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We analyze a method for the approximation of exact controls of a second order infinite dimensional system with bounded input operator. The algorithm combines Russell's "stabilizability implies controllability" principle and a finite elements method of order θ with vanishing numerical viscosity. We show that the algorithm is convergent for any initial data in the energy space and that the error is of order θ for sufficiently smooth initial data. Both results are consequences of the uniform exponential decay of the discrete solutions guaranteed by the added viscosity and improve previous estimates obtained in the literature.

Several numerical examples for the wave and the beam equations are presented to illustrate the method analyzed in this article.

Introduction

The numerical approximation of exact controls for linear evolution equations has been one of the topics of interest in control theory since the beginning of the 90s when, in a series of articles due to R. Glowinski, J.-L. Lions and collaborators (see, for example, [START_REF] Glowinski | A numerical approach to the exact boundary controllability of the wave equation (I). Dirichlet controls: Description of the numerical methods[END_REF][START_REF] Glowinski | Exact and approximate controllability for distributed parameter systems[END_REF][START_REF] Glowinski | Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach[END_REF]), conjugate gradient type algorithms were proposed for finding controls characterized by the property of having the minimum L 2 norm. These are the so called HUM controls which inherit the name of the systematic method proposed by J.-L. Lions for their study.

These pioneering articles led to the development of an important specialized literature that contributed to a deeper understanding of this type of controls (see [START_REF] Ervedoza | On the numerical approximation of exact controls for waves[END_REF][START_REF]Handbook of Numerical Analysis[END_REF][START_REF] Zuazua | Propagation, observation, and control of waves approximated by finite difference methods[END_REF] and the references therein). Although most of the efforts were directed towards the proposal of new discretization schemes capable of ensuring the convergence of the discrete HUM controls, there were also other (more direct) approaches to the approximation of the controls. We mention among them the methods based on Huygens principle [START_REF] Rosier | Numerical control of the wave equation and Huygens' principle[END_REF] (for hyperbolic equations) or flatness outputs [START_REF] Laroche | Motion planning for the heat equation[END_REF][START_REF] Martin | Null controllability of the heat equation using flatness[END_REF] (for parabolic equations).

In this work we analyze an alternative numerical method for computing exact controls for a class of infinite dimensional systems modeling elastic vibrations. This method combines three main ideas: Russell's "stabilizability implies controllability" principle, error estimates for finite element-type approximations of the considered infinite dimensional systems and the technique of vanishing viscosity. We focus on the case of bounded input operators which excludes boundary control for systems governed by PDEs.

Our study has two main aims. On one hand, we show that the rate of convergence of our approximations to an exact control has the same order as the finite-element method, if the initial data to be controlled are sufficiently smooth. On the other hand, we prove that the method still converges in the case of finite energy initial data. Let us briefly indicate the structure of the work, its main ideas and the most notable results obtained in it.

In Section 2 we describe Russell's principle which states that backwards and forwards exponential stabilizability of a dynamical system implies its exact controllability in some time τ > 0. This principle was used to show the exact boundary controllability property for the linear wave equation [START_REF] Russell | Exact boundary value controllability theorems for wave and heat processes in star-complemented regions[END_REF]Theorem 5.3]. An abstract version of it has been proposed in [START_REF] Chen | Control and stabilization for the wave equation in a bounded domain[END_REF] for the case of bounded control operators and further generalized in [START_REF] Rebarber | An extension of Russell's principle on exact controllability[END_REF]. A similar idea stays at the origin of the concept of back and forth observers for linear infinite dimensional systems in [START_REF] Ramdani | Recovering the initial state of an infinitedimensional system using observers[END_REF]. A detailed discussion and several new applications of the principle are presented in [START_REF] Hansen | Some new applications of Russell's principle to infinite dimensional vibrating systems[END_REF]. In the hypotheses in which it is verified, Russell's principle has the possibility of providing an exact control u ∈ C([0, τ ]; U ) of the dynamic system under study for each initial data Q 0 , with two remarkable properties: it is (in principle) easy to compute and it preserves the regularity of Q 0 .

In the following Section 3 we describe how approximations u h of the control u provided by Russell's principle can be given. This is done in Algorithm 1 below, which consists in solving a finite number N (h) of forward and backward space discrete systems obtained by using a numerical scheme combining finite elements of order θ and vanishing viscosity. A first algorithm based on Russell's principle has been used to compute an exact boundary control for a class of second order evolution equations in [START_REF] Pedregal | A numerical method of local energy decay for the boundary controllability of time-reversible distributed parameter systems[END_REF] where the case N (h) = 1 is analyzed. This choice is convenient for implementation purposes but it does not yield the convergence of u h to u. In [START_REF] Cîndea | An approximation method for exact controls of vibrating systems[END_REF] the full algorithm is developed and it is proved that, with an appropriate choice of N (h), the convergence is ensured for sufficiently regular initial data and the error is of order slightly lower than θ. The main difference between Algorithm 1 and the one proposed in [START_REF] Cîndea | An approximation method for exact controls of vibrating systems[END_REF] consists in the addition of the viscosity term which, as we shall see, has a few interesting consequences.

After some important preliminaries developed in Section 4 and dealing with the evaluation of the error introduced in the dynamical system by the discretization scheme, the main results are presented in Section 5. As mentioned before, there are two main results proved in this section:

• In Theorem 5.4 we show that, if the initial data Q 0 to be controlled is in the energy space H 1 2 × H 0 , the family (u h ) h provided by Algorithm 1 in Section 3 converges to u as h tends to zero.

• In Theorem 5.1 we show that, if the initial data Q 0 to be controlled is sufficiently smooth (belonging to

H 3 2 × H 1 2
), the order of convergence of the family (u h ) h to u is precisely θ, the order of the finite-element method.

The spaces H, U , H 1 2 and H 3 2 mentioned above are introduced at the beginning of the following section.

It is known that, after spatial discretization, the decay of the semigroup corresponding to an exponentially stable dynamical system may not be uniform with respect to the mesh size h. This phenomenon has been remarked by Banks et al. [START_REF] Banks | Exponentially stable approximations of weakly damped wave equations[END_REF], where the use of a mixed finite element method is proposed to restore the uniform decay rate. Later on, several studies have confirmed that this defect is due to the spurious high frequencies introduced by the numerical scheme traveling at arbitrarily small velocities which, therefore, show a lack of propagation in space (see, for instance, the recent article [START_REF] Biccari | Propagation of One-and Two-Dimensional Discrete Waves Under Finite Difference Approximation[END_REF] and the references therein). In order to cure this defect, an approach consisting in adding a correcting numerical viscous term in the discrete system, vanishing in the limit, has been proposed (see [START_REF] Ervedoza | Spectral conditions for admissibility and observability of wave systems: applications to finite element schemes[END_REF][START_REF] Ervedoza | Uniformly exponentially stable approximations for a class of damped systems[END_REF][START_REF] Ervedoza | The wave equation: control and numerics[END_REF][START_REF] Ramdani | Uniformly exponentially stable approximations for a class of second order evolution equations. Application to LQR optimization problems[END_REF][START_REF] Tcheugoue Tebou | Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity[END_REF][START_REF] Tebou | Uniform boundary stabilization of the finite difference space discretization of the 1-d wave equation[END_REF]). The vanishing viscosity takes charge of the spurious high oscillations and leads to a uniform (with respect to the mesh size) exponential decay of the discrete semigroup. This property is used in this paper in order to obtain our main results mentioned above. Indeed, both Theorem 5.1, which improves the convergence rate of the controls obtained in [START_REF] Cîndea | An approximation method for exact controls of vibrating systems[END_REF], and Theorem 5.4, which shows the convergence of the algorithm for initial data in the energy space, use in a fundamental way the uniform exponential decay of the discrete semigroup. This can be explained by recalling that Algorithm 1 solves a finite number N (h) of forward and backward space discrete systems. The uniform exponential decay ensured by the viscosity term enables us to deduce better error estimates which do not degenerate when the number of computed solutions N (h) tends to infinity when h goes to zero.

To illustrate the efficiency of this approach, we apply it to several systems governed by PDEs and describe the associated numerical simulations in the last Section 6.

Russel's principle and construction of exact controls

In order to give the precise statement of our results we need some notation. Let (H, ⟨•, •⟩) be a Hilbert space with the induced norm ∥ • ∥, and assume that the unbounded operator A 0 : D (A 0 ) → H is self-adjoint, strictly positive and with compact resolvent. Then, according to classical results, the operator A 0 is diagonalizable with an orthonormal basis (φ k ) k⩾1 of eigenvectors, and the corresponding family of positive eigenvalues, in ascending order, (λ k ) k⩾1 satisfies lim k→∞ λ k = ∞. Moreover, we have

D (A 0 ) =    z ∈ H k⩾1 λ 2 k |⟨z, φ k ⟩| 2 < ∞    , A 0 z = k⩾1 λ k ⟨z, φ k ⟩φ k (z ∈ D (A 0 )) .
For α ⩾ 0, the operator A α 0 is defined by

D (A α 0 ) =    z ∈ H k⩾1 λ 2α k |⟨z, φ k ⟩| 2 < ∞    , A α 0 z = k⩾1 λ α k ⟨z, φ k ⟩φ k (z ∈ D(A α 0 )). (2.1)
For every α ⩾ 0 we denote by H α the space D (A α 0 ) endowed with the inner product

⟨φ, ψ⟩ α = ⟨A α 0 φ, A α 0 ψ⟩ (φ, ψ ∈ H α ) .
The induced norm is denoted by ∥ • ∥ α . From the above facts it follows that for every α ⩾ 0 the operator A 0 is unitary from H α+1 onto H α , and strictly positive on H α .

Let (U, ⟨•, •⟩ U ) be another Hilbert space with the corresponding norm ∥ • ∥ U , and let B 0 ∈ L (U, H) be an input operator. We consider the system

q(t) + A 0 q(t) + B 0 u(t) = 0 (t ⩾ 0), (2.2) 
q(0) = q 0 , q(0) = q 1 . (2.3)
We assume that the above system is exactly controllable in time τ 0 > 0, i.e. for every q 0 ∈ H 1 2 , q 1 ∈ H there exists a control u ∈ L 2 (0, τ 0 ; U ) such that q(τ 0 ) = q(τ 0 ) = 0.

(2.4)

Now, we consider the second order differential equation

ẅ(t) + A 0 w(t) + B 0 B * 0 ẇ(t) = 0 (t ⩾ 0), (2.5 
)

w(0) = w 0 , ẇ(0) = w 1 . (2.6)
It is well known that the above equation defines a well posed dynamical system in the state space X = H 1 2 × H. More precisely, the solution w ẇ of (2.5)-(2.6) is given by

w(t) ẇ(t) = T t w 0 w 1 w 0 w 1 ∈ X, t ⩾ 0 , (2.7) 
where T is the contraction semigroup on X generated by A -BB * and the matriceal operators A : D(A) → X, B ∈ L(U, X) are defined by

D(A) = H 1 × H 1 2 , A = 0 I -A 0 0 , B = 0 B 0 .
Let τ > 0 and consider the backwards system

ẅb (t) + A 0 w b (t) -B 0 B * 0 ẇb (t) = 0 (t ⩽ τ ) , (2.8) 
w b (τ ) = w(τ ), ẇb (τ ) = ẇ(τ ). (2.9) 
It is not difficult to check that the solution w b ẇb of (2.8)-(2.9) is given by

w b (t) ẇb (t) = S τ -t w(τ ) ẇ(τ ) (t ∈ [0, τ ]) , (2.10) 
where S is the contraction semigroup in X generated by -A -BB * . We define L τ ∈ L(X) by

L τ w 0 w 1 = w b (0) ẇb (0) w 0 w 1 ∈ X . (2.11)
With the above notation, the operator L τ clearly satisfies L τ = S τ T τ .

In the following we present a useful result given in [ 

∥T τ ∥ L H 3 2 ×H 1 < 1, ∥S τ ∥ L H 3 2 ×H 1 < 1.
In addition, the semigroups T and S are exponentially stable verifying

∥T τ ∥ L(X) < 1, ∥S τ ∥ L(X) < 1,
and I -L τ is invertible, where the inverse is given as follows

(I -L τ ) -1 = n⩾0 L n τ .
(2.12)

In the above hypothesis, Russel's principle (see, for instance [START_REF] Russell | Exact boundary value controllability theorems for wave and heat processes in star-complemented regions[END_REF]) can be used to construct an explicit control u for (2.2)-(2.3). More precisely, we have the following result.

Proposition 2.2. Assume that (2.2)-(2.3) is exactly controllable in time τ 0 > 0. Then for any τ ⩾ τ 0 a control u ∈ C ([0, τ ], U ) for (2.2)-(2.
3), steering the initial state q 0 q 1 ∈ X to rest in time τ , is given by

u(t) = B * 0 ẇ(t) + B * 0 ẇb (t) = B * T t w 0 w 1 + B * S τ -t T τ w 0 w 1 (t ∈ [0, τ ]) , (2.13) 
where w ẇ and w b ẇb are the solutions of (2.5)-(2.6) and (2.8)-(2.9), respectively, with initial

data w 0 w 1 = (I -L τ ) -1 q 0 q 1 . (2.14) 
Remark 2.3. Two of the properties of the above control u are very important in our study:

• From (2.12) and (2.14) we deduce that the initial data w 0 w 1 needed to construct the control u can be approximated by solving a finite number N of forward and backward equations of (2.5)-(2.6) and (2.8)-(2.9), respectively:

w 0 w 1 ≈ N n=0 L n τ q 0 q 1 .
• From Proposition 2.1 and (2.14) it follows that the regularity assumptions on q 0 q 1 are inherited by w 0 w 1 . More precisely,

q 0 q 1 ∈ H 3 2 × H 1 implies that w 0 w 1 ∈ H 3 2 × H 1 .
This implies that (2.13) provides smoother controls u for more regular initial data.

The semi-discrete problem and control approximation

In order to provide a numerical method to approximate the control u given in Proposition 2.2, we need more assumptions and notation. Assume that there exists a family (V h ) h>0 of finite dimensional subspaces of H 1 2 and θ > 0, h * > 0, C 0 > 0 such that for every h ∈ (0, h * ),

∥π h φ -φ∥ 1 2 ⩽ C 0 h θ ∥φ∥ 1 (φ ∈ H 1 ) , (3.15 
)

∥π h φ -φ∥ ⩽ C 0 h θ ∥φ∥ 1 2 φ ∈ H 1 2 , (3.16) 
where π h is the orthogonal projector from H 1 2 onto V h . Assumptions (3.15)-(3.16) are, in particular, satisfied when finite elements are used for the approximation of Sobolev spaces. Moreover, we introduce π h the orthogonal projection of H onto V h . As is well known, since π h and π h are orthogonal projectors, they are self adjoint operators. From (3.16) and the fact that

H 1 2 is dense in H it follows that ∥φ -π h φ∥ ⩽ ∥φ -π h φ∥ ⩽ C 0 h θ ∥φ∥ 1 2 φ ∈ H 1 2 , (3.17) 
and

lim h→0 ∥φ -π h φ∥ = 0 (φ ∈ H) . (3.18)
We define the linear operator

A 0h ∈ L (V h ) by ⟨A 0h φ h , ψ h ⟩ = ⟨A 1 2 0 φ h , A 1 2 0 ψ h ⟩ (φ h , ψ h ∈ V h ) . (3.19) 
The operator A 0h is clearly symmetric and strictly positive.

Denote U h = B * 0 V h ⊂ U and define the operators B 0h ∈ L(U, H) by B 0h u = π h B 0 u (u ∈ U ). (3.20) Note that Ran B 0h ⊂ V h . The adjoint B * 0h ∈ L(H, U ) of B 0h is B * 0h φ = B * 0 π h φ (φ ∈ H). (3.21) Since U h = B * 0 V h , from (3.21), it follows that Ran B * 0h = U h and that ⟨B * 0h φ h , B * 0h ψ h ⟩ U = ⟨B * 0 φ h , B * 0 ψ h ⟩ U (φ h , ψ h ∈ V h ). (3.22) 
From (3.20) we have that the family

(∥B 0h ∥ L(U,H) ) h∈(0,h * ) is bounded.
In order to approximate the exact control u from Proposition 2.2, given by (2.13), we shall use two discrete damped equations, one forward and one backward, corresponding to (2.5)-(2.6) and (2.8)-(2.9), respectively. More precisely, we introduce the semi-discrete equations

ẅh (t) + A 0h w h (t) + B 0h B * 0h ẇh (t) + ϑh η A 0h ẇh (t) = 0 (t ⩾ 0) , (3.23) 
w h (0) = w 0h , ẇh (0) = w 1h , (3.24) 
and ẅb,h (t

) + A 0h w b,h (t) -B 0h B * 0h ẇb,h (t) -ϑh η A 0h ẇb,h (t) = 0 (t ⩽ τ ) . (3.25) w b,h (τ ) = w b,0h , ẇb,h (τ ) = w b,1h . (3.26) 
Notice that, in each of the equation (3.23) and (3.25), a numerical viscosity term has been introduced: ϑh η A 0h ẇh (t) and -ϑh η A 0h ẇb,h (t), respectively. In the above equations ϑ and η are positive real numbers which will be conveniently chosen later on. As we shall see in the following section, these terms reinforce the dissipation in each equation in order to ensure the uniform stability (in h) of both discrete systems. These properties will allow us to obtain better error estimates and convergence results for the discrete approximations u h ∈ C ([0, τ ]; U h ) of the control u.

We consider the following algorithm to compute the approximations u h :

Algorithm 1:

1. Take q 0 q 1 in H 1 2 × H. Let q 0h = π h q 0 and q 1h = π h q 1 if q 1 ∈ H 1 2 and q 1h = π h q 1 if q 1 / ∈ H 1 2 . 2. For any h > 0 chose N (h) ∈ N. 3. For n = 1, 2, . . . , N (h) let w n h ẇn h
be the solution of (3.23)-(3.24) with initial data

w h (0) = q 0h if n = 1 w n-1 b,h (0) if 1 < n ⩽ N (h), (3.27 
) 

ẇh (0) = q 1h if n = 1 ẇn-1 b,h (0) if 1 < n ⩽ N (h), (3.28 
w b,h (τ ) = w n h (τ ), ẇb,h (τ ) = ẇn h (τ ). (3.29) 
4. Compute w 0h w 1h as follows:

w 0h w 1h = q 0h q 1h + N (h) n=1 w n b,h (0) ẇn b,h (0) = N (h) n=1 w n h (0) ẇn h (0) + w N (h) b,h (0) ẇN(h) b,h (0) 
.

(3.30)

Compute the control u

h , u h = B * 0h ẇh + B * 0h ẇb,h , (3.31) 
where w h ẇh is the solution of (3.23) with initial data

w h (0) = w 0h , ẇh (0) = w 1h , (3.32) 
and w b,h ẇb,h is the solution of (3.25) with initial data

w b,h (τ ) = w h (τ ), ẇb,h (τ ) = ẇh (τ ). (3.33) Remark 3.1.
Note that, in order to use the above scheme in numerical experiments, at step 2, we have to choose the range N (h). If the data q 0 q 1 to be controlled belong to the regular space

H 3 2 × H 1 , a value N (h) = θ ln α -1 ln(h -1
) is provided in Theorem 5.1 which ensures the desired error of order θ. However, there are no such estimates for N (h) in the case of initial data q 0 q 1 in H 1 2 × H. In practice the values of N (h) are provided by the stopping criterion (6.81) used in the final Section 6 devoted to numerical experiments. In Figure 7 we compare the values of N (h) given by (6.81) with the ones obtained in Theorem 5.1.

Convergence of the discrete solutions

The aim of this section is to analyse the convergence of the approximate solutions corresponding to the following numerical scheme with viscosity

ẅh (t) + A 0h w h (t) + B 0h B * 0h ẇh (t) + ϑh η A 0h ẇh (t) = 0 (t ⩾ 0) , (4.34) 
w h (0) = w 0h , ẇh (0) = w 1h , (4.35) 
where we have used the notation from Section 3 for the families of operators (A 0h ) h>0 and (B 0h ) h>0 .

Concerning the convergence of the approximate solutions given by (4.34)-( 4.35) we recall the following result which gives an error estimate in the case of sufficiently regular initial data.

Proposition 4.1. Let w 0 ∈ H 3 2 , w 1 ∈ H 1 , ϑ ∈ [0, 1]
and let w, w h be the corresponding solutions of (2.5)-(2.6) and (4.34)-(4.35), respectively. Moreover, assume that

B 0 B * 0 ∈ L H 1 , H 1 2 , w 0h = π h (w 0 ), w 1h = π h (w 1
) and η ⩾ θ. Then there exist two constants K, h * > 0 such that for every h ∈ (0, h * ), we have For h > 0 we denote

∥ ẇ(t) -ẇh (t)∥ + ∥w(t) -w h (t)∥ 1 2 ⩽ Kth θ ∥w 0 ∥ 3 2 + ∥w 1 ∥ 1 (t ⩾ 0) . ( 4 
X h = V h × V h and W h (t) = w h (t) ẇh (t)
, and we consider the operators

A h = 0 I -A 0h -ϑh η A 0h , B h = 0 B 0h . (4.37)
The discrete analogues of the semigroups T, S and of the operator L t , denoted by T h , S h , and L h,t , respectivly, are defined, for every h > 0, by

T h,t = e t(A h -B h B * h ) , S h,t = e t(-A h -B h B * h ) , L h,t = S h,t T h,t (t ⩾ 0). ( 4 

.38)

For every h > 0 we define

Π h ∈ L H 1 2 × H 1 2 , X h and Π h ∈ L H 1 2 × H, X h Π h = π h 0 0 π h , Π h = π h 0 0 π h . (4.39)
The following result is a direct consequence of Proposition 4.1.

Corollary 4.2. There exist two constants K 1 , h * > 0, such that for every h ∈ (0, h * ) and t > 0, we have (recall that L t = S t T t , for every t ⩾ 0)

∥T t Z 0 -T h,t Π h Z 0 ∥ X ⩽ K 1 th θ ∥Z 0 ∥ H 3 2 ×H 1 Z 0 ∈ H 3 2 × H 1 , (4.40) ∥S t Z 0 -S h,t Π h Z 0 ∥ X ⩽ K 1 th θ ∥Z 0 ∥ H 3 2 ×H 1 Z 0 ∈ H 3 2 × H 1 , (4.41) 
∥L t Z 0 -L h,t Π h Z 0 ∥ X ⩽ K 1 th θ ∥Z 0 ∥ H 3 2 ×H 1 Z 0 ∈ H 3 2 × H 1 . (4.42)
Supposing that, from Proposition 2.1 we have that 

∥L τ ∥ H 3 2 ×H 1 < 1 (τ ⩾ τ 0 ). ( 4 
∥ ẇh (t)∥ 2 + A 1 2 0h w h (t) 2 ⩽ M e -α * t ∥w 1h ∥ 2 + A 1 2 0h w 0h 2 (t ⩾ 0). (4.44) 
For details concerning the context in which (4.44) holds we refer the interested reader to [START_REF] Ervedoza | Spectral conditions for admissibility and observability of wave systems: applications to finite element schemes[END_REF][START_REF] Ervedoza | Uniformly exponentially stable approximations for a class of damped systems[END_REF][START_REF] Ramdani | Uniformly exponentially stable approximations for a class of second order evolution equations. Application to LQR optimization problems[END_REF][START_REF] Tcheugoue Tebou | Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity[END_REF][START_REF] Tebou | Uniform boundary stabilization of the finite difference space discretization of the 1-d wave equation[END_REF]. From (4.44) it follows that there exist τ 1 and α 1 ∈ (0, 1), independent of h, such that the following relation holds

∥L h,t ∥ L(X h ) < α 1 (t ⩾ τ 1 ) . (4.45)
As a consequence of the uniform estimate (4.45) we can prove the following important estimate which will allow us to obtain the desired error estimates for the approximate control given by the algorithm introduced in Section 3.

Corollary 4.3.

There exists h * > 0 such that, for every t ⩾ max{τ 0 , τ 1 }, h ∈ (0, h * ) and k ∈ N, we have

L k t Z 0 -L k h,t Π h Z 0 X ⩽ α k-1 (C 0 α + kK 1 t) h θ ∥Z 0 ∥ H 3 2 ×H 1 Z 0 ∈ H 3 2 × H 1 , (4.46 
)

where α = max{∥L t ∥ L(H 3 2 ×H 1 ) , ∥L h,t ∥ L(X h ) } ∈ (0, 1). In (4.46) the constant C 0 is the one in (3.15)-(3.16) and the constant K 1 is given in (4.42).
Proof. Taking into account the following inequality

L k t Z 0 -L k h,t Π h Z 0 X ⩽ L k t Z 0 -Π h L k t Z 0 X + Π h L k t Z 0 -L k h,t Π h Z 0 X , (4.47) 
we evaluate each of the right-hand side terms from above. By using Proposition 2.1 we get, for every t ⩾ 0, the invariance of the space H 3 2 × H 1 with respect to L t . In addition, using (3.15) and (3.16) we infer the existence of a constant C 0 > 0 such that

L k t Z 0 -Π h L k t Z 0 X ⩽ C 0 h θ ∥L t ∥ k L H 3 2 ×H 1 ∥Z 0 ∥ H 3 2 ×H 1 . (4.48)
In order to evaluate the second right-hand term, by denoting

A k := Π h L k t Z 0 -L k h,t Π h Z 0 X
and using (4.42), we remark that

A k ⩽ Π h L t (L k-1 t )Z 0 -L h,t Π h L k-1 t Z 0 X + L h,t Π h L k-1 t Z 0 -L k-1 h,t Π h Z 0 X ⩽ K 1 th θ ∥L t ∥ k-1 L H 3 2 ×H 1 ∥Z 0 ∥ H 3 2 ×H 1 + αA k-1 ⩽ 2K 1 th θ ∥L t ∥ k-1 L H 3 2 ×H 1 ∥Z 0 ∥ H 3 2 ×H 1 + α 2 A k-2 ⩽ . . . ⩽ K 1 th θ k∥L t ∥ k-1 L H 3 2 ×H 1 ∥Z 0 ∥ H 3 2 ×H 1 .
Finally, using the last inequality combined with ( 

(C 0 + kK 1 t) h θ ∥Z 0 ∥ H 3 2 ×H 1 .
Notice that, whereas in [5, Corollary 3.3] the error is estimated by a quantity depending on k, in (4.46) the error term is bounded independently of k. This is achieved by the introduction of the vanishing viscosity term and the uniform estimate (4.45) and will offer us the possibility to improve all the error estimates for the approximate controls proved in [START_REF] Cîndea | An approximation method for exact controls of vibrating systems[END_REF].

The uniform exponential decay (4.45) allows us to prove convergence of the discrete controls given by the Algorithm 1 in Section 3 in the case of initial data

q 0 q 1 ∈ H 1 2 × H.
The following lemma is needed to give an analogue of Corollary 4.2 with less regular initial data.

Lemma 4.5.

Let Q 0 = q 0 q 1 ∈ H 1 2 × H. For each h > 0 there exists Q 0h = q 0h q 1h ∈ H 3 2 × H 1 such that lim h→0 ∥Q 0 -Q 0h ∥ X = 0, (4.49) lim h→0 h θ ∥Q 0h ∥ H 3 2 ×H 1 = 0. (4.50)
Proof. Let (φ k ) k⩾1 be the orthonormal basis of eigenvectors of the operator A 0 , with the corresponding family of positive eigenvalues (λ k ) k⩾1 that satisfies lim k→∞ λ k = ∞. Recall that the family (λ k ) k⩾1 is nondecreasing. There exist two sequences (q 0k ) k⩾1 and (q 1k ) k⩾1 of scalars such that q j = k⩾1 q jk φ k (j = 0, 1). (4.51)

Let us define

q jh = I h k=1 q jk φ k (j = 0, 1), (4.52) 
where I h ∈ N * will be chosen later on. We remark that

∥q 0h ∥ 2 H 3 2 = I h k=1 q 0k λ 3 2 k φ k , I h k=1 q 0k λ 3 2 k φ k = I h k=1 |q 0k | 2 λ 3 k ⩽ λ 2 I h I h k=1 |q 0k | 2 λ k ⩽ λ 2 I h ∥q 0 ∥ 2 H 1 2 ,
and

∥q 1h ∥ 2 H 1 = I h k=1 |q 1k | 2 λ 2 k ⩽ λ 2 I h I h k=1 |q 1k | 2 ⩽ λ 2 I h ∥q 1 ∥ 2 H .
If we denote by Q 0h = q 0h q 1h , we obtain that For h > 0, we define the following family of sets

∥Q 0h ∥ H 3 2 ×H 1 ⩽ λ I h ∥Q 0 ∥ H 1 2 ×H 1 . ( 4 
P h = k ∈ N * λ k ⩽ 1 h θ 2
.

It is not difficult to see that there exists h 0 > 0 such that for every h ∈ (0, h 0 ), P h is nonempty. Moreover, we have lim h→0 card(P h ) = ∞. Finally, by choosing I h = card(P h ) it follows that (4.54)

holds and the proof is finished.

Corollary 4.6.

Let Q 0 = q 0 q 1 ∈ H 1 2
× H and t > 0. The following assertions hold

• lim h→0 T t Q 0 -T h,t Π h Q 0 C([0,τ ];X) = 0; • lim h→0 S t Q 0 -S h,t Π h Q 0 C([0,τ ];X) = 0; • lim h→0 L t Q 0 -L h,t Π h Q 0 X = 0.
Proof. For simplicity, we prove only the first assertion, the other ones being similar. Let (Q 0h ) h>0 be the family constructed in Lemma 4.5. Since

Q 0h ∈ H 3 2 × H 1 , from Corollary 4.2 it follows that ∥T t Q 0h -T h,t Π h Q 0h ∥ X ⩽ C(τ )h θ ∥Q 0h ∥ H 3 2 ×H 1 (t ∈ [0, τ ]) . (4.55)
By using (4.55), the fact that ∥T h,t ∥ L(X h ) ⩽ 1 and ∥T t ∥ L(X) ⩽ 1, we deduce that

T t Q 0 -T h,t Π h Q 0 X ⩽ ∥T t (Q 0 -Q 0h )∥ X + T h,t Π h Q 0h -Π h Q 0 X + ∥T t Q 0h -T h,t Π h Q 0h ∥ X ⩽ ∥Q 0 -Q 0h ∥ X + Π h Q 0h -Π h Q 0 X + C(τ )h θ ∥Q 0h ∥ H 3 2 ×H 1 . (4.56) 
In order to evaluate the second right-hand term in (4.56), using (3.15)-(3.16) and (3.17) we get the existence of a constant C 0 > 0 such that

Π h Q 0 -Π h Q 0h X ⩽ Π h Q 0 -Π h Q 0h X + Π h Q 0h -Π h Π h Q 0h X + Π h Π h Q 0h -Π h Q 0h X ⩽ ∥Q 0 -Q 0h ∥ X + ∥Q 0h -Π h Q 0h ∥ X + Π h Π h Q 0h -Π h Q 0h X ⩽ ∥Q 0 -Q 0h ∥ X + 2C 0 h θ ∥Q 0h ∥ H 3 2 ×H 1 . (4.57)
Finally, combining (4.56)-(4.57) and using Lemma 4.5, the first assertion is proved.

Convergence of the approximate controls

In this section we show the convergence of the approximate controls u h given by (3.31) to the exact control u for (2.2)-(2.3) introduced in (2.13). We analyze separately two different cases depending on the regularity assumptions for the initial data Q 0 to be controlled. Let us begin with the case of more regularly initial data.

Theorem 5.1. Suppose that system (2.2)-(2.3) is exactly controllable in some time τ 0 > 0, 

B 0 B * 0 ∈ L H 1 , H 1 2 and Q 0 = q 0 q 1 ∈ H 3 2 × H 1 .
(h) = θ ln α -1 ln(h -1
) , converges when h → 0 to the exact control u in time τ of (2.2)-(2.3) given by (2.13). Moreover, there exist positive constants h * and C τ such that we have

∥u -u h ∥ C([0,τ ];U ) ⩽ C τ h θ ∥Q 0 ∥ H 3 2 ×H 1 (0 < h < h * ) .
(5.58)

Proof. Firstly, let us remark that u h given by (3.31) can be written as

u h (t) = B * h T h,t w 0h w 1h + B * h S h,τ -t T h,τ w 0h w 1h (t ∈ [0, τ ]) , (5.59) 
where

W 0h = w 0h w 1h = N (h) n=0 L n h,τ Π h q 0 q 1 . (5.60) We define v h : [0, τ ] → U h as follows v h (t) = B * h T h,t Π h W 0 + B * h S h,τ -t T h,τ Π h W 0 (t ∈ [0, τ ]) , (5.61) 
where W 0 = w 0 w 1 is given by (2.14). From (2.13), (5.61) and (3.21) we have

∥(u -v h )(t)∥ U = ∥B * T t W 0 + B * S τ -t T τ W 0 -B * h T h,t Π h W 0 -B * h S h,τ -t T h,τ Π h W 0 ∥ U ⩽ B * T t W 0 -Π h T h,t Π h W 0 U + B * S τ -t T τ W 0 -Π h S h,τ -t T h,τ Π h W 0 U ⩽ C ∥T t W 0 -Π h T h,t Π h W 0 ∥ X + ∥S τ -t T τ W 0 -Π h S h,τ -t T h,τ Π h W 0 ∥ X ⩽ C T t W 0 -Π h T t W 0 X + ∥T t W 0 -T h,t Π h W 0 ∥ X + C S τ -t T τ W 0 -Π h S τ -t T τ W 0 X + ∥S τ -t T τ W 0 -S h,τ -t T h,τ Π h W 0 ∥ X .
By using (3.15), (3.17), (2.14) and Corollary 4.2, from the above estimate we deduce that there exist h * 1 > 0 and C 1 τ > 0 such that for any h ∈ (0, h * 1 ) we have ∥u -

v h ∥ C([0,τ ];U ) ⩽ C 1 τ h θ ∥Q 0 ∥ H 3 2 ×H 1 (h ∈ (0, h * 1 )
).

(5.62)

On the other hand we have that

∥(v h -u h )(t)∥ U = ∥B * h T h,t W 0h + B * h S h,τ -t T h,τ W 0h -B * h T h,t Π h W 0 -B * h S h,τ -t T h,τ Π h W 0 ∥ U ⩽ ∥B * h T h,t (W 0h -Π h W 0 )∥ U + ∥B * h S h,τ -t T h,τ (W 0,h -Π h W 0 )∥ U ⩽ C (∥T h,t (W 0h -Π h W 0 ) ∥ X + ∥S h,τ -t T h,τ (W 0,h -Π h W 0 ) ∥ X ) ⩽ C ∥W 0h -Π h W 0 ∥ X ⩽ C ∥W 0h -W 0 ∥ X ,
where for the last estimates we have used that

∥T h,t ∥ L(X h ) ⩽ 1, ∥S h,τ -t ∥ L(X h ) ⩽ 1 and ∥Π h ∥ L H 1 2 ×H 1 2 ,X h ⩽ 1. Consequently, we deduce that ∥u h -v h ∥ C([0,τ ];U ) ⩽ C ∥W 0h -W 0 ∥ X .
(5.63)

We estimate the right-hand side of (5.63) as follows

||W 0 -W 0h || X = ∞ n=0 L n τ Q 0 - N (h) n=0 L n h,τ Π h Q 0 X ⩽ ∞ n=N (h)+1 ∥L τ ∥ n L(X ) ∥Q 0 ∥ X + N (h) n=0 ∥(L n τ -L n h,τ Π h )Q 0 ∥ X .
The above estimate and Corollary 4.3 imply that there exists h * 2 such that for any h ∈ (0, h * 2 ) the following inequalities are verified

||W 0 -W 0h || X ⩽   ∥L τ ∥ N (h)+1 L(X ) 1 -∥L τ ∥ L(X ) + N (h) n=0 α n-1 (C 0 α + nK 1 τ ) h θ   ∥Q 0 ∥ H 3 2 ×H 1 ⩽ C 2 τ ∥L τ ∥ N (h)+1 L(X ) + h θ ∥Q 0 ∥ H 3 2 ×H 1 ⩽ C 2 τ (α N (h)+1 + h θ )∥Q 0 ∥ H 3 2 ×H 1 .
Notice that the existence of a number α ∈ (0, 1) independent of h (see (4.43) and (4.45)) allows us to use in the above estimates that

∞ n=0 α n-1 (C 0 α + nK 1 τ ) < C,
where C is a constant independent of h. By choosing

N (h) = θ ln α -1 ln(h -1 ) , we obtain ||W 0 -W 0h || X ⩽ 2C 2 τ h θ ∥Q 0 ∥ H 3 2 ×H 1 .
(5.64) From (5.62) and (5.64) we obtain that (5.58) holds and the proof is complete.

Remark 5.2. Estimate (5.58) from Theorem 5.1 shows that we can approximate the continuous control with an error bounded by h θ , which is the error of the numerical scheme. This result is a consequence of the numerical viscosity added in the discrete equation, the error obtained in [START_REF] Cîndea | An approximation method for exact controls of vibrating systems[END_REF] where no viscosity is used, being bounded by the larger term ln 1 h h θ . Notice that u h given by (5.59) represents in fact an approximate control for the discrete equation. Theorem 5.1 allows us to estimate the norm of the solution of the controlled discrete equation at time τ . More precisely, we have the following result.

Corollary 5.3. For each h ∈ (0, h * ), let u h be the discrete control given by Theorem 5.1 corresponding to the initial data

Q 0 = q 0 q 1 ∈ H 3 2
× H 1 , and let (q h , qh ) solution of the equation

qh (t) + A 0h q h (t) + B 0h u h (t) = 0, (5.65) q h (0) = π h q 0 , qh (0) = π h q 1 .
(

5.66)

There exists a positive constant C > 0 independent of h such that we have

∥(q h (τ ), qh (τ ))∥ X ⩽ Ch θ ∥Q 0 ∥ H 3 2 ×H 1 (0 < h < h * ).
(5.67)

Proof. Let q q be the controlled solution of (2.2)-(2.3) with the exact control given by (2.13).

Since ) and

B 0 B * 0 ∈ L(H 1 , H 1 
∥B 0 u∥ C [0,τ ];H 1 2 ⩽ C ∥Q 0 ∥ H 3 2 ×H 1 .
(5.68)

From (2.2)-(2.
3) and (5.65)-( 5.66) we have that the function

z h = π h q -q h verifies zh (t) + A 0h z h (t) + π h B 0 u(t) -B 0h u h (t) = 0, (5.69) z h (0) = żh (0) = 0. (5.70) If we define ξ h (t) = 1 2 ∥z h (t)∥ 2 1 2 + 1 2 ∥ żh (t)∥ 2 ,
from (5.69)-( 5.70) and ( 5.68) we get

ξh (t) = ⟨z h (t), żh (t)⟩ + ⟨A 0h z h (t), żh (t)⟩ = -⟨π h B 0 u(t) -B 0h u h (t), żh (t)⟩ ⩽ √ 2∥(π h -π h )B 0 u(t) + B 0h (u(t) -u h (t))∥ξ 1 2 h (t) ⩽ C h θ ∥Q 0 ∥ H 3 2 ×H 1 + ∥u(t) -u h (t)∥ U ξ 1 2 h (t).
Using the above estimate and Theorem 5.1, we get

ξh (t) ⩽ Ch θ ∥Q 0 ∥ H 3 2 ×H 1 ξ 1 2 h (t).
Hence, we have that

ξ 1 2 h (τ ) ⩽ Cτ h θ ∥Q 0 ∥ H 3 2 ×H 1 .
(5.71)

Taking into account that u is an exact control for (2.2)-(2.3), we obtain

∥(q h (τ ), qh (τ ))∥ X = ∥Π h (q(τ ), q(τ )) -(q h (τ ), qh (τ ))∥ X = √ 2ξ 1 2 h (τ ).
Finally, (5.67) follows immediately from the last relation and (5.71).

We pass to study the case of initial data Q 0 belonging to the space of finite energy X. We do not expect to obtain error estimates as in Theorem 5.1 but we shall be able to prove the convergence of the family (u h ) h>0 .

Theorem 5.4. Suppose that system (2.2)-(2.3) is exactly controllable in some time τ 0 > 0,

B 0 B * 0 ∈ L H 1 , H 1 2
and (4.44) holds. Let τ 1 be given in (4.45), τ ⩾ max{τ 0 , τ 1 } and Q 0 = 

q 0 q 1 ∈ H 1 2 × H.
= max{∥L τ ∥ L(H 3 2 ×H 1 ) , ∥L h,τ ∥ L(X h ) } ∈ (0, 1). Moreover, let N ε with the property ∞ n=Nε+1 α n ∥Q 0 ∥ X ⩽ ε.
(5.73) From (5.72) if follows that there exists h * 1 > 0 such that N ε < N (h) for any h < h * 1 . As in the first part of the proof of Theorem 5.1, u h will be given by (5.59), where this time W 0h is defined by

W 0h = w 0h w 1h = N (h) n=0 L n h,τ Π h q 0 q 1 . (5.74) Moreover, we introduce v h : [0, τ ] → U h as follows v h (t) = B * h T h,t Π h W 0 + B * h S h,τ -t T h,τ Π h W 0 (t ∈ [0, τ ]) , (5.75) 
where W 0 = w 0 w 1 is given by (2.14). As in the proof of Theorem 5.1 we obtain that

∥(u -v h )(t)∥ U ⩽ C T t W 0 -Π h T t W 0 X + T t W 0 -T h,t Π h W 0 X + C S τ -t T τ W 0 -Π h S τ -t T τ W 0 X + S τ -t T τ W 0 -S h,τ -t T h,τ Π h W 0 X .
By using (3.18) and Corollary 4.6, from the above estimate we deduce that there exists

h * 2 > 0 such that ∥u -v h ∥ C([0,τ ];U ) ⩽ ε (h ∈ (0, h * 2 )) . (5.76) 
On the other hand (5.63) holds and we have to estimate ∥W 0h -W 0 ∥ X . By using (2.13), (2.14), (5.59), (5.60) and (5.61) we have

∥W 0h -W 0 ∥ X ⩽ ∞ n=0 L n τ Q 0 - N (h) n=0 L n h,τ Π h Q 0 X = ∞ n=Nε+1 L n τ Q 0 + Nε n=0 L n τ Q 0 - Nε n=0 L n h,τ Π h Q 0 - N (h) Nε+1 L n h,τ Π h Q 0 X ⩽ ∞ n=Nε+1 ∥L τ ∥ n L(X ) ∥Q 0 ∥ X + Nε n=0 L n τ Q 0 -L n h,τ Π h Q 0 X + ∞ n=Nε+1 ∥L h,τ ∥ n L(X ) ∥Q 0 ∥ X . (5.77) 
From the above estimate and (5.73) we deduce that

∥W 0h -W 0 ∥ X ⩽ 2ε + Nε n=0 L n τ Q 0 -L n h,τ Π h Q 0 X . (5.78) 
Using Corollary 4.6, it follows that there exists h * 3 such that, for h ∈ (0, h * 3 ), we have that the following inequalities hold

L τ L k τ Q 0 -L h,τ Π h L k τ Q 0 X < ϵ N ε (0 ⩽ k ⩽ N ε -1).
From the above inequalities we deduce that, for any 1 ⩽ n ⩽ N ε , we have

L n τ Q 0 -L n h,τ Π h Q 0 X ⩽ L τ L n-1 τ Q 0 ) -L h,τ ( Π h L n-1 τ Q 0 X + L h,τ Π h L τ (L n-2 τ Q 0 ) -L h,τ Π h L n-2 τ Q 0 X + L 2 h,τ Π h L τ (L n-3 τ Q 0 ) -L h,τ Π h L n-3 τ Q 0 X + . . . + L n-1 h,τ Π h L τ Q 0 -L h,τ Π h Q 0 X ⩽ ε N ε 1 + α + α 2 + . . . + α n-1 ⩽ ϵ N ε (1 -α)
.

It follows that

Nε n=0 L n τ Q 0 -L n h,τ Π h Q 0 X ⩽ ε 1 -α + Q 0 -Π h Q 0 . (5.79) 
By taking into account (3.18), (5.77)-( 5.79) and (5.63), we deduce that

lim h→0 ∥u h -v h ∥ C([0,τ ];U ) = 0. (5.80) 
Finally, combining (5.76) and (5.80), we have proved that the family (u h ) h>0 converges in C ([0, τ ]; U ) to u, given by (2.13), which is an exact control in time τ of (2.2)-(2.3).

Remark 5.5. Notice that the viscosity term ϑh η A 0h ẇn h (t) in systems (3.23)-(3.26) guarantees that α < 1, uniformly with respect with the parameter h, which is an essential property in the proof of Theorem 5.4, as it can be seen in estimate (5.77). The convergence of the algorithm in the absence of the viscosity term remains an open problem.

Remark 5.6. In Theorems 5.1 and 5.4 we have considered a time τ different than the optimal control time τ 0 of the continuous equation. Indeed, τ should be greater and equal to τ 0 and, also, τ 1 given by (4.45). If τ 1 can be chosen equal to τ 0 , as it is the case in the continuous equation (see [START_REF] Ito | A time reversal based algorithm for solving initial data inverse problems[END_REF]Lema 2.2]), is an interesting open question.

Numerical experiments

The aim of this section is to numerically illustrate the results obtained in the previous sections for the wave equation in dimension one and two in space and for Euler-Bernoulli beam equation. In this purpose we approximate these equations by finite elements in space and by a Newmark scheme of parameters β = 0.25 et γ = 0.5 in time. We also choose the parameter N (h) appearing in (3.30) as the smallest positive integer for which we have ∥w

N (h) b,h (0)∥ 2 H 1 2 + ∥ ẇN(h) b,h (0)∥ 2 H 1 2 ≤ h θ . (6.81) 
Remark 6.1. The relation (6.81) is justified by the following estimates:

w 0 w 1 - N (h) n=0 L n τ q 0 q 1 X ⩽ ∞ k=1 L k τ w N (h) b (0) ẇN(h) b (0) X ⩽ 1 1 -α w N (h) b (0) ẇN(h) b (0) X . ( 6 
.82)

One dimensional wave equation

We consider the following wave equation:

   q(t, x) -∂ 2 x q(t, x) + χ a,b (x) 
u(t, x) = 0, (t, x) ∈ (0, T ) × (0, 1) q(t, 0) = q(t, 1) = 0, t ∈ (0, T ) q(0, x) = q 0 (x), q(0, x) = q 1 (x),

x ∈ (0, 1), (

with the distributed control u. For every 0 ≤ a < b ≤ 1 we denote by χ a,b the C ∞ function given by

χ a,b (x) =            0, x ∈ [0, a] ∪ [b, 1] 1, x ∈ [a + δ, b -δ] exp α 1 δ 2 - 1 (x-a)(a+2δ-x) ,
x ∈ (a, a + δ)

exp α 1 δ 2 - 1 (x-b+2δ)(b-x) , x ∈ (b -δ, b) (6.84) 
and α and δ are positive numbers to choose later. For the remaining part of this section we choose a = 0.1, b = 0.5, δ = 0.1 and α = 0.02. The final time in which we want to control to zero the solution of (6.83) is T = 3. The function χ a,b corresponding to these parameters is displayed in Figure 1. This is easy to see that wave equation (6.83) can be written using the formalism and notation in Section 2. More exactly, let H = L 2 (0, 1), H 1 = H 2 (0, 1) ∩ H 1 0 (0, 1) and A 0 : H 1 → H be defined by A 0 φ = -φ ′′ for every φ ∈ H 1 . Therefore, the space H 1 2 is given by H 1 2 = H 1 0 (0, 1) and

H 3 2 = φ ∈ H 3 (0, 1) ∩ H 1 0 (0, 1) | φ xx (0) = φ xx (1) = 0 .
For the remaining part of this section, we also set U = L 2 (a, b) and for every φ ∈ U we define B 0 (φ) = χ a,b φ ∈ H, with χ a,b defined by (6.84).

Since the Newmark scheme used to discretize in time the equation is of order two we choose to discretize in space the wave equation using P 2 finite elements. In this purpose we consider N + 1 points x i = ih with 0 ≤ i ≤ N and h = 1/N . For every N (and, therefore, for the corresponding h) we define a subspace V h of H 1 2 as follows:

V h = {φ ∈ H 1 2 such that φ | [x i ,x i+1 ] ∈ R 2 [x] for every 0 ≤ i < N }.
For this choice of V h the estimate (3.17) holds with θ = 2. For what follows we set η = θ = 2. We chose the initial data to control (q 0 , q 1 ) ∈ H 3 2 × H 1 2 displayed in Figure 2 (a). Remark that this initial data has the limit regularity required by Theorem 5.1, which is (q 0 , q 1 ) ∈ H We consider several values of h (listed in Table 1) and we take the discretization step in time ∆t = h. The number of iterations needed to fulfill the criteria (6.81) is also reported in Table 1 for ϑ ∈ {0, 1}. We observe that the number of iterations is very similar regardless ϑ = 0 or ϑ = 1. As expected, N (h) increases when h goes to zero. Table 1: Number of iterations N (h) needed to fulfill (6.81) for the one-dimensional wave equation (6.83), initial data in Figure 2 (a), for different values of h and ϑ ∈ {0, 1}.

3 2 × H 1 2 \ (H 2 × H 1 ).
For every value of h and for ϑ ∈ {0, 1} we numerically compute a control using the proposed method. The evolution with respect to h of the norm in H 1 2 × H of the corresponding controlled solution at the time T is displayed in Figure 2 (b). We observe a complete agreement with our theoretical results, for both ϑ = 0 and ϑ = 1 this norm behaving as h θ . Nevertheless, for ϑ = 1 this norm is larger. In Figure 3 we display the contour map of the control obtained for h = 5 × 10 -4 , ϑ = 0 (left) and ϑ = 1 (right).

In order to illustrate how the norm of the controlled final state depends on ϑ we compute the control and the corresponding controlled solution for ϑ ∈ {2 -i , 0 ≤ i ≤ 16}. In Figure 4 we observe that this norm decreases with a rate of the form Cϑ until it reaches the norm of the final state of the controlled solution for ϑ = 1.

For better understanding the effect of the numerical viscosity term and the choice of N (h), for each iteration in Algorithm 1 we computed the corresponding control. The evolution of norm of the final state of the corresponding controlled solution with respect to the number of iterations is displayed in Figure 5 in the case where h = 10 -2 and h = 5×10 -4 . For both choices of h we observe that after n = θ ln(h -1 ) iterations the norm of the final state of the controlled solution remains constant when ϑ = 1. This is in perfect agreement with Theorem 5.1. Norm of the controlled final state for h = 5 × 10

-4 ϑ = 1 ϑ = 0 n = θ ln(h -1 )
Figure 5: Norm of the controlled final state of the wave equation with initial data in Figure 2 and the control computed using n iterations.

One-dimensional wave equation with initial data in H 1

2

× H

We consider here un intial data which is only in H 1 2 × H. More exactly, we take

q 0 (x) =    1 -10|x -0.6|
for x ∈ [0.5, 0.7] 0 otherwise q 1 (x) = -1 (0.5,0.6] (x)+1 (0.6,0.7) (x). (6.85)

The same numerical experiments as in Section 6.1 were done for this less regular initial data. We observe in Table 2 that Algorithm 1 does not coverge any more when ϑ = 0. For ϑ = 1 we observe the number of iterations needed for the converge of the Algorithm behaves similarly to the case studied in the previous section. The control obtained once the Algorithm converged or when the maximal number of iterations was reached is displayed in Figure 6. As exepected, the control obtained for ϑ = 0 has more high frequency oscilations than the control computed for ϑ = 1. 

Two-dimensional wave equation

We consider the following two-dimensional wave equation:

         q(t, x) -∆q(t, x) + χ ω (x)u(t, x) = 0, (t, x) ∈ (0, T ) × Ω q(t, x) = 0, (t, x) ∈ (0, T ) × ∂Ω q(0, x) = q 0 (x), q(0, x) = q 1 (x), x ∈ Ω, (6.86) 
with Ω = (0, 1) 2 and ω ⊂ Ω. In Figure 8 (a) we represent a quadrangular Q h mesh of Ω with the elements in ω colored in orange. The cutoff function χ Ω is a regular function supported in ω with values between 0 and 1. This function is represented in Figure 8 (b). We employ quadratic elements in space and the Newmark scheme in time. More exactly, V h ⊂ H 1 2 is defined by

Ω x 1 x 2 ω χ ω x 1 x 2 ( 
V h = φ ∈ H 1 2 such that φ| Q ∈ R 2 [x 1 , x 2 ] for every Q ∈ Q h .
For this section we choose the following regular initial data: u 0 (x) = sin(πx 1 ) sin(πx 2 ), u 1 (x) = 0, for x = (x 1 , x 2 ) ∈ Ω. (6.87)

We consider three meshes Q h of Ω (h given in the first row of Table 3) and we take the discretization step in time ∆t = 10 -2 . The number of iterations needed to fulfill the criteria (6.81) is also reported in Table 3 for ϑ ∈ {0, 1}. We observe that the number of iterations is smaller for ϑ = 0 for large values of h. As expected, N (h) increases when h goes to zero. Table 3: Number of iterations N (h) needed to fulfill (6.81) for the two-dimensional wave equation (6.86), initial data (6.87), for different values of h and ϑ ∈ {0, 1}.

For each of the three meshes Q h and for ϑ ∈ {0, 1} we numerically compute a control using the proposed method. The evolution with respect to h of the norm in H 1 2 × H of the corresponding controlled solution at the time T = 3 is displayed in Figure . The results are similar to the one dimensional setting: for both ϑ = 0 and ϑ = 1 this norm behaving as h θ . Nevertheless, for ϑ = 1 this norm is slightly larger. 

The Euler-Bernoulli beam equation

Another example of equation which can be handled in the framework described in Section 2 is the following Euler-Bernoulli beam equation with distributed control:

         q(t, x) + ∂ 4
x q(t, x) + χ a,b (x)u(t, x) = 0, (t, x) ∈ (0, T ) × (0, 1) q(t, 0) = q(t, 1) = ∂2 x q(t, 0) = ∂ 2 x q(t, 1) = 0, t ∈ (0, T ) q(0, x) = q 0 (x), q(0, x) = q 1 (x), x ∈ (0, 1), (6.88) with χ a,b being the function given by (6.84). We set again H = L 2 (0, 1). Then, the corresponding H 1 space is given by H 1 = {φ ∈ H 4 (0, 1) ∩ H 1 0 (0, 1) such that φ ′′ (0) = φ ′′ (1)} and A 0 : H 1 → H be defined by A 0 φ = -∂ 4

x φ for every φ ∈ H 1 . Therefore, the space H 1 2 is given by H 1 2 = H 2 ∩ H 1 0 (0, 1) and

H 3 2 = φ ∈ H 6 (0, 1) ∩ H 1 | ∂ 4 x φ(0) = ∂ 4 x φ(1) = 0 .
As in the case of the wave equation, we set U = L 2 (a, b) and for every φ ∈ U we define B 0 (φ) = χ a,b φ ∈ H, with χ a,b defined by (6.84).

In order to have a conform approximation, we discretize the equation (6.88) with respect to spatial variable by using Hermite finite elements. More precisely, we consider N + 1 points (x i ) 0≤i≤N equi-distributed in the interval [0, 1] and we set h = 1/N . For every N (and, therefore, for the corresponding h) we define a subspace V h of H 1 2 as follows:

V h = {φ ∈ H 1 2 such that φ | [x i ,x i+1 ] ∈ R 3 [x] for every 0 ≤ i < N }.
We recall that a function φ ∈ V h is uniquely determined by its values in the points x i and the values of φ ′ evaluated on the same points. For the discretization in time we choose a discretization step ∆t = h 10 . The control u acts in the interval (0.1, 0.4), i.e. a = 0.1, b = 0.4. We consider a very regular initial data y 0 (x) = sin(πx), y 1 (x) = 0, (x ∈ (0, 1)) (6.89) and a controllability time T = 1. We consider several values of h (listed in Table 4). The number of iterations needed to fulfill the criteria (6.81) is also reported in Table 4 for ϑ ∈ {0, 1}. We observe, as for the wave equation, that the number of iterations is very similar regardless ϑ = 0 or ϑ = 1. As expected, N (h) increases when h goes to zero.

For every value of h and for ϑ ∈ {0, 1} we numerically compute a control using the proposed method. The evolution with respect to h of the norm in H 1 
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 221 Figure 2: (a) Initial data (q 0 , q 1 ) ∈ H 3 2 × H 1 2 for the one dimensional wave equation (6.83). (b) Norm of the final state of the corresponding final state equation for different values of h and ϑ ∈ {0, 1}.
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 3 Figure 3: Control computed for h = 5 × 10 -4 , initial data in Figure 2, ϑ = 0 (left) and ϑ = 1 (right).
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 4 Figure 4: Norm of the controlled final state corresponding to initial data in Figure, h = 1 2000
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 62 Figure 6: Control computed for h = 5 × 10 -4 , initial data (6.85), ϑ = 0 (left) and ϑ = 1 (right).
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 11017 Figure 7: (a)Norm of the controlled solution at the time T controlled by the partial control obtained at each iteration of Algorithm 1 corresponding to initial data (6.85), h = 5 × 10 -4 and ϑ ∈ {0, 1}. (b) Norm of the controlled solution at the time T controlled by the control obtained at the end of Algorithm 1 corresponding to initial data (6.85) and for different values of h and ϑ ∈ {0, 1}.
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 8 Figure 8: (a) A quadrangular regular mesh Q h of the unit square Ω = (0, 1) 2 formed by 2500 square elements (h = 1 50 ). (b) Level curves of the cutoff function χ ω .
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 9 Figure 9: Norm of the final state of the controlled solution of the two dimensional wave equation (6.86) with initial data (6.87) for different values of h and ϑ ∈ {0, 1}.
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 4 Number of iterations N (h) needed to fulfill (6.81) for the Euler-Bernoulli beam equation (6.88), initial data (6.89), for different values of h and ϑ ∈ {0, 1}.

2 Figure 10 :

 210 Figure 10: Norm of the final state of the controlled beam equation (6.88) for different values of h and ϑ ∈ {0, 1}.

  5, Proposition 2.5].

	Proposition 2.1. With the above notation, assume that (2.2)-(2.3) is exactly controllable in
	time τ 0 > 0 and B 0 B * 0 ∈ L H 1 , H 1 2 are contractions semigroups on these spaces with generators that are restrictions of A -BB * and . Then, the restrictions of T and S to H 1 ×H 1 2 and H 3 2 ×H 1 -A -BB * to H 3 2 × H 1 and H 2 × H 3 2 , respectively. Moreover, for any τ ⩾ τ 0 there exists a norm
	on L H 3 2	× H 1 , equivalent to the standard norm, such that

  4.47) and (4.48) we get (4.46). Remark 4.4. Let us compare estimate (4.46) with the corresponding one proved in [5, Corollary 3.3], where the right hand side term is replaced by

  Moreover, assume that the discrete system with numerical viscosity (4.34)-(4.35) is uniformly stable, i.e. (4.44) holds, and let τ 1 be given such that (4.45) is verified. Then for any τ ⩾ max{τ 0 , τ 1 } the family (u h ) h>0 from C([0, τ ]; U h ), defined by (3.31) in Algorithm 1 with N

  Then, for any nondecreasing family (N (h)) h>0 ⊂ N * such that

	lim h→0	N (h) = ∞,	(5.72)

the family (u h ) h>0 defined by

(3.31) 

in Algorithm 1 converges when h → 0 to the exact control u in time τ of (2.2)-(2.3) given by (2.13).

Proof. Let ε > 0 and, as in Corollary 4.3, let α

× H of the corresponding controlled solution at the time T is displayed in Figure10. We observe a complete agreement with our theoretical results, for both ϑ = 0 and ϑ = 1 this norm behaving as h θ . Nevertheless, for ϑ = 1 this norm is larger.