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Abstract

We analyze a method for the approximation of exact controls of a second order infinite
dimensional system with bounded input operator. The algorithm combines Russell’s “sta-
bilizability implies controllability” principle and a finite elements method of order θ with
vanishing numerical viscosity. We show that the algorithm is convergent for any initial data
in the energy space and that the error is of order θ for sufficiently smooth initial data. Both
results are consequences of the uniform exponential decay of the discrete solutions guar-
anteed by the added viscosity and improve previous estimates obtained in the literature.
Several numerical examples for the wave and the beam equations are presented to illustrate
the method analyzed in this article.
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1 Introduction

The numerical approximation of exact controls for linear evolution equations has been one of
the topics of interest in control theory since the beginning of the 90s when, in a series of articles
due to R. Glowinski, J.-L. Lions and collaborators (see, for example, [10, 11, 12]), conjugate
gradient type algorithms were proposed for finding controls characterized by the property of
having the minimum L2 norm. These are the so called HUM controls which inherit the name of
the systematic method proposed by J.-L. Lions for their study.

These pioneering articles led to the development of an important specialized literature that
contributed to a deeper understanding of this type of controls (see [9, 25, 27] and the references
therein). Although most of the efforts were directed towards the proposal of new discretization
schemes capable of ensuring the convergence of the discrete HUM controls, there were also other
(more direct) approaches to the approximation of the controls. We mention among them the
methods based on Huygens principle [21] (for hyperbolic equations) or flatness outputs [15, 16]
(for parabolic equations).

In this work we analyze an alternative numerical method for computing exact controls for a
class of infinite dimensional systems modeling elastic vibrations. This method combines three
main ideas: Russell’s “stabilizability implies controllability” principle, error estimates for finite
element-type approximations of the considered infinite dimensional systems and the technique of
vanishing viscosity. We focus on the case of bounded input operators which excludes boundary
control for systems governed by PDEs.

Our study has two main aims. On one hand, we show that the rate of convergence of our
approximations to an exact control has the same order as the finite-element method, if the initial
data to be controlled are sufficiently smooth. On the other hand, we prove that the method still
converges in the case of finite energy initial data. Let us briefly indicate the structure of the
work, its main ideas and the most notable results obtained in it.

In Section 2 we describe Russell’s principle which states that backwards and forwards expo-
nential stabilizability of a dynamical system implies its exact controllability in some time τ > 0.
This principle was used to show the exact boundary controllability property for the linear wave
equation [22, Theorem 5.3]. An abstract version of it has been proposed in [3] for the case of
bounded control operators and further generalized in [20]. A similar idea stays at the origin
of the concept of back and forth observers for linear infinite dimensional systems in [19]. A
detailed discussion and several new applications of the principle are presented in [13]. In the
hypotheses in which it is verified, Russell’s principle has the possibility of providing an exact
control u ∈ C([0, τ ];U) of the dynamic system under study for each initial data Q0, with two
remarkable properties: it is (in principle) easy to compute and it preserves the regularity of Q0.

In the following Section 3 we describe how approximations uh of the control u provided by
Russell’s principle can be given. This is done in Algorithm 1 below, which consists in solving
a finite number N(h) of forward and backward space discrete systems obtained by using a
numerical scheme combining finite elements of order θ and vanishing viscosity. A first algorithm
based on Russell’s principle has been used to compute an exact boundary control for a class of
second order evolution equations in [17] where the case N(h) = 1 is analyzed. This choice is
convenient for implementation purposes but it does not yield the convergence of uh to u. In [5]
the full algorithm is developed and it is proved that, with an appropriate choice of N(h), the
convergence is ensured for sufficiently regular initial data and the error is of order slightly lower
than θ. The main difference between Algorithm 1 and the one proposed in [5] consists in the
addition of the viscosity term which, as we shall see, has a few interesting consequences.

After some important preliminaries developed in Section 4 and dealing with the evaluation of
the error introduced in the dynamical system by the discretization scheme, the main results are
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presented in Section 5. As mentioned before, there are two main results proved in this section:

• In Theorem 5.4 we show that, if the initial data Q0 to be controlled is in the energy space
H 1

2
× H0, the family (uh)h provided by Algorithm 1 in Section 3 converges to u as h

tends to zero.

• In Theorem 5.1 we show that, if the initial data Q0 to be controlled is sufficiently smooth
(belonging to H 3

2
×H 1

2
), the order of convergence of the family (uh)h to u is precisely θ,

the order of the finite-element method.

The spaces H, U , H 1
2

and H 3
2

mentioned above are introduced at the beginning of the following
section.

It is known that, after spatial discretization, the decay of the semigroup corresponding to
an exponentially stable dynamical system may not be uniform with respect to the mesh size
h. This phenomenon has been remarked by Banks et al. [1], where the use of a mixed finite
element method is proposed to restore the uniform decay rate. Later on, several studies have
confirmed that this defect is due to the spurious high frequencies introduced by the numerical
scheme traveling at arbitrarily small velocities which, therefore, show a lack of propagation in
space (see, for instance, the recent article [2] and the references therein). In order to cure this
defect, an approach consisting in adding a correcting numerical viscous term in the discrete
system, vanishing in the limit, has been proposed (see [6, 7, 8, 18, 23, 24]). The vanishing
viscosity takes charge of the spurious high oscillations and leads to a uniform (with respect
to the mesh size) exponential decay of the discrete semigroup. This property is used in this
paper in order to obtain our main results mentioned above. Indeed, both Theorem 5.1, which
improves the convergence rate of the controls obtained in [5], and Theorem 5.4, which shows
the convergence of the algorithm for initial data in the energy space, use in a fundamental way
the uniform exponential decay of the discrete semigroup. This can be explained by recalling
that Algorithm 1 solves a finite number N(h) of forward and backward space discrete systems.
The uniform exponential decay ensured by the viscosity term enables us to deduce better error
estimates which do not degenerate when the number of computed solutionsN(h) tends to infinity
when h goes to zero.

To illustrate the efficiency of this approach, we apply it to several systems governed by PDEs
and describe the associated numerical simulations in the last Section 6.

2 Russel’s principle and construction of exact controls

In order to give the precise statement of our results we need some notation. Let (H, ⟨·, ·⟩)
be a Hilbert space with the induced norm ∥ · ∥, and assume that the unbounded operator
A0 : D (A0) → H is self-adjoint, strictly positive and with compact resolvent. Then, according
to classical results, the operator A0 is diagonalizable with an orthonormal basis (φk)k⩾1 of
eigenvectors, and the corresponding family of positive eigenvalues, in ascending order, (λk)k⩾1

satisfies lim
k→∞

λk = ∞. Moreover, we have

D (A0) =

z ∈ H

∣∣∣∣∑
k⩾1

λ2k |⟨z, φk⟩|2 <∞

 , A0z =
∑
k⩾1

λk⟨z, φk⟩φk (z ∈ D (A0)) .

For α ⩾ 0, the operator Aα
0 is defined by

D (Aα
0 ) =

z ∈ H

∣∣∣∣∑
k⩾1

λ2αk |⟨z, φk⟩|2 <∞

 , Aα
0 z =

∑
k⩾1

λαk ⟨z, φk⟩φk (z ∈ D(Aα
0 )). (2.1)
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For every α ⩾ 0 we denote by Hα the space D (Aα
0 ) endowed with the inner product

⟨φ,ψ⟩α = ⟨Aα
0φ,A

α
0ψ⟩ (φ,ψ ∈ Hα) .

The induced norm is denoted by ∥ · ∥α. From the above facts it follows that for every α ⩾ 0
the operator A0 is unitary from Hα+1 onto Hα, and strictly positive on Hα.

Let (U, ⟨·, ·⟩U ) be another Hilbert space with the corresponding norm ∥ · ∥U , and let B0 ∈
L (U,H) be an input operator. We consider the system

q̈(t) +A0q(t) +B0u(t) = 0 (t ⩾ 0), (2.2)

q(0) = q0, q̇(0) = q1. (2.3)

We assume that the above system is exactly controllable in time τ0 > 0, i.e. for every q0 ∈ H 1
2
,

q1 ∈ H there exists a control u ∈ L2 (0, τ0;U) such that

q(τ0) = q̇(τ0) = 0. (2.4)

Now, we consider the second order differential equation

ẅ(t) +A0w(t) +B0B
∗
0ẇ(t) = 0 (t ⩾ 0), (2.5)

w(0) = w0, ẇ(0) = w1. (2.6)

It is well known that the above equation defines a well posed dynamical system in the state

space X = H 1
2
×H. More precisely, the solution

[
w
ẇ

]
of (2.5)−(2.6) is given by

[
w(t)
ẇ(t)

]
= Tt

[
w0

w1

] ([
w0

w1

]
∈ X, t ⩾ 0

)
, (2.7)

where T is the contraction semigroup on X generated by A− BB∗ and the matriceal operators
A : D(A) → X, B ∈ L(U,X) are defined by

D(A) = H1 ×H 1
2
, A =

[
0 I

−A0 0

]
, B =

[
0
B0

]
.

Let τ > 0 and consider the backwards system

ẅb(t) +A0wb(t)−B0B
∗
0ẇb(t) = 0 (t ⩽ τ) , (2.8)

wb(τ) = w(τ), ẇb(τ) = ẇ(τ). (2.9)

It is not difficult to check that the solution
[
wb

ẇb

]
of (2.8)−(2.9) is given by

[
wb(t)
ẇb(t)

]
= Sτ−t

[
w(τ)
ẇ(τ)

]
(t ∈ [0, τ ]) , (2.10)

where S is the contraction semigroup in X generated by −A− BB∗.
We define Lτ ∈ L(X) by

Lτ

[
w0

w1

]
=

[
wb(0)
ẇb(0)

] ([
w0

w1

]
∈ X

)
. (2.11)

With the above notation, the operator Lτ clearly satisfies Lτ = SτTτ .
In the following we present a useful result given in [5, Proposition 2.5].
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Proposition 2.1. With the above notation, assume that (2.2)−(2.3) is exactly controllable in
time τ0 > 0 and B0B

∗
0 ∈ L

(
H1, H 1

2

)
. Then, the restrictions of T and S to H1×H 1

2
and H 3

2
×H1

are contractions semigroups on these spaces with generators that are restrictions of A−BB∗ and
−A−BB∗ to H 3

2
×H1 and H2×H 3

2
, respectively. Moreover, for any τ ⩾ τ0 there exists a norm

on L
(
H 3

2
×H1

)
, equivalent to the standard norm, such that

∥Tτ∥
L
(
H 3

2
×H1

) < 1, ∥Sτ∥
L
(
H 3

2
×H1

) < 1.

In addition, the semigroups T and S are exponentially stable verifying

∥Tτ∥L(X) < 1, ∥Sτ∥L(X) < 1,

and I − Lτ is invertible, where the inverse is given as follows

(I − Lτ )
−1 =

∑
n⩾0

Ln
τ . (2.12)

In the above hypothesis, Russel’s principle (see, for instance [22]) can be used to construct
an explicit control u for (2.2)−(2.3). More precisely, we have the following result.

Proposition 2.2. Assume that (2.2)−(2.3) is exactly controllable in time τ0 > 0. Then for any

τ ⩾ τ0 a control u ∈ C ([0, τ ], U) for (2.2)−(2.3), steering the initial state
[
q0
q1

]
∈ X to rest in

time τ , is given by

u(t) = B∗
0ẇ(t) +B∗

0ẇb(t) = B∗Tt

[
w0

w1

]
+ B∗Sτ−tTτ

[
w0

w1

]
(t ∈ [0, τ ]) , (2.13)

where
[
w
ẇ

]
and

[
wb

ẇb

]
are the solutions of (2.5)−(2.6) and (2.8)−(2.9), respectively, with initial

data [
w0

w1

]
= (I − Lτ )

−1

[
q0
q1

]
. (2.14)

Remark 2.3. Two of the properties of the above control u are very important in our study:

• From (2.12) and (2.14) we deduce that the initial data
[
w0

w1

]
needed to construct the control

u can be approximated by solving a finite number N of forward and backward equations of
(2.5)−(2.6) and (2.8)−(2.9), respectively:[

w0

w1

]
≈

N∑
n=0

Ln
τ

[
q0
q1

]
.

• From Proposition 2.1 and (2.14) it follows that the regularity assumptions on
[
q0
q1

]
are

inherited by
[
w0

w1

]
. More precisely,

[
q0
q1

]
∈ H 3

2
×H1 implies that

[
w0

w1

]
∈ H 3

2
×H1. This

implies that (2.13) provides smoother controls u for more regular initial data.
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3 The semi-discrete problem and control approximation

In order to provide a numerical method to approximate the control u given in Proposition 2.2,
we need more assumptions and notation. Assume that there exists a family (Vh)h>0 of finite
dimensional subspaces of H 1

2
and θ > 0, h∗ > 0, C0 > 0 such that for every h ∈ (0, h∗),

∥πhφ− φ∥ 1
2
⩽ C0h

θ∥φ∥1 (φ ∈ H1) , (3.15)

∥πhφ− φ∥ ⩽ C0h
θ ∥φ∥ 1

2

(
φ ∈ H 1

2

)
, (3.16)

where πh is the orthogonal projector from H 1
2

onto Vh. Assumptions (3.15)−(3.16) are, in
particular, satisfied when finite elements are used for the approximation of Sobolev spaces.
Moreover, we introduce π̃h the orthogonal projection of H onto Vh. As is well known, since πh
and π̃h are orthogonal projectors, they are self adjoint operators. From (3.16) and the fact that
H 1

2
is dense in H it follows that

∥φ− π̃hφ∥ ⩽ ∥φ− πhφ∥ ⩽ C0h
θ ∥φ∥ 1

2

(
φ ∈ H 1

2

)
, (3.17)

and
lim
h→0

∥φ− π̃hφ∥ = 0 (φ ∈ H) . (3.18)

We define the linear operator A0h ∈ L (Vh) by

⟨A0hφh, ψh⟩ = ⟨A
1
2
0 φh, A

1
2
0 ψh⟩ (φh, ψh ∈ Vh) . (3.19)

The operator A0h is clearly symmetric and strictly positive.
Denote Uh = B∗

0Vh ⊂ U and define the operators B0h ∈ L(U,H) by

B0hu = π̃hB0u (u ∈ U). (3.20)

Note that Ran B0h ⊂ Vh. The adjoint B∗
0h ∈ L(H,U) of B0h is

B∗
0hφ = B∗

0 π̃hφ (φ ∈ H). (3.21)

Since Uh = B∗
0Vh, from (3.21), it follows that Ran B∗

0h = Uh and that

⟨B∗
0hφh, B

∗
0hψh⟩U = ⟨B∗

0φh, B
∗
0ψh⟩U (φh, ψh ∈ Vh). (3.22)

From (3.20) we have that the family (∥B0h∥L(U,H))h∈(0,h∗) is bounded.
In order to approximate the exact control u from Proposition 2.2, given by (2.13), we shall

use two discrete damped equations, one forward and one backward, corresponding to (2.5)−(2.6)
and (2.8)−(2.9), respectively. More precisely, we introduce the semi-discrete equations

ẅh(t) +A0hwh(t) +B0hB
∗
0hẇh(t) + ϑhηA0hẇh(t) = 0 (t ⩾ 0) , (3.23)

wh(0) = w0h, ẇh(0) = w1h, (3.24)

and
ẅb,h(t) +A0hwb,h(t)−B0hB

∗
0hẇb,h(t)− ϑhηA0hẇb,h(t) = 0 (t ⩽ τ) . (3.25)

wb,h(τ) = wb,0h, ẇb,h(τ) = wb,1h. (3.26)

Notice that, in each of the equation (3.23) and (3.25), a numerical viscosity term has been
introduced: ϑhηA0hẇh(t) and −ϑhηA0hẇb,h(t), respectively. In the above equations ϑ and η
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are positive real numbers which will be conveniently chosen later on. As we shall see in the
following section, these terms reinforce the dissipation in each equation in order to ensure the
uniform stability (in h) of both discrete systems. These properties will allow us to obtain better
error estimates and convergence results for the discrete approximations uh ∈ C ([0, τ ];Uh) of the
control u.

We consider the following algorithm to compute the approximations uh:

Algorithm 1:

1. Take
[
q0
q1

]
in H 1

2
×H. Let q0h = πhq0 and q1h = πhq1 if q1 ∈ H 1

2
and q1h = π̃hq1 if

q1 /∈ H 1
2
.

2. For any h > 0 chose N(h) ∈ N.

3. For n = 1, 2, . . . , N(h) let
[
wn
h

ẇn
h

]
be the solution of (3.23)−(3.24) with initial data

wh(0) =

{
q0h if n = 1

wn−1
b,h (0) if 1 < n ⩽ N(h),

(3.27)

ẇh(0) =

{
q1h if n = 1

ẇn−1
b,h (0) if 1 < n ⩽ N(h),

(3.28)

and
[
wn
b,h

ẇn
b,h

]
be the solution of (3.25)−(3.26) with initial data

wb,h(τ) = wn
h(τ), ẇb,h(τ) = ẇn

h(τ). (3.29)

4. Compute
[
w0h

w1h

]
as follows:

[
w0h

w1h

]
=

[
q0h
q1h

]
+

N(h)∑
n=1

[
wn
b,h(0)

ẇn
b,h(0)

]
=

N(h)∑
n=1

[
wn
h(0)

ẇn
h(0)

]
+

[
w

N(h)
b,h (0)

ẇ
N(h)
b,h (0)

]
. (3.30)

5. Compute the control uh,
uh = B∗

0hẇh +B∗
0hẇb,h, (3.31)

where
[
wh

ẇh

]
is the solution of (3.23) with initial data

wh(0) = w0h, ẇh(0) = w1h, (3.32)

and
[
wb,h

ẇb,h

]
is the solution of (3.25) with initial data

wb,h(τ) = wh(τ), ẇb,h(τ) = ẇh(τ). (3.33)

Remark 3.1. Note that, in order to use the above scheme in numerical experiments, at step 2,
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we have to choose the range N(h). If the data
[
q0
q1

]
to be controlled belong to the regular space

H 3
2
×H1, a value N(h) =

[
θ

lnα−1 ln(h
−1)
]

is provided in Theorem 5.1 which ensures the desired

error of order θ. However, there are no such estimates for N(h) in the case of initial data
[
q0
q1

]
in H 1

2
× H. In practice the values of N(h) are provided by the stopping criterion (6.81) used

in the final Section 6 devoted to numerical experiments. In Figure 7 we compare the values of
N(h) given by (6.81) with the ones obtained in Theorem 5.1.

4 Convergence of the discrete solutions

The aim of this section is to analyse the convergence of the approximate solutions corresponding
to the following numerical scheme with viscosity

ẅh(t) +A0hwh(t) +B0hB
∗
0hẇh(t) + ϑhηA0hẇh(t) = 0 (t ⩾ 0) , (4.34)

wh(0) = w0h, ẇh(0) = w1h, (4.35)

where we have used the notation from Section 3 for the families of operators (A0h)h>0 and
(B0h)h>0.

Concerning the convergence of the approximate solutions given by (4.34)−(4.35) we recall
the following result which gives an error estimate in the case of sufficiently regular initial data.

Proposition 4.1. Let w0 ∈ H 3
2
, w1 ∈ H1, ϑ ∈ [0, 1] and let w, wh be the corresponding solutions

of (2.5)−(2.6) and (4.34)−(4.35), respectively. Moreover, assume that B0B
∗
0 ∈ L

(
H1, H 1

2

)
,

w0h = πh(w0), w1h = πh(w1) and η ⩾ θ. Then there exist two constants K,h∗ > 0 such that for
every h ∈ (0, h∗), we have

∥ẇ(t)− ẇh(t)∥+ ∥w(t)− wh(t)∥ 1
2
⩽ Kthθ

(
∥w0∥ 3

2
+ ∥w1∥1

)
(t ⩾ 0) . (4.36)

Proof. See [4, Proposition 5.1].

For h > 0 we denote Xh = Vh × Vh and Wh(t) =

[
wh(t)
ẇh(t)

]
, and we consider the operators

Ah =

[
0 I

−A0h −ϑhηA0h

]
, Bh =

[
0
B0h

]
. (4.37)

The discrete analogues of the semigroups T,S and of the operator Lt, denoted by Th,Sh,
and Lh,t, respectivly, are defined, for every h > 0, by

Th,t = et(Ah−BhB∗
h), Sh,t = et(−Ah−BhB∗

h), Lh,t = Sh,tTh,t (t ⩾ 0). (4.38)

For every h > 0 we define Πh ∈ L
(
H 1

2
×H 1

2
, Xh

)
and Π̃h ∈ L

(
H 1

2
×H,Xh

)
Πh =

[
πh 0
0 πh

]
, Π̃h =

[
πh 0
0 π̃h

]
. (4.39)

The following result is a direct consequence of Proposition 4.1.
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Corollary 4.2. There exist two constants K1, h
∗ > 0, such that for every h ∈ (0, h∗) and t > 0,

we have (recall that Lt = StTt, for every t ⩾ 0)

∥TtZ0 − Th,tΠhZ0∥X ⩽ K1th
θ ∥Z0∥H 3

2
×H1

(
Z0 ∈ H 3

2
×H1

)
, (4.40)

∥StZ0 − Sh,tΠhZ0∥X ⩽ K1th
θ∥Z0∥H 3

2
×H1

(
Z0 ∈ H 3

2
×H1

)
, (4.41)

∥LtZ0 − Lh,tΠhZ0∥X ⩽ K1th
θ∥Z0∥H 3

2
×H1

(
Z0 ∈ H 3

2
×H1

)
. (4.42)

Supposing that, from Proposition 2.1 we have that

∥Lτ∥H 3
2
×H1 < 1 (τ ⩾ τ0). (4.43)

Relation (4.43) is a consequence of fact that the infinite dimensional linear systems (2.5)−(2.6)
and (2.8)−(2.9) are exponentially stable. It is by now well-known that, if ϑ = 0, the approxima-
tion (4.34)−(4.35) is not uniformly stable with respect to the discretisation parameter (see, for
instance, [1, 2, 8, 9, 27]). However, if ϑ > 0, the parameter η can be chosen such that the added
numerical viscosity ensures the uniform stability of (4.34)−(4.35). In the following we suppose
that the family of systems (4.34)−(4.35) is uniformly stable, in the sense that exist constants
M , α∗, h∗ > 0 (independent of h, w0h and w1h) such that for all h ∈ (0, h∗) we have

∥ẇh(t)∥2 +
∥∥∥∥A 1

2
0hwh(t)

∥∥∥∥2 ⩽Me−α∗t

(
∥w1h∥2 +

∥∥∥∥A 1
2
0hw0h

∥∥∥∥2
)

(t ⩾ 0). (4.44)

For details concerning the context in which (4.44) holds we refer the interested reader to
[6, 7, 18, 23, 24]. From (4.44) it follows that there exist τ1 and α1 ∈ (0, 1), independent of h,
such that the following relation holds

∥Lh,t∥L(Xh) < α1 (t ⩾ τ1) . (4.45)

As a consequence of the uniform estimate (4.45) we can prove the following important esti-
mate which will allow us to obtain the desired error estimates for the approximate control given
by the algorithm introduced in Section 3.

Corollary 4.3. There exists h∗ > 0 such that, for every t ⩾ max{τ0, τ1}, h ∈ (0, h∗) and k ∈ N,
we have∥∥∥Lk

tZ0 − Lk
h,tΠhZ0

∥∥∥
X

⩽ αk−1 (C0α+ kK1t)h
θ ∥Z0∥H 3

2
×H1

(
Z0 ∈ H 3

2
×H1

)
, (4.46)

where α = max{∥Lt∥L(H 3
2
×H1), ∥Lh,t∥L(Xh)} ∈ (0, 1). In (4.46) the constant C0 is the one in

(3.15)−(3.16) and the constant K1 is given in (4.42).

Proof. Taking into account the following inequality∥∥∥Lk
tZ0 − Lk

h,tΠhZ0

∥∥∥
X

⩽
∥∥∥Lk

tZ0 −ΠhL
k
tZ0

∥∥∥
X
+
∥∥∥ΠhL

k
tZ0 − Lk

h,tΠhZ0

∥∥∥
X
, (4.47)

we evaluate each of the right-hand side terms from above. By using Proposition 2.1 we get, for
every t ⩾ 0, the invariance of the space H 3

2
×H1 with respect to Lt. In addition, using (3.15)

and (3.16) we infer the existence of a constant C0 > 0 such that∥∥∥Lk
tZ0 −ΠhL

k
tZ0

∥∥∥
X

⩽ C0h
θ ∥Lt∥k

L
(
H 3

2
×H1

) ∥Z0∥H 3
2
×H1

. (4.48)
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In order to evaluate the second right-hand term, by denoting Ak :=
∥∥∥ΠhL

k
tZ0 − Lk

h,tΠhZ0

∥∥∥
X

and using (4.42), we remark that

Ak ⩽
∥∥∥ΠhLt(L

k−1
t )Z0 − Lh,tΠhL

k−1
t Z0

∥∥∥
X
+
∥∥∥Lh,t

(
ΠhL

k−1
t Z0 − Lk−1

h,t ΠhZ0

)∥∥∥
X

⩽ K1th
θ∥Lt∥k−1

L
(
H 3

2
×H1

)∥Z0∥H 3
2
×H1 + αAk−1

⩽ 2K1th
θ∥Lt∥k−1

L
(
H 3

2
×H1

)∥Z0∥H 3
2
×H1 + α2Ak−2 ⩽ . . .

⩽ K1th
θk∥Lt∥k−1

L
(
H 3

2
×H1

)∥Z0∥H 3
2
×H1 .

Finally, using the last inequality combined with (4.47) and (4.48) we get (4.46).

Remark 4.4. Let us compare estimate (4.46) with the corresponding one proved in [5, Corollary
3.3], where the right hand side term is replaced by (C0 + kK1t)h

θ ∥Z0∥H 3
2
×H1

. Notice that,

whereas in [5, Corollary 3.3] the error is estimated by a quantity depending on k, in (4.46) the
error term is bounded independently of k. This is achieved by the introduction of the vanishing
viscosity term and the uniform estimate (4.45) and will offer us the possibility to improve all the
error estimates for the approximate controls proved in [5].

The uniform exponential decay (4.45) allows us to prove convergence of the discrete controls

given by the Algorithm 1 in Section 3 in the case of initial data
[
q0
q1

]
∈ H 1

2
×H. The following

lemma is needed to give an analogue of Corollary 4.2 with less regular initial data.

Lemma 4.5. Let Q0 =

[
q0
q1

]
∈ H 1

2
×H. For each h > 0 there exists Q0h =

[
q0h
q1h

]
∈ H 3

2
×H1

such that
lim
h→0

∥Q0 −Q0h∥X = 0, (4.49)

lim
h→0

hθ ∥Q0h∥H 3
2
×H1

= 0. (4.50)

Proof. Let (φk)k⩾1 be the orthonormal basis of eigenvectors of the operator A0, with the cor-
responding family of positive eigenvalues (λk)k⩾1 that satisfies lim

k→∞
λk = ∞. Recall that the

family (λk)k⩾1 is nondecreasing. There exist two sequences (q0k)k⩾1 and (q1k)k⩾1 of scalars such
that

qj =
∑
k⩾1

qjkφk (j = 0, 1). (4.51)

Let us define

qjh =

Ih∑
k=1

qjkφk (j = 0, 1), (4.52)

where Ih ∈ N∗ will be chosen later on. We remark that

∥q0h∥2H 3
2

=

〈 Ih∑
k=1

q0kλ
3
2
kφk,

Ih∑
k=1

q0kλ
3
2
kφk

〉
=

Ih∑
k=1

|q0k|2λ3k ⩽ λ2Ih

Ih∑
k=1

|q0k|2λk ⩽ λ2Ih∥q0∥
2
H 1

2

,

and

∥q1h∥2H1
=

Ih∑
k=1

|q1k|2λ2k ⩽ λ2Ih

Ih∑
k=1

|q1k|2 ⩽ λ2Ih ∥q1∥
2
H .

10



If we denote by Q0h =

[
q0h
q1h

]
, we obtain that

∥Q0h∥H 3
2
×H1

⩽ λIh ∥Q0∥H 1
2
×H1

. (4.53)

It follows that (4.49) and (4.50) hold if we can choose Ih such that

lim
h→0

Ih = ∞ and lim
h→0

hθλIh = 0. (4.54)

For h > 0, we define the following family of sets

Ph =

{
k ∈ N∗

∣∣∣∣λk ⩽
1

h
θ
2

}
.

It is not difficult to see that there exists h0 > 0 such that for every h ∈ (0, h0), Ph is nonempty.
Moreover, we have lim

h→0
card(Ph) = ∞. Finally, by choosing Ih = card(Ph) it follows that (4.54)

holds and the proof is finished.

Corollary 4.6. Let Q0 =

[
q0
q1

]
∈ H 1

2
×H and t > 0. The following assertions hold

• lim
h→0

∥∥∥TtQ0 − Th,tΠ̃hQ0

∥∥∥
C([0,τ ];X)

= 0;

• lim
h→0

∥∥∥StQ0 − Sh,tΠ̃hQ0

∥∥∥
C([0,τ ];X)

= 0;

• lim
h→0

∥∥∥LtQ0 − Lh,tΠ̃hQ0

∥∥∥
X

= 0.

Proof. For simplicity, we prove only the first assertion, the other ones being similar. Let (Q0h)h>0

be the family constructed in Lemma 4.5. Since Q0h ∈ H 3
2
× H1, from Corollary 4.2 it follows

that
∥TtQ0h − Th,tΠhQ0h∥X ⩽ C(τ)hθ ∥Q0h∥H 3

2
×H1

(t ∈ [0, τ ]) . (4.55)

By using (4.55), the fact that ∥Th,t∥L(Xh) ⩽ 1 and ∥Tt∥L(X) ⩽ 1, we deduce that∥∥∥TtQ0 − Th,tΠ̃hQ0

∥∥∥
X

⩽ ∥Tt (Q0 −Q0h)∥X +
∥∥∥Th,t

(
ΠhQ0h − Π̃hQ0

)∥∥∥
X
+ ∥TtQ0h − Th,tΠhQ0h∥X

⩽ ∥Q0 −Q0h∥X +
∥∥∥ΠhQ0h − Π̃hQ0

∥∥∥
X
+ C(τ)hθ ∥Q0h∥H 3

2
×H1

. (4.56)

In order to evaluate the second right-hand term in (4.56), using (3.15)−(3.16) and (3.17) we get
the existence of a constant C0 > 0 such that∥∥∥Π̃hQ0 −ΠhQ0h

∥∥∥
X

⩽
∥∥∥Π̃hQ0 − Π̃hQ0h

∥∥∥
X
+
∥∥∥Π̃hQ0h − Π̃hΠhQ0h

∥∥∥
X
+
∥∥∥Π̃hΠhQ0h −ΠhQ0h

∥∥∥
X

⩽ ∥Q0 −Q0h∥X + ∥Q0h −ΠhQ0h∥X +
∥∥∥Π̃hΠhQ0h −ΠhQ0h

∥∥∥
X

⩽ ∥Q0 −Q0h∥X + 2C0h
θ ∥Q0h∥H 3

2
×H1

. (4.57)

Finally, combining (4.56)−(4.57) and using Lemma 4.5, the first assertion is proved.
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5 Convergence of the approximate controls

In this section we show the convergence of the approximate controls uh given by (3.31) to the
exact control u for (2.2)−(2.3) introduced in (2.13). We analyze separately two different cases
depending on the regularity assumptions for the initial data Q0 to be controlled. Let us begin
with the case of more regularly initial data.

Theorem 5.1. Suppose that system (2.2)−(2.3) is exactly controllable in some time τ0 > 0,

B0B
∗
0 ∈ L

(
H1, H 1

2

)
and Q0 =

[
q0
q1

]
∈ H 3

2
× H1. Moreover, assume that the discrete system

with numerical viscosity (4.34)−(4.35) is uniformly stable, i.e. (4.44) holds, and let τ1 be given
such that (4.45) is verified. Then for any τ ⩾ max{τ0, τ1} the family (uh)h>0 from C([0, τ ];Uh),
defined by (3.31) in Algorithm 1 with N(h) =

[
θ

lnα−1 ln(h
−1)
]
, converges when h → 0 to the

exact control u in time τ of (2.2)−(2.3) given by (2.13). Moreover, there exist positive constants
h∗ and Cτ such that we have

∥u− uh∥C([0,τ ];U) ⩽ Cτh
θ ∥Q0∥H 3

2
×H1

(0 < h < h∗) . (5.58)

Proof. Firstly, let us remark that uh given by (3.31) can be written as

uh(t) = B∗
hTh,t

[
w0h

w1h

]
+ B∗

hSh,τ−tTh,τ

[
w0h

w1h

]
(t ∈ [0, τ ]) , (5.59)

where

W0h =

[
w0h

w1h

]
=

N(h)∑
n=0

Ln
h,τΠh

[
q0
q1

]
. (5.60)

We define vh : [0, τ ] → Uh as follows

vh(t) = B∗
hTh,tΠhW0 + B∗

hSh,τ−tTh,τΠhW0 (t ∈ [0, τ ]) , (5.61)

where W0 =

[
w0

w1

]
is given by (2.14). From (2.13), (5.61) and (3.21) we have

∥(u− vh)(t)∥U = ∥B∗TtW0 + B∗Sτ−tTτW0 − B∗
hTh,tΠhW0 − B∗

hSh,τ−tTh,τΠhW0∥U
⩽
∥∥∥B∗

(
TtW0 − Π̃hTh,tΠhW0

)∥∥∥
U
+
∥∥∥B∗

(
Sτ−tTτW0 − Π̃hSh,τ−tTh,τΠhW0

)∥∥∥
U

⩽ C
(
∥TtW0 − Π̃hTh,tΠhW0∥X + ∥Sτ−tTτW0 − Π̃hSh,τ−tTh,τΠhW0∥X

)
⩽ C

(∥∥∥TtW0 − Π̃hTtW0

∥∥∥
X
+ ∥TtW0 − Th,tΠhW0∥X

)
+ C

(∥∥∥Sτ−tTτW0 − Π̃hSτ−tTτW0

∥∥∥
X
+ ∥Sτ−tTτW0 − Sh,τ−tTh,τΠhW0∥X

)
.

By using (3.15), (3.17), (2.14) and Corollary 4.2, from the above estimate we deduce that
there exist h∗1 > 0 and C1

τ > 0 such that for any h ∈ (0, h∗1) we have

∥u− vh∥C([0,τ ];U) ⩽ C1
τh

θ ∥Q0∥H 3
2
×H1

(h ∈ (0, h∗1)). (5.62)

On the other hand we have that

∥(vh − uh)(t)∥U = ∥B∗
hTh,tW0h + B∗

hSh,τ−tTh,τW0h − B∗
hTh,tΠhW0 − B∗

hSh,τ−tTh,τΠhW0∥U
⩽ ∥B∗

hTh,t (W0h −ΠhW0)∥U + ∥B∗
hSh,τ−tTh,τ (W0,h −ΠhW0)∥U

⩽ C (∥Th,t (W0h −ΠhW0) ∥X + ∥Sh,τ−tTh,τ (W0,h −ΠhW0) ∥X)

⩽ C ∥W0h −ΠhW0∥X ⩽ C ∥W0h −W0∥X ,
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where for the last estimates we have used that ∥Th,t∥L(Xh)
⩽ 1, ∥Sh,τ−t∥L(Xh)

⩽ 1 and
∥Πh∥

L
(
H 1

2
×H 1

2
,Xh

) ⩽ 1. Consequently, we deduce that

∥uh − vh∥C([0,τ ];U) ⩽ C ∥W0h −W0∥X . (5.63)

We estimate the right-hand side of (5.63) as follows

||W0 −W0h||X =

∣∣∣∣∣∣
∣∣∣∣∣∣
∞∑
n=0

Ln
τQ0 −

N(h)∑
n=0

Ln
h,τΠhQ0

∣∣∣∣∣∣
∣∣∣∣∣∣
X

⩽
∞∑

n=N(h)+1

∥Lτ∥nL(X )∥Q0∥X +

N(h)∑
n=0

∥(Ln
τ − Ln

h,τΠh)Q0∥X .

The above estimate and Corollary 4.3 imply that there exists h∗2 such that for any h ∈ (0, h∗2)
the following inequalities are verified

||W0 −W0h||X ⩽

 ∥Lτ∥N(h)+1
L(X )

1− ∥Lτ∥L(X )
+

N(h)∑
n=0

αn−1 (C0α+ nK1τ)h
θ

 ∥Q0∥H 3
2
×H1

⩽ C2
τ

(
∥Lτ∥N(h)+1

L(X ) + hθ
)
∥Q0∥H 3

2
×H1 ⩽ C2

τ (α
N(h)+1 + hθ)∥Q0∥H 3

2
×H1 .

Notice that the existence of a number α ∈ (0, 1) independent of h (see (4.43) and (4.45)) allows
us to use in the above estimates that

∞∑
n=0

αn−1 (C0α+ nK1τ) < C,

where C is a constant independent of h. By choosing N(h) =
[

θ
lnα−1 ln(h

−1)
]
, we obtain

||W0 −W0h||X ⩽ 2C2
τh

θ ∥Q0∥H 3
2
×H1

. (5.64)

From (5.62) and (5.64) we obtain that (5.58) holds and the proof is complete.

Remark 5.2. Estimate (5.58) from Theorem 5.1 shows that we can approximate the continuous
control with an error bounded by hθ, which is the error of the numerical scheme. This result is
a consequence of the numerical viscosity added in the discrete equation, the error obtained in [5]
where no viscosity is used, being bounded by the larger term ln

(
1
h

)
hθ.

Notice that uh given by (5.59) represents in fact an approximate control for the discrete
equation. Theorem 5.1 allows us to estimate the norm of the solution of the controlled discrete
equation at time τ . More precisely, we have the following result.

Corollary 5.3. For each h ∈ (0, h∗), let uh be the discrete control given by Theorem 5.1 corre-

sponding to the initial data Q0 =

[
q0
q1

]
∈ H 3

2
×H1, and let (qh, q̇h) solution of the equation

q̈h(t) +A0hqh(t) +B0huh(t) = 0, (5.65)

qh(0) = πhq0, q̇h(0) = πhq1. (5.66)

There exists a positive constant C > 0 independent of h such that we have

∥(qh(τ), q̇h(τ))∥X ⩽ Chθ ∥Q0∥H 3
2
×H1

(0 < h < h∗). (5.67)
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Proof. Let
[
q
q̇

]
be the controlled solution of (2.2)−(2.3) with the exact control given by (2.13).

Since B0B
∗
0 ∈ L(H1, H 1

2
) and

[
w0

w1

]
∈ H 3

2
×H1 (see Remark 2.3), from (2.13)−(2.14) we deduce

that B0u ∈ C([0, τ ];H 1
2
) and

∥B0u∥
C

(
[0,τ ];H 1

2

) ⩽ C ∥Q0∥H 3
2
×H1

. (5.68)

From (2.2)−(2.3) and (5.65)−(5.66) we have that the function zh = πhq − qh verifies

z̈h(t) +A0hzh(t) + πhB0u(t)−B0huh(t) = 0, (5.69)

zh(0) = żh(0) = 0. (5.70)

If we define
ξh(t) =

1

2
∥zh(t)∥21

2
+

1

2
∥żh(t)∥2 ,

from (5.69)−(5.70) and (5.68) we get

ξ̇h(t) = ⟨z̈h(t), żh(t)⟩+ ⟨A0hzh(t), żh(t)⟩ = −⟨πhB0u(t)−B0huh(t), żh(t)⟩

⩽
√
2∥(πh − π̃h)B0u(t) +B0h(u(t)− uh(t))∥ξ

1
2
h (t)

⩽ C
(
hθ∥Q0∥H 3

2
×H1 + ∥u(t)− uh(t)∥U

)
ξ

1
2
h (t).

Using the above estimate and Theorem 5.1, we get

ξ̇h(t) ⩽ Chθ ∥Q0∥H 3
2
×H1

ξ
1
2
h (t).

Hence, we have that
ξ

1
2
h (τ) ⩽ Cτhθ ∥Q0∥H 3

2
×H1

. (5.71)

Taking into account that u is an exact control for (2.2)−(2.3), we obtain

∥(qh(τ), q̇h(τ))∥X = ∥Πh (q(τ), q̇(τ))− (qh(τ), q̇h(τ))∥X =
√
2ξ

1
2
h (τ).

Finally, (5.67) follows immediately from the last relation and (5.71).

We pass to study the case of initial data Q0 belonging to the space of finite energy X. We
do not expect to obtain error estimates as in Theorem 5.1 but we shall be able to prove the
convergence of the family (uh)h>0.

Theorem 5.4. Suppose that system (2.2)−(2.3) is exactly controllable in some time τ0 > 0,
B0B

∗
0 ∈ L

(
H1, H 1

2

)
and (4.44) holds. Let τ1 be given in (4.45), τ ⩾ max{τ0, τ1} and Q0 =[

q0
q1

]
∈ H 1

2
×H. Then, for any nondecreasing family (N(h))h>0 ⊂ N∗ such that

lim
h→0

N(h) = ∞, (5.72)

the family (uh)h>0 defined by (3.31) in Algorithm 1 converges when h→ 0 to the exact control
u in time τ of (2.2)−(2.3) given by (2.13).
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Proof. Let ε > 0 and, as in Corollary 4.3, let α = max{∥Lτ∥L(H 3
2
×H1), ∥Lh,τ∥L(Xh)} ∈ (0, 1).

Moreover, let Nε with the property
∞∑

n=Nε+1

αn∥Q0∥X ⩽ ε. (5.73)

From (5.72) if follows that there exists h∗1 > 0 such that Nε < N(h) for any h < h∗1.
As in the first part of the proof of Theorem 5.1, uh will be given by (5.59), where this time

W0h is defined by

W0h =

[
w0h

w1h

]
=

N(h)∑
n=0

Ln
h,τ Π̃h

[
q0
q1

]
. (5.74)

Moreover, we introduce vh : [0, τ ] → Uh as follows

vh(t) = B∗
hTh,tΠ̃hW0 + B∗

hSh,τ−tTh,τ Π̃hW0 (t ∈ [0, τ ]) , (5.75)

where W0 =

[
w0

w1

]
is given by (2.14). As in the proof of Theorem 5.1 we obtain that

∥(u− vh)(t)∥U ⩽ C
(∥∥∥TtW0 − Π̃hTtW0

∥∥∥
X
+
∥∥∥TtW0 − Th,tΠ̃hW0

∥∥∥
X

)
+ C

(∥∥∥Sτ−tTτW0 − Π̃hSτ−tTτW0

∥∥∥
X
+
∥∥∥Sτ−tTτW0 − Sh,τ−tTh,τ Π̃hW0

∥∥∥
X

)
.

By using (3.18) and Corollary 4.6, from the above estimate we deduce that there exists h∗2 > 0
such that

∥u− vh∥C([0,τ ];U) ⩽ ε (h ∈ (0, h∗2)) . (5.76)

On the other hand (5.63) holds and we have to estimate ∥W0h −W0∥X . By using (2.13),
(2.14), (5.59), (5.60) and (5.61) we have

∥W0h −W0∥X ⩽

∥∥∥∥∥∥
∞∑
n=0

Ln
τQ0 −

N(h)∑
n=0

Ln
h,τ Π̃hQ0

∥∥∥∥∥∥
X

=

∥∥∥∥∥∥
∞∑

n=Nε+1

Ln
τQ0 +

Nε∑
n=0

Ln
τQ0 −

Nε∑
n=0

Ln
h,τ Π̃hQ0 −

N(h)∑
Nε+1

Ln
h,τ Π̃hQ0

∥∥∥∥∥∥
X

⩽
∞∑

n=Nε+1

∥Lτ∥nL(X ) ∥Q0∥X +

Nε∑
n=0

∥∥∥Ln
τQ0 − Ln

h,τ Π̃hQ0

∥∥∥
X

+
∞∑

n=Nε+1

∥Lh,τ∥nL(X ) ∥Q0∥X . (5.77)

From the above estimate and (5.73) we deduce that

∥W0h −W0∥X ⩽ 2ε+

Nε∑
n=0

∥∥∥Ln
τQ0 − Ln

h,τ Π̃hQ0

∥∥∥
X
. (5.78)

Using Corollary 4.6, it follows that there exists h∗3 such that, for h ∈ (0, h∗3), we have that the
following inequalities hold∥∥∥Lτ

(
Lk
τQ0

)
− Lh,τ

(
Π̃hL

k
τQ0

)∥∥∥
X
<

ϵ

Nε
(0 ⩽ k ⩽ Nε − 1).
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From the above inequalities we deduce that, for any 1 ⩽ n ⩽ Nε, we have∥∥∥Ln
τQ0 − Ln

h,τ Π̃hQ0

∥∥∥
X

⩽
∥∥∥Lτ

(
Ln−1
τ Q0)− Lh,τ (Π̃hL

n−1
τ Q0

)∥∥∥
X
+
∥∥∥Lh,τ Π̃h

(
Lτ (L

n−2
τ Q0)− Lh,τ Π̃hL

n−2
τ Q0

)∥∥∥
X

+
∥∥∥L2

h,τ Π̃h

(
Lτ (L

n−3
τ Q0)− Lh,τ Π̃hL

n−3
τ Q0

)∥∥∥
X
+ . . .+

∥∥∥Ln−1
h,τ Π̃h

(
LτQ0 − Lh,τ Π̃hQ0

)∥∥∥
X

⩽
ε

Nε

(
1 + α+ α2 + . . .+ αn−1

)
⩽

ϵ

Nε(1− α)
.

It follows that
Nε∑
n=0

∥∥∥Ln
τQ0 − Ln

h,τ Π̃hQ0

∥∥∥
X

⩽
ε

1− α
+
∥∥∥Q0 − Π̃hQ0

∥∥∥ . (5.79)

By taking into account (3.18), (5.77)−(5.79) and (5.63), we deduce that

lim
h→0

∥uh − vh∥C([0,τ ];U) = 0. (5.80)

Finally, combining (5.76) and (5.80), we have proved that the family (uh)h>0 converges in
C ([0, τ ];U) to u, given by (2.13), which is an exact control in time τ of (2.2)−(2.3).

Remark 5.5. Notice that the viscosity term ϑhηA0hẇ
n
h(t) in systems (3.23)−(3.26) guarantees

that α < 1, uniformly with respect with the parameter h, which is an essential property in the
proof of Theorem 5.4, as it can be seen in estimate (5.77). The convergence of the algorithm in
the absence of the viscosity term remains an open problem.

Remark 5.6. In Theorems 5.1 and 5.4 we have considered a time τ different than the optimal
control time τ0 of the continuous equation. Indeed, τ should be greater and equal to τ0 and, also,
τ1 given by (4.45). If τ1 can be chosen equal to τ0, as it is the case in the continuous equation
(see [14, Lema 2.2]), is an interesting open question.

6 Numerical experiments

The aim of this section is to numerically illustrate the results obtained in the previous sections
for the wave equation in dimension one and two in space and for Euler-Bernoulli beam equation.
In this purpose we approximate these equations by finite elements in space and by a Newmark
scheme of parameters β = 0.25 et γ = 0.5 in time. We also choose the parameter N(h) appearing
in (3.30) as the smallest positive integer for which we have(

∥wN(h)
b,h (0)∥2H 1

2

+ ∥ẇN(h)
b,h (0)∥2H

) 1
2

≤ hθ. (6.81)

Remark 6.1. The relation (6.81) is justified by the following estimates:∥∥∥∥∥∥
[
w0

w1

]
−

N(h)∑
n=0

Ln
τ

[
q0
q1

]∥∥∥∥∥∥
X

⩽
∞∑
k=1

∥∥∥∥∥Lk
τ

[
w

N(h)
b (0)

ẇ
N(h)
b (0)

]∥∥∥∥∥
X

⩽
1

1− α

∥∥∥∥∥
[
w

N(h)
b (0)

ẇ
N(h)
b (0)

]∥∥∥∥∥
X

. (6.82)
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6.1 One dimensional wave equation

We consider the following wave equation:
q̈(t, x)− ∂2xq(t, x) + χa,b(x)u(t, x) = 0, (t, x) ∈ (0, T )× (0, 1)
q(t, 0) = q(t, 1) = 0, t ∈ (0, T )
q(0, x) = q0(x), q̇(0, x) = q1(x), x ∈ (0, 1),

(6.83)

with the distributed control u. For every 0 ≤ a < b ≤ 1 we denote by χa,b the C∞ function
given by

χa,b(x) =


0, x ∈ [0, a] ∪ [b, 1]
1, x ∈ [a+ δ, b− δ]

exp
(
α
(

1
δ2

− 1
(x−a)(a+2δ−x)

))
, x ∈ (a, a+ δ)

exp
(
α
(

1
δ2

− 1
(x−b+2δ)(b−x)

))
, x ∈ (b− δ, b)

(6.84)

and α and δ are positive numbers to choose later. For the remaining part of this section we
choose a = 0.1, b = 0.5, δ = 0.1 and α = 0.02. The final time in which we want to control
to zero the solution of (6.83) is T = 3. The function χa,b corresponding to these parameters is
displayed in Figure 1.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.25

0.50

0.75

1.00
Cutoff function χ0.1,0.5

Figure 1: Function χ0.1,0.5 with δ = 0.1 and α = 0.02.

This is easy to see that wave equation (6.83) can be written using the formalism and notation
in Section 2. More exactly, let H = L2(0, 1), H1 = H2(0, 1) ∩ H1

0 (0, 1) and A0 : H1 → H be
defined by A0φ = −φ′′ for every φ ∈ H1. Therefore, the space H 1

2
is given by H 1

2
= H1

0 (0, 1)

and
H 3

2
=
{
φ ∈ H3(0, 1) ∩H1

0 (0, 1) | φxx(0) = φxx(1) = 0
}
.

For the remaining part of this section, we also set U = L2(a, b) and for every φ ∈ U we define
B0(φ) = χa,bφ ∈ H, with χa,b defined by (6.84).

Since the Newmark scheme used to discretize in time the equation is of order two we choose
to discretize in space the wave equation using P2 finite elements. In this purpose we consider
N + 1 points xi = ih with 0 ≤ i ≤ N and h = 1/N . For every N (and, therefore, for the
corresponding h) we define a subspace Vh of H 1

2
as follows:

Vh = {φ ∈ H 1
2

such that φ |[xi,xi+1]∈ R2[x] for every 0 ≤ i < N}.

For this choice of Vh the estimate (3.17) holds with θ = 2. For what follows we set η = θ = 2.
We chose the initial data to control (q0, q1) ∈ H 3

2
× H 1

2
displayed in Figure 2 (a). Remark
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that this initial data has the limit regularity required by Theorem 5.1, which is (q0, q1) ∈(
H 3

2
×H 1

2

)
\ (H2 ×H1).

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.25

0.50

0.75

1.00
Initial data

q0

q1

10−3 10−2

h

10−6

10−4

10−2

Norm of the controlled final state

ϑ = 1

ϑ = 0

h2

(a) (b)

Figure 2: (a) Initial data (q0, q1) ∈ H 3
2
×H 1

2
for the one dimensional wave equation (6.83). (b)

Norm of the final state of the corresponding final state equation for different values of h and
ϑ ∈ {0, 1}.

We consider several values of h (listed in Table 1) and we take the discretization step in time
∆t = h. The number of iterations needed to fulfill the criteria (6.81) is also reported in Table 1
for ϑ ∈ {0, 1}. We observe that the number of iterations is very similar regardless ϑ = 0 or
ϑ = 1. As expected, N(h) increases when h goes to zero.

h = 1
100 h = 1

200 h = 1
400 h = 1

1000 h = 1
2000

ϑ = 0 15 17 19 21 24

ϑ = 1 14 16 18 21 24

Table 1: Number of iterations N(h) needed to fulfill (6.81) for the one-dimensional wave equa-
tion (6.83), initial data in Figure 2 (a), for different values of h and ϑ ∈ {0, 1}.

For every value of h and for ϑ ∈ {0, 1} we numerically compute a control using the proposed
method. The evolution with respect to h of the norm in H 1

2
×H of the corresponding controlled

solution at the time T is displayed in Figure 2 (b). We observe a complete agreement with
our theoretical results, for both ϑ = 0 and ϑ = 1 this norm behaving as hθ. Nevertheless, for
ϑ = 1 this norm is larger. In Figure 3 we display the contour map of the control obtained for
h = 5× 10−4, ϑ = 0 (left) and ϑ = 1 (right).

In order to illustrate how the norm of the controlled final state depends on ϑ we compute
the control and the corresponding controlled solution for ϑ ∈ {2−i, 0 ≤ i ≤ 16}. In Figure 4
we observe that this norm decreases with a rate of the form Cϑ until it reaches the norm of the
final state of the controlled solution for ϑ = 1.

For better understanding the effect of the numerical viscosity term and the choice of N(h),
for each iteration in Algorithm 1 we computed the corresponding control. The evolution of
norm of the final state of the corresponding controlled solution with respect to the number of
iterations is displayed in Figure 5 in the case where h = 10−2 and h = 5×10−4. For both choices
of h we observe that after n = θ ln(h−1) iterations the norm of the final state of the controlled
solution remains constant when ϑ = 1. This is in perfect agreement with Theorem 5.1.
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Figure 3: Control computed for h = 5 × 10−4, initial data in Figure 2, ϑ = 0 (left) and ϑ = 1
(right).

10−4 10−2 100

ϑ

10−7

10−6

10−5

10−4

Norm of the controlled final state

ϑ 6= 0

ϑ = 0

Figure 4: Norm of the controlled final state corresponding to initial data in Figure, h = 1
2000

with respect to ϑ.

0 5 10 15
Iteration number n

10−4

10−3

10−2

10−1

Norm of the controlled final state for h = 10−2

ϑ = 1

ϑ = 0

n = θ ln(h−1)

0 5 10 15 20 25
Iteration number n

10−6

10−4

10−2

Norm of the controlled final state for h = 5× 10−4

ϑ = 1

ϑ = 0

n = θ ln(h−1)

Figure 5: Norm of the controlled final state of the wave equation with initial data in Figure 2
and the control computed using n iterations.
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6.2 One-dimensional wave equation with initial data in H 1
2
×H

We consider here un intial data which is only in H 1
2
×H. More exactly, we take

q0(x) =

 1− 10|x− 0.6| for x ∈ [0.5, 0.7]

0 otherwise
q1(x) = −1(0.5,0.6](x)+1(0.6,0.7)(x). (6.85)

The same numerical experiments as in Section 6.1 were done for this less regular initial data.
We observe in Table 2 that Algorithm 1 does not coverge any more when ϑ = 0. For ϑ = 1
we observe the number of iterations needed for the converge of the Algorithm behaves similarly
to the case studied in the previous section. The control obtained once the Algorithm converged
or when the maximal number of iterations was reached is displayed in Figure 6. As exepected,
the control obtained for ϑ = 0 has more high frequency oscilations than the control computed
for ϑ = 1.
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0.0

0.5

1.0

1.5

2.0

2.5

3.0

t

−32

−24

−16

−8

0

8

16

24

32

0.1 0.3 0.5
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

t

−32

−24

−16

−8

0

8

16

24
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Figure 6: Control computed for h = 5× 10−4, initial data (6.85), ϑ = 0 (left) and ϑ = 1 (right).

h = 1
100 h = 1

200 h = 1
400 h = 1

1000 h = 1
2000

ϑ = 0 19 26 29 27 37

ϑ = 1 - - - - -

Table 2: Number of iterations N(h) needed to fulfill (6.81) for the one-dimensional wave equa-
tion (6.83), initial data in Figure 2 (a), for different values of h and ϑ ∈ {0, 1}.

The evolution of norm of the controlled solution at the time T = 3 with respect to the
discretization parameter h is illustrated in Figure 7 (b).
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Iteration number n

100

2× 10−1

3× 10−1

4× 10−1

6× 10−1

Norm of the controlled final state for h = 5× 10−4

ϑ = 1

ϑ = 0

n = ln(h−1)

10−3 10−2

h
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Energy of controlled final state

ϑ = 0.1

ϑ = 0√
h

(a) (b)

Figure 7: (a)Norm of the controlled solution at the time T controlled by the partial control
obtained at each iteration of Algorithm 1 corresponding to initial data (6.85), h = 5 × 10−4

and ϑ ∈ {0, 1}. (b) Norm of the controlled solution at the time T controlled by the control
obtained at the end of Algorithm 1 corresponding to initial data (6.85) and for different values
of h and ϑ ∈ {0, 1}.

6.3 Two-dimensional wave equation

We consider the following two-dimensional wave equation:
q̈(t,x)−∆q(t,x) + χω(x)u(t,x) = 0, (t,x) ∈ (0, T )× Ω

q(t,x) = 0, (t,x) ∈ (0, T )× ∂Ω

q(0,x) = q0(x), q̇(0,x) = q1(x), x ∈ Ω,

(6.86)

with Ω = (0, 1)2 and ω ⊂ Ω. In Figure 8 (a) we represent a quadrangular Qh mesh of Ω with
the elements in ω colored in orange. The cutoff function χΩ is a regular function supported in
ω with values between 0 and 1. This function is represented in Figure 8 (b).

Ω

x1

x2

ω

χω

x1

x2

(a) (b)

Figure 8: (a) A quadrangular regular mesh Qh of the unit square Ω = (0, 1)2 formed by 2500
square elements (h = 1

50). (b) Level curves of the cutoff function χω.
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We employ quadratic elements in space and the Newmark scheme in time. More exactly,
Vh ⊂ H

1
2 is defined by

Vh =
{
φ ∈ H 1

2
such that φ|Q ∈ R2[x1, x2] for every Q ∈ Qh

}
.

For this section we choose the following regular initial data:

u0(x) = sin(πx1) sin(πx2), u1(x) = 0, for x = (x1, x2) ∈ Ω. (6.87)

We consider three meshes Qh of Ω (h given in the first row of Table 3) and we take the dis-
cretization step in time ∆t = 10−2. The number of iterations needed to fulfill the criteria (6.81)
is also reported in Table 3 for ϑ ∈ {0, 1}. We observe that the number of iterations is smaller
for ϑ = 0 for large values of h. As expected, N(h) increases when h goes to zero.

h = 1
25 h = 1

50 h = 1
100

ϑ = 0 31 51 66

ϑ = 1 50 59 69

Table 3: Number of iterations N(h) needed to fulfill (6.81) for the two-dimensional wave equa-
tion (6.86), initial data (6.87), for different values of h and ϑ ∈ {0, 1}.

For each of the three meshes Qh and for ϑ ∈ {0, 1} we numerically compute a control using the
proposed method. The evolution with respect to h of the norm in H 1

2
×H of the corresponding

controlled solution at the time T = 3 is displayed in Figure. The results are similar to the one
dimensional setting: for both ϑ = 0 and ϑ = 1 this norm behaving as hθ. Nevertheless, for ϑ = 1
this norm is slightly larger.

10−2 2× 10−2 4× 10−2

h

10−4

10−3

10−2

10−1

100
Norm of the controlled final state

ϑ = 1

ϑ = 0

h2

Figure 9: Norm of the final state of the controlled solution of the two dimensional wave equa-
tion (6.86) with initial data (6.87) for different values of h and ϑ ∈ {0, 1}.

6.4 The Euler-Bernoulli beam equation

Another example of equation which can be handled in the framework described in Section 2 is
the following Euler-Bernoulli beam equation with distributed control:

q̈(t, x) + ∂4xq(t, x) + χa,b(x)u(t, x) = 0, (t, x) ∈ (0, T )× (0, 1)

q(t, 0) = q(t, 1) = ∂2xq(t, 0) = ∂2xq(t, 1) = 0, t ∈ (0, T )

q(0, x) = q0(x), q̇(0, x) = q1(x), x ∈ (0, 1),

(6.88)

22



with χa,b being the function given by (6.84). We set againH = L2(0, 1). Then, the corresponding
H1 space is given by H1 = {φ ∈ H4(0, 1)∩H1

0 (0, 1) such that φ′′(0) = φ′′(1)} and A0 : H1 → H
be defined by A0φ = −∂4xφ for every φ ∈ H1. Therefore, the space H 1

2
is given by H 1

2
=

H2 ∩H1
0 (0, 1) and

H 3
2
=
{
φ ∈ H6(0, 1) ∩H1 | ∂4xφ(0) = ∂4xφ(1) = 0

}
.

As in the case of the wave equation, we set U = L2(a, b) and for every φ ∈ U we define
B0(φ) = χa,bφ ∈ H, with χa,b defined by (6.84).

In order to have a conform approximation, we discretize the equation (6.88) with respect
to spatial variable by using Hermite finite elements. More precisely, we consider N + 1 points
(xi)0≤i≤N equi-distributed in the interval [0, 1] and we set h = 1/N . For every N (and, therefore,
for the corresponding h) we define a subspace Vh of H 1

2
as follows:

Vh = {φ ∈ H 1
2

such that φ |[xi,xi+1]∈ R3[x] for every 0 ≤ i < N}.

We recall that a function φ ∈ Vh is uniquely determined by its values in the points xi and
the values of φ′ evaluated on the same points. For the discretization in time we choose a
discretization step ∆t = h

10 . The control u acts in the interval (0.1, 0.4), i.e. a = 0.1, b = 0.4.
We consider a very regular initial data

y0(x) = sin(πx), y1(x) = 0, (x ∈ (0, 1)) (6.89)

and a controllability time T = 1. We consider several values of h (listed in Table 4).

h = 1
100 h = 1

200 h = 1
400 h = 1

1000

ϑ = 0 51 56 62 70

ϑ = 1 51 56 62 70

Table 4: Number of iterations N(h) needed to fulfill (6.81) for the Euler-Bernoulli beam equa-
tion (6.88), initial data (6.89), for different values of h and ϑ ∈ {0, 1}.

The number of iterations needed to fulfill the criteria (6.81) is also reported in Table 4 for
ϑ ∈ {0, 1}. We observe, as for the wave equation, that the number of iterations is very similar
regardless ϑ = 0 or ϑ = 1. As expected, N(h) increases when h goes to zero.

For every value of h and for ϑ ∈ {0, 1} we numerically compute a control using the proposed
method. The evolution with respect to h of the norm in H 1

2
×H of the corresponding controlled

solution at the time T is displayed in Figure 10. We observe a complete agreement with our
theoretical results, for both ϑ = 0 and ϑ = 1 this norm behaving as hθ. Nevertheless, for ϑ = 1
this norm is larger.
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Figure 10: Norm of the final state of the controlled beam equation (6.88) for different values of
h and ϑ ∈ {0, 1}.
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