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Abstract

We consider a Stackelberg control strategy applied to the Boussinesq system. More precisely, we act on this
system with a hierarchy of two controls. The aim of the “leader” control is the null controllability property
whereas the objective of “follower” control is to keep the state close to a given trajectory. By solving first the
optimal control problem associated with the follower control, we are lead to show the null-controllability property
of a system coupling a forward with a backward Boussinesq type systems. Our main result states that for an
adequate weighted functional for the optimal control problem, this coupled system is locally null-controllable. To
show this result, we first study the adjoint system of the linearized system and obtain a weighted observability
estimate by combining several Carleman estimates and an adequate decomposition for the heat and the Stokes
system.
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1 Introduction

In the last years, the PDE community has intensively studied the controllability properties of different equations
when acting on them with two or more controls having different objectives. Game theory originally studied this
kind of problem. The idea is that a leader player (or control) acts, and a follower player (or control) reacts to this
action trying to fulfill its own objective. Following this structure, J. L. Lions [21] proposed in 1994 a Stackelberg
control strategy for the heat equation. In his formulation, the leader control had an approximate controllability
objective, and the follower control, reacting to the leader control, had an optimization objective. Since then, several
works have explored different models and actions. See e.g. [1–4,7, 18].

In most of these papers, the leader control has a controllability objective. That is, its target is a null, exact or
approximate one, and the follower aims to minimize a given functional. Classically, this functional adds the square
of the proximity of the solution to a given function in some domain plus the square of the L2 norm of the control.
This approach gives a characterization of the follower control that introduces a coupled equation to the original one.
This characterization implies that achieving the leader control objective implies controlling the first component of a
strongly coupled forward-backward system. For some classical equations dealing with an approximate controllability
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objective for the leader has already been done using unique continuation techniques. This is the case in [21] for the
heat equation, in [17] for the Stokes system or in [4] for micropolar fluids. However, when the leader objective is
a null controllability one, the problem is much more complex. In [3] for example, this null controllability objective
is proved using very precise Carleman inequalities for a strongly coupled forward-backward heat equations. In this
paper we explore a Stackelberg control strategy for the two dimensional Boussinesq system. In order to handle
the null controllability problem of the strongly coupled system that arises in the characterization of the optimal
(follower) control, we work in a weighted L2 space norm of the follower control. The weight comes precisely from a
function that appears in the Carleman inequalities. In this sense we used the strategy followed in [19].

The problem we are considering is the following: let Ω be a bounded smooth domain of R2 and T > 0. Let ω
and O be two nonempty open subsets of Ω with

ω ∩ O = ∅.

We consider the Boussinesq system with two controls f and f? acting on the temperature:
∂ty −∆y +∇πy + (y · ∇) y = θe2 in (0, T )× Ω,
∂tθ −∆θ + y · ∇θ = f1ω + f?1O in (0, T )× Ω,
∇ · y = 0 in (0, T )× Ω,
y = 0, θ = 0 on (0, T )× ∂Ω,
y(0, ·) = y0, θ(0, ·) = θ0 in Ω.

(1.1)

In the above system y = y(t, x) ∈ R2, πy = πy(t, x) ∈ R and θ = θ(t, x) ∈ R are respectively the velocity, the
pressure and the temperature of the fluid, whereas (e1, e2) is the canonical basis of R2. Note that, to simplify
the presentation, we have taken several physical constants equal to 1: the viscosity, the density and the thermal
conductivity of the fluid and the gravitational acceleration. The functions f and f? are two controls that have two
different objectives:

1. the aim of f? is that (y, θ) remains close to a given target (y?, θ?) ∈ L2(0, T ;L2(Ω)3);

2. the aim of f is that the state is at rest at the final time T : (y, θ)(T, ·) = 0 in Ω.

We write the first objective as an optimal control problem, that is, we are looking for a control f? that minimizes
a functional involving the “distance” between (y, θ) and the desired state (y?, θ?). For the second objective, f will
solve a classical null-controllability problem.

Let us describe the problem framework. First, let us recall the definition of some standard spaces for the study
of the Stokes system:

H :=
{
y ∈ L2(Ω)2 : ∇ · y = 0 in Ω, y · ν = 0 on ∂Ω

}
, (1.2)

V :=
{
y ∈ H1

0 (Ω)2 : ∇ · y = 0 in Ω
}
, (1.3)

where we denote by ν the unit outward normal vector field on the boundary ∂Ω. For the first objective, we introduce
an optimal control problem for f? where we fix

f ∈ L2(0, T ;L2(ω)), y0 ∈ V, θ0 ∈ H1
0 (Ω). (1.4)

Then, for any f? ∈ L2(0, T ;L2(O)), one can check that system (1.1) admits a unique strong solution (y(f?), θ(f?))
and we can thus consider the weighted functional

J(f?) :=
1

2

∫∫
(0,T )×O?

[
|y(f?)− y?|2 + |θ(f?)− θ?|2

]
dx dt+

1

2

∫∫
(0,T )×O

|f?|2

µ
dx dt (1.5)

where O? is a nonempty open set and represents the observability domain for f? and µ is a weight function satisfying

µ ∈ C0([0, T ];R+), µ(0) = µ(T ) = 0, µ > 0 in (0, T ),
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that will be described later (see (1.10) and(1.15)). For this functional, we aim to solve the optimal control problem

inf
f?∈L2(0,T ;L2(O))

J(f?). (1.6)

In relation to the above, we have the following result:

Lemma 1.1. Assume (1.4) and that (y?, θ?) ∈ L2(0, T ;L2(Ω)3). There exists C > 0 such that if

‖µ‖L∞(0,T ) 6 C, (1.7)

then the optimal control problem (1.6) admits a unique solution given by

f? := −µσ, (1.8)

where (y, θ, u, σ) is the solution of the coupled system

∂ty −∆y +∇πy + (y · ∇) y = θe2 in (0, T )× Ω,
∂tθ −∆θ + y · ∇θ = f1ω − µσ1O in (0, T )× Ω,

−∂tu−∆u+∇πu + (∇y)
>
u− (y · ∇)u+ σ∇θ = (y − y?) 1O? in (0, T )× Ω,

−∂tσ −∆σ − y · ∇σ = u2 + (θ − θ?) 1O? in (0, T )× Ω,
∇ · y = ∇ · u = 0 in (0, T )× Ω,
y = u = 0, θ = σ = 0 on (0, T )× ∂Ω,
y(0, ·) = y0, θ(0, ·) = θ0, u(T, ·) = 0, σ(T, ·) = 0 in Ω.

(1.9)

Here, we have denoted by ·> the transpose of a matrix. The proof of Lemma 1.1 is standard but for sake of
completeness, we give a sketch of its proof in Section 2.3.

Our first main result states the partial null-controllability of the above coupled system:

Theorem 1.2. Assume that ω ∩ O = ∅ and that ω ∩ O? 6= ∅. There exist C > 0 and ρ1, ρ2 ∈ C0([0, T ]) such that

ρ1(0) = ρ1(T ) = ρ2(T ) = 0, ρ1 > 0 in (0, T ), ρ2 > 0 in [0, T )

with the following property: if

µ

ρ1
∈ L∞(0, T ),

(y?, θ?)

ρ2
∈ L2(0, T ;L2(Ω)3), (y0, θ0) ∈ V×H1

0 (Ω), (1.10)

with ∥∥∥∥ (y?, θ?)

ρ2

∥∥∥∥
L2(0,T ;L2(Ω)3)

+
∥∥(y0, θ0)

∥∥
H1(Ω)3

6 C,

then, there exist a control f ∈ L2(0, T ;L2(ω)) and a solution

(y, θ, u, σ) ∈ L2(0, T ;H2(Ω)6) ∩ C0([0, T ];H1(Ω)6) ∩H1(0, T ;L2(Ω)6), (πy, πu) ∈ L2(0, T ;H1(Ω)2)

of (1.9) satisfying
y(T, ·) = 0, θ(T, ·) = 0 in Ω.

Remark 1.3. We will take ρ1 such that the first condition in (1.10) implies (1.7). The precise definition of ρ1 and
ρ2 are given in (4.1).

In order to show this result, we linearize system (1.9) and consider

∂ty −∆y +∇πy = θe2 + h(1) in (0, T )× Ω,
∂tθ −∆θ = f1ω − µσ1O + h(2) in (0, T )× Ω,

−∂tu−∆u+∇πu = y1O? + h(3) in (0, T )× Ω,
−∂tσ −∆σ = u2 + θ1O? + h(4) in (0, T )× Ω,
∇ · y = ∇ · u = 0 in (0, T )× Ω,
y = u = 0, θ = σ = 0 on (0, T )× ∂Ω,
y(0, ·) = y0, θ(0, ·) = θ0, u(T, ·) = 0, σ(T, ·) = 0 in Ω,

(1.11)
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where h(1), h(2), h(3) and h(4) are given source terms. Then, we consider the partial null-controllability of (1.11):
we look for a control f ∈ L2(0, T ;L2(ω)) such that y(T, ·) = 0 and θ(T, ·) = 0. Finally, we deduce Theorem 1.2 by
a fixed-point argument where we replace h(1), h(2), h(3) and h(4) by the nonlinearities

h(1) = − (y · ∇) y, h(2) = −y · ∇θ, (1.12)

h(3) = − (∇y)
>
u+ (y · ∇)u− σ∇θ − y?1O? , h(4) = y · ∇σ − θ?1O? . (1.13)

In order to prove the partial null-controllability of (1.11), we use a standard duality argument and need to prove
an observability inequality for the adjoint system

−∂tv −∆v +∇πv = w1O? + g(1) in (0, T )× Ω,
−∂tϕ−∆ϕ = v2 + ψ1O? + g(2) in (0, T )× Ω,
∂tw −∆w +∇πw = ψe2 + g(3) in (0, T )× Ω,
∂tψ −∆ψ = −µϕ1O + g(4) in (0, T )× Ω,
∇ · v = ∇ · w = 0 in (0, T )× Ω,
v = w = 0, ϕ = ψ = 0 on (0, T )× ∂Ω,
v(T, ·) = v0, ϕ(T, ·) = ϕ0, w(0, ·) = 0, ψ(0, ·) = 0 in Ω.

(1.14)

We show in the next section (see Proposition 2.2) that the above linear system is well-posed for ‖µ‖L∞(0,T ) small
enough. Our second main result states as follows:

Theorem 1.4. Assume that ω ∩ O = ∅ and that ω ∩ O? 6= ∅. There exists ρ ∈ C0([0, T ]) such that

ρ(0) = ρ(T ) = 0, ρ > 0 in (0, T )

with the following property: for any µ satisfying

µ

ρ11
∈ L∞(0, T ), (1.15)

there exists C > 0 such that any solution (v, ϕ,w, ψ) of (1.14) satisfies∥∥ρ22(v, ϕ,w, ψ)
∥∥2

L2(0,T ;L2(Ω)6)

6 C

(∥∥∥ρ12
(
g(1), g(2), g(3), g(4)

)∥∥∥2

L2(0,T ;L2(Ω)6)
+

∫∫
(0,T )×ω

ρ26 |ϕ|2 dx dt

)
. (1.16)

The precise definition of ρ is given in (2.19) and is such that the condition (1.15) implies (1.7). Note that the
powers in (1.16) are not optimal but are sufficient to prove Theorem 1.2.

As far as we know, this is one of the first results for the hierarchical control for the Boussinesq system and in the
case where the number of scalar controls is less than the number of the dimension of the states. Here we only use
one control acting on the heat equation to control both the fluid velocity and temperature. Note also that using the
techniques developed in [18] and [22], we could extend our work in the case of the robust Stackelberg controllability
for the Boussinesq system. We could also extend this result to the Boussinesq equations in 3D, but in that case,
we would need an additional scalar control in the Navier-Stokes system.

Our method to prove Theorem 1.4 is based on a (global) Carleman inequality that is a standard tool used in
the proof of the null controllability of parabolic equations and were introduced in [16]. Several works have used
such kind of estimates to study the controllability of Stokes or Navier-Stokes systems (for instance, [20] or [14]).
The case of controls with some vanishing components as in (1.1) can be also studied with this approach, see for
instance [15], [11] and [9]. Note that, another method, based on results of Gromov, has been applied to obtain the
local null controllability of the Navier-Stokes system in dimension 3 with a control having two vanishing components.

Here, we follow the method based on the Carleman estimates and more precisely the strategy introduced in [11]
that consists in applying appropriate differential operators to get rid of the pressure. Such a strategy was also used
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in several articles devoted to the insensitizing controllability of the Navier-Stokes system [9] or to the Boussinesq
system [8]. The linear system associated with the Boussinesq system in [8] is similar to (1.14) and we thus consider
the same steps and in particular the same method to deal with the local terms in ψ that appear in the Carleman
estimates. However, one of the main differences comes from the fact that in [8], the authors need to impose some
regularity on the source terms g(i). Here we avoid such a restriction and use for v, w and ψ a decomposition
introduced in [10]. This decomposition generalizes a standard decomposition in two terms, used for instance for the
Navier-Stokes system or the Boussinesq system. A similar decomposition is also introduced in [5] but it can not be
used for systems of the form (1.14) where some equations are forward in time and other are backwards in time.

The outline of the article is a follows: in next section, we present the functional framework to study (1.11) and
(1.14), and we state some well-posedness results. We also show Lemma 1.1 and introduce the weight functions for
the Carleman estimate. Section 3 is devoted to the Carleman estimates that lead to the proof of Theorem 1.4.
Finally in Section 4, we show Theorem 1.2 with standard arguments and in particular a fixed point procedure.

Notation. In the whole paper, we use C as a generic positive constant that does not depend on the other terms of
the inequality. The value of the constant C may change from line to line. We also use the notation X . Y if there
exists a constant C > 0 such that we have the inequality X 6 CY . The notation X .k Y stands for X 6 CY ,
where C is a positive constant depending on k.

2 Preliminaries

In this section, we introduce the operators associated with (1.11) and (1.14). We also state some results for the
well-posedness and regularity of Stokes type systems. We sketch the proof of Lemma 1.1 and we give the weight
functions needed in the Carleman estimates for the next section.

2.1 Functional framework and first regularity results

Recall the spaces (1.2) and (1.3), we introduce the Laplace operator and the Stokes operator:

D(A) := H2(Ω) ∩H1
0 (Ω), A := −∆ : D(A)→ L2(Ω),

and
D(A) :=

{
y ∈

[
H2(Ω) ∩H1

0 (Ω)
]2

: ∇ · y = 0 in Ω
}
, A := −P∆ : D(A)→ H, (2.1)

where P : L2(Ω)2 → H is the orthogonal projection (Leray projector). It is well-known that both operators are
self-adjoint and positive and since ∂Ω is smooth, the elliptic regularity yields that for k ∈ N∗,

D(Ak) ⊂ H2k(Ω), D(Ak) ⊂ H2k(Ω)2.

For T > 0, we now set

Xk :=

k⋂
j=0

Hj(0, T ;D(Ak−j)), Xk :=

k⋂
j=0

Hj(0, T ;D(Ak−j)).

In particular,

X0 = L2(0, T ;L2(Ω)), X1 = L2(0, T ;D(A)) ∩H1(0, T ;L2(Ω)), X1 = L2(0, T ;D(A)) ∩H1(0, T ;H). (2.2)

Let us assume that ψ and w are the strong solutions of the systems{
ψ′ + Aψ = κψ + κF in (0, T )
ψ(0) = 0

,

{
w′ + Aw = κw + κF in (0, T )
w(0) = 0

(2.3)

where κ ∈ C∞((0, T )). Assume j0 > 1 and that for j ∈ {0, . . . , j0},

τj ∈ C∞([0, T ];R+), τj(0) = 0, (2.4)
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∣∣∣∣dkτjdtk

∣∣∣∣ . τj−k (k ∈ {0, . . . , j}),
∣∣∣∣dk−1 (κτj)

dtk−1

∣∣∣∣ . τj−k (k ∈ {1, . . . , j}). (2.5)

Following the proof of [23, Lemma 2.4], we have the following result:

Lemma 2.1. Assume that ψ and w are the strong solutions of the systems of (2.3), that j0 > 1, and that κ, τj,
j ∈ {0, . . . , j0} satisfy the above hypotheses. If F ∈ Xj0−1, then for any j ∈ {1, . . . , j0},

τjw ∈ Xj , τj∂
k
t w ∈ L2

(
0, T ;D

(
Aj−k

))
(k ∈ {1, . . . , j}),

and we have the estimate
j0∑
j=1

j∑
k=0

∥∥τj∂kt w∥∥L2(0,T ;D(Aj−k)
. ‖τ0w‖X0

+ ‖F‖Xj0−1
.

Similarly, if F ∈ Xj0−1, then for any j ∈ {1, . . . , j0},

τjψ ∈ Xj , τj∂
k
t ψ ∈ L2

(
0, T ;D

(
Aj−k)) (k ∈ {1, . . . , j}),

and we have the estimate
j0∑
j=1

j∑
k=0

∥∥τj∂kt ψ∥∥L2(0,T ;D(Aj−k)
. ‖τ0ψ‖X0

+ ‖F‖Xj0−1
.

2.2 Well-posedness properties for the direct and the adjoint system

We first show the existence and uniqueness of strong solutions for the adjoint system (1.14) provided that ‖µ‖L∞(0,T )

is small enough. To simplify the notation, in what follows, we write

h :=
(
h(1), h(2), h(3), h(4)

)
and g :=

(
g(1), g(2), g(3), g(4)

)
. (2.6)

We recall that X0, X1, X1 are given by (2.2) and that V is given by (1.3).

Proposition 2.2. Let T > 0. There exists a constant C > 0 such that if

‖µ‖L∞(0,T ) 6 C, (2.7)

then (1.14) is well-posed: for any g ∈ [X0]
6
, v0 ∈ V and ϕ0 ∈ H1

0 (Ω), there exists a unique strong solution of (1.14)
with

‖(v, ϕ,w, ψ)‖X1×X1×X1×X1
. ‖g‖[X0]6 +

∥∥(v0, ϕ0)
∥∥
H1(Ω)3

.

Proof. We use a fixed-point argument: for any ϕ̃ ∈ X0, we can solve the system

−∂tv −∆v +∇πv = w1O? + g(1) in (0, T )× Ω,
−∂tϕ−∆ϕ = v2 + ψ1O? + g(2) in (0, T )× Ω,
∂tw −∆w +∇πw = ψe2 + g(3) in (0, T )× Ω,
∂tψ −∆ψ = −µϕ̃1O + g(4) in (0, T )× Ω,
∇ · v = ∇ · w = 0 in (0, T )× Ω,
v = w = 0, ϕ = ψ = 0 on (0, T )× ∂Ω,
v(T, ·) = v0, ϕ(T, ·) = ϕ0, w(0, ·) = 0, ψ(0, ·) = 0 in Ω,

(2.8)

More precisely, the system is in “cascade”: we can obtain successively ψ, w, v and ϕ with the estimate

‖(v, ϕ,w, ψ)‖X1×X1×X1×X1
. ‖g‖[X0]6 +

∥∥(v0, ϕ0)
∥∥
H1(Ω)3

+ ‖µ‖L∞(0,T ) ‖ϕ̃‖X0
.

In particular, we can consider the mapping Z : X0 → X0, ϕ̃ 7→ ϕ, where (v, ϕ,w, ψ) is the corresponding solution
of (2.8). We can see from the above estimate that if ‖µ‖L∞(0,T ) is small enough, then Z is a strict contraction.
Applying the Banach fixed point theorem, we deduce the existence and the uniqueness of a fixed point for Z and
this yields the results of the proposition.
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We can obtain the same result for (1.11) with a similar proof.

Proposition 2.3. Let T > 0. There exists a constant C > 0 such that if (2.7) holds, then (1.11) is well-posed: for

any h ∈ [X0]
6
, f ∈ L2(0, T ;L2(ω)), y0 ∈ V and θ0 ∈ H1

0 (Ω), there exists a unique strong solution of (1.11) with

‖(y, θ, u, σ)‖X1×X1×X1×X1
. ‖h‖[X0]6 + ‖f‖L2(0,T ;L2(ω)) +

∥∥(y0, θ0)
∥∥
H1(Ω)3

.

We now define the following operators

L (y, πy, θ, u, πu, σ) :=


∂ty −∆y +∇πy − θe2

∂tθ −∆θ + µσ1O
−∂tu−∆u+∇πu − y1O?

−∂tσ −∆σ − u2 − θ1O?

 ,
and

L∗ (v, πv, ϕ, w, πw, ψ) :=


−∂tv −∆v +∇πv − w1O?

−∂tϕ−∆ϕ− v2 − ψ1O?

∂tw −∆w +∇πw − ψe2

∂tψ −∆ψ + µϕ1O

 . (2.9)

This allows us to write (1.11) and (1.14) as
L (y, πy, θ, u, πu, σ) = h+ (0, 0, f1ω, 0, 0, 0) in (0, T )× Ω,
∇ · y = ∇ · u = 0 in (0, T )× Ω,
y = u = 0, θ = σ = 0 on (0, T )× ∂Ω,
y(0, ·) = y0, θ(0, ·) = θ0, u(T, ·) = 0, σ(T, ·) = 0 in Ω,

and 
L∗ (v, πv, ϕ, w, πw, ψ) = g in (0, T )× Ω,
∇ · v = ∇ · w = 0 in (0, T )× Ω,
v = w = 0, ϕ = ψ = 0 on (0, T )× ∂Ω,
v(T, ·) = v0, ϕ(T, ·) = ϕ0, w(0, ·) = 0, ψ(0, ·) = 0 in Ω.

(2.10)

We now define the solutions by transposition for (1.11). In order to do this we first consider a strong solution
(y, πy, θ, u, πu, σ) of (1.11) and

(v, πv, ϕ, w, πw, ψ) ∈
[
X1 × L2(0, T ;H1(Ω)/R)×X1

]2
(2.11)

such that {
v(T, ·) = 0, ϕ(T, ·) = 0 in Ω,
w(0, ·) = 0, ψ(0, ·) = 0 in Ω.

(2.12)

We multiply the first equation of (1.11) by v, the second equation of (1.11) by ϕ, the third equation of (1.11) by
w and the fourth equation of (1.11) by ψ. After some integration by parts, we obtain∫∫

(0,T )×Ω

(y, θ, u, σ) · L∗ (v, πv, ϕ, w, πw, ψ) dx dt+

∫∫
(0,T )×ω

fϕ dx dt

=

∫
Ω

(
y0, θ0

)
· (v(0, ·), ϕ(0, ·)) dx+

∫∫
(0,T )×Ω

h · (v, ϕ,w, ψ) dx dt. (2.13)

This leads to the following definition:

Definition 2.4. Assume f ∈ L2(0, T ;L2(ω)),
(
y0, θ0

)
∈ H × L2(Ω) and h ∈ [X0]

6
. We say that (y, θ, u, σ) ∈

[X0 ×X0]
2

is a solution by transposition of (1.11) if (2.13) holds for any (v, πv, ϕ, w, πw, ψ) satisfying (2.11) and
(2.12).

We deduce from Proposition 2.2 the uniqueness of solutions by transposition of (1.11). In particular if (y, θ, u, σ)
is a strong solution of (1.11), it is the solution by transposition of (1.11).
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2.3 Characterization of the optimal control

We give here a sketch of the proof of Lemma 1.1.

Proof of Lemma 1.1. The existence and uniqueness of the optimal control can be obtained by following the argu-
ments in [6]. The idea is to show that the convexity of J under the condition (1.7) and the Gateaux-differentiability
of the mapping

G : L2(0, T ;L2(O))→ X1 ×X1, f? 7→ (y(f?), θ(f?)),

where (y(f?), θ(f?)) is the unique strong solution of (1.1) associated with f? and with (y0, θ0, f) satisfying (1.4).
Here, we only give some ideas about how to characterize the optimal control. Assume f?, h? ∈ L2(0, T ;L2(O)) and
let us write

(y, θ) = G(f?), (ỹ, θ̃) = DGf?(h?),

where DGf?(h?) is the Gateaux derivative of G at f? in the direction h?. Then, we deduce from (1.1) that (ỹ, θ̃)
satisfies the system 

∂tỹ −∆ỹ +∇πỹ + (ỹ · ∇) y + (y · ∇) ỹ = θ̃e2 in (0, T )× Ω,

∂tθ̃ −∆θ̃ + ỹ · ∇θ + y · ∇θ̃ = h?1O in (0, T )× Ω,
∇ · ỹ = 0 in (0, T )× Ω,

ỹ = 0, θ̃ = 0 on (0, T )× ∂Ω,

ỹ(0, ·) = 0, θ̃(0, ·) = 0 in Ω.

(2.14)

Moreover, some standard computation yields that the Gateaux derivative of J , given by (1.5), at f? in the direction
h?, is given by

DJf?(h?) =

∫∫
(0,T )×O?

[
(y − y?) · ỹ + (θ − θ?) · θ̃

]
dx dt+

∫∫
(0,T )×O

f?h?

µ
dx dt. (2.15)

From the standard theory on the Navier-Stokes system (see, for instance, [24, Chapter III §1 and §3]) and using
that (y, θ) ∈ X1 × X1, one can show the existence and uniqueness of a strong solution (u, σ) ∈ X1 × X1 of the
following system

−∂tu−∆u+∇πu + (∇y)
>
u− (y · ∇)u+ σ∇θ = (y − y?) 1O? in (0, T )× Ω,

−∂tσ −∆σ − y · ∇σ = u2 + (θ − θ?) 1O? in (0, T )× Ω,
∇ · u = 0 in (0, T )× Ω,
u = 0, θ = 0 on (0, T )× ∂Ω,
u(T, ·) = 0, σ(T, ·) = 0 in Ω.

Multiplying the first equation of the above system by ỹ and the second equation by θ̃ and combining it with (2.14),
we obtain after some integration by parts that∫∫

(0,T )×O
h?σ dx dt =

∫∫
(0,T )×O?

[
(y − y?) · ỹ + (θ − θ?) · θ̃

]
dx dt. (2.16)

Comparing (2.15) and (2.16) we deduce that if f? is a critical point of J , then (1.8) holds.

2.4 Definition and properties of the weight functions

In the next section, we are going to show some Carleman estimates in order to prove Theorem 1.4. Here, we define
the corresponding weight functions. First, let us consider a nonempty domain ω0 such that

ω0 ⊂ ω ∩ O?.

Using [16] (see also [25, Theorem 9.4.3, p.299]), we can construct η0 ∈ C2(Ω) satisfying

η0 > 0 in Ω, η0 = 0 on ∂Ω, max
Ω

η0 = 1, ∇η0 6= 0 in Ω \ ω0.
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Then, we define the following functions:

α(t, x) =
exp (24λ)− exp

[
λ(22 + η0(x))

]
t11(T − t)11

, ξ(t, x) =
exp

[
λ(22 + η0(x))

]
t11(T − t)11

,

α](t) = max
x∈Ω

α(t, x) =
exp (24λ)− exp (22λ)

t11(T − t)11
, ξ](t) = min

x∈Ω
ξ(t, x) =

exp (22λ)

t11(T − t)11
,

α[(t) = min
x∈Ω

α(t, x) =
exp (24λ)− exp (23λ)

t11(T − t)11
, ξ[(t) = max

x∈Ω
ξ(t, x) =

exp (23λ)

t11(T − t)11
,

where λ > 1. For the previous functions, we have the following relations: there exists C > 0 depending on the
geometry such that ∣∣(α])′∣∣+

∣∣(ξ])′∣∣ 6 CT (ξ])
1+1/11

,
∣∣(α])′′∣∣+

∣∣(ξ])′′∣∣ 6 CT 2 (ξ])
1+2/11

, (2.17)

|∇α| = |∇ξ| 6 Cλξ, |∆α| = |∆ξ| 6 Cλ2ξ. (2.18)

Now, let us recall two standard results, both of them are stated and proved in [11]. The first one is a Carleman
estimate for the gradient:

Lemma 2.5. Let T > 0 and r ∈ R. There exists C > 0 depending only on r,Ω and ω0 such that, for every
u ∈ L2(0, T ;H1(Ω)),∫∫

(0,T )×Ω

e−2sαsr+2λr+1ξr+2 |u|2 dx dt

6 C

(∫∫
(0,T )×Ω

e−2sαsrλr+1ξr |∇u|2 dx dt+

∫∫
(0,T )×ω0

e−2sαsr+2λr+1ξr+2 |u|2 dx dt

)
,

for any λ > λ0 and s > s0T
11.

The second result is a Carleman estimate for the Laplace operator:

Lemma 2.6. Let T > 0 and r ∈ R. There exists C > 0 depending only on r,Ω and ω0 such that, for every
u ∈ L2(0, T ;H2(Ω) ∩H1

0 (Ω)),∫∫
(0,T )×Ω

e−2sα
(
sr+3λr+4ξr+3 |u|2 + sr+1λr+2ξr+1 |∇u|2

)
dx dt

6 C

(∫∫
(0,T )×Ω

e−2sαsrλr+1ξr |∆u|2 dx dt+

∫∫
(0,T )×ω0

e−2sαsr+3λr+4ξr+3 |u|2 dx dt

)
,

for any λ > λ0 and s > s0

(
T 11 + T 22

)
.

We also introduce the following weight function that will be used multiple times in what follows:

ρ := e−sα] . (2.19)

For this function, we have the following result:

Lemma 2.7. Let T > 0. For any ε > 0, there exist s0, λ0 > 0 such that for any λ > λ0 and s > s0T
22,

ρ 6 ε in (0, T ).
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Proof. There exists λ0 > 0 such that for λ > λ0

e24λ − e22λ >
1

2
e24λ0

and thus for λ > λ0 and s > s0T
22

sα] > s0e
24λ0221

and by taking s0 and λ0 large enough, we deduce

sα] > − ln ε.

With a similar proof, we can also show the following result:

Lemma 2.8. Let T > 0, p, q > 0 and N > M . For any ε > 0, there exist s0, λ0 > 0 such that for any λ > λ0 and
s > s0T

22,
λp (sξ)

q
e−Nsα 6 ερM in (0, T )× Ω.

In the statement of Theorem 1.4, the weight function ρ is defined by (2.19), with λ > λ0 and s > s0

(
T 11 + T 22

)
for λ0 and s0 large enough. From the first condition in (1.15), we have µ . ρ11. From Lemma 2.7, there exist s0, λ0 >
0 such that for any λ > λ0 and s > s0T

22, the smallness condition (2.7) in Proposition 2.2 and Proposition 2.3 is
satisfied together with condition (1.7).

3 Carleman estimates

This section is devoted to the proof of Theorem 1.4. We are going to consider Carleman estimates for the first four
equations in (1.14). For the two Stokes systems (for v and w) and for the heat equation satisfied by ψ, we introduce a
decomposition in three terms where the third term is regular enough to apply the differential operator∇2∆ or∇2∂2

x1
.

This decomposition, introduced in [10], allows us to consider source terms with lower regularity (L2 in this case),
instead of the one needed in [8], where some of the terms g(i) required to be in L2(0, T ;H4(Ω)2)∩H2(0, T ;L2(Ω)2)
or in L2(0, T ;H8(Ω)) ∩H4(0, T ;L2(Ω)).

In what follows, we consider a sequence of nonempty domains ωi such that

ωi ⊂ ωi+1, ωi+1 ⊂ ω ∩ O? (i > 0). (3.1)

We also consider a corresponding sequence of smooth functions such that

χi ∈ C∞(R2;R+), χi ≡ 1 in ωi, with compact support in ωi+1. (3.2)

3.1 Decomposition and Carleman estimate for v

We recall that ρ is defined by (2.19) and that A is defined by (2.1). In the system (1.14), we consider the following
decomposition of v:

ρ20v = ρv(1) + v(2) + v(3), (3.3)

where 
−∂tv(1) + Av(1) = ρ19P

(
w1O? + g(1)

)
in (0, T ), v(1)(T, ·) = 0 in Ω, (3.4a)

−∂tv(2) + Av(2) = −19ρ′v(1) in (0, T ), v(2)(T, ·) = 0 in Ω, (3.4b)

−∂tv(3) + Av(3) = −20
ρ′

ρ

(
v(2) + v(3)

)
in (0, T ), v(3)(T, ·) = 0 in Ω. (3.4c)
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Using the maximal regularity for the Stokes system, we have∥∥∥v(1)
∥∥∥
X1

+
∥∥∥v(2)

∥∥∥
X2

.
∥∥∥ρ19

(
w1O? + g(1)

)∥∥∥
X0

. (3.5)

Let us define

I1(v(3)) :=

∫∫
(0,T )×Ω

e−2sα

(
s10λ11ξ10

∣∣∣v(3)
2

∣∣∣2 + s8λ9ξ8
∣∣∣∇v(3)

2

∣∣∣2) dx dt

+

3∑
j=0

∫∫
(0,T )×Ω

e−2sαs1+2jλ2+2jξ1+2j
∣∣∣∇3−j∆v

(3)
2

∣∣∣2 dx dt+

∫∫
(0,T )×Ω

e−2sα]s8λ9ξ8
]

∣∣∣v(3)
∣∣∣2 dx dt (3.6)

and

J1(v(3)) :=

3∑
j=1

j∑
k=0

∥∥∥τj∂kt v(3)
∥∥∥2

L2(0,T ;H2(j−k)(Ω)2)
, (3.7)

where
τj := e−sα]λ

9
2 (sξ])

4−j 12
11 (j = 0, . . . , 3). (3.8)

The aim of this section is to show the following result:

Lemma 3.1. There exist λ0 and s0 such that for any λ > λ0 and s > s0(T 11 + T 22), the solution (v, ϕ,w, ψ) of
(1.14) and v(3) defined as above satisfy

I1(v(3)) + J1(v(3)) +
∥∥ρ21v

∥∥2

X0
.
∥∥∥ρ19

(
w1O? + g(1)

)∥∥∥2

X0

+

∫∫
(0,T )×ω4

e−2sαs12λ13ξ12
∣∣∣v(3)

2

∣∣∣2 dx dt. (3.9)

Proof. The equation (3.4c) can be written as
−∂tv(3) −∆v(3) +∇π(3)

v = 20sα′]
(
v(2) + v(3)

)
in (0, T )× Ω,

∇ · v(3) = 0 in (0, T )× Ω,
v(3) = 0 on (0, T )× ∂Ω,
v(3)(T, ·) = 0 in Ω.

Following the method introduced in [11] (see also [9, 23]), we apply the operator ∇2∆ on the second component of
the previous system, and we obtain

−∂t∇2∆v
(3)
2 −∆∇2∆v

(3)
2 = 20sα′]

(
∇2∆v

(2)
2 +∇2∆v

(3)
2

)
in (0, T )× Ω.

Applying the Carleman estimate for the heat equation with non-homogeneous Neumann boundary conditions (see
[12, Theorem 1]) on the above equation, we obtain the existence of λ0 and s0 such that for any λ > λ0 and
s > s0(T 11 + T 22),∫∫

(0,T )×Ω

e−2sα

(
sλ2ξ

∣∣∣∇3∆v
(3)
2

∣∣∣2 + s3λ4ξ3
∣∣∣∇2∆v

(3)
2

∣∣∣2) dx dt

.
∫∫

(0,T )×Ω

e−2sαs2
(
α′]
)2(∣∣∣∇2∆v

(2)
2

∣∣∣2 +
∣∣∣∇2∆v

(3)
2

∣∣∣2) dx dt

+

∫∫
(0,T )×∂Ω

e−2sα]sλξ]

∣∣∣∣ ∂∂ν∇2∆v
(3)
2

∣∣∣∣2 dγ dt+

∫∫
(0,T )×ω0

e−2sαs3λ4ξ3
∣∣∣∇2∆v

(3)
2

∣∣∣2 dx dt.
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Then, using (2.17) and (3.5), we deduce from the above relation∫∫
(0,T )×Ω

e−2sα

(
sλ2ξ

∣∣∣∇3∆v
(3)
2

∣∣∣2 + s3λ4ξ3
∣∣∣∇2∆v

(3)
2

∣∣∣2) dx dt

.
∥∥∥ρ19

(
w1O? + g(1)

)∥∥∥2

X0

+

∫∫
(0,T )×∂Ω

e−2sα]sλξ]

∣∣∣∣ ∂∂ν∇2∆v
(3)
2

∣∣∣∣2 dγ dt

+

∫∫
(0,T )×ω0

e−2sαs3λ4ξ3
∣∣∣∇2∆v

(3)
2

∣∣∣2 dx dt. (3.10)

On the other hand, using Lemma 2.5 twice, the first time with u = ∇∆v
(3)
2 and r = 3, the second time with

u = ∆v
(3)
2 and r = 5 and adding them together, we have∫∫

(0,T )×Ω

e−2sα

(
s5λ6ξ5

∣∣∣∇∆v
(3)
2

∣∣∣2 + s7λ8ξ7
∣∣∣∆v(3)

2

∣∣∣2) dx dt

.
∫∫

(0,T )×ω0

e−2sα

(
s5λ6ξ5

∣∣∣∇∆v
(3)
2

∣∣∣2 + s7λ8ξ7
∣∣∣∆v(3)

2

∣∣∣2) dx dt

+

∫∫
(0,T )×Ω

e−2sαs3λ4ξ3
∣∣∣∇2∆v

(3)
2

∣∣∣2 dx dt. (3.11)

Next, using Lemma 2.6 with u = v
(3)
2 and r = 7, we also have∫∫

(0,T )×Ω

e−2sα

(
s8λ9ξ8

∣∣∣∇v(3)
2

∣∣∣2 + s10λ11ξ10
∣∣∣v(3)

2

∣∣∣2) dx dt

.
∫∫

(0,T )×ω0

e−2sαs10λ11ξ10
∣∣∣v(3)

2

∣∣∣2 dx dt+

∫∫
(0,T )×Ω

e−2sαs7λ8ξ7
∣∣∣∆v(3)

2

∣∣∣2 dx dt. (3.12)

Moreover, using the Poincaré inequality and the divergence-free condition, we also obtain∫∫
(0,T )×Ω

e−2sα]s8λ9ξ8
]

∣∣∣v(3)
1

∣∣∣2 dx dt .
∫∫

(0,T )×Ω

e−2sαs8λ9ξ8
∣∣∣∇v(3)

2

∣∣∣2 dx dt. (3.13)

Gathering (3.10)–(3.13) and recalling (3.6), we deduce the existence of λ0 and s0 such that for any λ > λ0 and
s > s0(T 11 + T 22),

I1(v(3)) .
∥∥∥ρ19

(
w1O? + g(1)

)∥∥∥2

X0

+

∫∫
(0,T )×∂Ω

e−2sα]sλξ]

∣∣∣∣ ∂∂ν∇2∆v
(3)
2

∣∣∣∣2 dγ dt

+

2∑
j=0

∫∫
(0,T )×ω0

e−2sαs3+2jλ4+2jξ3+2j
∣∣∣∇2−j∆v

(3)
2

∣∣∣2 dx dt+

∫∫
(0,T )×ω0

e−2sαs10λ11ξ10
∣∣∣v(3)

2

∣∣∣2 dx dt. (3.14)

We can check that the weight functions defined by (3.8) satisfy (2.4) and (2.5) with κ = 20sα′], so that we can
apply Lemma 2.1 and using (3.14) yield

I1(v(3)) + J1(v(3)) .
∥∥∥ρ19

(
w1O? + g(1)

)∥∥∥2

X0

+

∫∫
(0,T )×∂Ω

e−2sα]sλξ]

∣∣∣∣ ∂∂ν∇2∆v
(3)
2

∣∣∣∣2 dγ dt

+

2∑
j=0

∫∫
(0,T )×ω0

e−2sαs3+2jλ4+2jξ3+2j
∣∣∣∇2−j∆v

(3)
2

∣∣∣2 dx dt+

∫∫
(0,T )×ω0

e−2sαs10λ11ξ10
∣∣∣v(3)

2

∣∣∣2 dx dt. (3.15)
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Using a trace inequality and an interpolation inequality, we have∫∫
(0,T )×∂Ω

e−2sα]sλξ]

∣∣∣∣ ∂∂ν∇2∆v
(3)
2

∣∣∣∣2 dγ dt . λ−8

∫ T

0

(
τ2

∥∥∥v(3)
2

∥∥∥
H4(Ω)

)1/2(
τ3

∥∥∥v(3)
2

∥∥∥
H6(Ω)

)3/2

dt . λ−8J1(v(3))

and thus we can absorb the boundary term in (3.15) by taking λ0 large enough. We thus deduce the existence of
λ0 and s0 such that for any λ > λ0 and s > s0(T 11 + T 22),

I1(v(3)) + J1(v(3)) .
∥∥∥ρ19

(
w1O? + g(1)

)∥∥∥2

X0

+

2∑
j=0

∫∫
(0,T )×ω0

e−2sαs3+2jλ4+2jξ3+2j
∣∣∣∇2−j∆v

(3)
2

∣∣∣2 dx dt

+

∫∫
(0,T )×ω0

e−2sαs10λ11ξ10
∣∣∣v(3)

2

∣∣∣2 dx dt. (3.16)

Then, we remove some of the above local terms by using standard techniques: using (3.1) and (3.2) and integration
by parts, we have∫∫

(0,T )×ω0

e−2sαs3λ4ξ3

(
∂2

∂xk∂xq
∆v

(3)
2

)2

dx dt 6
∫∫

(0,T )×ω1

χ0e
−2sαs3λ4ξ3

(
∂2

∂xk∂xq
∆v

(3)
2

)2

dx dt

= −
∫∫

(0,T )×ω1

∂

∂xk

(
χ0e
−2sαs3λ4ξ3

) ∂2

∂xk∂xq
∆v

(3)
2

∂

∂xq
∆v

(3)
2 dx dt

−
∫∫

(0,T )×ω1

χ0e
−2sαs3λ4ξ3 ∂3

∂x2
k∂xq

∆v
(3)
2

∂

∂xq
∆v

(3)
2 dx dt.

Using (2.18) and the Young’s inequality, we can check that for any ε > 0,∫∫
(0,T )×ω0

e−2sαs3λ4ξ3
∣∣∣∇2∆v

(3)
2

∣∣∣2 dx dt . εI1(v(3)) +
1

ε

∫∫
(0,T )×ω1

e−2sαs5λ6ξ5
∣∣∣∇∆v

(3)
2

∣∣∣2 dx dt.

We have similar estimates for the rest of the local terms, thus we deduce from (3.16) that

I2(v(3)) + J2(v(3)) .
∥∥∥ρ19

(
w1O? + g(1)

)∥∥∥2

X0

+

∫∫
(0,T )×ω4

e−2sαs12λ13ξ12
∣∣∣v(3)

2

∣∣∣2 dx dt.

Combining the above relation with (3.3) and (3.5), we finally find (3.9).

3.2 Decomposition and Carleman estimates for w

We perform a similar procedure on w than the one we did above on v. We first consider the following decomposition
of w:

ρ17w = ρw(1) + w(2) + w(3), (3.17)

where 
∂tw

(1) + Aw(1) = ρ16P
(
ψe2 + g(3)

)
in (0, T ), w(1)(0, ·) = 0 in Ω, (3.18a)

∂tw
(2) + Aw(2) = 16ρ′w(1) in (0, T ), w(2)(0, ·) = 0 in Ω, (3.18b)

∂tw
(3) + Aw(3) = 17

ρ′

ρ

(
w(2) + w(3)

)
in (0, T ), w(3)(0, ·) = 0 in Ω. (3.18c)

Using the maximal regularity of the Stokes system, we have∥∥∥w(1)
∥∥∥
X1

+
∥∥∥w(2)

∥∥∥
X2

.
∥∥∥ρ16

(
ψe2 + g(3)

)∥∥∥
X0

. (3.19)
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Then, we set

I2(w(3)) :=

3∑
j=0

∫∫
(0,T )×Ω

e−2sαs1+2jλ2+2jξ1+2j
∣∣∣∇3−j∆w

(3)
2

∣∣∣2 dx dt+

∫∫
(0,T )×Ω

e−2sα]s7λ8ξ7
]

∣∣∣w(3)
∣∣∣2 dx dt (3.20)

and

J2(w(3)) :=

3∑
j=1

j∑
k=0

∥∥∥τ̃j∂kt w(3)
∥∥∥2

L2(0,T ;H2(j−k)(Ω)2)
, (3.21)

where
τ̃j := e−sα]λ4 (sξ])

7
2−j

12
11 (j = 0, . . . , 3). (3.22)

The aim of this section is to show the following result:

Lemma 3.2. There exist λ0 and s0 such that for any λ > λ0 and s > s0(T 11 + T 22), the solution (v, ϕ,w, ψ) of
(1.14) satisfies

I1(v(3)) + J1(v(3)) +
∥∥ρ21v

∥∥2

X0
+ I2(w(3)) + J2(w(3)) +

∥∥ρ18w
∥∥2

X0

.
∥∥∥ρ19g(1)

∥∥∥2

X0

+
∥∥∥ρ16g(3)

∥∥∥2

X0

+
∥∥ρ16ψ

∥∥2

X0

+

∫∫
(0,T )×ω4

e−2sα

(
s12λ13ξ12

∣∣∣v(3)
2

∣∣∣2 + s7λ8ξ7
∣∣∣∆w(3)

2

∣∣∣2) dx dt, (3.23)

where v(3) and w(3) are defined by (3.3)-(3.4c) and (3.17)-(3.18c).

Proof. The equation (3.18c) can be written as
∂tw

(3) −∆w(3) +∇π(3)
w = −17sα′]

(
w(2) + w(3)

)
in (0, T )× Ω,

∇ · w(3) = 0 in (0, T )× Ω,
w(3) = 0 on (0, T )× ∂Ω,
w(3)(0, ·) = 0 in Ω.

(3.24)

Applying the operator ∇2∆ on the second component of the first equation of (3.24), we obtain

∂t∇2∆w
(3)
2 −∆∇2∆w

(3)
2 = −17sα′]

(
∇2∆w

(2)
2 +∇2∆w

(3)
2

)
in (0, T )× Ω.

Applying the Carleman estimate for the heat equation with non-homogeneous Neumann boundary conditions (see
[12, Theorem 1]) on the above equation, we deduce the existence of λ0 and s0 such that for any λ > λ0 and
s > s0(T 11 + T 22),∫∫

(0,T )×Ω

e−2sα

(
sλ2ξ

∣∣∣∇3∆w
(3)
2

∣∣∣2 + s3λ4ξ3
∣∣∣∇2∆w

(3)
2

∣∣∣2) dx dt

.
∫∫

(0,T )×Ω

e−2sαs2
(
α′]
)2(∣∣∣∇2∆w

(2)
2

∣∣∣2 +
∣∣∣∇2∆w

(3)
2

∣∣∣2) dx dt

+

∫∫
(0,T )×∂Ω

e−2sα]sλξ]

∣∣∣∣ ∂∂ν∇2∆w
(3)
2

∣∣∣∣2 dγ dt+

∫∫
(0,T )×ω0

e−2sαs3λ4ξ3
∣∣∣∇2∆w

(3)
2

∣∣∣2 dx dt. (3.25)
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Then, using (2.17) and (3.19), we deduce from the above relation∫∫
(0,T )×Ω

e−2sα

(
sλ2ξ

∣∣∣∇3∆w
(3)
2

∣∣∣2 + s3λ4ξ3
∣∣∣∇2∆w

(3)
2

∣∣∣2) dx dt

.
∥∥∥ρ16

(
ψe2 + g(3)

)∥∥∥2

X0

+

∫∫
(0,T )×∂Ω

e−2sα]sλξ]

∣∣∣∣ ∂∂ν∇2∆w
(3)
2

∣∣∣∣2 dγ dt

+

∫∫
(0,T )×ω0

e−2sαs3λ4ξ3
∣∣∣∇2∆w

(3)
2

∣∣∣2 dx dt, (3.26)

for λ > λ0 and s > s0(T 11 + T 22). Again, using Lemma 2.5 twice, the first time with u = ∇∆w
(3)
2 and r = 3, the

second time with u = ∆w
(3)
2 and r = 5 and adding them together, we have∫∫

(0,T )×Ω

e−2sα

(
s5λ6ξ5

∣∣∣∇∆w
(3)
2

∣∣∣2 + s7λ8ξ7
∣∣∣∆w(3)

2

∣∣∣2) dx dt

.
∫∫

(0,T )×ω0

e−2sα

(
s5λ6ξ5

∣∣∣∇∆w
(3)
2

∣∣∣2 + s7λ8ξ7
∣∣∣∆w(3)

2

∣∣∣2) dx dt

+

∫∫
(0,T )×Ω

e−2sαs3λ4ξ3
∣∣∣∇2∆w

(3)
2

∣∣∣2 dx dt, (3.27)

for any λ > λ0 and s > s0(T 11 + T 22). Next, using the ellipticity of the Laplace operator,∫∫
(0,T )×Ω

e−2sα]s7λ8ξ7
]

(∣∣∣w(3)
2

∣∣∣2 +
∣∣∣∇w(3)

2

∣∣∣2) dx dt .
∫∫

(0,T )×Ω

e−2sαs7λ8ξ7
∣∣∣∆w(3)

2

∣∣∣2 dx dt.

Moreover, using the Poincaré inequality and the divergence-free condition, we also obtain∫∫
(0,T )×Ω

e−2sα]s7λ8ξ7
]

∣∣∣w(3)
1

∣∣∣2 dx dt .
∫∫

(0,T )×Ω

e−2sα]s7λ8ξ7
]

∣∣∣∇w(3)
2

∣∣∣2 dx dt. (3.28)

Combining (3.26)-(3.28) and recalling (3.20), we deduce that for λ > λ0 and s > s0(T 11 + T 22),

I2(w(3)) .
∥∥∥ρ16

(
ψe2 + g(3)

)∥∥∥2

X0

+

∫∫
(0,T )×∂Ω

e−2sα]sλξ]

∣∣∣∣ ∂∂ν∇2∆w
(3)
2

∣∣∣∣2 dγ dt

+

2∑
j=0

∫∫
(0,T )×ω0

e−2sαs3+2jλ4+2jξ3+2j
∣∣∣∇2−j∆w

(3)
2

∣∣∣2 dx dt. (3.29)

Then, we can check that the weight functions defined by (3.22) satisfy (2.4) and (2.5) with κ := −17sα′], so that
we can apply Lemma 2.1 and we deduce from (3.29)

I2(w(3)) + J2(w(3)) .
∥∥∥ρ16

(
ψe2 + g(3)

)∥∥∥2

X0

+

∫∫
(0,T )×∂Ω

e−2sα]sλξ]

∣∣∣∣ ∂∂ν∇2∆w
(3)
2

∣∣∣∣2 dγ dt

+

2∑
j=0

∫∫
(0,T )×ω0

e−2sαs3+2jλ4+2jξ3+2j
∣∣∣∇2−j∆w

(3)
2

∣∣∣2 dx dt.

As in the proof of Lemma 3.1, by taking λ0 and s0 large enough, we can absorb the boundary term and the local

terms in ∇2−j∆w
(3)
2 (j = 0, 1, 2) to obtain

I2(w(3)) + J2(w(3)) .
∥∥∥ρ16

(
ψe2 + g(3)

)∥∥∥2

X0

+

∫∫
(0,T )×ω2

e−2sαs7λ8ξ7
∣∣∣∆w(3)

2

∣∣∣2 dx dt.

Putting together the above relation with (3.9) and combining it with (3.17) and (3.19), we finally obtain (3.23).
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3.3 Removing the local terms in v and w

The aim of this section is to remove in (3.23) the local terms in v
(3)
2 and in ∆w

(3)
2 . More precisely we show the

following result:

Lemma 3.3. There exist λ0 and s0 such that for any λ > λ0 and s > s0(T 11 + T 22), the solution (v, ϕ,w, ψ) of
(1.14) satisfies

I1(v(3)) + J1(v(3)) +
∥∥ρ21v

∥∥2

X0
+ I2(w(3)) + J2(w(3)) +

∥∥ρ18w
∥∥2

X0

.
∥∥∥ρ18− 1

7 g(1)
∥∥∥2

X0

+
∥∥∥ρ15− 5

7 g(2)
∥∥∥2

X0

+
∥∥∥ρ16g(3)

∥∥∥2

X0

+
∥∥ρ16ψ

∥∥2

X0

+

∫∫
(0,T )×ω6

ρ20− 10
7

(
|ϕ|2 + |ψ|2

)
dx dt, (3.30)

where v(3) and w(3) are defined by (3.3)-(3.4c) and (3.17)-(3.18c).

Proof. Using the first equation of (1.14), we have

∆w2 = −∂t∆v2 −∆2v2 + ∂x2
∇ · g(1) −∆g

(1)
2 in (0, T )×O?

and from (3.17)

w
(3)
2 = ρ17w2 − ρw(1)

2 − w(2)
2 ,

so that
∆w

(3)
2 = ρ17

(
−∂t∆v2 −∆2v2 + ∂x2∇ · g(1) −∆g

(1)
2

)
− ρ∆w

(1)
2 −∆w

(2)
2 .

Using (3.1), (3.2) and Lemma 2.8, we can thus write∫∫
(0,T )×ω2

e−2sαs7λ8ξ7
∣∣∣∆w(3)

2

∣∣∣2 dx dt 6
∫∫

(0,T )×ω5

χ4e
−(2− 1

7 )sα]

∣∣∣∆w(3)
2

∣∣∣2 dx dt

=

∫∫
(0,T )×ω5

χ4ρ
(19− 1

7 )∆w
(3)
2

(
−∂t∆v2 −∆2v2 + ∂x2

∇ · g(1) −∆g
(1)
2

)
dx dt

−
∫∫

(0,T )×ω5

χ4ρ
(2− 1

7 )∆w
(3)
2

(
ρ∆w

(1)
2 + ∆w

(2)
2

)
dx dt. (3.31)

Let us estimate the first term on the right-hand side of (3.31), the other terms can be estimated similarly. After
some integrations by parts, we find

−
∫∫

(0,T )×ω5

χ4ρ
(19− 1

7 )∆w
(3)
2 ∂t∆v2 dx dt

=

∫∫
(0,T )×ω5

(
19− 1

7

)
ρ(18− 1

7 )ρ′∆
(
χ4∆w

(3)
2

)
v2 dx dt

+

∫∫
(0,T )×ω5

ρ(19− 1
7 )∆

(
χ4∂t∆w

(3)
2

)
v2 dx dt.

Using Lemma 2.8, we have
|ρ′| . ρ1− 1

7

and therefore, using (3.19), (3.21), (3.22) and Young’s inequality we obtain that for any ε > 0,∫∫
(0,T )×ω2

e−2sαs7λ8ξ7
∣∣∣∆w(3)

2

∣∣∣2 dx dt . εJ1(w(3)) +
1

ε

∫∫
(0,T )×ω5

ρ2(18− 2
7 ) |v2|2 dx dt

+
∥∥∥ρ18− 1

7 g(1)
∥∥∥2

X0

+
∥∥∥ρ16g(3)

∥∥∥2

X0

+
∥∥ρ16ψ

∥∥2

X0
. (3.32)
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Now using (3.3) and (3.5),∫∫
(0,T )×ω4

e−2sαs12λ13ξ12
∣∣∣v(3)

2

∣∣∣2 dx dt .
∫∫

(0,T )×ω4

ρ40 |v2|2 dx dt+
∥∥∥ρ19

(
w1O? + g(1)

)∥∥∥2

X0

Combining the above estimate with Lemma 2.7, (3.9) and (3.32) yields

I1(v(3)) + J1(v(3)) +
∥∥ρ21v

∥∥2

X0
+ I2(w(3)) + J2(w(3)) +

∥∥ρ18w
∥∥2

X0

.
∥∥∥ρ18− 1

7 g(1)
∥∥∥2

X0

+
∥∥∥ρ16g(3)

∥∥∥2

X0

+
∥∥ρ16ψ

∥∥2

X0
+

∫∫
(0,T )×ω5

ρ2(18− 2
7 ) |v2|2 dx dt. (3.33)

Let us now remove the local term in v2. The second equation of (1.14) implies

−∂tϕ−∆ϕ = v2 + ψ + g(2) in (0, T )×O?

so that with (3.3)∫∫
(0,T )×ω5

ρ2(18− 2
7 ) |v2|2 dx dt .

∫∫
(0,T )×ω6

χ5ρ
36− 4

7

(
ρv

(1)
2 + v

(2)
2 + v

(3)
2

)(
−∂tϕ−∆ϕ− ψ − g(2)

)
dx dt.

After some integrations by parts and using (3.5), (3.7), (3.8) and Young’s inequality, we find that for any ε > 0∫∫
(0,T )×ω5

ρ2(18− 2
7 ) |v2|2 dx dt

. εJ2(v(3)) +
1

ε

∥∥∥ρ19
(
w1O? + g(1)

)∥∥∥2

X0

+
1

ε

∥∥∥ρ15− 5
7 g(2)

∥∥∥2

X0

+
1

ε

∫∫
(0,T )×ω6

ρ20− 10
7

(
|ϕ|2 + |ψ|2

)
dx dt.

Gathering this with (3.33) implies (3.30).

3.4 Carleman estimates on ϕ and a new equation for ϕ

We now apply a standard Carleman estimate for the heat equation on the second equation of (1.14) and combine
it with Lemma 3.3. Let us set

I3(ϕ) :=

∫∫
(0,T )×Ω

e−44sα
(
s3λ4ξ3 |ϕ|2 + sλ2ξ |∇ϕ|2 + (sξ)−1

(
|∆ϕ|2 + |∂tϕ|2

))
dx dt

and let us show the following result:

Lemma 3.4. There exist λ0 and s0 such that for any λ > λ0 and s > s0(T 11 + T 22), the solution (v, ϕ,w, ψ) of
(1.14) satisfies

I1(v(3)) + J1(v(3)) +
∥∥ρ21v

∥∥2

X0
+ I2(w(3)) + J2(w(3)) +

∥∥ρ18w
∥∥2

X0
+ I3(ϕ) +

∥∥ρ22ϕ
∥∥2

X0

.
∥∥∥ρ18− 1

7 g(1)
∥∥∥2

X0

+
∥∥∥ρ15− 5

7 g(2)
∥∥∥2

X0

+
∥∥∥ρ16g(3)

∥∥∥2

X0

+
∥∥ρ16ψ

∥∥2

X0

+

∫∫
(0,T )×ω6

ρ20− 10
7

(
|ϕ|2 + |ψ|2

)
dx dt, (3.34)

where v(3) and w(3) are defined by (3.3)-(3.4c) and (3.17)-(3.18c).
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Proof. Recall that ϕ satisfies  −∂tϕ−∆ϕ = v2 + ψ1O? + g(2) in (0, T )× Ω,
ϕ = 0 on (0, T )× ∂Ω,
ϕ(T, ·) = ϕ0 in Ω.

Thus, applying a standard Carleman estimate for the heat equation (see, for instance, [13]), there exist λ0 and s0

such that for any λ > λ0 and s > s0(T 11 + T 22),

I3(ϕ) .
∫∫

(0,T )×ω0

e−44sαs3λ4ξ3 |ϕ|2 dx dt+

∫∫
(0,T )×Ω

e−44sα

(
|v2|2 + |ψ|2 +

∣∣∣g(2)
∣∣∣2) dx dt.

Combining the above relation with (3.30) and using Lemma 2.7, we find (3.34).

Now, before working on ψ, we first combine the equations in (1.14) to obtain a new equation for ϕ:

Lemma 3.5. Assume (v, ϕ,w, ψ) is a smooth solution of (1.14). Then

(∂t −∆)(−∂t −∆)2∆ϕ = ∂2
x1
ψ + ∆g

(3)
2 − ∂x2∇ · g(3) + (∂t −∆)

(
∆g

(1)
2 − ∂x2∇ · g(1)

)
+ (−∂t −∆)∆g(4) + (∂t −∆)(−∂t −∆)∆g(2) in (0, T )× [O? ∩ ω] . (3.35)

Proof. From (1.14), we have first

∆πw = ∂x2
ψ +∇ · g(3) in (0, T )× Ω, ∆πv = ∇ · g(1) in (0, T )×O?,

and we deduce
∂t∆w2 −∆2w2 = ∂2

x1
ψ + ∆g

(3)
2 − ∂x2

∇ · g(3) in (0, T )× Ω,

−∂t∆v2 −∆2v2 = ∆w2 + ∆g
(1)
2 − ∂x2

∇ · g(1) in (0, T )×O?.
The two above relations imply

(∂t −∆)(−∂t −∆)∆v2 = ∂2
x1
ψ + ∆g

(3)
2 − ∂x2∇ · g(3) + (∂t −∆)

(
∆g

(1)
2 − ∂x2∇ · g(1)

)
in (0, T )×O?.

Combining this relation with the second equation of (1.14) yields

(∂t −∆)(−∂t −∆)2∆ϕ = ∂2
x1
ψ + ∆g

(3)
2 − ∂x2∇ · g(3) + (∂t −∆)

(
∆g

(1)
2 − ∂x2∇ · g(1)

)
+ (∂t −∆)(−∂t −∆)∆

(
ψ + g(2)

)
in (0, T )×O?.

Finally, using the fourth equation in (1.14) and recalling ω ∩ O = ∅, we deduce (3.35).

3.5 Decomposition and Carleman estimates for ψ

We now deal with ψ that satisfies the fourth equation in (1.14). We follow the same approach as what we did for
v and w. First we consider the following decomposition of ψ:

ρ13ψ = ρψ(1) + ψ(2) + ψ(3), (3.36)

where 
∂tψ

(1) + Aψ(1) = ρ12
(
−µϕ1O + g(4)

)
in (0, T ), ψ(1)(0, ·) = 0 in Ω, (3.37a)

∂tψ
(2) + Aψ(2) = 12ρ′ψ(1) in (0, T ), ψ(2)(0, ·) = 0 in Ω, (3.37b)

∂tψ
(3) + Aψ(3) = 13

ρ′

ρ

(
ψ(2) + ψ(3)

)
in (0, T ), ψ(3)(0, ·) = 0 in Ω. (3.37c)
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Using the maximal regularity of the heat equation, we have∥∥∥ψ(1)
∥∥∥
X1

+
∥∥∥ψ(2)

∥∥∥
X2

.
∥∥∥ρ12

(
−µϕ1O + g(4)

)∥∥∥
X0

. (3.38)

Let us set

I4(ψ(3)) :=

3∑
j=0

∫∫
(0,T )×Ω

e−2sαs1+2jλ2+2jξ1+2j
∣∣∣∇3−j∂2

x1
ψ(3)

∣∣∣2 dx dt+∫∫
(0,T )×Ω

e−2sα]s7λ8ξ7
]

∣∣∣ψ(3)
∣∣∣2 dx dt (3.39)

and

J4(ψ) :=

5∑
j=1

j∑
k=0

∥∥τ̂j∂kt ψ∥∥2

L2(0,T ;H2(j−k)(Ω))
, (3.40)

where
τ̂j := e−sα]λ4 (sξ])

7
2−j

12
11 (j = 0, . . . , 5). (3.41)

We then show the following result:

Lemma 3.6. There exist λ0 and s0 such that for any λ > λ0 and s > s0(T 11 + T 22), the solution (v, ϕ,w, ψ) of
(1.14) satisfies

I4(ψ(3)) + J4(ψ(3)) +
∥∥ρ14ψ

∥∥2

X0
.
∥∥∥ρ12

(
−µϕ1O + g(4)

)∥∥∥2

X0

+

∫∫
(0,T )×ω2

e−2sαs7λ8ξ7
∣∣∣∂2
x1
ψ(3)

∣∣∣2 dx dt. (3.42)

where ψ(3) is defined by (3.36)-(3.37c).

Proof. Applying the operator ∇2∂2
x1

on the equation of ψ(3), we obtain

∂t∇2∂2
x1
ψ(3) −∆∇2∂2

x1
ψ(3) = −13sα′]

(
∇2∂2

x1
ψ(2) +∇2∂2

x1
ψ(3)

)
in (0, T )× Ω.

We apply on the above equation the Carleman on the heat equation with non-homogeneous Neumann boundary
conditions (see [12, Theorem 1]): there exist λ0 and s0 such that for any λ > λ0 and s > s0(T 11 + T 22),∫∫

(0,T )×Ω

e−2sα

(
sλ2ξ

∣∣∣∇3∂2
x1
ψ(3)

∣∣∣2 + s3λ4ξ3
∣∣∣∇2∂2

x1
ψ(3)

∣∣∣2) dx dt

.
∫∫

(0,T )×Ω

e−2sαs2
(
α′]
)2(∣∣∣∇2∂2

x1
ψ(2)

∣∣∣2 +
∣∣∣∇2∂2

x1
ψ(3)

∣∣∣2) dx dt

+

∫∫
(0,T )×∂Ω

e−2sα]sλξ]

∣∣∣∣ ∂∂ν∇2∂2
x1
ψ(3)

∣∣∣∣2 dγ dt+

∫∫
(0,T )×ω0

e−2sαs3λ4ξ3
∣∣∣∇2∂2

x1
ψ(3)

∣∣∣2 dx dt.

Next, we combine the above relation with (3.38) and with a Carleman estimate for the gradient operator (similar
to those used for v and w): there exist λ0 and s0 such that for any λ > λ0 and s > s0(T 11 + T 22),

3∑
j=0

∫∫
(0,T )×Ω

e−2sαs1+2jλ2+2jξ1+2j
∣∣∣∇3−j∂2

x1
ψ(3)

∣∣∣2 dx dt

.
∥∥∥ρ12

(
−µϕ1O + g(4)

)∥∥∥2

X0

+

∫∫
(0,T )×∂Ω

e−2sα]sλξ]

∣∣∣∣ ∂∂ν∇2∂2
x1
ψ(3)

∣∣∣∣2 dγ dt

+

2∑
j=0

∫∫
(0,T )×ω0

e−2sαs3+2jλ4+2jξ3+2j
∣∣∣∇2−j∂2

x1
ψ(3)

∣∣∣2 dx dt.
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Next, we use the following property of the operator ∂2
x1

on H1
0 (Ω) (see [8, relation (3.15)])∫∫

(0,T )×Ω

e−2sα]s7λ8ξ7
]

∣∣∣ψ(3)
∣∣∣2 dx dt .

∫∫
(0,T )×Ω

e−2sαs7λ8ξ7
∣∣∣∂2
x1
ψ(3)

∣∣∣2 dx dt.

Combining the above relations, we deduce that I4(ψ(3)) defined by (3.39) satisfies for λ > λ0 and s > s0(T 11 +T 22),

I4(ψ(3)) .
∥∥∥ρ12

(
−µϕ1O + g(4)

)∥∥∥2

X0

+

∫∫
(0,T )×∂Ω

e−2sα]sλξ]

∣∣∣∣ ∂∂ν∇2∂2
x1
ψ(3)

∣∣∣∣2 dγ dt

+

2∑
j=0

∫∫
(0,T )×ω0

e−2sαs3+2jλ4+2jξ3+2j
∣∣∣∇2−j∂2

x1
ψ(3)

∣∣∣2 dx dt. (3.43)

We can check that the weight functions defined by (3.41) satisfy (2.4) and (2.5) with κ := −13sα′]. Applying
Lemma 2.1 and using (3.43) yield

I4(ψ(3)) + J4(ψ) .
∥∥∥ρ12

(
−µϕ1O + g(4)

)∥∥∥2

X0

+

∫∫
(0,T )×∂Ω

e−2sα]sλξ]

∣∣∣∣ ∂∂ν∇2∂2
x1
ψ(3)

∣∣∣∣2 dγ dt

+

2∑
j=0

∫∫
(0,T )×ω0

e−2sαs3+2jλ4+2jξ3+2j
∣∣∣∇2−j∂2

x1
ψ(3)

∣∣∣2 dx dt.

Taking λ0 and s0 large enough, we can absorb the boundary term and estimate the local terms in ∇2∂2
x1
ψ(3) and

in ∇∂2
x1
ψ(3) as in the proof of Lemma 3.2 to obtain (3.42).

3.6 Proof of Theorem 1.4

We now combine Lemma 3.4, Lemma 3.5 and Lemma 3.6 to prove Theorem 1.4:

Proof of Theorem 1.4. We estimate the local term appearing in (3.42): using (3.36) we can write∫∫
(0,T )×ω2

e−2sαs7λ8ξ7
∣∣∣∂2
x1
ψ(3)

∣∣∣2 dx dt

.
∫∫

(0,T )×ω3

χ2ρ
(2− 1

7 )∂2
x1
ψ(3)

(
ρ13∂2

x1
ψ − ρ∂2

x1
ψ(1) − ∂2

x1
ψ(2)

)
dx dt.

Then, using (3.35), we deduce∫∫
(0,T )×ω3

χ2ρ
(15− 1

7 )∂2
x1
ψ(3)∂2

x1
ψ dx dt =

∫∫
(0,T )×ω3

χ2ρ
(15− 1

7 )∂2
x1
ψ(3)

[
(∂t −∆)(−∂t −∆)2∆ϕ

−∆g
(3)
2 + ∂x2

∇ · g(3) − (∂t −∆)
(

∆g
(1)
2 − ∂x2

∇ · g(1)
)
−(−∂t −∆)∆g(4) − (∂t −∆)(−∂t −∆)∆g(2)

]
dx dt.

Using (3.40) and (3.41), several integration by parts and Young’s inequality, we obtain that for any ε > 0,∫∫
(0,T )×ω2

e−2sαs7λ8ξ7
∣∣∣∂2
x1
ψ(3)

∣∣∣2 dx dt . εJ4(ψ(3)) +
1

ε

∥∥∥ρ12
(
−µϕ1O + g(4)

)∥∥∥2

X0

+
1

ε

∫∫
(0,T )×ω3

ρ18− 2
7 |ϕ|2 dx dt+

4∑
i=1

1

ε

∫∫
(0,T )×Ω

ρ18− 2
7

∣∣∣g(i)
∣∣∣2 dx dt.
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Gathering the above estimate with (3.42) and (3.34), we finally find

I1(v(3)) + J1(v(3)) +
∥∥ρ21v

∥∥2

X0
+ I2(w(3)) + J2(w(3)) +

∥∥ρ18w
∥∥2

X0

+ I3(ϕ) +
∥∥ρ22ϕ

∥∥2

X0
+ I4(ψ(3)) + J4(ψ(3)) +

∥∥ρ14ψ
∥∥2

X0

.
∥∥ρ12µϕ1O

∥∥2

X0
+

3∑
i=1

∫∫
(0,T )×Ω

ρ18− 2
7

∣∣∣g(i)
∣∣∣2 dx dt+

∥∥∥ρ12g(4)
∥∥∥2

X0

+

∫∫
(0,T )×ω6

ρ18− 2
7 |ϕ|2 dx dt.

Recalling (1.15), we see that we can absorb the term ρ12µϕ1O by the left-hand side and we thus deduce (1.16).
This concludes the proof of Theorem 1.4.

4 Proof of the exact hierarchical controllability

In this section, we show how to deduce Theorem 1.2 from Theorem 1.4. The arguments are quite standard but we
recall them for sake of completeness. Recall that h and g are defined in (2.6). First, we modify the weight functions
in (1.16) by replacing ρ defined in (2.19) by ρ\ given by

ρ\(t) :=


ρ

(
T

2

)
t ∈
[
0,
T

2

]
ρ (t) t ∈

[
T

2
, T

] .

Hence, the functions ρ1 and ρ2 mentioned in Theorem 1.2 are precisely

ρ1 := ρ11, ρ2 := ρ22
\ . (4.1)

Therefore, we have the following:

Corollary 4.1. With the hypotheses of Theorem 1.4, the solution (v, ϕ,w, ψ) of (1.14) satisfies∥∥ρ22
\ (v, ϕ,w, ψ)

∥∥
L2(0,T ;L2(Ω)6)

+ ‖(v(0, ·), ϕ(0, ·))‖L2(Ω)3 .
∥∥ρ12

\ g
∥∥
L2(0,T ;L2(Ω)6)

+
∥∥ρ13

\ ϕ
∥∥
L2(0,T ;L2(ω))

. (4.2)

Proof. From (1.16), we first deduce that∥∥ρ22
\ (v, ϕ,w, ψ)

∥∥
L2(T/2,T ;L2(Ω)6)

.
∥∥ρ12

\ g
∥∥
L2(0,T ;L2(Ω)6)

+
∥∥ρ13

\ ϕ
∥∥
L2(0,T ;L2(ω))

. (4.3)

We consider χ ∈ C∞(R; [0, 1]), χ ≡ 1 in (−∞, T/2], χ ≡ 0 in [3T/4,∞). We deduce from (1.14) and (2.9) that
L∗ (χ (v, πv, ϕ, w, πw, ψ)) = χg + χ′ (v, ϕ,w, ψ) in (0, T )× Ω,
∇ · (χv) = ∇ · (χw) = 0 in (0, T )× Ω,
(χv) = (χw) = 0, (χϕ) = (χψ) = 0 on (0, T )× ∂Ω,
(χv)(T, ·) = 0, (χϕ)(T, ·) = 0, (χw)(0, ·) = 0, (χψ)(0, ·) = 0 in Ω.

Applying Proposition 2.2, we deduce that

‖χ (v, ϕ,w, ψ)‖L2(0,T ;H2(Ω)6)∩H1(0,T ;L2(Ω)6) . ‖χg‖L2(0,T ;L2(Ω)6) + ‖χ′ (v, ϕ,w, ψ)‖L2(0,T ;L2(Ω)6) . (4.4)

We note that the support of χ′ is included in (T/2, 3T/4) and we have

ρ\(t) > ρ\

(
3T

4

)
> 0 (t ∈ (T/2, 3T/4)).
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Combining this with (4.4), we obtain∥∥ρ22
\ (v, ϕ,w, ψ)

∥∥
L2(0,T/2;L2(Ω)6)

+ ‖(v(0, ·), ϕ(0, ·))‖L2(Ω)3

.
∥∥ρ12

\ g
∥∥
L2(0,3T/4;L2(Ω)6)

+
∥∥ρ22

\ (v, ϕ,w, ψ)
∥∥
L2(T/2,3T/4;L2(Ω)6)

.

The above equation and (4.3) imply (4.2).

We now consider the Banach space

F :=

{
h :

h

ρ22
\

∈ L2(0, T ;L2(Ω)6)

}

endowed with the norm

‖h‖F :=

∥∥∥∥∥ h

ρ22
\

∥∥∥∥∥
L2(0,T ;L2(Ω)6)

.

We deduce from Corollary 4.1 the partial null-controllability of the linear system (1.11).

Proposition 4.2. Assume that ω ∩ O = ∅, that ω ∩ O? 6= ∅ and (1.15). Then, there exists a linear continuous
operator

M : V×H1
0 (Ω)×F → [X1 ×X1]

2 × L2(0, T ;L2(ω))

such that for any (y0, θ0) ∈ V×H1
0 (Ω) and h ∈ F ,

((y, θ, u, σ), f) :=M
(
(y0, θ0), h

)
corresponds to the strong solution of (1.11) associated with h, (y0, θ0) and with a control f such that we have the
estimate ∥∥∥∥∥ (y, θ, u, σ)

ρ11
\

∥∥∥∥∥
L2(0,T ;H2(Ω)6)∩H1(0,T ;L2(Ω)6)

+

∥∥∥∥∥ f

ρ13
\

∥∥∥∥∥
L2(0,T ;L2(ω))

. ‖h‖F +
∥∥(y0, θ0

)∥∥
H1(Ω)3

. (4.5)

In particular
y(T, ·) = 0, θ(T, ·) = 0 in Ω.

Proof. We define

X0 :=
{

(v, πv, ϕ, w, πw, ψ) ∈ C∞
(
[0, T ]× Ω

)8
: ∇ · v = ∇ · w = 0 in [0, T ]× Ω,

v = w = 0 on [0, T ]× ∂Ω, ϕ = ψ = 0 on [0, T ]× ∂Ω,

∫
Ω

πv dx =

∫
Ω

πw dx = 0 in [0, T ]

}
and we recall that L∗ is defined by (2.9) and permits to write (1.14) as (2.10). Then, we consider the bilinear form〈

(v, πv, ϕ, w, πw, ψ) ,
(
v̂, π̂v, ϕ̂, ŵ, π̂w, ψ̂

)〉
X

:=

∫∫
(0,T )×Ω

ρ24
\ L
∗ (v, πv, ϕ, w, πw, ψ) · L∗

(
v̂, π̂v, ϕ̂, ŵ, π̂w, ψ̂

)
dx dt+

∫∫
(0,T )×Ω

ρ26
\ ϕϕ̂ dx dt (4.6)

and the linear form

`
((
v̂, π̂v, ϕ̂, ŵ, π̂w, ψ̂

))
:=

∫∫
(0,T )×Ω

(
v̂, ϕ̂, ŵ, ψ̂

)
· h dx dt+

∫
Ω

(
v̂(0, ·) · y0 + ϕ̂(0, ·)θ0

)
dx.
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Using (4.2), we see that the bilinear map 〈·, ·〉X defined by (4.6) is a scalar product on X0. We denote by ‖·‖X the
corresponding norm and by X the completion of X0 for this norm. We deduce from (4.2) that∥∥ρ22

\ (v, ϕ,w, ψ)
∥∥
L2(0,T ;L2(Ω)6)

+ ‖(v(0, ·), ϕ(0, ·))‖L2(Ω)3 . ‖(v, πv, ϕ, w, πw, ψ)‖X .

In particular, ` ∈ X ′ with

‖`‖X ′ .

∥∥∥∥∥ h

ρ22
\

∥∥∥∥∥
L2(0,T ;L2(Ω)6)

+
∥∥(y0, θ0

)∥∥
L2(Ω)3

.

We can thus apply the Riesz theorem and obtain the existence and uniqueness of (v, πv, ϕ, w, πw, ψ) ∈ X such that

for any
(
v̂, π̂v, ϕ̂, ŵ, π̂w, ψ̂

)
∈ X ,〈

(v, πv, ϕ, w, πw, ψ) ,
(
v̂, π̂v, ϕ̂, ŵ, π̂w, ψ̂

)〉
X

= `
(
v̂, π̂v, ϕ̂, ŵ, π̂w, ψ̂

)
. (4.7)

We set
(y, θ, u, σ) := ρ24

\ L
∗ (v, πv, ϕ, w, πw, ψ) , f := ρ26

\ ϕ

and we deduce from (4.7) that (y, θ, u, σ) is a solution by transposition of (1.11) associated with f and h (in the
sense of Definition 2.4). Moreover, we also obtain the estimate∥∥∥∥∥ (y, θ, u, σ)

ρ12
\

∥∥∥∥∥
L2(0,T ;L2(Ω)6)

+

∥∥∥∥∥ f

ρ13
\

∥∥∥∥∥
L2(0,T ;L2(ω))

.

∥∥∥∥∥ h

ρ22
\

∥∥∥∥∥
L2(0,T ;L2(Ω)6)

+
∥∥(y0, θ0

)∥∥
L2(Ω)3

.

Then, one can check that (y, πy, θ, u, πu, σ) is a solution of

L

(
(y, πy, θ, u, πu, σ)

ρ11
\

)
=

(
h(1), h(2) + f1ω, h

(3), h(4)
)

ρ11
\

+
11ρ′\
ρ12
\

(−y,−θ, u, σ)

with

∇ ·

(
y

ρ11
\

)
= ∇ ·

(
u

ρ11
\

)
= 0 in (0, T )× Ω,

(y, θ, u, σ)

ρ11
\

= 0 on (0, T )× ∂Ω

and (
(y, θ)

ρ11
\

)
(0, ·) =

(
(y0, θ0)

ρ11
\

)
,

(
(u, σ)

ρ11
\

)
(T, ·) = 0 in Ω.

Applying Proposition 2.2, we obtain (4.5).

We are now in a position to prove the null-controllability result:

Proof of Theorem 1.2. The above proposition allows us to define the mapping

N (h) :=
(
− (y · ∇) y,−y · ∇θ,− (∇y)

>
u+ (y · ∇)u− σ∇θ − y?1O? , y · ∇σ − θ?1O?

)
, (4.8)

where ((y, θ, u, σ) , f) :=M
(
(y0, θ0), h

)
for h ∈ F . We notice that if h is a fixed point of N , then the corresponding

solution (y, θ, u, σ) is a solution of (1.9) (see (1.12) and (1.13)). Using Sobolev embeddings and Hölder inequalities,
we have∥∥∥∥∥ (y · ∇) y

ρ22
\

∥∥∥∥∥
L2(0,T ;L2(Ω)2)

.

∥∥∥∥∥
((

y

ρ11
\

)
· ∇

)(
y

ρ11
\

)∥∥∥∥∥
L2(0,T ;L2(Ω)2)

.

∥∥∥∥∥ y

ρ11
\

∥∥∥∥∥
2

L2(0,T ;H2(Ω)2)∩H1(0,T ;L2(Ω)2)

.
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Combining this with (4.5), (4.8) and
(y?, θ?)

ρ22
\

∈ L2(0, T ;L2(Ω)3),

we deduce the existence of a constant C0 > 0 such that for any h, ĥ ∈ F ,

‖N (h)‖F 6 C0

∥∥∥∥∥ h

ρ22
\

∥∥∥∥∥
L2(0,T ;L2(Ω)6)

+
∥∥(y0, θ0

)∥∥
H1(Ω)3

2

+

∥∥∥∥∥ (y?, θ?)

ρ22
\

∥∥∥∥∥
L2(0,T ;L2(Ω)3)

(4.9)

and ∥∥∥N (h)−N
(
ĥ
)∥∥∥
F
6 C0

(
‖h‖F +

∥∥∥ĥ∥∥∥
F

+
∥∥(y0, θ0

)∥∥
H1(Ω)3

)∥∥∥h− ĥ∥∥∥
F
. (4.10)

We now consider

R :=
1

8C0

and we assume ∥∥(y0, θ0
)∥∥
H1(Ω)3

6 R,

∥∥∥∥∥ (y?, θ?)

ρ22
\

∥∥∥∥∥
L2(0,T ;L2(Ω)3)

6
R

2
.

Then, we deduce from (4.9) and (4.10) that the closed ball of the Banach space F defined by

BF (0, R) := {h ∈ F : ‖h‖F 6 R}

is invariant by N and on this ball, N is a strict contraction. This implies the existence of a fixed point for N and
this concludes the theorem.
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[17] Francisco Guillén-González, Francisco Marques-Lopes, and Marko A. Rojas-Medar. On the approximate con-
trollability of Stackelberg-Nash strategies for Stokes equations. Proc. Am. Math. Soc., 141(5):1759–1773, 2013.
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