

tions on Audio, Speech, and Language Processing, vol.
14, no. 2, pp. 365-376, 2006.

A. Bérard, O. Pietquin, C. Servan, and L. Besacier,
“Listen and translate: A proof of concept for end-
to-end speech-to-text translation,” arXiv preprint
arXiv:1612.01744, 2016.

Y. Jia, R. Weiss, F. Biadsy, W. Macherey, M. Johnson,
Z. Chen, and Y. Wu, “Direct speech-to-speech transla-
tion with a sequence-to-sequence model,” in Interspeech
2019, 2019.

A. Lee, P. Chen, C. Wang, J. Gu, S. Popuri, X. Ma,
A. Polyak, Y. Adi, Q. He, Y. Tang, J. Pino, and
W. Hsu, “Direct speech-to-speech translation with dis-
crete units,” in Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics, 2022,
pp- 3327-3339.

A. Lee, H. Gong, P. A. Duquenne, H. Schwenk, P. J.
Chen, C Wang, S. Popuri, Y. Adi, J. Pino, J. Gu, and
W. N. Hsu, “Textless speech-to-speech translation on
real data,” in Proceedings of the 2022 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies.
2022, Association for Computational Linguistics.

A. Polyak, Y. Adi, J. Copet, E. Kharitonov, K. Lakho-
tia, W. N. Hsu, A. Mohamed, and E. Dupoux, “Speech
resynthesis from discrete disentangled self-supervised
representations,” in Interspeech 2021. 2021, ISCA.

J. Duret, Y. Esteve, and T. Parcollet, “Learning multilin-
gual expressive speech representation for prosody pre-
diction without parallel data,” in 12th Speech Synthesis
Workshop (SSW) 2023, 2023.

K. Lakhotia, E. Kharitonov, W. Hsu, Y. Adi, A. Polyak,
B. Bolte, T. Nguyen, J. Copet, A. Baevski, and A. Mo-
hamed, “On generative spoken language modeling from
raw audio,” Transactions of the Association for Compu-
tational Linguistics, vol. 9, pp. 13361354, 2021.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

F. Kreuk, A. Polyak, J. Copet, E. Kharitonov, T. Nguyen,
M. Riviere, W. Hsu, A. Mohamed, E. Dupoux, and
Y. Adi, “Textless speech emotion conversion using dis-
crete & decomposed representations,” in Proceedings of
the 2022 Conference on Empirical Methods in Natural
Language Processing, 2022, pp. 11200-11214.

A. Conneau, A. Baevski, R. Collobert, A. Mohamed,
and M. Auli, “Unsupervised cross-lingual representa-
tion learning for speech recognition,” 2020.

S. Popuri, P. Chen, and C. et al. Wang, “Enhanced di-
rect speech-to-speech translation using self-supervised
pre-training and data augmentation,” arXiv preprint
arXiv:2204.02967, 2022.

Y. Wang, A. Boumadane, and A. Heba, “A fine-
tuned wav2vec 2.0/hubert benchmark for speech emo-
tion recognition, speaker verification and spoken lan-
guage understanding,” arXiv, 2021.

Y. Ren, C. Hu, X. Tan, T. Qin, S. Zhao, Z. Zhao, and
T. Y. Liu, “Fastspeech 2: Fast and high-quality end-to-
end text to speech,” arXiv, 2020.

K. Kasi and S. Zahorian, “Yet another algorithm for
pitch tracking,” in IEEE International Conference on
Acoustics Speech and Signal Processing. 2002, IEEE.

J. Kong, J. Kim, and J. Bae, “Hifi-gan: Generative ad-
versarial networks for efficient and high fidelity speech
synthesis,” in Advances in Neural Information Process-
ing Systems. 2020, vol. 33, pp. 17022-17033, Curran
Associates, Inc.

P. Duquenne, H. Gong, and N. et al. Dong, “Speech-
matrix: A large-scale mined corpus of multilin-

gual speech-to-speech translations,”  arXiv preprint
arXiv:2211.04508, 2022.

J. Iranzo-Sénchez, J. Silvestre-Cerda, and J. et al. Jorge,
“Europarl-st: A multilingual corpus for speech transla-
tion of parliamentary debates,” in ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). 1EEE, 2020, pp.
8229-8233.

A. Conneau, M. Ma, and S. et al. Khanuja, “Fleurs:
Few-shot learning evaluation of universal representa-
tions of speech,” in 2022 IEEE Spoken Language Tech-
nology Workshop (SLT). IEEE, 2023, pp. 798-805.

N. Goyal, C. Gao, and V. et al. Chaudhary, “The flores-
101 evaluation benchmark for low-resource and multi-
lingual machine translation,” Transactions of the Asso-
ciation for Computational Linguistics, vol. 10, pp. 522—
538, 2022.

I. Keith and J. Linda, “The 1j speech dataset,” 2017.



(22]

(23]

[24]

K. Zhou, B. Sisman, R. Liu, and H. Li, “Emotional
voice conversion: Theory, databases and esd,” 2022.

J. Kim, J. Kong, and J. Son, “Conditional variational au-
toencoder with adversarial learning for end-to-end text-
to-speech,” in International Conference on Machine
Learning. PMLR, 2021, pp. 5530-5540.

F Eyben, M Wollmer, and B. Schuller, “Opensmile: the
munich versatile and fast open-source audio feature ex-
tractor,” in Proceedings of the 18th ACM international
conference on Multimedia, 2010.



